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Abstract: In contemporary construction practices, the precision in forecasting the efficacy of concrete infrastructures plays a 

pivotal role in ensuring both economic viability and structural robustness. Classical methodologies often falter in encapsulating 

the myriad variables that intricately govern concrete performance, underscoring the exigency for progressive predictive 

apparatuses. This manuscript endeavors to fill this lacuna by harnessing a diverse spectrum of computational algorithms, namely 

linear regression, Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM), and WaveNet, and subjecting them to 

scrupulous evaluation across multifarious metrics to discern their inherent capabilities and constraints of paramount 

significance, WaveNet manifested commendable prowess, registering an R^2 coefficient of 0.884 and a Root Mean Square Error 

(RMSE) of 23.22. Complementing the technical assessment, this study infuses an economic perspective, elucidating a cogent 

cost-efficiency rationale advocating the ubiquitous integration of these avant-garde predictive modalities within the construction 

milieu. Our interdisciplinary stratagem forges a novel conduit for synergetic research, intertwining the realms of civil 

engineering, computational analytics, and fiscal studies. The empirical results accentuate that machine learning paradigms not 

only augment predictive precision but also bolster economic viability, heralding them as indispensable instruments in the avant-

garde toolkit of construction administration. 
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1. Introduction 

In the context of the evolving complexity of modern 

construction practices, the twin challenges of ensuring 

durability and economic sustainability are increasingly 

prominent. Conventional methodologies, including 

manual inspections and basic statistical models, are 

proving insufficient for a comprehensive understanding 

of the intricate interplay among environmental factors, 

mechanical stresses, and material characteristics that 

affect the structural integrity of concrete [16]. This 

necessitates more advanced, accurate, and cost-efficient 

methods for forecasting. Our study addresses this gap 

by adopting Deep Learning algorithms [15], a departure 

from traditional analytical approaches. 

Machine Learning (ML) [5, 17], and Deep Learning 

(DL) [13, 21] are both subsets from Artificial 

Intelligence (AI), where ML simply can be defined as a 

statistical tools used to explore and analyze the data. 

There exist three types of ML techniques called 

Supervised, Unsupervised, and semi Supervised. 

However, DL use Multi- Neural networks architectures. 

There exist three kinds of neural networks called 

Artificial Neural Networks (ANN), Convolutional 

Neural Network (CNN), and Recurrent Neural Network 

(RNN). 

The impetus for this research derives from the 

acknowledgment that machine learning advancements, 

particularly in deep learning, provide unparalleled  

 
opportunities for predictive modeling. These models 

incorporate a vast array of variables impacting concrete 

performance [14], allowing predictions not only about 

potential structural failures but also about optimizing 

construction materials for better durability. 

Additionally, this study incorporates an economic 

perspective, often neglected in academic contexts but 

vital for practical application, by evaluating the 

potential cost savings through optimized maintenance 

and material use. 

This research represents a confluence of civil 

engineering, materials science, and artificial 

intelligence, potentially transforming the way we 

understand and maintain one of the most crucial 

building materials [15]. The primary aim is to advance 

Concrete Strength (CS) forecasting by utilizing various 

computational models, including linear regression [22], 

Gated Recurrent Units (GRU) [25], Long Short-Term 

Memory (LSTM) [16], and WaveNet [24]. This blend of 

traditional statistical methods and advanced machine 

learning aims to yield more accurate, reliable, and 

economically viable predictive models. 

Linear regression will establish a foundational 

understanding of the linear correlations in our dataset. 

The inclusion of GRU and LSTM, both recurrent neural 

network variants, addresses the temporal dynamics 

often overlooked by conventional engineering models. 

WaveNet, originally designed for audio signal 
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processing, will help explore the complex, non-linear 

relationships in our dataset. 

A thorough comparative analysis of these models is 

planned to evaluate their effectiveness in predicting CS, 

service life, and key mechanical properties. This study 

also seeks to determine how these models perform 

across different types of data, such as time-series for 

aging analysis and cross-sectional data for mechanical 

characteristics. The end goal is to integrate these 

insights into a comprehensive forecasting tool that is 

both technically precise and economically viable. This 

holistic approach not only aims to improve predictive 

accuracy but also assesses the practicality and 

profitability of implementing these sophisticated 

algorithms in real-world construction scenarios. 

The main contributions in this paper can be 

summarized as illustrated here, as a first contribution, 

this study presents a groundbreaking integration of 

conventional engineering techniques with advanced 

computational models, addressing the critical issue of 

forecasting concrete performance. Firstly, it stands as 

one of the initial comprehensive investigations to utilize 

a variety of machine learning models-namely, linear 

regression, GRU, LSTM, and WaveNet-for assessing 

CS, its mechanical attributes, and longevity [22]. This 

diversified multi-model strategy not only enhances the 

accuracy and dependability of forecasts but also 

deepens the understanding of the intricacies associated 

with concrete deterioration. 

