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Abstract: With the exponential growth of file data in the multimedia era, file retrieval ability to achieve effective data 

management has become a hot research field. Based on people’s English file search needs, this paper proposes an English 

multimodal file search model based on transformer. Through ablation experiments on two public data sets and comparison 

experiments with the benchmark model, the effectiveness and superiority of the proposed transformers algorithm model in multi-

modal data processing are verified. The multi-modal fusion retrieval system can usually achieve better performance than the 

single-modal retrieval system. This experiment focuses on three modes: Audio, Image and Text. The experimental results show 

that the proposed method can not only improve the efficiency of file search, but also extract modal features and perform feature 

fusion better. In the future, we can further explore different types of other attention mechanisms or integrate a variety of different 

architectures to further enhance the feasibility and superiority of multimodal file search. 
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1. Introduction 

As the capacities of computer storage have grown 

alongside the escalating demands for storage, 

individuals have been compelled to invest considerable 

effort in the retrieval of files, predominantly within the 

context of English-based file systems. Consequently, the 

capability for effective data management through 

efficient file retrieval has emerged as a burgeoning field 

of study across various sectors [3, 16]. Traditional 

retrieval methods fall short of accommodating the needs 

of users in the multimedia domain, who aspire to 

transcend the boundaries of disparate data types and 

achieve semantic content retrieval across different 

media, such as retrieving text through images, or video 

through text [10, 13]. Multimodal file retrieval, which 

involves the retrieval of information by processing and 

integrating various types of data or information, 

including Text, Images, Audio, and video, aims to 

provide a more comprehensive understanding and 

handling of information. 

Currently, research into multimodal data retrieval 

primarily focuses on network multimedia documents 

[8], with multimodal fusion serving as a pivotal 

technology. This technology analyzes the relevance and 

complementarity between different information 

modalities, evaluates the significance of each modality 

in a query, and explores the optimal strategy for modal 

fusion [2, 17]. Through this strategy, a deeper 

understanding of the document’s advanced semantics is 

achieved, resulting in more effective retrieval outcomes. 

Hyperlink Induced Topic Search (HITS) [7] and page 

rank [5] use the Hyperlink relationship inside the web  

 
page to establish and determine the context relationship 

between the web pages. Shah et al. [14] introduced 

context-enhanced search, utilizing contextual 

information to reorder and expand content search 

results. They emphasized the use of strict causality to 

guide the search, enabling more accurate identification 

of data flows between files and reducing false positives 

due to context switching and background noise. Wei et 

al. [18] mined semantic features from image data using 

convolutional networks. Zhang et al. [21] utilized a 

coupled deep fully connected network to map the 

feature representations of different modalities into a 

common subspace, enabling mixed cross-modal 

similarity learning. Yu et al. [19] extracted image and 

text features through bottom-up attention and Recurrent 

Neural Networks (RNNs), embedding text features into 

the image feature space, effectively reducing the 

heterogeneity between image and text. Research in this 

field continues to expand. Zhang et al. [22] selected 

multiple feature information from images to construct a 

graph structure and mined the relationships between 

feature data through graph convolution. Bianchi et al. 

[1] proposed a graph convolutional layer with an 

autoregressive moving average filter, exhibiting greater 

robustness to noise. However, the majority of the 

aforementioned methods are confined to the internal 

feature mining of individual sample data, with 

insufficient measurement of the consistency between 

the features of different sample data. 

The Transformer model, which utilizes an encoder-

decoder architecture grounded in attention mechanisms, 

has found widespread application in the realms of 
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Natural Language Processing (NLP) and computer 

vision [4, 20, 23]. In contrast to the traditional RNN and 

Long Short-Term Memory networks (LSTMs) models, 

the Transformer entirely dispenses with the 

autoregressive computation approach during training, 

thereby enabling efficient parallel training [15]. By 

introducing the attention mechanism to address long-

term dependencies, the Transformer employs a set of 

weights to describe the dependencies between positions, 

thereby enabling it to capture global features more 

effectively. In translation tasks, the Transformer has 

demonstrated outstanding performance, showcasing 

faster training speeds and superior experimental results, 

making it a highly favored model in both contemporary 

research and applications. Panboonyuen et al. [11] 

proposed a high-performance anchor-free YOLO object 

detection method based on Feature Pyramid Network 

(FPN) and Transformer. This model can attend globally 

to the dependencies between image feature blocks, 

retaining sufficient spatial information for object 

detection through multi-head self-attention. Quan et al. 

