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Abstract: With the rise of technology, mobile unmanned target vehicles have become common in military training. These 

vehicles carry shooting targets, offering troops mobile targets for shooting practice and enhancing simulated training 

effectiveness. However, in complex terrains, the movement path of unmanned vehicles falls short of achieving desired results. 

Path planning for unmanned target vehicles has therefore gained importance. To optimize their movement and enhance military 

training, a robust adaptive positioning algorithm based on Global Positioning System/Bei Dou System (GPS/BDS) technology 

is proposed. This algorithm ensures precise positioning and trajectory prediction. Additionally, the Ant Colony Optimization 

(ACO) algorithm is improved by considering heuristic factors and defining restricted regions, optimizing the trajectory. 

Simulation experiments demonstrate high-precision navigation and positioning, reducing signal propagation time and improving 

smoothness and directionality. The path length approximates the optimal path with minimal error. Comparative experiments 

confirm the algorithm's accuracy and efficiency in planning paths with speed, fewer turns, and improved smoothness. This 

optimization helps unmanned target vehicles enhance their trajectories and improve military training effectiveness. 
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1. Introduction 

With the continuous development of science and 

technology and the continuous improvement of military 

training requirements, the conventional fixed target 

training method is being phased out. Unmanned target 

vehicles that can move independently are suitable for 

mobile target training and have been widely used in the 

military field. Unmanned target vehicles require the 

assistance of navigation systems to move toward the 

target. The positioning and navigation technology of 

unmanned target vehicles mainly relies on Global 

Positioning System (GPS) and Bei Dou System (BDS) 

[12, 16, 21]. However, due to the influence of signal 

occlusion, multipath effect and other factors, the 

positioning accuracy may be limited. The combination 

of GPS/BDS positioning method and unmanned target 

vehicle positioning and navigation is studied to improve 

the positioning accuracy and reliability of unmanned 

target vehicle. By combining various positioning 

techniques, the unmanned target vehicle can more 

precisely identify and navigate towards the desired 

location. In addition, the premise of autonomous 

movement of mobile unmanned target vehicles is that 

they have the ability to plan paths, so the selection of 

path search algorithms needs to be carefully considered. 

However, the existing algorithms have the problems 

of high computational complexity, easy to fall into the 

local optimal solution, and insufficient processing of  

 
terrain constraints. Therefore, to address existing 

deficiencies in GPS/BDS navigation and positioning 

algorithms, a sturdy adaptable positioning algorithm 

utilizing GPS/BDS pseudo range Doppler observations 

is proposed. This will enhance both the original method 

and its accuracy and autonomous motion ability [20, 

26]. Ant colony algorithm has the advantages of strong 

robustness. However, the traditional ant colony 

algorithm may fall into the problem of local optimal 

solution in path search, so this study introduces 

additional information to guide ant colony search, and 

constrains it by heuristic factor weights and setting band 

gap to improve its search accuracy. Based on this 

situation, the study proposes unmanned target vehicle 

navigation and path planning using improved Ant 

Colony Optimization (ACO) algorithm combined with 

GPS/BDS. There are three innovative points in this 

paper: Firstly, an unmanned target vehicle positioning 

and navigation method is proposed that combines 

GPS/BDS positioning. This method improves the 

accuracy and reliability of positioning. Second, the 

paper introduces a robust adaptive localization 

algorithm based on GPS/BDS pseudo range Doppler 

observations. This algorithm establishes a suitable 

random model based on the GPS/BDS dual system to 

meet the requirements of real-time dynamic data 

processing; Establish a detection method based on 

pseudo range single difference to eliminate the 
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influence of gross errors in GPS/BDS observation 

errors. Additionally, it constructs an adaptive factor 

based on a one-step robust solution to dynamic model 

errors for achieving robust adaptation. This can 

introduce more exploration into the search process, 

avoid falling into the local optimal solution, and 

improve the optimization effect of the path. 

2. Related Work 

Path optimization has always been a hot topic in road 

planning research. Numerous scholars have explored 

path optimization methods from multiple perspectives 

and perspectives. Xu et al. [25] proposed an improved 

artificial potential field model to improve the 

performance of the artificial potential field model in 

path planning problems. This model discards the local 

minimum of traditional models while avoiding 

obstacles, and uses the repulsive potential surface of 

local optimization to obtain the optimal path. This 

experiment illustrates that the improved artificial 

potential field method can quickly adapt to changing 

environments and efficiently plan collision-free paths. 

To optimize the driving route of vehicles in path 

tracking and reduce vehicle collision accidents, Lin et 

al. [14] proposed a model curve fitting method 

combining artificial potential fields. The approach 

utilizes quadratic programming to define the rolling 

curve of the vehicle, partially restricts the optimization 

process of the path, and includes the front and vehicle 

waypoints in the path planning. Simulation experiments 

have shown that the model curve fitting method can plan 

safe driving routes in the presence of obstacles and has 

high efficiency in finding traffic paths. To optimize the 

motion path of vehicle-like mobile robot, Sathiya et al. 

