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Abstract: According to Electroenc-Encephalo-Graphy (EEG) signal correlation analysis, attention levels of game players can 

objectively reflect changes in attention during Virtual Reality (VR) education games. To avoid noise interference, denoising 

processing is necessary. This study improves the traditional wavelet thresholding method by combining it with Ensemble 

Empirical Mode Decomposition (EEMD). Then, feature extraction is performed to remove noise and identify EEG features 

related to attention, which are classified using long short-term memory techniques. The proposed method is validated through 

experimental design, showing minimal root mean square error of 12.0231 and maximum signal-to-noise ratio of 11.3272, 

indicating effective denoising. In VR, attention is more focused and stable compared to the 3D environment. Time required to 

achieve challenge goals is 53.65 seconds in VR and 65.7 seconds in 3D environments, suggesting participants achieve goals 

earlier in VR. The correlation coefficient between VR and 3D environment is 0.784, indicating a strong correlation, with a 

Significant Difference (SD) in time required to achieve initial goals. The proposed method demonstrates effectiveness in EEG 

signal recognition. 
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1. Introduction 

The most commonly used algorithm for recognizing 

electroencephalogram signals is Electroenc-Encephalo-

Graphy (EEG). To improve the understanding and 

feature processing of EEG signals, wavelet threshold 

method is often used. Wavelet threshold is a method of 

signal denoising that can eliminate correlation 

coefficients below the threshold. The traditional wavelet 

threshold may exhibit pseudo-Gibbs phenomenon at 

discontinuous points of the signal during the denoising 

process, and the selection of threshold has a significant 

impact on the denoising effect [19]. This study 

combines Ensemble Empirical Mode Decomposition 

(EEMD) with wavelet thresholding method, resulting in 

a higher signal-to-noise ratio and the ability to obtain 

purer EEG signals. EEMD is a specific algorithm used 

to solve the problem of modal mixing, which can 

remove noise from EEG signals and is particularly 

suitable for processing nonlinear signals [26]. Then, this 

study used Long and Short-Term Memory (LSTM) to 

balance the efficiency of feature classification of EEG 

signals. Traditional feature classification methods 

typically represent them as sparse vectors, while LSTM 

models can be represented as dense vectors to capture 

more semantic information [11]. The LSTM model can 

take word vectors as input, extract features through the 

LSTM layer, and finally input the obtained features into  

 
the fully connected layer for classification. This study 

combines EEMD with improved wavelet thresholding 

to preprocess EEG signals, then performs feature 

extraction and uses LSTM for feature classification; this 

played an important role in the later research of EEG 

signals. The article structure is as follows: The first part 

elaborates on the research background and significance 

of EEG signal recognition and related algorithms; the 

second part focuses on the process of combining the 

improved wavelet threshold method and EEMD 

algorithm in this research design, and using LSTM to 

classify and optimize the features of EEG signals. This 

part is also the focus and innovation of this study; The 

third part elaborates on the experimental verification on 

the ground of the algorithm designed in the second part 

and the quantitative analysis of the experimental data 

results; The fourth part draws conclusions on the 

experimental results and elaborates on the shortcomings 

of this design; Further in-depth directions are needed in 

the future. 

2. Related Works 

EEG recognition is one of the emerging topics that has 

attracted attention. Generally, this EEG based 

recognition is an effective model for many real-time 

applications. There have been many studies on EEG 

recognition, and Wei et al. [25] proposed an EEG 
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classification technique based on multidimensional 

fusion features to solve the problems of poor 

performance, low efficiency, and poor robustness of 

EEG signals generated by brain sensory motor 

activation tasks. The results indicate that this method 

has good effectiveness in EEG signal processing. Chai 

and Ba [3] created a system that uses EEG signals to 

identify psychological stress caused by auditory and 

visual stimuli. To solve the problem that spatial uniform 

sampling methods cannot accurately reflect the dynamic 

characteristics of multivariate EEG signals, a non-

uniform sampling algorithm is proposed. This algorithm 

adaptively selects the projection direction using the 

Duffing equation, and research has shown that the 

algorithm has the characteristics of efficient 

convergence speed. To improve the overall rate of 

emotion recognition in emotion classification systems, 

Jiang et al. [12] proposed a CSP-VAR-CNN (CVC) 

system for emotion recognition. This system utilizes 

Common Spatial Patterns (CSP) to reduce the amount 

of EEG data and selects normalized Variance and R 

(VAR) as a parameter to create emotion feature vectors. 

Then it uses Convolutional Neural Networks (CNNs) 

algorithm to classify the emotions of EEG signals, and 

constructs a 5-layer CNN model to classify EEG 

signals. The results indicate the superiority of 

constructing a model for processing EEG signals. 

