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Abstract: The Video Prediction (VP) models adopted many techniques to build suitable structures to extract the spatiotemporal 

features and predict the future frame. The VP techniques extracted the spatial and temporal features in separated models and 

then fused both features to generate the future frame. However, these architectures suffered from the design complexity and time 

for prediction required. So, many efforts introduced VP based on decreasing design complexity and producing good results. This 

study produces the VP model based on a Three-Dimensional Variational Auto Encoder (3D VAE). The proposed model builds all 

layers depending on 3D convolutional layers. This leads to better extraction of spatiotemporal information and decreases the 

design complexity. Second, the Kullback Leibler Loss (KL Loss) is enhanced by a 3D sampling stage which allows to calculation 

of the 3D latent loss. This helps to extract the better and proper spatiotemporal latent variable from the 3D Encoder. The 3D 

sampling represents a good regularizer in the model. The proposed model outperforms in terms of SNR=34.8673, SSIM= 0.9616 

which applied to Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) and Caltech pedestrian datasets 

and records 5.2 M parameters. 
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1. Introduction 

The prediction of future frame(s) or events is a critical 

task of intelligent true decision-making in real-time 

applications which are inspired by the operation of the 

human brain [25]. So, the researchers faced a big 

challenge to build Deep Learning (DL) models that 

simulate human capabilities to create a proper decision 

effortlessly and quickly [7]. Generally, the most 

important DL technique applied in a Video Prediction 

(VP) model is the AE structures which are entirely built 

by the classical Convolutional Neural Network (CNN) 

Two-Dimensional Convolution (2D CONV), Gated 

Recurrent Unit (GRU), Long Short Term Memory 

(LSTM), and Convolutional Long Short Term Memory 

(CONVLSTM) layers [7, 19]. 

The classical Auto-Encoder (AE) models are used to 

extract low-level features in an unsupervised fashion 

from high-dimensional input [11]. The basic concept of 

AE models is typically reducing the dimensionality of 

the input data and producing low-level features in the 

encoder part, then decomposing the compressed features 

to get the predicted results or frame(s) in the decoder part 

[4]. 

However, most 2D AE models suffer from blurry 

prediction results due to the inconsistency between 

spatial and temporal features and the uncertainty 

probability of data [23, 27]. So, many algorithms are 

proposed to enhance the prediction performance by  

 
adding many layers in the encoder and decoder parts [7], 

building the intermediate block between the encoder and 

the decoder, and proposing another version of AE like 

Variational Autoencoder (VAE) and so on [3]. 

Desai et al. [7] proposed a VP model based on the 

CONVLSTM encoder-CONVLSTM decoder. Wang et 

al. [33] proposed a VP model that combined the 3D-

LSTM with 3D CONV based on the AE. While Lotter et 

al. [20] suggested a Predictive Neural Network Model 

(PredNet) which combined the ConvLSTM with a 

predictive coding concept to predict the next frames by 

creating a local prediction in each layer. Villegas et al. 

[32] introduced a 2D AE model with a CONVLSTM as 

the bottleneck stage to predict the next frame at the pixel 

level. While Straka et al. [30] suggested AE with 

Predictive Coding Net (PreCNet) which is applied as an 

estimator block between the encoder and decoder parts. 

Ye et al. [37] presented an AE model with an 

intermediate Neural Process (NP) block that maps 

spatiotemporal input coordinates to produce each pixel 

value of the output. Gao et al. [9] proposed a simple 

spatial-temporal features translator between the encoder 

and the decoder part to enhance the blurry prediction. 

On the other side, many researchers began to combine 

the AE model with distribution probability in an explicit 

manner to build a new version called VAE and solve the 

uncertainty prediction problem, Castrejon et al. [3] 

applied a 2D-VAE with the hierarchy of latent variables. 