[17] proposed an improved multi-objective Particle 

Swarm Optimization (PSO) model with fuzzy 

enhancement, and used the fuzzy reasoning system to 

avoid obstacles. And in the experiment of vehicle like 

robots, robot dynamics and system constraints are used 

as parameter variables to ensure the degree of freedom 

for path exploration. The simulation results showcase 

that the path planned by the improved PSO method has 

high security and does not collide with obstacles, so it 

has application value. To optimize the transportation 

route of radioactive materials and reduce transportation 

risks and costs, Tao et al. [19] proposed a 

comprehensive path planning method that combines 

risk awareness. This method considers risk, time, and 

economic cost, culminating in the creation of a 

probabilistic safety assessment model and grey 

correlation analysis model. Planning indicators are 

added to determine the path. The experimental results 

indicate that the comprehensive path planning method 

can effectively reduce transportation risks and costs. To 

optimize the global movement path of unmanned 

vehicles, scholars such as Cui et al. [7] combined an 

improved ACO model to design and optimize a global 

path planning model. This model determines the level 

of pheromone distribution by incorporating the 

positional relationship of each mobile node. Meanwhile, 

it uses the weight factor to speed up the pheromone 

update and ensure the number of pheromone to prevent 

premature convergence. This ultimately ensures the 

adaptability of the model to the experimental 

environment and can effectively reduce the cost of 

mobile control. Cheng et al. [6] proposed the AMENet 

model to address the complexity and uncertainty of 

autonomous and robot navigation trajectories, utilizing 

feature extraction and attention mechanisms in 

encoding. Specifically, AMENet includes two main 

components: a map encoder and a trajectory encoder. 

Map encoders are used to extract map features, while 

trajectory encoders fuse trajectory information with 

map features. Through the attention mechanism, 

AMENet can adaptively capture map related 

information in trajectories. Finally, by using the features 

obtained by the encoder, AMENet can make accurate 

trajectory prediction. Abdulla et al. [1] increased the 

prediction accuracy of moving object paths and 

proposed a HarmonyMoves unified prediction method. 

This method combines multiple prediction models and 

utilizes harmonious search algorithms to improve the 

accuracy of predictions. By integrating the prediction 

results of multiple models, HarmonyMoves can better 

predict the future path of moving objects. Chen et al. [5] 

aim to optimize the flow of urban traffic by reducing 

congestion and improving transportation efficiency. 

They introduced dynamic path selection algorithms and 

considered the travel needs of users and the state of the 

transportation network. Through intelligent decision-

making and allocation mechanisms, they adjusted the 

paths of shared vehicles, thereby improving the overall 

efficiency of the transportation system. Through 

simulation experiments and numerical analysis, it has 

been proven that this dynamic path optimization 

strategy can effectively alleviate urban traffic 

congestion. 

ACO, as a probabilistic model, is widely used in 

global optimization research. Whether it is 

combinatorial optimization problems such as traveling 

salesman problems, vehicle routing problems, or 

continuous optimization problems, ACO can play a 

powerful role. By continuously adjusting the behavior 

rules and parameter settings of ants, the ACO algorithm 

can find high-quality solutions in various complex 

scenarios. To solve the problem that the proportional 

integral differential controller in the nonlinear system 

does not respond well to the changes of motor system 

parameters, Mahfoud et al. [15] proposed a strategy of 

combining ACO models. This approach enhances the 

gain of proportional integral differentiation through 

utilization of integral squared error as a cost function, 

and is applied to both sides of a doubly fed 

asynchronous motor. The research results indicate that 

the combined ACO model can ensure the effectiveness 
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of proportional integral differential under direct torque 

control and improve the global performance of the 

system. To improve traditional liquid sensors, Fang et 

al. [9] the ACO model for numerical optimization of the 

structure of artificial magnetic conductors. Then, a 

broadband antenna is introduced to design a liquid 

sensor, and the liquid sample is injected directly into the 

internal structure of the sensor. Simulation experiments 

have shown that the ACO model can reduce the 

manufacturing cost and response time consumption of 

liquid sensors, and improve the structural optimization 

of sensors. To help alleviate network hotspot issues 

through data collection strategies based on mobile 

beacons, Boyineni et al. [3] introduced ACO into the 

data collected by mobile beacons to improve network 

energy efficiency and traffic by reducing network speed 

latency. Then the researchers used ACO to 

simultaneously select network relay nodes and traffic 

paths, and adopted a virtual relay node selection strategy 

to avoid redundant data exchange. Ultimately, it can 

reduce network burden and usage pressure. To optimize 

the distribution route of low-carbon fresh cold chain 

logistics, Wu et al. [23] proposed a distribution model 

with the ratio of minimum total cost and maximum 

satisfaction as the objective function. The model takes 

into account various factors, including customer 

satisfaction and cost. It employs the improved algorithm 

and ant colony algorithm to solve the problem. The 

results show that the improved ant colony algorithm can 

efficiently and accurately find the optimal solution for 

the single objective low-carbon fresh agricultural 

products cold chain logistics distribution model. To 

improve the accuracy and freedom of big data anomaly 

detection methods, Xu [24] proposed a hybrid big data 

segmentation anomaly detection model combined with 

ACO. This model redefines the number of network node 

neighbors, and regards the high concentration 

pheromone position obtained from the ant colony model 

as an abnormal position to introduce the security status 

value, and finally completes the big data detection. 

Simulation experiments showed that the improved 

detection method has a high level of accuracy, superior 

positioning flexibility, and efficient system 

performance. 

In conclusion, many experts and scholars have solved 

the global optimization problem through ACO 

algorithm, and proposed various planning models to 

optimize the mobile path and reduce the mobile cost. 