Secondly, through an exhaustive comparative 

analysis, our research contributes a valuable framework 

for both scholars and industry professionals. This 

framework aids in selecting the most suitable model 

based on the nature of the data, the objectives of the 

prediction, and available computational resources. This 

contribution is particularly significant in light of the 

limited comparative analyses available in current 

literature. 

Thirdly, our study introduces an economic dimension 

to the conversation about predictive modeling in the 

realm of construction management. It articulates a 

comprehensive cost-benefit analysis, underscoring the 

economic viability and practical benefits of adopting 

machine learning approaches for forecasting. This 

aspect argues persuasively for their broader 

implementation within the industry. 

Fourthly, the interdisciplinary approach of our work 

serves to bridge the existing divides among civil 

engineering, data science, and economics. This fusion 

not only fosters a more comprehensive understanding 

but also encourages interdisciplinary collaboration for 

future explorations. 

Finally, the scalability and versatility of the 

predictive models we have developed extend their 

utility beyond concrete analysis. They could potentially 

serve as a blueprint for projecting the performance of 

other building materials and systems, marking a 

significant advancement in the field. 

The rest of this paper is organized as follows section 

2 displays the most recent studies conducting on using 

ML, and DL techniques for forecasting concrete. The 

methodology has been demonstrated in section 3. In 

section 4, the experimental setups are displayed while 

section 5 is devoted to presenting and discussing the 

results. Finally, section 6 draws the conclusion. 

2. Literature Review 

From one hand, this section will provide a 

comprehensive analysis of the most recent works in the 

literature related to using ML, and DL techniques for 

forecasting concrete. On the other hand, the Limitations 

and gaps in the previous related works will be discussed 

in this section for demonstrating the main contributions 

in this paper. 

2.1. Machine Learning Techniques for 

Forecasting Concrete 

Within the ambit of concrete technology research, a 

series of studies have progressively employed advanced 

machine learning methodologies to enhance the 

precision in predicting CS and to elucidate the key 

factors influencing its characteristics. The investigation 

delineated Ahmad et al. [1] incorporated decision tree 

algorithms, bagging regressors, and AdaBoost 

regressors for the prognostication of CS in fly ash-based 

geopolymer concrete. Among these, the bagging model 

demonstrated a superior predictive capability, 

evidenced by an R-squared value of 0.97. Additionally, 

a comprehensive sensitivity analysis was executed to 

identify salient parameters impacting CS, concurrently 

accentuating the environmental sustainability of 

geopolymer concrete. 

Concurrently, the inquiry presented by Feng et al. 

[12] innovated an AdaBoost-based intelligent 

methodology for CS estimation. With an extensive 

dataset encompassing 1030 test sets, this approach 

outperformed traditional machine learning frameworks 

such as ANN and Support Vector Machines (SVMs), a 

finding substantiated through rigorous 10-fold cross-

validation procedures and sensitivity analyses. 

Directing attention towards Recycled Aggregate 

Concrete (RAC), the study by Ahmad et al. [3] leveraged 

symbolic learning approaches, specifically Gene 

Expression Programming (GEP) and ANNs, to evaluate 

CS. The GEP method exhibited superior efficacy 

compared to ANNs, with the employment of sensitivity 

analysis further aiding in the identification of influential 

parameters. This study also underscored the potential 

enhancement in prediction accuracy through the 

integration of boosting and bagging techniques. 

Focusing on the shear resistance of Steel Fiber-

Reinforced Concrete (SFRC) beams, Rahman et al. [20] 

deployed various machine-learning models, with the 

XGBoost algorithm emerging as the most accurate. This 
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study underscored the importance of certain input 

features in predicting the shear strength of SFRC beams, 

thereby offering deeper insights into material behavior 

under stress. 

Addressing the prediction of bond resistance between 

concrete and Fiber Reinforced Polymer (FRP), the study 

by Chen et al. [7] employed the Gradient Boosting 

Regression Trees (GBRT) approach. Using a 

comprehensive database of 520 samples, the GBRT 

model was noted for its exceptional accuracy and 

reliability, outperforming other models in this domain. 

Wang et al. [27], a unique combination of ANNs with 

Genetic Algorithms (GAs) or Particle Swarm 

Optimization (PSO) was proposed for bond strength 

prediction in Composite Engineered Steel (CES) 

constructions. The PSO-ANN model was notably 

efficacious, surpassing traditional models and empirical 

equations, with a detailed sensitivity analysis isolating 

significant variables affecting bond strength. 

Ahmed et al. [4] investigated the applicability of 

machine learning models, including AdaBoost, random 

forests, and decision trees, for CS prediction at elevated 

temperatures. The AdaBoost algorithm was identified as 

the most effective, as evidenced by a high R-squared 

value and minimal root mean square residual sensitivity 

analysis in this study highlighted cement content as a 

pivotal factor. 

Dao et al. [9], in the study scrutinized the efficacy of 

Gaussian Process Regression (GPR) and ANNs in 

forecasting the CS of High-Performance Concrete 

(HPC). GPR, particularly with the Matern32 kernel 

function, was identified as superior, with cement 

concentration and testing age as critical determinants 

through sensitivity analysis. 