Wankhade and Doye [24] use advanced tools and 

models to detect human emotions or feelings through 

EEG signals. To effectively represent EEG signals, a 

descriptive Emerging Market Credit Derivatives 

(EMCD) and wavelet transform with 2501 features were 

applied, and then these features were used in Deep Trust 

Networks (DBN) classifiers to classify emotions. This 

study indicates that it has reference value for sensitive 

expression of human emotions. Bakhshali et al. [2] 

proposed a method for classifying EEG signals of 

imagined speech, which is both high-precision and 

efficient. To achieve this, the distance between matrices 

is used as a metric for imaginative speech recognition, 

and the correlation spectral density matrix of EEG 

signals is evaluated on different channels. Statistical 

methods are used to evaluate channel selection and 

frequency band detection in imagined speech. 

Priyadarshini and Reddy [17] team proposed an 

adaptive neurofuzzy inference system classifier for 

automatic detection of seizures. It uses discrete wavelet 

transform to analyze the EEG signal filtered by Finite 

Impulse Response (FIR) to extract relevant features for 

the proposed classifier to learn. It improves 

classification accuracy by using binary particle swarm 

optimization algorithms to select the optimal features. 

The proposed classifier was optimized and better results 

were obtained. To effectively solve the classification 

problem of EEG signals, Meng et al. [14] proposed a 

recursive mapping CNN motion image classification 

algorithm. The first step of this algorithm is to use 

preprocessing technology to enhance the signal strength 

within the motion range. The second step is to extract 

frequency domain and time domain features, and use 

them to construct recursive map feature patterns. This 

study indicates that the developed new neural network 

can accurately recognize left and right movements. 

Many scholars have improved the wavelet threshold 

denoising for processing EEG signals. Chen [4] 

improved the original wavelet denoising method by 

innovatively mixing soft and hard thresholds instead of 

the previous single threshold judgment. This enhances 

the denoising algorithm, achieving correct recognition 

of English speech signals, and also amplifies the signal-

to-noise ratio of English speech recognition, while 

reducing the root mean square error of the signal. The 

results verified that it achieved a significant reduction in 

noise and greatly improved the accuracy of speech 

recognition. Parija et al. [16] used an effective 

optimization algorithm, the water circulation algorithm, 

to optimize kernel parameters for diagnosing and 

classifying epileptic EEG signals. An improved hybrid 

model is proposed by combining Empirical Mode 

Decomposition (EMD) features with weighted multi 

kernel random vector function linked networks. The 

experiment shows that the model has excellent 

performance in efficient recognition and classification 

of EEG signals. Tuncer et al. [22] proposed a new 

abnormal EEG signal detection model using Chaotic 

Local Binary Pattern (CLBP) and Wavelet Packet 

Decomposition (WPD) techniques. Firstly, the study 

used chaotic feature generation functions to perform 

WPD on EEG signals, and then applied CLBP to the 

decomposed signals to extract features. Then it uses a 

support vector machine classifier to classify these 

features to distinguish between normal and abnormal 

EEG categories. The results indicate that the accurate 

classification of normal and abnormal EEG signals is 

valuable for EEG signal processing and medical 

diagnosis. Liu et al. [13] proposed a method of using 

motion detection to locate the position of people in 

tunnels. This algorithm uses a three plane method based 

on bilateral ranging to achieve localization. Using 

wavelets to analyze motion signals to separate low-

frequency and high-frequency signals, in order to 

determine the impact of motion noise on Ultra-Wide-

Band (UWB) positioning. Use soft threshold function 

and hard threshold function to perform wavelet 

thresholding denoising on the motion localization 

results of the tunnel. The results show that the method 

has a 94% accuracy in identifying and locating 

positions. Tong et al. [21] proposed a signal denoising 

method for Microchip Electrophoresis devices using 

Capacitive Coupled non-Contact Conductivity 

Detection (ME-C-4D). This method adopts an improved 

wavelet threshold function, which effectively removes 

electronic interference in ME-C-4D analog signals 

while preserving the peak shape and area. This study 

shows that the denoising purity of this method is 

efficient in dealing with signal interference. 
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In summary, in the research of EEG signal 

recognition, EEG is usually used and combined with 

relevant algorithms such as CNNs. The most commonly 

used recognition method for processing EEG signals is 

wavelet threshold denoising. Many studies have made 

corresponding improvements to wavelet denoising, but 

the depth of research on combining EMD with improved 

wavelet threshold denoising is not deep. This study will 

process EEG signals on the ground of improved wavelet 

thresholding and EEMD followed by feature extraction 

and classification using machine learning and deep 

learning techniques; Finally, it uses long-term and short-

term memory to balance the efficiency of classified 

EEG signals and the classification results. The summary 

of Related Work is shown in Table 1. 