This creates groups of flexible distributions to get a 
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better probability of future frame(s). Lu et al. [22] 

suggested a new sequential model of VAE based on 

CONVLSTM to assess the abnormal behaviour in the 

next frame. Pan et al. [26] proposed a new model based 

on conditional VAE (cVAE) which applied to the 

semantic label. This model contains two steps. The first 

stage generates the starting frame based on the semantic 

label, while the second stage uses the image-to-video 

(img2vid) network to get a video sequence from the 

initial frame. Wu et al. [35] proposed a VAE based on a 

Greedy Hierarchical (GHVAE) which learns high-

fidelity next frame predictions by training each level of 

the autoencoder. Finally, Razali and Fernando [29] 

proposed the dual model cVAE based on ResNet-18 and 

3D CONV layers to enhance the predicted frame. 

All the above papers enhanced the predicted result but 

raised the complexity of models by increasing the 

number of encoder and decoder layers or adding the 

intermediate CNN blocks. These models failed to strike 

a balance between their performance and the number of 

parameters which reflected at the time of prediction. In 

this work, a generative semi-supervised 3D VAE model 

is introduced to overcome the inconsistency in spatial-

temporal features by using the 3D CONV layers and 3D 

sampler. The proposed 3D sampler captures the 

distribution probability in spatial and time-space 

simultaneously. This increases the consistency between 

context and time features and produces better prediction 

results. 

The main contribution of the proposed work can be 

summarized in two points: First, we present a new 

structure of the VAE model based on 3D CONV and 3D 

CONVLSTM layers on the entire architecture and show 

their effectiveness for future frame prediction. These 3D 

layers play an important role in capturing the spatial and 

temporal features simultaneously to decrease the blurry 

prediction and increase the prediction performance. 

Second, we extend the 2D KL divergence by introducing 

a 3D KL_loss based on 3D CONVLSTM. This 3D-

distributed probability regularizes the latent space and 

increases the consistency between the spatial and 

temporal features. Finally, we show through the 

experiments of the proposed model that each 

contribution enhances the model and their combination 

permits it to outperform present state-of-the-art VP 

models 

2. The Classical Variational Autoencoder 

The classical VAE is a DL architecture consisting of 

three networks based on 2D CONV layers [14, 36] as 

shown in Figure 1. The Encoder-Decoder parts are 

trained to minimize the reconstruction error between the 

target or Ground Truth (GT) data and generated data 

from the decoder. However, The VAE model has a great 

regularization of the latent space compared with the 

classical AE model. The distribution probability density 

is explicitly applied to low-level extracted features. The 

model is designed as follows: First, the input data or 

sequence of frames is encoded as a latent space of low-

level features. Second, the latent space variables are 

sampled based on the probability distribution. Third, the 

sampled point is decomposed in the decoder model. 

finally, the reconstruction error is calculated as back 

propagated error through the model layers [31]. The 

VAE operations can be written as follows [34]:  

𝑧 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑋) =  𝑞(𝑧|𝑥) 

𝑂 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑧) = 𝑝(𝑜|𝑧) 

Where X={x1, x2,···, xt}, xt ∈ R. xt are input sequence 

frames. O={ ot+1, ot+2, ......., ot+M }. It is predicted 

frames. 

 

Figure 1. General design of VAE model. 

3. The Proposed Model 

The 3D CONV layers are used in the encoder and 

decoder parts. Logically, the VP models based on 2D 

CONV layers may not be able to process the spatial and 

temporal space simultaneously. Each frame will be 

handled in the spatial space independently. While the 3D 

CONV layers can extract the spatial and temporal 

features simultaneously. In practice, the 3D CONV 

operations are performed better [6]. The model consists 

of three components: The 3D encoder, the 3D Z-

sampling, and the 3D CONV decoder parts as shown in 

Figure 2. For simplicity, batch normalization, the Max-

pooling, and activation layers are not displayed in the 

figure. 