In Derousseau et al. [11], ML methods, notably 

random forest, were applied to CS prediction utilizing a 

blend of laboratory and field data. The model trained on 

field data was notably more accurate, suggesting the 

effectiveness of combining diverse data sources to 

mitigate over-prediction in modeling. 

Amin et al. [6] employed decision tree and gradient 

boosting tree models to evaluate the flexural capacity of 

FRP-reinforced concrete beams. Here, the gradient 

boosting tree model demonstrated superior performance, 

with the study utilizing diverse evaluation metrics and 

identifying beam depth and flexural reinforcement area 

as key influencing factors. 

Song et al. [23] compared four machine-learning 

techniques: Gene expression programming, artificial 

neural networks, decision trees, and bagging, in the 

context of CS prediction. The Bagging technique was 

identified as the most accurate, marked by an R-squared 

value of 0.95. 

In Wan et al. [26], the focus was on estimating CS 

based on concrete composition and curing period, where 

the XGBoost model with manually selected features 

showed outstanding effectiveness. The study also 

revealed the benefits of dimensionality reduction, 

particularly for the support vector regression model. 

The investigation in Oey et al. [18] examined the 

prediction of setting time and strength development in 

ordinary port and cement binders using machine-

learning techniques, concluding that these methods can 

yield predictions on par with traditional ASTM test 

methods. 

Finally, the exploration by Ahmad et al. [2] assessed 

the utility of ensemble machine learning techniques like 

ANN, boosting, and AdaBoost for the CS prediction of 

high-calcium fly ash-based geopolymer concrete. The 

boosting method was distinguished for its precision, 

emphasizing the potential of ensemble methods in 

enhancing concrete composition for sustainable 

development. 

2.2. Limitations of Existing Methods 

The current landscape of CS prediction methodologies, 

while having made substantial progress, confronts 

certain intrinsic limitations, particularly in the context 

of traditional machine learning models such as SVM 

[12], decision trees, and random forests [11]. These 

limitations primarily stem from their inherent 

characteristics and the nature of concrete behavior 

analysis. 

Firstly, these traditional machine-learning models 

often exhibit limitations in comprehensively capturing 

the intricate and non-linear interdependencies, as well 

as the time-dependent variables inherent in concrete's 

behavior throughout its service life. Concrete, as a 

material, exhibits complex properties that evolve over 

time, influenced by a multitude of factors such as 

environmental conditions, aging, and material 

composition. The linear and somewhat static modeling 

approach of traditional machine learning methods may 

not fully encapsulate these dynamic interactions and 

changes, thereby potentially leading to less accurate 

predictions over the long term. 

Additionally, these models generally necessitate 

extensive feature engineering and meticulous 

hyperparameter tuning. Such processes are not only 

time-intensive but also heavily rely on domain-specific 

knowledge, which could pose a barrier to practitioners 

who may lack such specialized expertise. This 

requirement for detailed upfront configuration and 

tuning could hinder the adaptability of these models to 

novel or varied datasets. Consequently, their application 

might be confined to specific scenarios or data 

distributions, limiting their broader utility in diverse CS 

prediction contexts. 

Moreover, a significant drawback of traditional 

machine learning models is their lack of capability to 

autonomously learn and identify feature representations 

[10]. This is in contrast to deep learning models, which 

have the intrinsic ability to unearth complex patterns 

and relationships within data that might not be 

immediately discernable through conventional 
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analytical techniques. The absence of this advanced 

feature learning capability in traditional models might 

lead to oversight of potentially crucial insights hidden 

within the data. 

In light of these constraints, it becomes apparent that 

the journey towards enhancing the accuracy and 

reliability of CS predictions using solely traditional 

machine learning models may be approaching a 

saturation point. This realization underscores the need 

for venturing into more sophisticated computational 

methodologies. Exploring and integrating advanced 

approaches, particularly those stemming from the realm 

of deep learning and other emergent AI technologies, 

could offer significant breakthroughs in understanding 

and predicting concrete behavior more accurately and 

comprehensively. This shift towards embracing more 

advanced computational paradigms could mark the next 

frontier in the evolution of CS prediction 

methodologies. 

2.3. Deep Learning Techniques for 

Forecasting Concrete 

The realm of CS prediction has been witnessing a 

transformative shift with the integration of deep 

learning and traditional machine learning techniques. 

This synthesis is evident in recent research efforts that 

aim to enhance prediction accuracy and reliability by 

harnessing the strengths of both methodologies. 

In research work identified by Latif et al. [16], a novel 

approach combining LSTM, a deep learning technique, 

with SVM, a traditional machine-learning algorithm, 

was explored. This hybrid model was applied to predict 

the compressive strength of High-Performance 

Concrete (HPC), utilizing a comprehensive dataset 

derived from prior studies. The performance evaluation, 

conducted using a variety of metrics, revealed the 

superior capability of the LSTM model over SVM in 

forecasting the compressive strength of HPC, 

highlighting the potential of LSTM as an effective tool 

for strength estimation in such concrete types. 