However, traditional ACO algorithms are also prone to 

problems such as local optima and poor convergence in 

the path planning process. Additionally, path planning 

of unmanned target vehicles is necessary for military 

training, which demands both confidentiality and 

precision. Therefore, it is necessary to improve the 

traditional planning model to improve the planning 

accuracy. Therefore, the study utilizes an improved ant 

colony model to combine the Global Positioning System 

(GPS) and the Beidou Navigation Satellite System 

(BDS) to design an unmanned target vehicle navigation 

and path planning model, hoping to provide support for 

the optimization of the moving path of unmanned target 

vehicles, improve the accuracy and effectiveness of path 

planning, and ultimately enhance the effectiveness of 

military training. 

3. Improve the Design of Path Planning 

Model for ACO Combined with 

GPS/BDS 

3.1. Design of GPS/BDS Combined Positioning 

Model Based on KF Model 

To optimize the path of an unmanned target vehicle, it 

is first necessary to develop a positioning model to 

determine the position and motion state of the 

unmanned target vehicle. Satellite positioning is a 

commonly used method for locating ground positions. 

The satellite positioning system mainly consists of 

navigation satellites in orbit, ground receivers, and user-

carried navigation devices [2, 13]. The basic principle 

of a positioning system is to calculate the distance 

between the positioning satellite and the ground signal 

receiving equipment. This distance data is then 

integrated from multiple satellites to determine the 

receiver's position. Then, the pseudo range distance is 

obtained by multiplying the time the user's device 

receives the satellite signal by the speed of light. Finally, 

the true distance between the user and the positioning 

satellite is calculated utilizing the pseudo distance [11, 

18]. The combination of GPS and BDS positioning 

utilizes signals from both systems to improve the 

accuracy and reliability of positioning. By receiving 

signals from both GPS and BDS simultaneously, the 

receiver can obtain more satellite information, thereby 

improving positioning accuracy and enhancing the 

robustness of the system to some extent, as even if one 

system signal is disturbed or unavailable, the other 

system can still provide positioning information. In 

order to realize the combined positioning of GPS and 

BDS, a GNSS navigation receiver that can receive both 

GPS and BDS signals is selected. GNSS receivers 

collect signals from GPS and BDS satellites, convert 

them into position and time data, then decode and 

compute the data to generate precise location 

information. Finally, the PSO combined positioning 

algorithm is used to fuse the measurement data of GPS 

and BDS to obtain the final position solution result [10, 

22]. Combining the pseudo-range observations from 

both GPS and BDS systems for positioning solution can 

improve the accuracy and reliability of positioning. The 

combined GPS/BDS positioning system is shown in 

Figure 1. 
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Figure 1. Combined GPS/BDS positioning system. 

The receiver in Figure 1 can show the signal 

reception time, satellite ephemeris and Doppler and 

other satellite information of the combined GPS/BDS 

positioning system. The GPS/BDS navigation and 

positioning model is divided into two parts: the 

functional model and the stochastic model. The 

functional model describes the mathematical function 

relationship between the position observation vectors 

and the user's state vectors, while the stochastic model 

describes the position observation vectors and the 

statistical correlation between them. The function model 

is constructed by unifying the spatial and temporal 

datums of GPS/BDS, using the WGS84 coordinate 

system for GPS and the CGCS2000 coordinate system 

for BDS. Thereafter, individual satellite navigation 

systems' observation equations are introduced, as 

demonstrated in Equation (1). 

y AX    

In Equation (1), is the -dimensional pseudo-distance 

observation vector; is the coefficient matrix; is the 

pseudo-distance observation parameter; and is the 

observation error. The formula for determining single-

point location using pseudorange is shown in Equation 

(2).  

2 2 2
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A ion
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In the Equation (2), is the pseudo-distance between 

occupied stars; is the number of satellites; is the 

coordinate of the station; is the coordinate of the 

satellite; is the vacuum speed of light; is the clock 

difference of the satellite; is the clock difference of the 

receiver; is the ionisation delay; is the delay in the 

troposphere; and is the modelling error and observation 

noise. This equation is generally used for single-point 

positioning of a single system using pseudo-ranging. 

However, for the combined positioning of two systems, 

it is necessary to combine the positioning according to 

the basic equations, and the joint levelling is required to 

obtain the optimal solution. The observation equations 

after error correction are obtained according to the basic 

observation equations are shown in Equation (3). 

A A A Ap p t V Vtropion
     

In Equation (3), is the combined GPS/BDS system; is 

the error-corrected pseudorange observation; is the 

error-corrected clock difference; is the improved 

ionospheric delay; and is the improved tropospheric 

delay. Then the pseudo-range observation equations of 

GPS and BDS navigation systems are combined. Then 

the Kalman filter method is used to solve the GPS/BDS 

navigation and positioning using the pseudo-range 

observations. Finally, the detected point’s coordinates 

are obtained in both the WGS84 and CGCS2000 

systems, with the ability to calculate distance errors for 

both GPS and BDS observation systems. Positioning 

using the combined GPS/BDS navigation system is 

bound to produce a certain amount of error, and the 

commonly used GPS/BDS navigation and positioning 

error detection method is IGGIII, the weights of which 

are calculated in Equation (4). 
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In Equation (4), is the normalised residual; is the equal 

weighting matrix; is the original weighting matrix; and 

is the reconciliation coefficients; and are constants. To 

navigate a moving object, it is necessary to predict the 

motion state of the object at the next moment. The first 

step is to determine the motion state of the object, for 

which there are two commonly used motion state 

models: the constant model and the constant 

acceleration model. After determining the object's 

motion state, then choose the appropriate filtering 

algorithm to update the predicted value of the object's 

position, so as to obtain more accurate physical position 

information. The above method can complete the 

positioning of the object, but there are still many 

shortcomings, the next will be for its shortcomings one 

by one to improve. Firstly, the traditional GPS/BDS 

combined positioning system is susceptible to various 

errors that can be resolved by enhancing the receiver's 

ability to receive satellite signals. In addition, it is 

known from the literature that the smaller the satellite 

altitude angle is, the greater the error propagated by the 

atmosphere is. Therefore, the carrier-to-noise ratio 

method and the satellite altitude angle method can be 

used to establish the GPS/BDS stochastic model, as 

shown in Equation (5). 