The 3D Encoder consists of two stages: The first stage 

is performed as four 3D CNN layers with ReLU 

activation, Batch normalization, and Maxpooling3D 

layers. The encoder part extracts the Spatio-Temporal 

features simultaneously. However, every five 

consecutive frames are grouped as one block input of 

256x256 RGB frame. So, the input sequence is applied 

as (5, 256, 256, 3). The output of each 3D CNN layer is 

down-sampled by two to reduce the spatial 

dimensionality of resulted features. Thus, the features 

extracted from the fourth layer are represented as (5, 32, 

32, 128). The second stage of the 3D Encoder consists of 

three 3DCNN layers which compresses the time-space 

features while reserving on the dimensionality of the x, 

and y spaces as shown in Table 1. 

The prior VAE architectures apply the 3D CNN 

layers in the encoder and the decoder parts and 2D 

CONVLSTM in the sampling part [3]. This leads to 

calculating the 2D kl_loss in the spatial domain only 
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[16]. However, the 3D VAE model applies the 3D 

CONVLSTM in the sampling stage to extract the 

distribution probability in the x, y and time domains. The 

3D CONVLSTM consists of three gate units, and the 

operation formulas are identical to those in 2D 

CONVLSTM. However, the basic difference from 2D 

CONVLSTM is that the whole 3-D data is processed as 

the input of each memory cell in 3D CONVLSTM [15]. 

the formula of the 3D CONVLSTM cell can be 

described as [15]:  

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ⊛ 𝑋𝑡 + 𝑊ℎ𝑖 ⊛ 𝐻𝑡−1 + 𝑊𝑐𝑖 ⊛ 𝐶𝑡−1 + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ⊛ 𝑋𝑡 + 𝑊ℎ𝑓 ⊛ 𝐻𝑡−1 + 𝑊𝑐𝑓 ⊛ 𝐶𝑡−1 + 𝑏𝑓) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ⊛ 𝑋𝑡 + 𝑊ℎ𝑐 ⊛ 𝐻𝑡−1 + 𝑏𝑐) 

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 

𝑂𝑡 = 𝜎(𝑊𝑥𝑜 ⊛ 𝑋𝑡 + 𝑊ℎ𝑜 ⊛ 𝐻𝑡−1 + 𝑊𝑐𝑜 ⊛ 𝐶𝑡−1 + 𝑏𝑜)  

𝐻𝑡 = 𝑂𝑡. tanh (𝐶𝑡) 

where: 

Xt is the input state. Ct and Ct-1 are the state units. Ht, Ht-

1 are the output of 3D CONVLSTM. It, ft, Ot are the 

input, forget, and output gate units of 3D CONVLSTM. 

W.i, W.f, W.o: are 3D CONV filters. The 3D 

CONVLSTM allows extracting the context and time-

space of the latent variables at the same time by applying 

the three-dimensional multiplier in each gate. As an 

example in input gate, suppose that Xt € RTxWxH and Wxi∈ 

R k1xk2xd where T, H, W are the time, height, and width of 

frames or input data, and k1, k2, d are the dimensions of 

the filter. So the convolutional operation between Xt and 

Wxi can be described as [15]: 

𝑊𝑥𝑖 ⊛  𝑋𝑡 =  ∑ ∑ ∑ 𝑊𝑥𝑖
(𝑚,𝑛)𝑑

𝑛=0
𝑘2
𝑚=0

𝑘1
𝑙=0 ∗  𝑋𝑡

(𝑙,𝑚,𝑛)
 

Where Wxi is the 3D CONV filters, Xt is the input state. 

The 3D sampling extracts the probability latent variable 

from spatial-temporal features, but the T-sampling 

introduces the probability variable based on temporal 

features by applying the transpose function to the output 

of 3D CONVLSTM. This helps to decrease the 

inconsistency of temporal features because the T-

sampling calculates the distribution probability function 

based on temporal features. The (5, 32, 32, 128) features 

are changed to (32, 32, 5, 128). So, the T-sampling 

makes additional regularization based on the temporal 

features which increases the accuracy of the predicted 

frame. 