Table 1. Summary table of related work. 

Ref. Author Technology Result 

[25] Wei et al. Improved Morlet wavelet, 3D CNN, Bi GRU model 
Propose EEG classification technology based on multidimensional 

fusion features 

[3] Chai and Ba Non uniform sampling algorithm, Duffing equation 
Create a system to identify psychological stress caused by audio-

visual stimuli 

[12] Jiang et al. CSP, VAR, CNN Propose CVC system for emotion recognition 

[24] 
Wankhade and 

Doye 
EMCD, Wavelet transform, DBN classifier Detecting human emotions using EMCD and wavelet transform 

[2] Bakhshali et al. Related spectral density matrix, statistical methods 
Propose a high-precision and efficient method for classifying 

imaginative speech EEG signals 

[17] 
Priyadarshini and 

Reddy 

Discrete wavelet transform, FIR filtering, binary particle 

swarm optimization algorithm 

Propose an adaptive neural fuzzy inference system classifier for 

automatic detection of epileptic seizures 

[14] Meng et al. Preprocessing techniques, recursive map feature patterns 
Propose a recursive mapping CNN algorithm for motion image 

classification 

[4] Chen Hybrid threshold denoising for English speech recognition 
Improve wavelet denoising method by mixing soft threshold and 

hard threshold 

[16] Parija et al. 
EMD, Weighted multi kernel random vector function linked 

network 

Optimization of EMD features and weighted multi-core random 

vector function linked network using water cycle algorithm 

[22] Tuncer et al. CLBP, WPD, SVM classifiers 
Propose an abnormal EEG signal detection model based on CLBP 

and WPD 

[13] Liu et al. 
Three plane method based on bilateral ranging, wavelet 

analysis, soft threshold function, and hard threshold function 

Proposed a method of using motion detection to locate the position 

of people in tunnels 

[21] Tong et al. Wavelet threshold function Proposed a signal denoising method 

 

3. Research on LSTM Combined with 

Improved Wavelet Threshold for Player 

EEG Signal Recognition 

This study involves feature extraction and selection of 

EEG waves, which require denoising of the collected 

EEG waves. Improved wavelets are used to denoise 

EEG signals and then extract features and classify them; 

Finally, it uses long-term and short-term memory to 

balance the results of classified EEG waves, making it 

easy to observe and understand. 

3.1. Fusion of Wavelet Thresholding and Set 

Empirical Mode Decomposition for EEG 

Signal Processing 

EEG waves exist throughout human life, and brain 

computer interaction involves directly extracting EEG 

signals from the cerebral cortex and analyzing them to 

achieve mechanical control. The Brain Computer 

Interface (BCI) serves as a bridge for brain computer 

interaction. With the development of bioscience and 

neuroscience, it has been confirmed that EEG signals 

collected from the human scalp can clearly and 

objectively reflect a person’s attention level, reflecting 

the instantaneous changes in attention state during the 

experimental process through EEG signals. EEG signals 

are often distinguished on the ground of frequency, and 

the characteristics of different frequency bands have 

been thoroughly studied [1, 7]. 

Figure 1 demonstrates that the collected EEG signal 

needs to be amplified and converted into a digital signal 

through a digital to analog converter. When collecting 

EEG signals, there may be noise [6, 9]. To avoid noise 

interference in subsequent research, it is necessary to 

perform denoising processing. Then feature extraction 

can be performed, which also requires removing noise 

and identifying EEG features related to attention. Then, 

machine learning and deep learning techniques are used 

to classify them. 

 

Figure 1. EEG signal analysis flowchart. 

Due to the extremely weak EEG signal and complex 

operation of brain neurons during brain computer 

interaction, significant interference may occur during 

the EEG signal acquisition process. Along with known 

EMG, EOG, ECG, and power frequency signals, 
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additional unpredictable noise signals may appear, 

which can disrupt the accurate collected EEG signals 

and cause frequency band overlap [20, 28]. In existing 

research, the signal is inverted after passing through a 

bandpass or low-pass filter, thereby utilizing Fourier 

transform to reduce noise. Due to the complexity and 

variability of EEG signals, wavelet transform is difficult 

to adjust the basis and scale of their decomposition. This 

study has made corresponding improvements to the 

standard wavelet threshold denoising method. 