(1) 

(2) 

(3) 

(4) 
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Equation (5) where is the altitude angle of the satellite; 

is the accuracy of each navigation system in the zenith 

direction; is the carrier to noise ratio; is the noise power 

spectral density; is the signal received power. The 

IGGIII method, on the other hand, addresses the 

problem of residuals of anomalous observations in the 

error detection of GPS/BDS navigation and positioning 

process, which leads to inaccurate error detection and 

diagnosis. The study proposes a two-step error detection 

model as an alternative. The two-step error detection 

model consists of a pseudo-detection model based on 

Equation (6). 
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Equation (6) is a pseudo distance observation equation 

is; is the satellite number; is the speed of light; is the 

pseudo-distance observation; is the real distance from 

the receiver to the satellite; is the receiver clock 

difference; is the satellite clock difference; is the 

tropospheric delay error; is the ionospheric delay error; 

is the relativistic effect; and is the Earth's rotation error. 

In order to further reduce the influence of the coarseness 

of the GPS/BDS pseudorange observations on the 

navigation results, the coarseness is removed by using 

the antidifferential estimation. Addressing the issue that 

traditional filtering algorithms struggle to accurately 

update the predicted state value of moving objects at the 

next moment, the research proposes an open-window 

adaptive filtering algorithm. This methodology analyzes 

and obtains the discriminant statistic of the model error 

constructed in the face of redundant or insufficient 

observation values. The specific model is shown in 

Equation (7). 
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In Equation (7), is the time corresponding to; the state 

of the dimension at time is; is the state matrix; is the 

State noise vector. The observation model of the 

moment is shown in Equation (8). 
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In Equation (8), is a-dimensional observation vector; is 

a-dimensional design matrix. The solution vector is 

shown in Equation (9). 
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Based on Equations (7) to (9) the dynamic noise 

covariance matrix adaptive estimation can be 

introduced, see Equation (10). 
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In Equation (10), is the state correction vector. The 

constructed adaptive factor can be based on the 

antidifferential solution to achieve the antidifferential 

adaptive and increase the positioning accuracy of the 

moving object dynamics model. The implementation 

flow of the antidivergence adaptive positioning based 

on GPS/BDS pseudorange Doppler observations is 

shown in Figure 2. 

 

Figure 2. The positioning process of robust adaptive positioning algorithm based in GPS/BDS pseudo range Doppler observations. 

As shown in Figure 2, the positioning process 

constructed in this study first constructs a GPS/BDS 

positioning system, predicts the satellite position based 

on the initial parameters received by the satellite signal, 

and then calculates the coordinate position of the target 

object through the GPS/BDS system pseudo range 

observation equation. During the calculation process, 

the use of the pseudo range single difference detection 

method is applied to handle gross errors generated in the 

calculation, resulting in a reduction of position 

calculation errors. The position of unmanned target 

aircraft is in a changing state, so a GPS/BDS random 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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model constructed using carrier to noise ratio and 

satellite altitude angle methods is used to achieve 

dynamic target position prediction. On the basis of 

robust computation, an adaptive factor is constructed 

using a windowed adaptive filtering algorithm to 

achieve robust adaptation. 

3.2. Improving the Design of ACO Path 

Planning Model 

After precise positioning of unmanned target vehicles 

through GPS/BDS combination, research needs to 

model the driving environment of unmanned target 

vehicles before conducting path planning. 

Environmental modeling requires simulating real 

situations and establishing models in abstract spaces. 

Therefore, it is necessary to use environmental 

modeling methods to abstract and transform the real 

environment. The grid modeling approach is frequently 

utilized in environmental modeling. Research on 

converting the initial position and endpoint targets of 

unmanned target vehicles into grids. Blank grids 

indicate passable areas, while colored grids indicate the 

presence of insurmountable obstacles. All positions of 

the constructed grid model are represented by 

coordinates, and planning the path of the unmanned 

target vehicle consists of planning a path that avoids 

obstacles from the starting position to the endpoint. The 

grid model constructed through research is shown in 

Figure 3. 

 

Figure 3. Basic construction of grid model. 

In Figure 3, the letter S represents the starting 

position of the unmanned target vehicle; the letter G 

represents the endpoint position to which the unmanned 

target vehicle will move. Figure 4 shows that if the 

unmanned target vehicle moves to grid 38, the next 

position further after the elimination of the obstacle in 

the upper left corner. The horizontal and vertical 

coordinates of each grid are calculated as shown in 

Equation (11) [4, 8]. 
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1 mod 1

int 1 1
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    
  


   
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In Equation (11), Nh represents the number of grids per 

row; xi represents the horizontal axis coordinate of the 

planned route; yi represents the vertical axis coordinate 

of the planned route; Mod represents the remainder 

operation; int represents a rounding operation. After 

building the environment model, it is necessary to 

choose a path planning algorithm. The ACO algorithm 

can adjust the path search process through heuristic 

factors, making it highly adaptable. Therefore, the study 

adopts the ACO algorithm for global path planning. 