[12] proposed a simple and effective two-stage Pairwise 

Convolutional neural network-Transformer (PCT) 

method. This model leverages the benefits of both the 

object detector and rich contextual information. Ilharco 

et al. [6] have improved upon the Vision Transformer 

(ViT) model by adopting a hierarchical construction 

method reminiscent of a Convolutional Neural Network 

(CNN), building hierarchical feature maps by merging 

image blocks at deeper levels. 

The introduction and widespread application of the 

Transformer model have led to significant 

breakthroughs in NLP tasks such as language 

modelling, machine translation, and question-answering 

systems. The Transformer model’s ability to model 

sequences more effectively through its self-attention 

mechanism has supplanted the traditional role of RNNs 

and LSTMs in NLP tasks. Based on this premise, this 

paper proposes and implements an English document 

search model based on the Transformer model. 

2. Method Introduction 

In order to realize the modal fusion and retrieval of 

multimodal English files, how to flexibly represent the 

relationship between different modal data and store the 

data and its relationship is the basic problem of 

multimodal file retrieval. This paper proposes and 

implements a multimodal English file search model 

based on Transformer model. 

2.1. Multimodal File Retrieval System 

The idea of retrieving multimodal file data in this paper 

is shown in Figure 1. 

Initially, multimodal data and the semantic 

relationships between data are modelled in graphical 

form and parallelly stored within a graph database. The 

features of each modal data are extracted and serve as 

indices, establishing an indexing structure. 

Simultaneously, semantic relationships between 

different modal indices are established. By analyzing 

the correlation between different modal indices, the 

correlation is added to the indexing graph in the form of 

edges, thereby forming a richer data semantic 

association. Upon a user’s query submission, the query 

is modelled and then searched for within the indexing 

graph for relevant indices that contain the query. The 

query is further expanded to other modal indices 

through correlation, ultimately locating the data that 

contains these indices. Finally, there is modal fusion and 

similarity computation. The similarity between different 

modal data is calculated based on the modal fusion 

technology, which combines the association between 

different modal data within the indexing graph to yield 

the final search results. 

 

Figure 1. Multimodal file data retrieval process. 

Through the aforementioned process, multimodal 

and cross-modal retrieval can effectively integrate the 

relationships between different types of data, more 

accurately meeting the user’s retrieval needs and 

providing users with a richer variety of search results. 

Figure 2 illustrates the basic workflow of the proposed 

multimodal file search method based on Transformers 

presented in this article. 

 

Figure 2. Overall network framework of multimode file search 

method . 

This study primarily focuses on three modalities: 

Audio (a), Text (t), and Image (v). After employing the 

language pre-training of deep Bidir-Ectional 

Transformers for language understanding model 

(BERT), the visual pre-training model ViT, and the 

audio pre-training model wav2vec to extract feature 

sequences {Ia, It, Iv} from the raw data, these sequences 

are fed into the encoder. To imbue the feature sequences 

of the visual and audio modalities with temporal 

information, a single-layer LSTM network is utilized to 

inject contextually relevant information and long-term 

dependencies into these two modalities' feature 
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sequences. Furthermore, a fully connected layer is 

employed to map the feature representations of the three 

modalities to a common dimensional space, facilitating 

their subsequent processing within the network model, 

as illustrated in Equations (1) to (4). 