The VAE can be represented as two players 

supporting each other to generate the best-predicted 

result based on the distribution function. The first player 

is the 3D Encoder part which is training to capture the 

best spatial temporal latent variable based on KL_loss as 

shown in Figure 2. The second player is the 3D Decoder 

part which changes the weights according to measure 

different types of metrics like Peak Signal to Noise Raito 

(RSNR), Structure Similarity Index Metric (SSIM), and 

Mean Square Error (MSE). 

 

 

 

Figure 2. The proposed 3D-VAE model. 
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Table 1. Detail specification in each layer of the proposed model. 

Layer type Kernel size 
Filter 

number 
Stride Description 

CONV3D (5,5,5) 16 (1,1,1) 

Spatio-temporal in  

3D Encoder 

Maxpooling3D (1,2,2) ------ (1,1,1) 

CONV3D (5,5,5) 32 (1,1,1) 

Maxpooling3D (1,2,2) ------ (1,1,1) 

CONV3D (5,5,5) 64 (1,1,1) 

Maxpooling3D (1,2,2) ------ (1,1,1) 

CONV3D (5,5,5) 128 (1,1,1) 

CONV3D (5,5,5) 128 (1,1,1) 

Temporal 

compressed in 3D 

Encoder 

Maxpooling3D (2,1,1) ------ (1,1,1) 

CONV3D (5,5,5) 128 (1,1,1) 

Maxpooling3D (2,1,1) ------ (1,1,1) 

CONV3D (5,5,5) 128 (1,1,1) 

Maxpooling3D (2,1,1) ------ (1,1,1) 

CONLSTM 3D (5,5,5) 128 (1,1,1)  

CONLSTM 3D (5,5,5) 128 (1,1,1) 3D µ_ calculation 

CONLSTM 3D (5,5,5) 128 (1,1,1) 3D σ_ calculation 

Sampling 3D –sampling 

CONLSTM 3D (5,5,5) 128 (1,1,1)  

CONLSTM 3D (5,5,5) 128 (1,1,1) Tµ_ calculation 

CONLSTM 3D (5,5,5) 128 (1,1,1) Tσ_ calculation 

Sampling Temporal-3D sampling 

CONV3D T (5,5,5) 128 (1,2,2) 

Reconstruction 

frames in 3D-

decoder 

CONV3D T (5,5,5) 64 (1,2,2) 

CONV3D T (5,5,5) 32 (1,2,2) 

CONV3D T (5,5,5) 16 (1,2,2) 

CONV2D (3,3) 3 (1,1) 

4. Evaluation Metrics 

There are two types of loss functions which applied in 

the VAE model: The first type is the most popular 

metrics in image/video processing. These metrics 

determine the performance of the model by comparing 

the Predicted Frame (PF) with the GT. Generally, the 

most important metrics in VP applications are the MSE, 

PSNR, SSIM, etc., The PSNR is frequently employed as 

a means of signal reconstruction quality monitoring. The 

PSNR can be described as [21]:  

𝑃𝑆𝑁𝑅(𝐺𝑇 , 𝑃𝐹 ) = 10 log
2552

∑ (𝐺𝑇𝑖 − 𝑃𝐹𝑖 )2𝑁
𝑖=0

 

𝑀𝑆𝐸(𝐺𝑇, 𝑃𝐹) =
1

𝑁
∑ ∑

𝑁

𝑗

(𝐺𝑇𝑖,𝑗 − 𝑃𝐹𝑖,𝑗)2

𝑁

𝑖

 

The SSIM is one of the best metrics that measures the 

mean of the frame based on gauge brightness, structural 

information, and variance factors. These three factors are 

more closely related to human perception. It is typically 

employed in applications that require the evaluation of 

image quality such as image super-resolution, image 

compression, and others. The SSIM can be described as 

[21]:  

𝑆𝑆𝐼𝑀((GT, PF) =
(2µGT µPF + 𝑐1)( 2 𝜎𝑃𝐹𝐺𝑇 +  𝑐2 )

(µGT
2

  +
µPF

2 + 𝑐1)(  𝜎GT
2   +  𝜎PF

2 + 𝑐2 )
 

Where µ𝑌1
 is the mean of the GT frame. µ𝑌2

is the mean 

of the predicted frame. 