Figure 4 showcases the basic principle of the ACO 

algorithm. 

 

Figure 4. Basic framework of ACO. 

The ACO algorithm is inspired by the foraging 

behavior of ants. The ACO algorithm realizes fast 

optimization through positive feedback information 

transmission and accumulation. Ants transmit signals 

and communicate with the whole population through 

pheromones secreted by the ants. The ants can find the 

shortest path thanks to the pheromone and the 

environment. As shown in Figure 5, there are the 

multiple paths between the ant nest and the food found 

by the ants. The ants that find food will transmit food 

signals by secreting pheromone to help other ants find 

food. Because the rate of pheromone volatilization is 

different for ants on different foraging routes, the shorter 

distance route has more pheromone; the route with 

longer distance has fewer pheromone. Other ants will 

also choose more routes of pheromone to obtain food 

more efficiently. However, when faced with multiple 

pheromone paths, ants must make their own path 

transfer. This prevents the ACO algorithm from getting 

trapped in a local optimal solution, as the transition 

probability function influences the path change of the 

algorithm. It is indicated in Equation (12). 
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(11) 

(12) 
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In Equation (12), allow  represents the set of ant access 

points; α refers to pheromone importance factor;   

represents the heuristic function factor; 𝜏mn(t) is the 

pheromone concentration on the path from point m  to 

point n; ƞmn(t) refers to the heuristic function, 

representing the ant's expectation from m to n; ƞms(t) 

represents the heuristic function of ants to neighboring 

point s; 𝜏ms(t) refers to the pheromone concentration on 

the m-s path. It can be seen from Equation (12) that the 

pheromone concentration will greatly affect the path 

selection of the ants, so it is necessary to restrict the 

pheromone concentration of each path to prevent the 

initial path from attracting all ants due to a large number 

of pheromones. As a result, the pheromone 

concentration of each path is set as the maximum value 

of the pre-set pheromone concentration, while the 

smaller value of the heuristic factor weight is used. The 

research updates the pheromone concentration of the 

optimal path or the path of the iterative optimal solution, 

and analyzes the historical pheromone retention. The 

heuristic factor is often transformed into the reciprocal 

of adjacent paths in grid models, which is not conducive 

to improving the search efficiency. Therefore, the study 

divided the ant colony of the ACO algorithm into two 

groups and changed the weight parameters of the 

heuristic factor. The improved heuristic function can be 

designed, as shown in Equation (13). 

   
1 2

, ,

k k

mn
d n goal d m n
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In Equation (13), d(m, n) refers to the length between 

adjacent grids; d(n, goal) represents the remaining 

length from the current grid to the endpoint grid; k1, k2 

refers to the weight coefficient used to improve the 

computational accuracy of the ACO algorithm. The 

setting conditions for the weight coefficient are shown 

in Equation (14). 

,
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Ants will choose the path with the higher pheromone 

concentration when moving. However, this leads to 

congestion of a substantial number of ants in a particular 

path, causing a significant increase in pheromone 

concentration on that path. This loses the possibility of 

other ants finding a better solution. In Equation (14), the 

existence of G ant colony can make the pheromone not 

concentrated in a certain path, avoid the ACO algorithm 

convergence in advance, fall into the situation of local 

optimal solution, and meanwhile, do not deviate from 

the optimal path too much. The existence of E ant 

colony can improve the flexibility of path selection, 

prevent from delving into incorrect routes, and timely re 

plan routes. This ensures that the algorithm does not 

produce the worst possible solution. Ants will avoid the 

path chosen by other ants when searching the path. Only 

when the ants receive the pheromone representing the 

search for food will they enter the path of the search for 

food. Although individual ants may struggle to locate 

food sources, the collective search of the entire colony 

significantly enhances the efficiency of environmental 

information gathering. This can help the ant colony find 

food faster. The initial search path selection probability 

of ants is the same. Therefore, to increase the selection 

of the initial moving path of the ACO algorithm and 

help ACO algorithm to find other excellent paths that 

may appear, the study selects lower pheromone 

volatilization speed according to the pheromone 

concentration to reduce the pheromone difference. Then 

it improves the selection probability of the ant colony 

by increasing the total amount of pheromone of the 

optimal path. The pheromone updating process is 

illustrated in Equation (15). 

       1 1
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In Equation (15), Lbest refers to the optimal path length; 

Lworst refers to the worst path length; ρ is the pseudo 

distance. The study also considered the path planning 

problem in U-shaped obstacles, which are special 

obstacles like the letter U. The schematic diagram of U-

shaped obstacles is shown in Figure 5. 

 

Figure 5. Schematic diagram of U-shaped obstacle. 