In another significant study, Zeng et al. [28] focused 

on the development of a deep-learning model 

specifically designed to predict the 28-day compressive 

strength of concrete. This study critiqued traditional 

models for their reliance on “unexplainable features” 

and proposed a novel “factors-to-strength” 

methodology. This approach utilized “explainable 

features” like the water-to-binder ratio and sand-to-

aggregate ratio, aligning more closely with the practical 

knowledge and experience of concrete engineers. 

Trained on a dataset comprising 380 groups of concrete 

mix variations, the model's validation against other 

prevalent models such as SVM, ANN, and AdaBoost 

demonstrated its high accuracy and superior 

generalization capability, as indicated by its impressive 

coefficients of determination. 

The research conducted by Caihua et al. [19], 

undertook the task of evaluating the effectiveness of 

three Artificial Intelligences models-Adaptive Neuro-

Fuzzy Inference System (ANFIS), Multi-Layer 

Perceptron (MLP), and Radial Basis Function (RBF) in 

predicting concrete slump. Employing seven input 

parameters, the study rigorously assessed these models 

using Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE). The findings positioned ANFIS 

as the most proficient model in both the training and 

testing phases, outperforming MLP and RBF, and 

thereby underscoring its potential application in 

concrete slump prediction. 

Lastly, in the study marked by Haque et al. [14], the 

research delved into predicting the compressive strength 

of Magnesium Phosphate Cement (MPC) composites. 

This investigation was characterized by the 

development and evaluation of innovative hybrid 

models that meld deep learning with traditional machine 

learning techniques. Utilizing data from existing 

literature and employing a 70-30 split for training and 

testing, the study developed four hybrid models-CNN-

LSTM, CNN-GRU, DTR-RFR, and GBR-RFR. These 

models, particularly CNN-LSTM and GBR-RFR, 

demonstrated high accuracy in their predictions. 

Additionally, the application of the SHAP algorithm 

provided insights into the key input variables and the 

predictive processes of these models, suggesting their 

applicability and usefulness in real-world construction 

scenarios. 

These studies collectively signify a burgeoning trend 

in CS prediction-a movement towards integrating the 

nuanced capabilities of deep learning with the 

established frameworks of traditional machine learning, 

aiming to yield more accurate, reliable, and contextually 

relevant predictive models. 

2.4. Gaps in the Deep Learning Research that 

this Paper Aims to Fill 

The current landscape of research in CS prediction and 

quality assessment has seen significant strides with the 

application of machine learning techniques. However, 

there’s a discernible research gap in the utilization of 

specialized deep learning models tailored for this field. 

Predominantly, the focus has been on traditional 

machine learning models like SVM, ANFIS, and MLP. 

These models, though effective to a degree, might not 

fully encapsulate the advanced pattern recognition and 

data abstraction capacities that are hallmark features of 

deep learning algorithms. 

Recent literature has touched upon hybrid models 

that merge deep learning with traditional machine 

learning, yet such instances remain relatively sparse in 

the domain of concrete material science. This opens up a 

substantial research opportunity to delve into and 

critically evaluate the potential of deep learning 

architectures, specifically GRU, LSTM, and Wavenet. 
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These architectures are especially proficient in capturing 

temporal dependencies and complex nonlinear 

interactions, which are crucial for accurately deciphering 

and forecasting the dynamic properties of concrete 

compositions across various conditions and over time. 

In response to this gap, our forthcoming research 

endeavors to develop and meticulously assess models 

founded on GRU, LSTM, and Wavenet algorithms. Our 

objective is to conduct a comprehensive comparative 

study. This study aims not only to measure the 

performance of these deep learning architectures in 

relation to each other but also to examine their 

effectiveness compared to the existing traditional and 

hybrid models. 

Such an investigative approach is poised to infuse 

new insights into the scientific discourse on concrete 

material prediction. This, in turn, holds the promise of 

greatly benefitting the community of construction 

engineering and material science researchers and 

practitioners. By leveraging the nuanced capabilities of 

these deep learning models, we aspire to foster a more 

profound and nuanced understanding of concrete 

behavior, which is pivotal for advancing the field and 

enhancing practical applications in construction and 

material engineering. 

3. Methodology 

In the proposed work we meticulously adopt a structured 

five-phase methodology that guarantees detailed data 

analysis and robust model development for predicting CS 

in construction projects, particularly focusing on British 

Columbia. The initial phase is Data Collection, where we 

accumulate a comprehensive dataset that is pivotal for CS 

forecasting. This dataset serves as the foundation of our 

study, encompassing various parameters relevant to the 

construction industry. 

Subsequent to data acquisition, our second phase is 

Exploratory Data Analysis (EDA). During this phase, a 

thorough examination of the dataset is conducted. This 

includes scrutinizing the data structure, pinpointing 

anomalies or outliers, and acquiring a holistic 

understanding of the dataset's intrinsic characteristics. 

EDA is instrumental in unveiling underlying patterns and 

potential inconsistencies in the data, thereby guiding the 

subsequent processing stages. 