𝜎𝑌1
 is the variance of the GT frame,𝜎𝑌2

 is the variance 

of the predicted frame. 

𝜎𝑌2𝑌1
 is the covariance of GT, PF. 

c1 and c2 are described as [24]: 

𝐶1 = ( 𝑘1L)2  𝑎𝑛𝑑 𝐶2 = ( 𝑘2L)2      

C1 and C2 are utilized to preserve the stability of the 

computational procedure. 

L determines the dynamic range of each pixel value. 

K1, K2 are constant, in this approach, we choose k1 =0.01 

and k2=0.03. 

The values of SSIM are in the range of [-1, 1]. The 

SSIM can be indirectly calculated based on a sliding 

window operation on the original image which uses a 

Gaussian distribution convolution kernel. The average 

operation can be applied to the SSIM values of the image 

blocks. Generally, the size of the sliding window is set 

to 11×11, and the variance of the Gaussian distribution 

is 1.5. 

The second type of loss function in VAE is Kullback 

Leibler divergence Loss (KL Loss). KL Loss calculates 

a dissimilarity between the Normal distribution N(0, 1) 

and the latent space distribution [1]. 

The classical KL loss can be described as [24]:  

𝐷𝐾𝐿[𝑞(𝑧|𝑥)||𝑝(𝑧)] = −
1

2
 [log 𝜎2 + 1 − 𝜎2 − 𝜇2 ] 

Where: 

𝑍 =  𝜇 + 𝜖 ∗ 𝜎 

𝜎 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑎𝑡𝑖𝑜𝑛, 𝜎 ∈ 𝑅𝑧 

𝜇 ∶ 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒, 𝜇 ∈  𝑅𝑧 

𝜖 𝑖𝑠 𝑎 𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑖𝑟𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑎𝑡𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝜖 
∈ 𝑁(0, 𝐼) 

The 3D KL-loss is extended based on 2D Kl_loss in 

Equation (14) to measure the divergence loss in context 

and time-space at the same time. The 3D KL loss can be 

described as: 

𝐷3𝐷𝐾𝐿[𝑞(𝑧|𝑥)||𝑝(𝑧)]              

= −
1

2
 [∑ log 3𝐷𝜎2

𝑡,𝑖,𝑗

+ 1 − ∑ 3𝐷𝜎2

𝑡,𝑖,𝑗

− ∑ 3𝐷𝜇2

𝑡,𝑖,𝑗

] 

Where: i, j are spatial-space dimensional and t is the 

spatial temporal space dimensional.  
The temporal-3D sampling regulates the temporal 

features by applying the transpose function to scan the 

features in the time domain for all values of the spatial 

index as described in Equation (16).  

𝐷𝑇𝐾𝐿[𝑞(𝑧|𝑥)||𝑝(𝑧)] = 

−
1

2
 [∑ log 𝑇𝜎2

𝑖,𝑗,𝑡

+ 1 − ∑ 𝑇𝜎2

𝑖,𝑗,𝑡

− ∑ 𝑇𝜇2

𝑖,𝑗,𝑡

] 

The reconstruction loss of the 3D VAE model is updated 

to include 3D KL_Loss in Equation (15), T KL_loss in 

Equation (16) and the classical MSE loss in Equation 

(11). The total loss can be written as follows:  

𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠𝑣𝑎𝑒 = 3𝐷𝐾𝐿𝑙𝑜𝑠𝑠 + 𝑀𝑆𝐸𝑙𝑜𝑠𝑠 + 𝑇𝐾𝐿𝑙𝑜𝑠𝑠 

4. Experiments 

4.1. Training Details 

Keras and TensorFlow are used to implement the model 

(10) 

(11) 
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(17) 

(16) 

(13) 
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as Python code. The Adam optimizer is tuning at 

learning rate lr=0.0001; β1=0.9; β2=0.999. The Batch 

size=5 and epoch=70. The system is executed and 

applied on an NVIDIA RTX3060 GPU with 12 Giga 

Bytes memory. The training and testing operation is 

applied in an end-to-end way 

4.2. Datasets 

4.2.1. KITTI [10] 

This is the most public standard dataset for computer 

vision models like VP, autonomous driving, and mobile 

robotics applications. It consists of 57 videos with 

1392x512 RGB pixel resolution based on hours of traffic 

scripts applied with a different modality of sensors. This 

dataset included grey-scale stereo cameras, high-

resolution RGB, and a 3D-laser scanner. The original 

dataset does not contain the semantic segmentation GT 

data. However, in 2015, the KITTI dataset was modified 

by adding a 200-frame for both instance and semantic 

segmentation in a pixel-level formula. 

4.2.2. Cityscapes [5] 

This dataset is very similar to the KITTI dataset and 

many papers used the KITTI and Cityscapes together. 

The Cityscapes introduces a large-scale database based 

on 50 videos with 2048x1024 RGB pixel resolution. 

This set was recorded in 50 different cities spending 

several months in good conditions weather, and daytime. 

It contains an instance label, semantic-label, stereo pairs 

of frames, and dense pixels for 30 categories grouped 

into 8 classes of urban street scenes. It is approximately 

composed of 5000 fine-explained images (1 frame in 30 

seconds) and 20.000 annotated coarse ones (one frame 

every 20 seconds or 20 meters recorded by the car). It 

also consists of extra High-level data like outside 

temperature, vehicle sensors, and GPS tracks to serve a 

wide range of computer vision applications. 

4.2.3. Caltech Pedestrian Dataset [8] 

This data is introduced to detect pedestrians as a driving 

dataset. The bounding boxes are utilized to capture a 

pedestrian. It is approximately recorded at 10 hours of 

640x480 with a frame rate of 30fps.  The video series is 

extracted from a vehicle driving across uniform traffic in 

an urban environment. It contains 250k frames collected 

from 137 clips. The length of each clip is approximately 

one minute. The total number of pedestrians bounding 

boxes is 350.000, specifying two identical pedestrians. 

5. Results and Discussion 

5.1. Single Frame Prediction 

The first step of any VP model choose a suitable number 

of input frames to capture the proper spatial and temporal 

features. Thus, the number of input frames are increasing 

gradually and the performance of the model is measured 

at each time as shown in Table 2. The values of PSNR, 

MSE, and SSIM are generally constant in 5 frames and 

above. So, the five input frames are a suitable number to 

get better performance with the minimum number of 

parameters. Second, the proper datasets like KITTI and 

cityscapes are applied to the proposed model in the 

training phase and measure the performance. 

Table 2. Different numbers of input frames applied to the proposed 

model. 

Input frames MSE PSNR SSIM 

3 0.009 29.905 0.881 

4 0.00094 32.812 0. 91 

5 0.000485 34.8673 0.9616 

6 0.000485 34.8673 0.9616 

7 0.000485 34.8673 0.9616 

8 0.000485 34.8589 0.9616 

9 0.000485 34.8673 0.9616 

10 0.000485 34.8673 0.9616 

The effects of the 3D sampling and Temporal-3D 

sampling are represented in Table 3. The 3D VAE model 

based on 3D sampling records a good result. However, 

some blurry predictions are due to the temporal latent 

probability variable not being captured very well. So, the 

Temporal-3D sampling helps to capture the proper 

temporal latent features and enhance the prediction 

performance. 