𝐹𝑎 = 𝐹𝐶(𝑠𝐿𝑆𝑇𝑀(𝐼𝑎𝜃𝑎
𝑙𝑠𝑡𝑚)) 

𝐹𝑣 = 𝐹𝐶(𝑠𝐿𝑆𝑇𝑀(𝐼𝑣𝜃𝑣
𝑙𝑠𝑡𝑚)) 

𝐹𝑡 = 𝐹𝐶(𝐼𝑡) 

𝐹𝑚 ∈ 𝑅𝑇𝑚×𝑑 

where, Fm represents the projected representations of the 

initial feature representations of each modality after 

being encoded by the long-short term memory network, 

mapped into a unified feature dimensionality; d 

represents the unified feature dimension; Tm represents 

the length of each respective characteristic sequence; 

Ɵlstm denote the parameters of the networks 

corresponding to each mode. 

Figure 3 illustrates the overall workflow of the 

multimodal parallel loading algorithm, which includes 

the execution of the parallel modeling and loading 

algorithm within the dashed thread pool, divided into 

two stages: data modeling and data loading. At this 

juncture, the system amasses and parses multimodal 

data, constructing a data dictionary that delineates and 

elucidates the structural, formatting, and relational 

aspects of the data. During the data ingestion phase, the 

system employs the previously established Data 

Dictionary as a foundational framework, leveraging 

parallel processing capabilities to expeditiously transfer 

the post-modeling data into the designated system or 

database. 

 

Figure 3. Flow chart of multimodal parallel loading algorithm . 

This approach employs a cross-modal Transformer 

module to simultaneously capture interactions among 

one modality and other two modalities, in order to 

achieve the representation of three modalities-Text, 

Image, and Audio. Within the bimodal representation 

generation module, the final modality representation is 

generated by combining the private and shared 

representations of modalities, and the bimodal 

representation is regenerated after fusing each pair of 

modal data. In essence, this method utilizes modality 

neural networks to analyze the composition of 

multimodal data and the semantic relationships among 

them, thereby establishing a modality network instance. 

The modality network, represented in a graph form, 

illustrates the semantic relationships among different 

modalities, enabling us to better comprehend the 

dependency relations among modal data. 

Following the collection of multimodal file data, we 

utilize modality neural networks to analyze the diverse 

compositions of the data modalities and their semantic 

relationships. By modeling the data, a modality network 

instance is obtained, as shown in Figure 4. This instance 

can be divided into two parts, namely the data storage 

graph and the corresponding modality network. 

Different modalities and their semantic relationships are 

depicted in the graph in the form of nodes and edges. 

Each node represents a modality, while edges signify the 

semantic relationships among modalities, 

fundamentally revealing the interdependence among 

different modal data. 

 

Figure 4. Overall structure of modal network, index and data storage. 

2.2. Collaborative Attention Cross-Modal 

Transformer Module 

The encoder of the Transformer model consists of 

multiple identical layers, each comprising two parts: 

Multi-Head Attention and Feed-Forward Network 

(FFN) [9]. Within the Multi-Head Attention mechanism, 

the input sequence is first transformed into query, key, 

and value vectors through three distinct linear 

mappings. Subsequently, the dot product of the query 

and key is calculated, scaled, and applied with the 

Softmax function to obtain attention weights, thereby 

assigning varying levels of significance to each value. 

The Multi-Head Attention allows the model to 

simultaneously focus on information from different 

positions in the sequence, enhancing its ability to 

represent various features and relationships through the 

computation of multiple attention heads. Following 

each attention mechanism, the attention output is 

processed through a feed-forward neural network. This 

feed-forward neural network typically includes an 

activation function between two linear transformation 

layers, such as ReLU. Such a structure aids the model in 

learning complex nonlinear relationships and capturing 

higher-order features. By stacking multiple such 

encoder layers, the Transformer encoder effectively 

captures various characteristics and relationships within 

input sequences, thereby enhancing the model’s ability 

to model sequential data and significantly improving its 

(1) 

(2) 

(3) 

(4) 
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performance in tasks such as machine translation and 

language modeling. 

The self-attention mechanism of the Transformer is a 

mechanism that models interdependencies among 

elements in sequences, as illustrated in Figure 5. 