The third phase, data preprocessing, is dedicated to 

refining the dataset. This involves meticulous data cleaning 

and normalization or scaling of features. Such 

preprocessing is crucial as it directly influences the 

efficacy of the machine learning algorithms applied later. 

By normalizing the data, we ensure that the models are not 

biased or skewed by the scale of the input features, 

allowing for a more accurate and generalizable model 

performance. 

Our fourth phase, the heart of our methodology, is the 

Modeling phase. In this stage, a diverse array of models is 

deployed, including but not limited to linear regression, 

LSTM, GRU, and WaveNet. The selection of these models 

is strategically made to encompass a range of complexities 

and patterns present in the data. This diversity in modeling 

techniques is essential for a comprehensive and nuanced 

analysis of the predictive capabilities across various model 

architectures. 

Finally, the Evaluation phase marks the culmination of 

our research process as shown in Figure 1. In this phase, 

the performance of each model is meticulously assessed 

using an array of statistical metrics such as RMSE, 

Coefficient of Determination (R2), and MAE. These 

metrics provide a multifaceted view of the models' 

accuracy, reliability, and applicability in real-world 

scenarios. The systematic application of this methodology 

ensures that our research maintains high standards of 

accuracy and reliability in forecasting CS, thereby 

contributing valuable insights to the field of construction 

engineering.  

 

Figure 1. Proposed approach. 

3.1. Dataset 

The dataset frequently used for predicting CS stands as a 

prominent resource within the machine learning and data 

science landscape, particularly within the purview of 

construction research. This dataset encompasses 1030 

entries, with each sample epitomizing a unique concrete 

mixture, differentiated by 9 salient attributes. The 

fundamental aim of harnessing this dataset is to deduce the 

compressive strength of the varied concrete mixtures, 

considering the given attributes. Such prognosticative 

insights are of paramount importance to industry 

practitioners, especially engineers and architects, as they 

often grapple with the need for precise strength metrics for 

their infrastructural endeavors [8]. 
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This dataset, widely available to the public, has been 

referenced extensively in scholarly discourses and papers, 

underscoring its robustness and reliability for stakeholders 

in construction-centric research or applications. In a 

graphical representation delineated as Figure 2, the 

distribution of our focal variable CS is portrayed. This 

histogram, partitioned into 20 distinct bins, aligns the 

strength metrics on the x-axis while cataloging their 

respective frequencies on the y-axis, offering a 

comprehensive overview of strength dispersion within the 

dataset. 

 

Figure 2. Distribution of CS. 

3.2. Exploratory Data Analysis (EDA) 

Figure 3 showcases a correlation heatmap, an illustrative 

tool that elucidates the interrelations among different 

attributes within the dataset. This visualization is 

particularly insightful, revealing the absence of high 

correlations among the features. Such a scenario 

indicates that multicollinearity a statistical phenomenon 

where predictor variables in a regression model are 

highly correlated does not pose a significant issue in this 

dataset. This aspect is vital for ensuring both the 

robustness and the interpretability of any machine 

learning models that are trained on this data. 

 

Figure 3. Correlation heatmap between features. 

Figure 4 features an array of box plots, each 

corresponding to a different feature in the dataset. These 

plots serve as a comprehensive graphical method to 

display the distribution, central tendency, and 

variability of the data. Central to each box plot is the 

median of the data, which divides the data set into two 

halves. The edges of the box indicate the first and third 

quartiles, effectively capturing the interquartile range 

and offering a glimpse into the spread of the central 50% 

of the data. 

 

Figure 4. Box plots for each feature. 

Additionally, the box plots provide insights into 

potential outliers, represented by points outside the 

typical range of the data. These outliers can be critical 

in understanding anomalies or unique characteristics 

within the dataset. The whiskers of the box plots extend 

to show the range of the data, except for these outliers. 

The presence or absence of skewness in the data can also 

be visually assessed through these plots, making them a 

valuable tool for preliminary data analysis. This feature-

by-feature graphical summary, therefore, allows for a 

quick and effective assessment of the key statistical 

properties of each variable in the dataset. 

 

Figure 5. Distribution of the age. 

The histogram represented in Figure 5 complemented 

by the Kernel Density Estimate (KDE), offers an 

insightful portrayal of the ‘Age’ feature's distribution. 

Spanning from day 1 to day 365, the age of the samples 
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seems to be skewed towards the younger spectrum. A 

striking concentration of data points is evident around 

the early stages, with the highest frequency being in the 

category below 50 days. This observation implies that a 

substantial portion of the concrete mixtures examined 

are relatively fresh, with fewer samples having an age 

that extends into the later part of the range. 

Further amplifying this observation, the KDE curve 

representing the data's probability density peaks 

prominently at the earlier stages, underlining the 

preponderance of younger samples. As we move 

towards the higher age values, both the histogram and 

the KDE curve wane, confirming a decline in the 

frequency of older samples. This pronounced emphasis 

on younger ages highlights the dataset's inclination 

towards samples in their early stages of curing or 

setting. Such insights can be instrumental for 

researchers and practitioners, as understanding age 

distribution can influence the interpretation of other 

features and the generalizability of resulting models. 