Table 3. Comparison study of the proposed model. 

3D Encoder 3D Decoder 3D sampling 
Temporal-3D 

sampling 
PSNR 

√ √ X X 31.59 

√ √ X √ 32.2 

√ √ √ X 33.3 

√ √ √ √ 34.86 

The qualitative analysis of the next frame predicted 

looks good and the edges look smooth too compared to 

the GT as shown in Figure 3. We can see that the 3D 

VAE model is outperforming in MSE, PSNR, SSIM, and 

the number of parameters in comparison to the state-of-

the-art models as shown in Table 4. 
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Figure 3. The qualitative analysis from Cityscapes and KITTI training datasets. The first five column contain actual sequence of input frames. 

The sixth column contains the GT. The final column describes the results. 

 

Figure 4. A qualitative comparison of PreCNet, PredNet, and Context VP models based on Caltech Pedestrian Dataset by rows: set07-v011, 

set10-v010, set10-v010, set06-v009, set06-v001, and set07-v011. 

Table 4. The performance on the caltech pedestrian dataset after 
training on the KITTI dataset. 

Method MSE (10-4) PSNR SSIM #Parameters 

CtrlGen [13] ------- 20.88 0.766 ------- 

Copy the last 

frame 
79.5 23.2 0.779 ------- 

VAE(3D-

CONLSTM) 

[28] 

51.4 ---- 0.864 12.9M 

Mask ViT [12] ------- 26.2 0.407 228M 

PredNet [21] 31.3 25.8 0.0.88 6.9M 

DM-GAN [19] 24.1 -------- 0.899 113M 

PreCNet  [30] 20.5 28.4 0.929 7.6M 

ContextVP [2] 19.4 28.7 0.921 8.6M 

Res GAN [22] 18.8 28.7 0.913 3.9M 

RC-GAN [17] 16.1 29.2 0.919 ------ 

FPNet-OF [27] 15.7 30.8 0.947 ------ 

Our 4.8589 34.8673 0.9616 5.2 M 

Temporal KL is applied in time space only at every 

training iteration. This helps to capture the proper 

spatial-temporal features based on the proposed 3D 

probability distribution. While the classical 2D-VAE 

models just applied the distribution probability on 2D 

context space. The 3D VAE produces the single frame 

prediction in 21 msec/step which can help to apply this 

model in a real-time system. 

Figure 4 shows the qualitative results of different 

approaches based on the KITTI and Cityscapes datasets. 

The PredRNN [20], PreCNet [30], and ContextVP [2] 

models produced a good result but suffered from blurry 

prediction, especially at the motion object as shown in 

red and yellow areas in Figure 4. These models failed to 
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capture the proper temporal features. The basic goal of 

the 3D VAE model is to decrease the blurry prediction 

as small as possible with a minimum number of 

parameters. The results of 3D VAE are better than other 

methods because the 3D VAE model preserved the 

details and edges of the frame(s). 
 

6.2. Multiple Frame Prediction Performance 

The quantitative results of multi-frame prediction are 

evaluated based on cityscapes and KITTI datasets in the 

training phase and the Caltech pedestrian dataset in the 

testing phase. The prediction performance of the 3D 

VAE model is compared with other state-of-the-art next-

frame prediction models, such as PredNet [20], dual 

motion GAN [18], PreCNet [30], retro-cycle GAN [17], 

and FPNet-OF [28]as shown in Table 5. 

Table 5. The Quantitative analysis for the multi-frame prediction 
model. 