Regarding the denoising problem of EEG signals, 

this study combines the traditional wavelet threshold 

denoising algorithm with EEMD denoising to improve 

it. This involves using a combination of EEMD and 

enhanced wavelet threshold technology to remove noise 

from the EEG signal and obtain a clean attention-based 

EEG signal [8, 29]. To solve the problem of modal 

mixing, a specific algorithm - the overall average EMD 

algorithm - was adopted, which can remove noise from 

EEG signals and is particularly suitable for processing 

nonlinear signals. It utilizes white noise to evenly 

distribute energy and improve signal stability, so that 

the signal can be accurately decomposed into scales. For 

EEG feature extraction, EEG features are an effective 

tool for describing signals. Feature extraction is usually 

divided into four categories: time-domain, frequency-

domain, time-frequency analysis, and nonlinear features 

[18]. In the process of removing noise and processing 

features, although EEG signals are collected in a very 

quiet experimental environment, some forms of 

interference, such as power frequency signals and 

electrocardiograms, inevitably mix into the actual 

signal. To solve this problem, EEGLAB has its own 

toolbox that can help semi-automatically eliminate this 

noise. Figure 2 illustrates the process of automatically 

identifying and subsequently removing eye signals from 

collected EEG data. 

 

Figure 2. Removing eye electrical signals. 

In the process of reducing noise, attention signals will 

also decrease. This is because noise and attention 

signals are not completely independent, and there are 

complex nonlinear disturbances between them within 

the frequency range. Wavelet transform can solve the 

problem of insufficient Fourier transform’s ability to 

analyze frequencies at different times due to nonlinear 

interference. By performing Fourier transform on 

signals from all time periods, frequency information at 

different time points can be obtained. The 

transformation formula is shown in Equation (1). 
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In Equation (1), the h(t) function represents the time 

window function of the length of time. To solve the 

problem of inflexible time frame of short time Fourier 

transform and adapt it to the current problem, wavelet 

transform was introduced. Wavelet transform is used to 

determine frequency and time, and has attenuation 

characteristics. The wavelet transform formula is shown 

in Equation (2). 
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In Equation (2), the scale a and the translation 𝜏 are 

divided into frequency and time, which can control the 

scaling and translation of the wavelet function. Wavelet 

transform can ensure the effectiveness of the processed 

EEG signal. To evenly distribute the noise energy 

among all wavelet coefficients during the processing, 

Gaussian noise is usually used, and its distribution is not 

affected after the wavelet transform. The process of 

wavelet threshold denoising is divided into the 

following steps: performing wavelet decomposition on 

noisy signals, thresholding the obtained wavelet 

coefficients, and finally reconstructing the wavelet 

coefficients of each layer. The focus of wavelet 

threshold denoising is the selection of threshold 

functions, which can be divided into hard threshold and 

soft threshold methods. The hard threshold denoising 

method of wavelet is shown in Equation (3). 
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The soft threshold denoising method of wavelet is 

shown in Equation (4). 
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The above two methods also have the following 

shortcomings: hard threshold denoising has signal 

oscillation, and soft threshold has constant error. This 

study has made relevant improvements to the wavelet 

threshold function in response to the problem. It 

introduces EMD, which is a signal analysis method. 

EMD has no basis function limitations and can be 

transformed into an adaptive decomposition algorithm 

[10]. The EMD method can be used to analyze 

physiological signals, with the main idea being the 

Internal Mode Function (IMF), which decomposes 

complex non-stationary signals into a finite number of 

(1) 

(2) 

(3) 

(4) 
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IMF. When the data meets local standards for 

maximum, minimum, and time scales, it can be 

decomposed into signals. When the conditions are met, 

the original signal is decomposed as shown in Equation 

(5). 

( ) ( )
1

n
x t imf t rni

i
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
 

In Equation (5), x(t) represents the original signal; rn 

represents residual; imfi(t) represents each IMF 

component. The algorithm flow of EEMD is shown in 

Figure 3. 

 

Figure 3. Algorithm flowchart of EEMD. 

Figure 3 indicates that the white noise sequence is 

used to add different white noise to the original signal 

in each iteration, resulting in a set of IMF. These IMFs 

are combined and evenly divided, and after repeated 

averaging iterations, noise is eliminated, resulting in 

denoising results. 

3.2. Research on the Performance of Improved 

Wavelet Threshold Denoising Algorithm in 

Processing EEG Signals 

On the ground of the combination of wavelet threshold 

and EEMD denoising principle, the specific flowchart is 

shown in Figure 4. The noisy EEG is decomposed by 

EEMD to obtain IMF components with instantaneous 

frequency distribution from high to low. By improving 

the wavelet threshold function and combining it with 

EMD algorithm, the signal is denoised [27]. It uses 

EEMD to decompose the original signal into multiple 

scales, as in EEMD decomposition, denoising the entire 

original signal may reduce the effective signal due to the 

gradual reduction of IMF noise components. Then, the 

high-frequency signal is processed to implement an 

enhanced wavelet threshold algorithm, and ultimately 

reconstructed using low-frequency components. 