Through this mechanism, the model dynamically 

adjusts attention weights based on the correlation 

between each element and other elements to capture 

long-range dependencies within the sequence. In the 

Transformer, each input sequence element is 

represented as a vector, and its correlation with other 

elements in the sequence is calculated via the self-

attention mechanism. 

 

Figure 5. Schematic diagram of self-attention structure . 

Within the self-attention module, the input sequence 

data is denoted as x∈Rn×d, where n represents the length 

of the sequence and d signifies the dimension of the 

input vectors. The value vectors V, key vectors K, and 

query vectors Q are derived through linear 

transformations applied to the input sequence. 

𝑉 = 𝑥𝑊𝑣 

𝐾 = 𝑥𝑊𝐾 

𝑄 = 𝑥𝑊𝑄 

Compute the dot product of the query vector Q and the 

key vector K to obtain the attention score. Normalize the 

scaled attention score using the Softmax function to 

obtain the attention weights. Multiply the attention 

weights by the value vector to obtain the weighted value 

vector representation. 

𝐴𝑡𝑡𝑒𝑛𝑡(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
)𝑉 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
0 

ℎ𝑒𝑎𝑑1 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄
, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

where, WK and WQ are weight matrices; d represents 

the dimensionality of the model. 

The FFN typically consists of two linear 

transformations (fully connected layers) and the 

activation function between them (commonly ReLU). 

Refer to Equation (11) for the computation, where x 

denotes the input. 

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2 

The function of residual connections in Transformers is 

similar to that in CNNs, both aiming to address the 

issues of vanishing or exploding gradients in deep 

neural networks. Each sublayer (encoder or decoder) in 

a Transformer contains residual connections, which help 

simplify the learning process, facilitate smooth gradient 

propagation, and mitigate the difficulty of training deep 

networks. Additionally, there exist normalization layers 

in each sublayer to maintain the distribution of data 

flowing through the network, aiding in alleviating 

gradient vanishing problems and accelerating model 

convergence. 

During training, Transformers typically obtain all 

prediction results simultaneously. However, during 

inference, Transformers generate output words one by 

one. To ensure consistent performance in both training 

and inference processes, we can introduce a Mask 

module to handle this. The computational formula is as 

follows: 

𝑎𝑖𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒( 𝑣1 + 𝑣1)𝑆𝑜𝑓𝑡𝑚𝑎𝑥(−∞) = 0 

Here, vi serves as the encoder for the i-th image block, 

while vj acts as the decoder for the j-th image block. 

As depicted in Figure 6, the multi-head attention 

mechanism in the Transformer is employed to address 

the issue of multiple representation subspaces. By 

utilizing the multi-head attention mechanism, a model 

can concurrently process various information focusing 

on different parts and dimensions. Within the 

framework of the multi-head attention structure, the 

input word vectors are projected into distinct 

representation subspaces through multiple sets of Q 

(query), K (key), and V (value) matrices, allowing the 

model to attend to the input from multiple perspectives. 

Typically, the original 512-dimensional input data is 

projected through 8 different linear projections, with 

each projection matrix having a dimension of 64. 

Consequently, for each head of attention mechanism, a 

64-dimensional output is obtained. 

 

Figure 6. Multi-head attention projected into quantum space. 

In the Transformer model, in order to enable the 

model to automatically learn positional information 

from the input sequences, cosine and sine functions are 

typically utilized to encode positional information. The 

formula is as follows: 

{
 
 

 
 𝑃𝐸(𝑝𝑜𝑠, 2𝑑𝑝𝑜𝑠) = 𝑠𝑖𝑛(

𝑝𝑜𝑠

10000
2𝑑𝑝𝑜𝑠+

1
𝑑𝑚𝑜𝑑𝑒𝑙

)

𝑃𝐸(𝑝𝑜𝑠, 2𝑑𝑝𝑜𝑠  + 1) = 𝑐𝑜𝑠(
𝑝𝑜𝑠

10000
2𝑑𝑝𝑜𝑠+

1
𝑑𝑚𝑜𝑑𝑒𝑙

)
 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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In this context, pos denotes the position of the current 

object in the current dimensional sequence; dpos 

represents the dimension of position pos; and 

10000
2𝑑𝑝𝑜𝑠

𝑑𝑚𝑜𝑑𝑒𝑙 signifies the frequency. Incorporating 

positional encoding into the shared representation of 

each pattern enables the model to capture sequential 

information about the sequence, as illustrated in 

Equation (14). 