Traditional ACO algorithms are prone to getting 

stuck in the concave areas in the middle of obstacles, 

leading to difficulty in finding the optimal path. The 

study aims to improve the ACO algorithm by recording 

the starting point of ant foraging in the set of restricted 

areas PA. When the ant chooses a path through Equation 

(12), it moves to node z. If there is no accessible area 

after that, that is, deep inside the U-shaped obstacle, 

node J is also considered as a non-accessible area and 

added to PA, and the ant moves back to the previous 

node v. If the node has no passable area except for node 

z, add v to PA and continue to fall back until there is a 

passable area. The principle of this improvement 

method is to record the ant movement node that 

accidentally enters the U-shaped obstacle and discard 

this path, and predict and set a prohibited passage zone 

in advance. Then it instructs the ant colony to find other 

paths in advance to avoid U-shaped obstacles, and 

repeatedly sets prohibited areas on the moving path until 

the ant colony reaches the endpoint. 

In summary, the specific steps for ACO to combine 

GPS/BDS to achieve unmanned target vehicle 

(13) 

(14) 

(15) 
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navigation and path planning are as follows: using 

GPS/BDS system to obtain real-time position and 

navigation information; Divide the navigation area into 

grids, each representing a possible location or 

intersection, determine the target position and starting 

position, and determine other constraints; Initialize the 

ant colony, where each ant has a certain number of 

pheromones, representing their preference for the path; 

Select the next moving grid based on its pheromone 

level, then update the pheromone based on the path 

length and efficiency, iteratively select the path until the 

stopping condition is reached, and finally output the 

optimal path. 

4. Improvement of Unmanned Target 

Vehicle Navigation and Path Planning 

Model Effectiveness Testing 

4.1. Precision Analysis of Unmanned Target 

Vehicle Navigation Model 

To verify the accuracy of the improved GPS/BDS 

combined positioning model, a comparative experiment 

was conducted between the traditional least squares 

method combined with GPS/BDS combined positioning 

method and the Robust Adaptive Localization 

Algorithm for Pseudorange Doppler Observations 

combined with GPS/BDS combined positioning 

method. The maps used in the simulation experiment 

were obtained from open map datasets; The simulator 

uses MATLAB simulation software; The virtual 

satellite position and signal data come from GPS/BDS 

data simulators; The data of the unmanned target vehicle 

model is sourced from the GitHub platform; The 

experimental results are displayed on a Windows 10 

computer equipped with an Intel i7-9500 CPU. The 

experimental results of simulated errors from the 

combination of the least squares method and GPS/BDS 

positioning are demonstrated in Figure 6. 

 

Figure 6. Least squares positioning error results. 

Figure 6 showcases that the positioning coordinates 

of the unmanned target vehicle obtained by the least 

squares method maintain an error of about ± 7m in 

three-dimensional space, and can locate the position of 

the unmanned target vehicle through satellite signals. 

Nonetheless, the positioning axis exhibits fluctuation of 

around 7m with slow convergence speed, resulting in a 

relatively large overall fluctuation that contributes to an 

increase in linear error and a decrease in positioning 

accuracy. The error results of the robust adaptive 

localization algorithm for pseudorange doppler 

observations with GPS/BDS combination positioning 

are indicated in Figure 7.  

 

Figure 7. Robust adaptive localization algorithm based on GPS/BDS 

Pseudorange Doppler observations. 

 

Figure 8. Number of visible satellites. 

Figure 7 shows that the Robust Adaptive 

Localization Algorithm for Pseudorange Doppler 

Observations combined with GPS/BDS combined 

positioning model transmits the observation status at 

different times and corrects the position of the 

unmanned target vehicle based on the differences 

observed at different times. Therefore, the three-

dimensional positioning error result remains within± 

4m. Compared with the least-squares combined 

positioning method, the error line of the robust adaptive 

localization algorithm for pseudorange doppler 

observations combined GPS/BDS combined 

positioning model is smoother and more stable. This 

reduces the error caused by signal fluctuations, resulting 

in higher positioning accuracy. To further validate the 

effectiveness of the robust adaptive localization 

algorithm for pseudorange doppler observations 

combined with GPS/BDS combined positioning model, 

the study introduced positioning information from 

irregular environments into the observation model. The 

optimized positioning model was then compared to the 

pre-optimized model, and the results, including the 

number of satellites used, are shown in Figure 8. 

Figure 8 indicates that the movement path of 
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unmanned target vehicles in complex road conditions is 

irregular, and noise data is difficult to obtain or even 

completely undetectable. Consequently, the optimized 

positioning model observes a relatively limited number 

of satellites, leading to imprecise location data. The 

optimized positioning model shows that the number of 

satellites has increased to 16 compared to before 

optimization, which is 6 more than before, indicating a 

relatively stable number of satellites. Therefore, the 

situation of positioning deviation is smaller, and the 

signal propagation time before and after model 

optimization is shown in Table 1. 

Table 1 show cases that the signal propagation time 

before and after the optimization of the positioning 

model has a small change, but the overall signal 

propagation time after optimization is slightly smaller 

than before. A small decrease in signal propagation time 

can greatly enhance signal propagation efficiency and 

positioning accuracy during long-distance path 

planning. Therefore, the experiment verifies the 

accuracy of the optimized positioning model.  

Table 1. Signal propagation time. 

Experimental subjects GPS signal propagation time Experimental subjects BDS signal propagation time 

Satellite number 
Before 

optimization 

After 

optimization 
Satellite number 

Before 

optimization 

After 

optimization 

5 0.0672 0.0668 2 0.1268 0.1277 

10 0.0744 0.0743 4 0.1308 0.1302 

15 0.0776 0.0775 6 0.1201 0.1201 

25 0.0708 0.0709 8 0.1267 0.1260 

30 0.0804 0.0804 10 0.1221 0.1224 

 

To further demonstrate the superiority of the 

optimized GPS/BDS model, the positioning accuracy of 

GPS/Galileo model, GPS/GLONASS model, and 

GPS/BDS model were compared to simulate the 

positioning error values on the X and Y components of 

the unmanned vehicle within 1000 seconds. The results 

are shown in Figure 9. 

 
a) X component. 