 

 
Figure 4. EEMD and improved wavelet threshold denoising flowchart. 

By decomposing complex signals into smaller parts, 

the key components containing noise in the IMF are 

determined. After EEMD decomposition, the constant 

product of energy density and average period in each 

IMF is used. By performing EEMD decomposition on 

the noisy raw signal, M IMF components are obtained, 

representing the energy density and average period, as 

calculated in Equation (6). 
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In Equation (6), n is the length of each IMF component; 

Di is the total number of extreme points for the i-th IMF 

component. By implementing an enhanced wavelet 

threshold to remove noise from the initial k IMF 

components, the improvement focuses on two key areas: 

minimizing the differences between signals and 

ensuring the continuity of the new threshold function in 

the wavelet space. The improved algorithm proposed in 

this study is shown in Equation (7). 
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When Wj,k >0, as shown in Equation (8). 
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When Wj,k <0, as shown in Equation (9). 

(5) 

(6) 

(7) 

(8) 
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In Equation (9), N represents the sequence length; 𝜎 

represents the standard deviation of noisy signals; 

�̃�j,k=Wj,k represents the improved asymptotic line, and 

for the new threshold function, 
𝜆

𝑒
𝑊 𝑗,𝑘

2 −𝑦2  will gradually 

decrease as Wj,k increases. The improved algorithms in 

existing research are shown in Equation (10). 
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To verify the performance of the improved algorithm in 

processing data, it calculates the corresponding root 

mean square error and signal-to-noise ratio, as shown in 

Equation (11). 
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In Equation (11), xi represents the initial value of the 

original signal at time i; xi represents the reconstructed 

value at that time after denoising; N represents the 

length of the signal sequence. The larger the signal-to-

noise ratio, the better the root mean square difference, 

and the better the denoising effect. Power spectrum 

estimation is a general term for algorithms that estimate 

the power spectral density of random signal sequences. 

It belongs to one of the analysis methods that describe 

the characteristics of random signals in the frequency 

domain. It performs power spectrum analysis on EEG 

signals, as shown in Equation (12). 
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The study first divided N data points into K segments, 

each with M=N/K data points. This study multiplies 

segmented data X(n) by window function w(n) to obtain 

the power spectrum of each segment. It sums the power 

spectra of all segments and calculates the average value 

to obtain the final power spectrum estimation. Although 

estimating the power spectrum can intuitively reflect the 

power distribution in each rhythm, qualitative analysis 

can only be conducted on the changes in the main 

frequency bands involved in EEG energy feature 

transfer, and further quantification is needed. This study 

used the Burg method and AR model parameters for 

feature extraction when quantifying power spectral 

density features, as shown in Equation (13). 
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Equation (13) uses a difference equation to process the 

signal, where x(n) represents the EEG sequence; 𝜀(n) 

represents white noise. It uses the Brug method to 

estimate the AR model parameters, as shown in 

Equation (14). 
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In Equation (14), M represents the signal length; Pf 

represents forward error power; Pb represents the 

backward error power; P represents the sum of 

prediction error power. 

3.3. Application of EEG Signal Extraction and 

VR Environmental Attention Research 

Using LSTM as a Classifier 

After classifying EEG signals, it is also necessary to 

balance efficiency and classification results. This study 

used a deep learning LSTM classifier. LSTM is an 

important model of machine learning algorithms, as 

shown in Figure 5 for its overall structure and the 

specific structure of a neuron. Due to the influence of 

the previous time on the input and output of LSTM, 

there are three inputs of LSTM at time t: xt, ht-1 and Ct-1, 

which are the current time, the output value of the 

previous time, and the current state unit. Compared to 

traditional cyclic CNNs, LSTM performs better in long 

sequence problems [23]. 

Attention refers to the guidance and concentration of 

specific objects by psychological activities or 

consciousness, which can be seen as the ability of 

consciousness to concentrate and indicate the level of 

attention. Figure 6 is a schematic diagram of the 

structure of the human body information processing 

system. Figure 6 shows that individuals receive external 

stimuli through their senses, process the obtained 

information under the influence of attention, and then 

make decisions and reactions. Attention can 

significantly affect a person’s working memory, and the 

input, encoding, storage, and retrieval of information 

require careful attention. The ability to maintain 

attention to specific goals in daily life is crucial for 

achieving advanced cognition. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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a) Overall structure diagram. b) Neuron detail map. 