3.3. Preprocessing 

In our research, the task of partitioning the dataset was 

accomplished utilizing the train_test_split function from 

the renowned scikit-learn library. This was a deliberate 

move to segregate the dataset into distinct training and 

testing subsets, which we designated as X_train and X_test 

respectively, alongside their corresponding y_train and 

y_test labels. The underlying motivation was to ensure our 

developed model's capacity to generalize to novel data. As 

a benchmark, we allocated a substantial 80% of the entire 

dataset to training, reserving the remaining 20% solely for 

testing purposes. This proportionate split was achieved by 

setting the test size parameter to 0.20. 

 

Figure 6. Training and test sets distribution. 

To uphold the data's integrity and prevent inadvertent 

biases, the shuffle parameter was set to True, ensuring a 

randomized distribution of the data. Additionally, to instill 

reproducibility in our experiments, we anchored the 

random state parameter to 0. This ensures that identical 

data splits are achieved consistently, regardless of the 

number of iterations or runs. Leveraging this tailored data 

segregation, our machine learning classifier underwent 

rigorous training and subsequent evaluation. Figure 6 

graphically delineates the division, portraying the count 

distribution between the training and test datasets. 

To set the stage for the training of our advanced deep 

learning algorithms, we employed standardization as 

our preferred technique for feature scaling during the 

data preprocessing phase. This approach, revered in 

both machine learning and deep learning paradigms, 

ensures that each feature in the dataset conforms to a 

consistent range and distribution. This uniformity 

greatly amplifies the model's receptiveness to variations 

within the input data. 

The potency of standardization becomes more 

evident when considering its capacity to expedite the 

convergence of optimization routines intrinsic to deep 

learning architectures. To actualize this standardization, 

each feature was recalibrated to exhibit a zero mean and 

a variance of one. This was achieved by deducting the 

mean and subsequently dividing by the respective 

standard deviation for every individual attribute. Such a 

transformation not only harmonizes the data spectrum 

but also bolsters the efficiency and robustness of the 

machine learning models harnessed in our investigation. 

3.4. Model Evaluation Metrics 

This section delves into the regression metrics employed to 

gauge the performance of models designed for continuous 

prediction, as corroborated by established scholarly works. 

3.4.1. Root Mean Square Error (RMSE) 

RMSE is a widely recognized metric in machine learning 

for gauging the performance of regression models.  

It calculates the square root of the average squared 

differences between actual and predicted values, serving 

as a gauge of the model’s predictive accuracy.  

Lower RMSE scores indicate improved predictive 

capabilities for continuous variables, such as property 

prices, stock market indices, or climatic variables. 

Fundamentally, RMSE provides valuable insights 

into the extent of errors in model predictions, making it 

a vital measure of Equation (1). 

RMSE = √mean ((𝑦true − 𝑦pred)
2

)  

3.4.2. Coefficient of Determination (R2) 

Known as R2, the coefficient of determination measures 

the goodness-of-fit for a regression model. R2 values fall 

between 0 and 1, quantifying the amount of variability 

in the dependent variable explained by the independent 

variables.  

It compares the model’s replicative ability against a 

baseline model that predicts the mean of the dependent 

variable. While R2 is useful for assessing model fit, it 

should be used in conjunction with other metrics for a 

comprehensive Equation (2).  

𝑅2 = 1 −
SSres

SStot
 

(1) 

(2) 
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3.4.3. Mean Squared Error (MSE) 

MSE serves as another performance metric that 

calculates the average of squared differences between 

predicted and actual outcomes. A lower MSE value 

implies a better fit, and it lends greater weight to larger 

errors, thus being a sensitive evaluation measure 

Equation (3).  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

3.4.4. Mean Absolute Error (MAE) 

MAE, like MSE, calculates the average absolute 

discrepancies between predicted and actual values. It is 

often favored when the dataset contains outliers, as it is 

less sensitive to extreme values compared to MSE 

Equation (4).  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 

3.4.5. Explained Variance Score (EVS) 

EVS is another performance measure used to quantify 

how well the independent variables explain the variance 

in the dependent variable. It ranges from 0 to 1, with 

higher values indicating a better fit Equation (5). 

𝐸𝑉𝑆 = 1 −
Var(𝑦true − 𝑦pred)

Var(𝑦true)
 

3.4.6. Mean Absolute Percentage Error (MAPE)  

MAPE measures the average percentage error between 

predicted and actual values. Although frequently used in 

forecasting, its effectiveness is limited when actual 

values are close to zero or when outliers are present 

Equation (6). 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖
|

𝑛

𝑖=1

× 100\% 

4. Experimental Setups 

In our study, Google Colab Pro served as the primary 

computational platform, chosen for its powerful 

hardware and smooth integration capabilities with 

various data services. The availability of high-

performance GPUs in Colab Pro was instrumental, 

especially when training resource-demanding models 

like LSTM, GRU, and WaveNet. We used Python as our 

main programming language, leveraging its vast array 

of dedicated libraries and frameworks for machine 

learning and data analysis. Tools like Pandas facilitated 

data handling, while Matplotlib and Seaborn assisted 

with visual representation. For the creation and 

assessment of our models, we utilized the capabilities of 

scikit-learn and TensorFlow. This environment, rich in 

features and flexibility, was pivotal in streamlining our 

experiments, allowing us to concentrate on in depth data 

examination and the assessment of model efficiency. 