𝑋𝑚 = 𝐹𝑚
𝑠ℎ𝑎𝑟𝑑𝑃𝑚 

𝐹𝑚
𝑠ℎ𝑎𝑟𝑑 = 𝐸𝑛𝑐𝑠ℎ𝑎𝑟𝑑(𝐹𝑚𝜃

𝑠ℎ𝑎𝑟𝑑) 

𝑃𝑚 ∈ 𝑅𝑇𝑚×𝑑𝑚𝑎𝑝 

𝑋𝑚 ∈ 𝑅𝑇𝑚×𝑑𝑚𝑎𝑝 

where, Pm encodes the position of each pattern; Xm 

serves as the positional encoding of each pattern, 

intended for input into subsequent network models for 

multi-pattern fusion. 

In the collaborative attention cross-modal 

Transformer based on the text modality, the multi-head 

attention mechanism plays a pivotal role. Through the 

multi-head attention, the model is able to simulate the 

interactions between Text, Audio, and Visual patterns. 

Specifically, this involves projecting the representation 

of the text modality as the query sequence, 

concatenating and projecting the representations of the 

Audio and Visual modalities as the key and value 

sequences. This enables the model to compute the 

relational similarities between each word in the text 

modality sentence and the Audio and Visual features of 

each frame. Subsequently, the output of the cross-modal 

attention undergoes processing by a feedforward neural 

network, yielding the output of the collaborative 

attention cross-modal Transformer layer. This design 

effectively integrates information from diverse 

modalities, enhancing the model’s performance in 

multimodal data processing tasks. 

3. Experiment and Analysis 

3.1. Data Set and Evaluation Index 

This section aims to validate the effectiveness of the 

proposed Transformer-based multimodal document 

retrieval model. Two publicly available datasets, namely 

Carnegie Mellon University-Multimodal Opinion-level 

Sentiment and Intensity (CMU-MOSI) and Carnegie 

Mellon University-Multimodal Opinion Sentiment and 

Emotion Intensity (CMU-MOSEI), are employed in this 

study. These datasets consist of Text, Visual, and Audio 

modalities, as illustrated in Table 1. A series of 

experiments are conducted on these two benchmark 

datasets in the present study. 

Within the multimodal Transformer module, each 

component is comprised of four Transformer layers, 

where the number of attention heads within the self-

attention mechanism is four. The specific parameter 

settings during the training process can be referenced in 

Table 2. 

Table 1. Composition and partitioning of data sets. 

Data set CMU-MOSI CMU-MOSEI 

Training set 1028 16048 

Validation set 381 1706 

Test set 790 5102 

Table 2. Related parameter settings. 

Items Value 

Optimizer Adam 

learning rate 0.001 

batch size {16,32,64} 

epoches 50 

This text employs Accuracy (Acc) and F1-score as 

the evaluation metrics for model performance. The 

specific calculation formulas are shown in Equations 

(17) and (18). 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Among these, FP represents the number of samples 

actually negative but predicted as positive; TN 

represents the number of samples with both actual and 

predicted values negative; FN represents the number of 

samples actually positive but predicted as negative. 

3.2. Experiments on Test Sets 

This section conducts experiments on the CMU-MOSI 

and CMU-MOSEI benchmark datasets to compare the 

performance of Transformer-based multimodal methods 

with baseline methods. The detailed analysis is 

combined with the experimental results illustrated in 

Figure 7. By contrasting the experimental outcomes, a 

clearer understanding of the superior performance of 

our proposed method in multimodal document 

processing tasks can be achieved. 