Figure 5. EEMD and improved wavelet threshold denoising flowchart. 

 

Figure 6. Structure diagram of human body information processing system. 

The LSTM neural network divides the training data 

into three stages: forgetting stage, selective memory 

stage, and output stage [5, 15]. Each output of the 

sigmoid layer is a real number between 0 and 1, 

representing the weight that allows the corresponding 

information to pass through. In the forgetting stage, it 

focuses on selectively discarding inputs from the 

previous node. In addition, by using the calculated 

sigmoid layer as a forgetting gate, it is possible to 

control which information needs to be retained or 

discarded from the previous state Ct-1. It chooses the 

memory stage. The input at this stage has selective 

“memory”, mainly focusing on basic information while 

selecting and memorizing the input text. The output 

stage will generate the current state. This study uses the 

activation function tanh to scale the state values of the 

previous stage. Compared to standard RNNs, LSTM can 

execute more effectively in longer sequences. Due to the 

limited nature of ordinary neural networks, which can 

only process inputs one by one, each input is 

independent and independent of previous or subsequent 

inputs, it is not suitable for processing EEG signals. In 

addition, ordinary RNNs have problems with gradient 

vanishing and gradient explosion. Therefore, using 

LSTM neural networks to process EEG signals is more 

suitable. 

It studies whether there is a Significant Difference 

(SD) in game performance between players in Three-

Dimensional (3D) and Virtual Reality (VR) game 

settings. It uses recorded pitches and hit rates as the 

basis for analyzing game performance, and uses hit rate 

d to measure participants’ performance in different 

game environments in subsequent data processing. It 

assigns a number between 1 and 10 to the obtained d 

value for precision and interval mapping, calculated as 

Equation (15). 

max min ( )
min min

max min

N
d

M

y y
y x x y

x x




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In Equation (15), M represents the number of throws 

recorded by the experimental subject in the VR task; N 

represents the number of hits. x is any value of the 

current data; y is the value after normalization mapping; 

xmin and xmax represent the minimum and maximum 

values of the current data, respectively; ymax and ymin 

represent the maximum and minimum values of the 

target interval, respectively. 

4. Verification and Testing of Hybrid 

Wavelet Threshold Improvement and 

Attention Study of LSTM EEG Signals in 

Game Environment 

This study denoises the collected EEG waves, uses 

improved wavelet combined with EEMD to denoise the 

(15) 
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EEG signals, and then extracts features and classifies 

them; Finally, it uses long-term and short-term memory 

to balance the results of classified EEG waves, and 

designs experiments to verify the performance and 

feasibility of the proposed method. 

4.1. Preparation and Design of Experimental 

Data 

This experiment will start with preprocessing and 

denoising, and then extract EEG signals using power 

spectrum estimation, sample entropy, and Hilbert 

Huang transformation specifically targeting attention 

related signals. Sample entropy and approximate 

entropy have similar physical meanings, both measuring 

the complexity of a time series by measuring the 

probability of generating new patterns in a signal. The 

higher the probability of generating new patterns, the 

greater the complexity of the sequence. Hilbert Huang 

transform, including EEMD and Hilbert Spectrum 

Analysis (HSA), is an effective signal analysis method. 

It combines traditional support vector machines and 

deep learning algorithms in pairs to classify features. 

The advantages and disadvantages of two classification 

algorithms were compared. On the ground of the 

existing requirements and status of attention EEG, the 

EEG device used in this experiment has a data sampling 

rate of 256Hz, which can collect 16 channels of EEG 

signals and create virtual scenes using HTC VIVE. Due 

to the significant decrease in EEG signals after passing 

through the skull and sebum, signal amplification is 

necessary to obtain observable and analyzable EEG 

signals. As shown in Figure 7, there are a total of 16 

channels for the placement of some electrodes. 

 

Figure 7. Partial electrode placement position. 

The attention classification experiment uses 

traditional digital game experiments (Schulte grid) to 

classify attention and EEG signal processing methods. 

This experiment collected EEG signals from 20 mental 

health participants aged 22 to 26, with a gender ratio of 

1:1 (10 males and 10 females). All participants did not 

receive attention related training. Table 2 shows the 

scores obtained by some participants in the game when 

experiencing two environments. The composition of 

game performance data includes the probability of 

participants hitting targets in different environments and 

the time required to complete the challenge for the first 

time. The analysis of participants using paired sample t-

tests and independent sample tests to test game 

performance data. 

Table 2. Scores obtained by some participants experiencing games. 