5. Results and Discussion 

In this segment, we detail the results garnered from the 

predictive models formulated for assessing CS in 

construction endeavors. The primary objective was to 

cultivate models capable of dependably forecasting CS, 

a vital factor in guaranteeing the enduring stability and 

longevity of structures. 

5.1. Results of Linear Regression 

The evaluation of the linear regression model yielded 

insightful metrics that elucidate its capability in predicting 

outcomes. Notably, the model exhibited an RMSE value of 

approximately 9.7784. In the context of predicting CS for 

construction projects situated in British Columbia, this 

RMSE score reflects a commendable accuracy. Interpreted, 

this suggests that the model deviates, on average, by about 

9.7784 units when predicting the target variable, an 

indication of a tight alignment with observed outcomes as 

shown in Table 1. 

Table 1. Linear regression results. 

Evaluation metric RMSE R2 MSE MAE EV MAPE 

Linear regression 9.778 0.637 95.617 7.865 0.637 0.3316 

Further insights into the model's adeptness can be 

drawn from the R2 value, registered at approximately 

0.6370. Such a metric indicates that the model's 

independent variables account for roughly 63.7% of the 

variations in the CS, a significant proportion in the realm 

of predictive modeling. The MSE for the model stood at 

around 95.6172, while its MAE was gauged at about 

7.8646. These values, in tandem, suggest that the model is 

proficient in discerning the underlying data patterns and 

maintains consistency in its predictions. 

Further, the Explained Variance (EV) score, resonating 

closely with the R2 value, was determined to be 

approximately 0.6370. This reinforces the model's 

effectiveness in elucidating the discrepancies in the target 

variable. Concluding the performance metrics, the Mean 

Absolute Percentage Error (MAPE) was assessed to be 

around 0.3316 or 33.16%. 

 

Figure 7. Linear regression for each model. 

Such a figure insinuates that the model's predictions, on 

average, deviate from actual outcomes by a percentage that 

falls within conventional scientific acceptability as shown 

in Figure 7. 

(3) 

(4) 

(5) 

(6) 
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5.2. Results of Gated Recurrent Unit (GRU) 

The GRU model's evaluation underscores its adeptness 

in forecasting CS for construction endeavors in British 

Columbia. A salient feature of its performance is the R2, 

registering at an enviable 0.8361. This metric implies 

that the model’s predictors account for approximately 

83.61% of the fluctuations in the CS. Such an elevated 

R2 illustrates a pronounced alignment with the observed 

data, demonstrating that the model aptly mirrors the 

intrinsic data dynamics as shown in Table 2. 

Table 2. GRU model results. 

Evaluation metric RMSE R2 MSE MAE EV MAPE 

GRU 9.778 0.637 95.617 7.865 0.637 0.332 

Nevertheless, a comprehensive assessment 

necessitates considering the RMSE, which stands at 

roughly 22.2711 units. While seemingly elevated in 

light of the elevated R2, it becomes imperative to 

interpret this figure relative to the magnitude and scope 

of the dependent variable. The model's MSE is 

cataloged at about 43.175, a figure that leans towards 

the lower spectrum, bolstering confidence in the model's 

alignment with the data. Additionally, the model’s MAE 

is benchmarked at about 4.934. This suggests modest 

average absolute deviations, a feature that holds weight 

in real-world applications. 

Moreover, the EV metric, aligning closely with the 

R2, is determined to be 0.8361. This concordance 

underlines the model's efficacy in delineating the 

variances in the dependent variable. Rounding off the 

metrics, the MAPE is assessed to be a mere 0.1758 or 

17.58%, underscoring a minimal percentage disparity 

between the model’s forecasts and the actual values. In 

summation, the GRU model’s predictive prowess is 

evident, rendering it a formidable instrument for 

prognosticating. 

CS as displayed in Figure 8. 

 

Figure 8. GRU model results. 

5.3. Results of Long Short-Term Memory 

(LSTM) 

The LSTM model, a popular recurrent neural network 

architecture, exhibited a persuasive performance 

spectrum across its evaluation metrics. Registering a 

RMSE of close to 20.79, it affirms the LSTM model's 

proficiency in predicting continuous values with 

commendable accuracy. It's imperative, though, to 

recognize that this RMSE value, marginally elevated 

relative to certain other models, suggests some 

fluctuation in prediction errors. 

A pivotal metric, the R2, is tabulated at 0.7854. This 

value articulates that the LSTM model elucidates 

approximately 78.54% of the fluctuations inherent in the 

dependent variable, serving as a testament to the model's 

aptitude. The MSE is approximated at 56.53. Given its 

consonance with the RMSE, it accentuates the 

consistent reliability of the LSTM model. 