The study constructs a multimodal recognition model 

using three modalities: Audio (A), text (T), and image 

(V). To validate the effectiveness of different modality 

combinations in the proposed multimodal framework, 

four modality fusion approaches are explored: Audio-

Text-Image (AT-V), Audio-Image-Text (AV-T), Text-

Video-Audio (TV-A), and Audio-Text-Image (A-T-V). 

Discussions on these modality combinations aid in 

assessing the roles and relationships of different 

modalities in multimodal tasks.  

As shown in Figure 7, the fusion of Audio (A) and 

Text (T) features in the Audio-Text-Image (AT-V) 

combination yields superior recognition results on both 

datasets compared to the other three schemes. This 

outcome indicates that among the three modalities 

studied, the fusion of audio and text is the optimal 

combination. 

 

 

(15) 

(14) 

(16) 

(17) 

(19) 

(18) 
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a) Acc-3of CMU-MOSEI. b) F1 of CMU-MOSEI. 

  

c) Acc-2of CMU-MOSI. d) F1 of CMU-MOSI. 

Figure 7. Comparison of results of three-mode combination schemes. 

3.3. Modal Ablation Experiment 

To validate the applicability of the network model 

proposed in this article, several modal combinations 

disintegration experiments were conducted on the 

CMU-MOSEI dataset. The specific experimental results 

are shown in Figure 8. 

 

Figure 8. Experimental results of ablation under different modes . 

By observing Figure 8, it is evident that the file 

search capability based on image recognition excels in 

the unimodal file search experiment, achieving an 

accuracy of 88.01% and an F1-score of 87.76%. In the 

trimodal scenario, both the accuracy and F1-score 

surpass those of unimodal and bimodal situations, 

showcasing optimal performance. These ablation 

experiments not only validate the significance of 

leveraging Audio, Text, and Image modalities in 

multimodal file search and identification. 

Experimental evidence suggests that incorporating 

semantic information across audio and textual 

modalities can mutually reinforce each other. This 

outcome underscores the significance of effectively 

leveraging information from different modalities within 

a single target domain to enhance the performance and 

efficacy of cross-modal tasks. In the case of three target 

modalities, the accuracy of file search is optimized, yet 

the complexity of interactions among multiple 

modalities may somewhat diminish the model’s 

performance. Overall, harnessing multimodal 

information can augment the efficiency and accuracy of 

search and retrieval, offering users a more enriched set 

of retrieval outcomes. 

3.4. Comparative Experiment 

In this section, the author compares the multi-modal 

analysis methods based on Transformers with 

benchmark approaches on the CMU-MOSI and CMU-

MOSEI benchmark datasets. The experimental results 

are presented in Figures 9 and 10. 

 

Figure 9. Performance comparison results of different model based 

on CMU-MOSI . 



122                                                        The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025 

 

Figure 10. Performance comparison results of different models 

based on CMU-MOSEI . 

On the CMU-MOSI dataset, this approach achieved 

an accuracy of 84.91% and an F1 score of 85.57% in the 

classification task, outperforming other baseline models 

significantly. On the CMU-MOSEI dataset, this method 

obtained the best results in binary classification tasks in 

terms of both accuracy and F1-score, further confirming 

the importance of eliminating redundant information to 

enhance the accuracy of multimodal emotion analysis. 

In conclusion, the experimental results demonstrate that 

the performance of this approach on both datasets 

clearly surpasses that of other baseline methods. 

4. Conclusions 

This paper presents a Transformer-based English 

multimodal document retrieval model. By comparing 

the precision and recall of the system, it is demonstrated 

that the approach proposed in this paper can offer query 

services for different modal files while maintaining 

good precision and recall. Through ablation 

experiments on two public datasets and comparative 

experiments with baseline models, the effectiveness of 

the proposed Transformer algorithm in extracting modal 

features and performing feature fusion to enhance the 

accuracy of document retrieval has been validated. 

Additionally, this study further demonstrates that 

multimodal fusion retrieval systems generally 

outperform single-modal retrieval systems. In the 

future, we can further explore the modeling capability 

of multimodal document retrieval in specific domains to 

realize more application value. 
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