 

b) Y component. 

Figure 9. Positioning error values of three systems on the X and Y 

components. 

From Figure 9, it can be seen that the GPS/BDS 

model has relatively small errors in both the X and Y 

components, about ± 0.01m. However, the GPS/Galileo 

model and GPS/GLONASS model have relatively large 

errors and uneven fluctuations, indicating poor stability 

of these two positioning systems. Therefore, the 

optimized GPS/BDS combination model is used for 

unmanned positioning in the study. 

4.2. Improved Path Planning Model Simulation 

Testing 

The study focuses on using grid method for path 

planning in ant colony algorithm. The simulation matrix 

of grid method in Matlab mainly uses two data sets: 0 

and 1, where 0 represents no obstacles and 1 represents 

obstacles. The grid design in the model is mainly based 

on squares or rectangles, and each area is sequentially 

designed for the grid interval. To represent the various 

positions of the grid, a continuous order was used, 

arranged from left to right and from top to bottom, 

forming a complete grid graph model. And set the 

parameters of the traditional ACO algorithm and the 

improved ACO algorithm as shown in Table 2. 

Table 2. ACO algorithm parameter settings. 

Parameter 
Traditional ACO 

algorithm 

improves ACO 

algorithm 

Pheromone heuristic factor 0.3 0.4 

Expected heuristic factor 0.2 0.4 

Volatility coefficient of pheromones 0.8 0.7 

The intensity of releasing 
pheromones 

0.4 0.5 

Algorithm parameters introduced \ 0.7 

Adaptive factor \ 0.2 

Maximum number of iterations 
number 

500 500 

Firstly, a robust adaptive positioning system based on 

GPS/BDS pseudo range Doppler observation is used to 

achieve precise positioning and navigation of the model, 

enabling it to accurately lock its position in complex 

terrain. Then, simulation experiments were conducted 

on the path planning under specific road conditions 

through grid modeling. The study initially evaluated the 

performance of the improved ACO path planning model 

when encountering U-shaped obstacles separately and 

compared it with traditional ACO models. The results 

of the U-shaped obstacle simulation test are shown in 

Figure 10. 
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a) Traditional ant colony algorithm. b) Improved ant colony algorithm. 

Figure 10. Number of visible satellites. 

Figure 10 illustrates that traditional ACO path 

planning models often become caught in U-shaped 

obstacles, which leads to inadequate path planning 

solutions. The improved ACO path planning model can 

identify U-shaped obstacles in advance. It can self-

correct in time before entering U-shaped obstacles, 

choose other paths to avoid obstacles, shorten the 

movement path, and achieve better optimization results. 

The study then conducted simulation experiments on the 

path planning model under different road conditions. 

The simulation experiments of two path planning 

models in the simple long-distance road condition M1 

are shown in Figure 11. 

Figure 11-a) shows the path planning of traditional 

ACO in simple road conditions; Figure 11-b) shows the 

path planning of improved ACO in simple road 

conditions. The above figure shows that under simple 

road conditions, both the traditional ACO path planning 

model and the improved ACO path planning model can 

find the optimal path. This indicates that the influence 

of heuristic factors on the ACO model is relatively small 

under simple road conditions. Figure 12 illustrates the 

simulation experimental outcomes of the path planning 

model in complex road conditions M1 and M2, which 

include U-shaped obstacles. 

 

a) Traditional ant colony algorithm with corner heuristic function. 

 

b) Improved ant colony algorithm. 

Figure 11. Simple road condition simulation experiment results. 

 

   

a) Traditional ant colony algorithm. b) Improved ant colony algorithm (no restricted area set). c) Improved ant colony algorithm. 

   

d) Traditional ant colony algorithm with U-shaped disorder 
e) Traditional ant colony algorithm with U-shaped 

disorder (no restricted area set). 
f) Improved ant colony algorithm with U-shaped disorder. 

Figure 12. Complex road condition simulation experiment results. 

Figures 12-a), (b) and (c) showcase the path planning 

scenarios of two ACO algorithms in complex road 

conditions; Figures 12-d), (e) and (f) demonstrates the 

path planning of two ACO algorithms after the addition 

of U-shaped special obstacles. Figure 12 indicates that 

as the complexity of road conditions increases, 

especially conditions become more complex, 

particularly when special obstacles like U-shaped ones 
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are present, traditional ACO path planning models are 

susceptible to getting stuck in these obstacles. This will 

deviate from the optimal path, resulting in many 

unnecessary corners and increasing the length of the 

path. The improved path planning model can help 

unmanned target vehicles avoid poor paths in advance. 

The improved path planning model without adding 

prohibited zone settings only turns at right angles, and 

the moving path is still longer. The path planning model 

used in the study can choose the shortest theoretical path 

for movement. After organizing the data from several 

simulation experiments, it is shown in Table 3. 

Table 3 shows that under simple road conditions, i.e. 