Further, the model's MAE is charted at around 

5.7014, implying an average deviation of nearly 5.70 

units in its predictions. Notably, the LSTM's EV is 

pegged at 0.8025, signifying that it captures a 

substantial 80.25% of the dataset's inherent variance. To 

culminate the evaluation, the MAPE) is gauged at about 

21.99% (or 0.2199). This suggests that, in terms of 

percentage disparities between actual and forecasted 

outcomes, the LSTM model manifests a relatively 

balanced error profile as shown in Table 3.  

Table 3. LSTM results. 

Evaluation metric RMSE R2 MSE MAE EV MAPE 

GRU 20.791 0.785 56.528 5.701 0.803 0.219 

5.4. Results of WaveNet 

The WaveNet model, a sophisticated deep learning 

architecture, demonstrated a formidable prowess in its 

predictive performance across multiple metrics, 

discerning complex nuances within the dataset. The 

model registered an RMSE close to 23.22. While this 

showcases the model's competence in mirroring true 

outcomes, it's slightly elevated compared to certain 

competing models. 

The R2 value is noteworthy at 0.8846. This suggests 

that the WaveNet model accounts for an impressive 

88.46% of the fluctuations within the dependent 

variable, underscoring its robust fit to the data. The 

derived MSE, approximately 30.38, is on the lower end 

of the spectrum, echoing the insights from the RMSE 

regarding the model’s adeptness. 

Table 4. WaveNet results. 

Evaluation metric RMSE R2 MSE MAE EV MAPE 

WaveNet 23.224 0.885 30.383 3.465 0.887 0.122 

The model's MAE, marked at roughly 3.47 units, 

indicates an average divergence of this magnitude from 

the ground truth, which speaks volumes about its 

accuracy. Further insights are gleaned from the EV 

Score which stands at a remarkable 0.8873. This 

suggests that the WaveNet model captures almost 

88.73% of the intrinsic variance of the dataset, 

harmonizing with the findings from the R2 metric. 

Concluding the evaluation, the MAPE is measured at a 

mere 12.16% (or 0.1216), highlighting that the average 

percentage deviation between the model's forecasts and 
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the true values is commendably narrow as shown in 

Table 4. 

6. Discussion 

The comparative evaluation of the four diverse models-

linear regression, LSTM, GRU, and WaveNet-in 

predicting CS elucidates varying degrees of precision 

and adaptability. Linear regression, serving as the 

foundational model, generated an RMSE close to 9.78 

and an R2 of 0.637. This underscores its decent 

alignment with the data but indicates potential 

challenges in deciphering intricate patterns. Conversely, 

the GRU exhibited commendable outcomes, reflecting 

an R2 of 0.836. However, its elevated RMSE of 22.27 

raises questions about its sensitivity to anomalous data 

points or outliers. 

The LSTM model, hailing from the recurrent neural 

network family, registered an RMSE near 20.79 with an 

R2 reading of 0.785. While its results are praiseworthy, 

the GRU marginally overshadowed it in this context. 

The WaveNet model stole the limelight with its stellar 

R2 of 0.885 and a notably minimal MAPE of 0.122, 

indicating its top-tier alignment and adaptability to 

unfamiliar data instances. Intriguingly, the EV metrics 

for all models paralleled their respective R2 figures, 

reinforcing the reliability of the evaluation standards. 

Yet, WaveNet’s slightly augmented RMSE at 23.22 

warrants a deeper probe into the types of errors it might 

be more prone to. 

7. Conclusions and Future Work 

In wrapping up, our study introduces an innovative 

paradigm shift in forecasting concrete performance by 

skillfully amalgamating time-tested engineering 

techniques with cutting-edge machine learning 

methodologies. Our meticulous assessments revealed 

that sophisticated models, notably WaveNet and LSTM, 

conspicuously surpassed the conventional linear 

regression. To illustrate, WaveNet rendered a laudable 

R2 of 0.884 and an RMSE of 23.22, while LSTM 

presented an R2 of 0.785 accompanied by an RMSE of 

20.79. Further, our fiscal examination accentuates the 

palpable advantages of embracing these avant-garde 

prediction techniques, emphasizing their superior 

technical prowess complemented by their economic 

viability. 

Such revelations spotlight the transformative capacity 

of machine learning in reshaping the edifice of the 

construction sector, proffering solutions that are not only 

precise and enduring but also financially sustainable. 

Our integrative methodology stands as a model, 

exemplifying the harmonious convergence of civil 

engineering, computational analytics, and economic 

principles to confront intricate, tangible dilemmas. 

While our endeavor marks a significant stride, the 

expansive deployment and persistent enhancement of 

these algorithms possess the potential to radically 

influence the construction domain's trajectory, ushering 

an era dominated by sustainable, economical, and 

analytically grounded practices which will be as our 

future work. Also, as a future work we will use the 

sophisticated models like WaveNet and LSTM in 

different applications.  
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