Subject number 3D Game score VR Game score Exchange or not 

1 1.48 5.36 / 

2 3.18 6.25 / 

3 5.94 7.26 / 

4 7.21 10 / 

5 3.18 5.98 / 

6 1.2 2.64 Yes 

7 2.97 5.47 Yes 

8 2.15 3.84 Yes 

9 2.32 2.65 Yes 

10 3.48 8.47 Yes 

The experiment obtained a dataset of 1280*16*1080, 

consisting of 16 channels of EEG data from 360 high 

attention states, 360 normal attention states, and 360 non 

attention states, with 1280 sampling points per segment 

(256Hz*5s). 

Figure 8 shows the raw EEG signals collected during 

the data collection phase of the experiment. 

 

Figure 8. Original EEG signal. 

4.2. Measurement and Analysis of 

Experimental Results 

During the experiment, the EEMD and improved 

wavelet threshold denoising algorithm proposed in this 

study were compared with the EEMD and improved 

wavelet lifting algorithm. The following will take the 

high attention EEG data of F3 channel as an example in 

Figure 9, which indicates that the algorithm in this study 

has a better effect on denoising details. 

After collecting EEG information, the experiment 

preliminarily separates the EEG patterns and extracts 

EEG rhythms before extracting features. It will use the 

signals obtained from wavelet decomposition for further 

research. The decomposition results are shown in Figure 

10, which are beta wave, alpha wave, theta wave, and 

delta wave from top to bottom. 
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a) EEMD and improved wavelet threshold denoising algorithm. 

 
b) EEMD and improved wavelet lifting denoising algorithm. 

Figure 9. Comparison of EEMD and wavelet denoising algorithms 

before and after improvement. 

 

Figure 10. EEG signal maps of four rhythms. 

To further validate the performance of the proposed 

algorithm, the root mean square error and signal-to-

noise ratio were compared with traditional wavelet 

threshold denoising, EEMD denoising, EEMD and 

improved wavelet lifting algorithms. This indicates that 

the proposed method has the smallest RMSE of 12.0231 

and the highest signal-to-noise ratio of 11.3272. The 

larger the signal-to-noise ratio, the better the root mean 

square difference, and the better the denoising effect. 

Table 3 also provides detailed information on paired 

sample t-tests. In VR and 3D settings at a 90% 

confidence level, the chance value of t-test is P=4.12e-

4<0.05. Two sets of correlations indicate that the 

correlation coefficient in VR and 3D gaming 

environments has a positive value of 0.784; This means 

that there is a strong correlation between paired 

samples, with a corresponding significance probability 

of P=2.48e-4<0.05. This indicates that there is a SD in 

the time required for participants to achieve their initial 

goals between the two environments, and there is a 

statistically SD. 

Table 3. Comparison of root mean square error and signal-to-noise 

ratio of several algorithms. 

Algorithm 
Number of experimental 

samples 
RMSE SNR 

Algorithm denoising in 

this study 
20 12.0231 11.3272 

Traditional wavelet 

threshold denoising 
215 16.0215 4.4153 

EEMD denoising 20 13.6989 7.943 

EEMD and improved 

wavelet lifting algorithm 
20 12.6184 9.9328 

Power spectral density can display the frequency 

changes of EEG signals at different levels of attention. 

The use of power spectral density analysis is on the 

ground of biomedical research, typically analyzing 

power spectral density using flat band average power 

spectrum as a basis for evaluating attention deficit 

disorder. Power is not the main source of electrical 

activity, making it difficult to complete the attention 

process and leading to characteristics such as lack of 

concentration. Although the activity levels of individual 

brain centers may vary, the overall trend of attention 

activity remains consistent. As shown in Figure 11, it 

compares the power spectral density of F3 channels in 

the beta, alpha, theta, and delta bands under three 

different states, namely non attention state, normal 

attention state, and high attention state. 

 

   

a) Non-attentional state. b) High attentional state. c) Normal attentional state. 

Figure 11. Power spectral density of four waves in three states. 

Figures 11-a), (b), and (c) show that when the subject 

is not paying attention, the power spectral density of 

alpha waves is higher than that of beta waves, and both 

remain at a constant level without significant change. 

When entering a highly focused state, the power value 

of the beta wave significantly increases, while the alpha 

wave shows a clear downward trend, and the theta and 

delta bands show irregular changes and an overall 
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downward trend. When transitioning from a high 

attention state to a normal attention state, alpha and theta 

waves become higher before gradually decreasing and 

stabilizing, while beta wave patterns decrease and 

stabilize, and theta waves appear to decrease. 