Method  t=6 t=7 t=8 t=9 t=10 t=11 

Dual-Motion 

GAN [18] 

PSNR 

SSIM 

----- 

0.90 

------ 

0.89 

------ 

0.88 

----- 

0.87 

------ 

0.86 

------ 

------ 

PredNET 

[21] 

PSNR 

SSIM 

27.6 

0.90 

------ 

------ 

21.7 

 

------ 

------- 

------ 

------- 

20.3 

0.66 

RC-GAN 

[22] 

PSNR 

SSIM 

29.2 

0.91 

------ 

------- 

25.9 

0.83 

------- 

------- 

------- 

------- 

22.3 

0.73 

PreCNet 

[30] 

PSNR 

SSIM 

28.5 

0.93 

------- 

------- 

23.4 

0.82 

------- 

------- 

------ 

------ 

20.2 

0.69 

FPNet-OF 

[27] 

PSNR 

SSIM 

30.8 

0.95 

29.9 

0.929 

27.9 

0.88 

24.3 

0.83 

23.2 

0.80 

22.9 

0.79 

Our approach PSNR 

SSIM 

34.8 

0.96 

33.32 

0.942 

32.0 

0.92 

30.58 

0.87 

29.47 

0.84 

27.6 

0.79 

The input-output batch consists of eleven frames, the 

first five for input and the last six for ground truth. Each 

frame is resized to the 256×256 resolution and all pixels 

are normalized in the range of 0 and 1. First, the next 

frame is predicted based on a single frame prediction 

model, and then concatenate the result with the other 

four input frames to create a new input sequence and 

forecast the second next frame. This procedure of multi-

frame prediction is repeated until the prediction frame 

contains a lot of blurry results. 

From Table 5, at t=6, 7 and 8, the SSIM and PSNR 

have the highest value compared with the state-of-the-art 

models. But, at t=9 and 10, the dual motion GAN [37] 

recorded the highest value in SSIM, this is because of the 

low degradation in the metric based on adversarial 

training (the degradation loss in SSIM reaches 0.01). 

However, the degradation rate in the 3D VAE model 

increased for further frame prediction. It reaches to 0.051 

in SSIM at t=11. 

The predicted frames look good as shown in Figure 5, 

thus, the 3D VAE model outperforms all other models 

by a large margin in PSNR for the next frame prediction 

until t=11. The high value of SSIM is recorded for the 

sixth, seventh, and eighth future frames. This means that 

the 3D-VAE model obtains good results in the short-

term forecasting horizon. Unfortunately, when updating 

the model to predict further and further frames, the 

prediction performance decreases drastically in SSIM. 

Therefore, we limit the number of outputs to 6 frames 

only. 
 

 

Figure 5. A qualitative evaluation of multi frame prediction algorithms that were selected. The inputs of PredNet and PreCNet are 10 frames, 

and RC-GAN used 4 input sequences. Our approach is applied 5 input frames. Location of the sequence in Caltech Pedestrian Dataset is set10-

v009. 
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7. Conclusions 

In this work, we introduced the end-to-end DL 

architecture of the 3D VAE model to predict the future 

video frame. The proposed model consists of a 3D 

Encoder, 3D Decoder parts, and 3D latent variable 

sampling and generates superior future frame prediction 

compared to other state-of-the-art architecture. The 3D 

VAE applies 3D CONV layers in Encoder and Decoder 

parts and 3D CONVLSTM to calculate the mean and 

variance value from latent space to create the 3D 

sampling. Experimentally, the effects of these two 

contributions are: First, the utilization of 3D 

CONVLSTM layers to calculate latent variables helps to 

create very well predictions beyond the time steps. The 

3D KL_loss and Temporal KL_loss enables the model 

to produce better forecasting without an increase in 

model complexity by updating the weights of the whole 

model based on the normal distribution of the latent 

variable. Second, the 3D CNN layers extract the spatial-

temporal features simultaneously which is very 

important to decrease the fuzz prediction results. The 

most important key in this study is that the prediction 

time based on single-frame prediction is more desirable 

for real-world applications. In future, we can apply the 

proposed model in GAN to build 3D VAE-GAN model 

based on the 3D KL_loss function. 
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