M1 road conditions, the optimal path is 29.809m. The 

optimal and worst solutions of both the traditional ACO 

path planning model and the improved ACO path 

planning model match the ideal path. This indicates that 

both path planning models can directly select the 

optimal path at this time. With the addition of U-shaped 

obstacles on the more intricate paths of M2 and M3, the 

optimal paths are 48.637 meters and 76.917 meters, 

respectively. The path planning model constructed 

through research can still accurately find the optimal 

path. However, traditional ACO path planning models 

can find the optimal solution under M2 road conditions, 

but meanwhile, they may also find poor paths. During 

M3 road conditions, the optimal solution was 77.503m, 

but it was not the optimal path, and the worst solution 

was 102.299m, resulting in severe deviation. This 

indicates that the improved ACO path planning model 

has strong environmental adaptability and can cope with 

path optimization problems in various complex 

environments. 

Table 3. Overall results of simulation experiments. 

Algorithm M1 M2 M3 

Optimal path length (m) 29.809 48.637 76.917 

Optimal solution 

(m) 

Traditional ant 

colony algorithm 
29.809 48.637 77.503 

Improved ant 

colony algorithm 
29.809 48.637 76.917 

Worst-case solution 

(m) 

Traditional ant 

colony algorithm 
29.809 52.051 102.299 

Improved ant 

colony algorithm 
29.809 48.637 76.917 

Proportion of 

optimal solution 

Traditional ant 

colony algorithm 
100 100 100 

Improved ant 

colony algorithm 
100 0 0 

4.3. Comparative Experiment on Improving 

ACO Path Planning Model 

To further verify the performance of the improved ACO 

path planning model, a comparative experiment was 

conducted between the ACO model and other intelligent 

optimization algorithms. The experimental objects 

include Genetic Algorithm (GA), PSO and Grey Wolf 

Optimizer (GWO). The study selected the 

environmental road conditions of M2 and brought four 

path planning models into the M2 environment for 

multiple iterations. Then, it collected data from multiple 

path planning results for comparison, and the 

convergence of the four path planning models is 

indicated in Figure 13. 

 

Figure 13. Convergence of four path planning models. 

Figure 13 shows that the improved ACO path 

planning model exhibits faster convergence and finds 

shorter optimal paths than the other three models, while 

providing strong stability and optimal path guidance. It 

can significantly reduce the cost and time of unmanned 

target vehicle movement, and improve the training 

efficiency. The specific experimental data of the four 

path planning models are shown in Table 4. 

Table 4 illustrates that in M2 road conditions, the GA 

path planning model generates an optimal path length of 

52.973 meters. The PSO path planning model generates 

an optimal path length of 51.822 meters, whereas the 

GWO path planning model generates an optimal path 

length of 49.932 meters. And these three models all 

need to go through several iterations to stabilize the 

selection paths. The optimal path length planned by the 

improved ACO path planning model is 48.637m, and 

the turning point of the route is 6. Compared to other 

intelligent algorithms, this model has fewer turning 

points, smoother paths, and can quickly and stably plan 

routes, reducing collision rates. And it can accurately 

identify the optimal path, and the simulation experiment 

has proved that the improved ACO path planning model 

is suitable for path planning of unmanned target vehicles 

in complex environments. 

Table 4. Specific experimental data of four path planning models. 

Algorithm GA PSO GWO Improved ACO 

Optimal path length (m) 52.873 51.822 49.932 48.637 

Iterations 483 449 158 13 

Number of inflection points 29 21 12 6 

5. Conclusions 

Traditional unmanned target vehicles are difficult to 

adapt to complex road conditions in complex situations 

and cannot achieve ideal military training results. 

Therefore, the study aims to improve the structure of the 

basic ACO algorithm and introduce the adjusted 

heuristic function into the ACO algorithm. Then, the 

combined GPS/BDS positioning system is explored and 

combined to design and plan the movement path of 
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unmanned target vehicles. The research results indicate 

that the robust adaptive positioning algorithm based on 

GPS/BDS pseudo range Doppler observation has 

smaller errors in three directions and higher positioning 

accuracy compared to the least squares method. The 

optimized positioning algorithm shows that the number 

of satellites has increased to 16, an increase of 6 

compared to before optimization, and the average signal 

propagation time has decreased by 0.0001s. In large-

scale positioning calculations, navigation accuracy can 

be significantly improved. In the ACO algorithm 

simulation experiment, under M3 road conditions, the 

improved ACO algorithm calculated the optimal 

distance of 76.917 meters, which is 0.586 meters less 

than the optimal distance calculated by the traditional 

ACO algorithm. This indicates that in challenging road 

conditions and U-shaped obstacles, the improved ACO 

algorithm can also consistently identify the optimal 

path, improving driving efficiency. Compared with 

other intelligent algorithms, the improved ant colony 

algorithm only iterates 13 times to calculate the optimal 

path length of 48.637. Both the number of iterations and 

the calculation results are much smaller than genetic 

algorithm, particle swarm optimization algorithm, and 

grey wolf optimization algorithm, indicating that the 

improved ACO algorithm has faster path planning speed 

and better smoothness. It also proves that the improved 

GPS/BDS positioning algorithm and the improved ACO 

algorithm designed in this study have the advantages of 

strong path planning ability and wide applicability. The 

algorithm holds significant utility in unmanned vehicle 

navigation and path planning. In the simulation 

experiments of the ACO algorithm, only U-shaped 

obstacles were considered, while in reality there are 

more complex terrains. Future research will further 

optimize the path planning methods and enhance the 

optimal path planning ability of the improved ACO path 

planning model in more complex road conditions. 
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