Table 4 shows the time required to achieve challenge 

goals for the first time in VR and 3D environments, and 

compares the evaluation indicators of 3D and VR game 

time. In the VR game environment, it took 53.65 

seconds, and in the 3D environment, it took 65.7 

seconds, indicating that the subjects were able to 

complete the game objectives earlier in the VR 

environment. Table 3 also provides detailed information 

on paired sample t-tests. In VR and 3D settings at a 90% 

confidence level, the chance value of t-test is P=4.12e-

4<0.05. Two sets of correlations indicate that the 

correlation coefficient in VR and 3D gaming 

environments has a positive value of 0.784; This means 

that there is a strong correlation between paired 

samples, with a corresponding significance probability 

of P=2.48e-4<0.05. This indicates that there is a SD in 

the time required for participants to achieve their initial 

goals between the two environments, and there is a 

statistically SD. 

Table 4. Comparison of evaluation indicators for VR game and 3D 

game time. 

/ VR games 3D games VR games and 3D games 

Mean value 53.65 65.7 -12.1 

Number 20 20 20 

Standard 

deviation 
13.245 13.098 9.951 

Mean standard 

error5 
2.9845 3.0899 2.197 

Upper limit / / -16.57 

Lower limit / / -7.658 

t / / -5.47 

Freedom / / 18 

Sig (Double 

tailed) 
/ / 4.12E-04 

Correlation / / 0.784 

Significance / / 2.48E-04 

In the experiment, the attention scores of all subjects 

were obtained within 90 seconds, and the data was 

processed to obtain the mean and standard deviation, as 

shown in Figure 12. This indicates that compared to the 

3D environment, the subjects’ attention is more focused 

in the VR environment, and the attention level in the VR 

environment is more stable and less volatile. Overall, 

compared to subjects in a 3D environment, people in a 

VR environment tend to be more focused. These results 

indicate that VR games can have a positive impact on 

attention levels. 

In the experiment, two subjects were selected to 

observe the changes in attention levels over a period of 

90 seconds in the 3D and VR task groups. Figure 13 

shows the changes in attention scores of subject A in VR 

and 3D gaming environments. From the curve trend, 

there is no SD in attention scores between the two 

subjects in the two environments over a period of 5 to 

20 seconds. However, after 25 seconds, the attention 

score in the VR environment showed an upward trend, 

while the attention score in the 3D environment 

remained relatively stable. This indicates that the 

attention score curves of subject B in both 3D and VR 

tasks show a gradual upward trend, indicating that their 

attention levels are steadily increasing from the 

beginning of the game to entering the attention state. 

Subjects participating in VR game tasks are most 

focused around 50 seconds, while those participating in 

3D game tasks reach their highest point of attention 

around 75 seconds. The VR environment can also help 

subject B achieve higher levels of attention. Both 3D 

and VR gaming environments exhibit a trend of 

fluctuating around a specific value over a period of time 

while maintaining a certain level of stability. 

 

Figure 12. Subjects pay attention to the average score and standard 

deviation in 3D and VR. 

 

Figure 13. Comparison of EEG attention score change curves 

between subjects A and B. 

5. Conclusions 

It improves the wavelet thresholding method for 

denoising EEG signals, combined with the EEMD 

method to improve the efficiency of denoising, 

preserving the core parts of the signal, and then 

performs feature extraction. The classified EEG signal 

features are balanced between efficiency and 

classification results through LSTM. The design 

experiment verifies the proposed method, and the 

experiment shows that when the subject’s attention is 
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not focused, the power spectral density of alpha waves 

is higher than that of beta waves, and both remain at a 

constant level without significant changes. When 

entering a highly focused state, the power value of the 

beta wave significantly increases, while the alpha wave 

shows a clear downward trend, and the theta and delta 

bands show irregular changes and an overall downward 

trend. When transitioning from a high attention state to 

a normal attention state, alpha and theta waves become 

higher before gradually decreasing and stabilizing, 

while beta wave patterns decrease and stabilize, and 

theta waves appear to decrease. Compared with 

traditional wavelet threshold denoising and EEMD 

denoising for root mean square error and signal-to-noise 

ratio, the proposed method has the smallest root mean 

square error of 12.0231 and the highest signal-to-noise 

ratio of 11.3272; This indicates that the denoising effect 

is good. Compared to the 3D environment, the subjects’ 

attention in the VR environment is more focused, and 

the attention level in the VR environment is more stable 

with less fluctuations. This indicates the effectiveness 

and advantages of the algorithm studied in EEG signal 

processing. However, this study has not yet been 

comprehensively considered in different age, gender, 

and other populations, and further research is needed. 
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