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Abstract: The collision in Aloha-based Radio Frequency Identification (RFID) systems is inevitable due to the random medium 

access nature of the Aloha protocol and the unknown number of tags within the reader’s coverage. Various Aloha anti-collision 

protocols have been proposed, and reducing collisions has always been the top priority. However, merely reducing collisions 

can increase the number of idle slots, the number of interrogation epochs, and bandwidth usage. This article proposes an 

approach to integrating Q-learning into the Aloha anti-collision protocol, in which Interrogation Efficiency (IE), resulting in 

Energy Efficiency (EE), is the top priority. Two cases of fixed and dynamic frame sizes are considered. Experimental results 

show that the Q-learning-integrated Aloha anti-collision protocols achieve the highest IE, in which the number of collision slots, 

idle slots, and interrogation epochs are reduced. The dynamic-frame Q-learning-integrated Aloha anti-collision protocol 

achieves the best IE thanks to its ability to adjust frame size dynamically. 
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1. Introduction 

Radio Frequency Identification (RFID) is one of the 

foundational technologies of the Internet of Things that 

has attracted much attention from academia and 

industry. In many practical applications, such as real-

time inventory detection or automatic product 

identification in supply chain management, there are 

situations where multiple tags, known as appearing tags 

are within the coverage of a reader. In response to a 

reader’s interrogation, the passive tags backscatter the 

signal coming from the reader. However, when multiple 

tags backscatter simultaneously, a collision occurs. In 

principle, anti-collision algorithms in wireless networks 

can be applied to resolve collisions in RFID systems. 

However, with the high asymmetry in which the reader 

is rich in resources and the passive tag has minimal 

storage and computing capabilities, the reader performs 

most of the processing. Given this reality, only basic 

anti-collision protocols are recommended to be 

implemented in RFID systems [5, 13]. 

This paper focuses on Aloha anti-collision protocols. 

The operating principle of Aloha protocols is that the 

maximum backoff time (frame) is divided into 2Q time 

slots, where Q is an integer assigned to the tags by the 

reader through a communication channel between the 

reader and the tags. Upon receiving a request from the 

reader, each tag independently and randomly selects a 

time slot marked by an integer in the range [0, 2Q-1]. In  

 
the Electronic Product Code-global-Class1-Generation2 

(EPC-C1G2) protocol [16], a tag first backscatters its 

chosen integer, called the tag handle, when the time 

reaches the tag’s chosen time slot. If the reader receives 

only one tag handle, it sends an ACKnowledgment 

(ACK code) signal to notify that the tag can backscatter 

more of its identification (tag ID). If the reader receives 

two or more tag handles, a collision occurs, and the tags 

are not acknowledged. These tags then independently 

and randomly reselect a time slot in the next round of 

interrogation. The identification process is repeated 

until the reader has identified all tags. 

The Aloha anti-collision protocol works well when 

the frame size matches the number of appearing tags. 

However, the protocol’s efficiency worsens as the 

number of tags increases while the frame size is fixed. 

Therefore, many dynamic Aloha anti-collision 

algorithms have been proposed to improve system 

efficiency, in which the frame size is dynamically 

adjusted according to the estimated number of tags, as 

in [17, 18]. The difference in the above protocols lies in 

the different methods of estimation. However, they 

require multiple rounds of interrogation before the 

identification process can optimize the frame size. 

An alternative approach is to adjust the frame size 

based on a learning process in which the knowledge is 

acquired from the environment through tag 

identification results. The learning method can be 
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reinforcement learning, such as Q-learning [9, 10, 14]. 

Because an RFID system’s computing and storage 

capacity is concentrated at the reader, Q-learning is 

especially suitable for the learning model based only on 

current information computed at the reader; tags only 

backscatter data in their selected time slot. 

The paper presents an improved Q-learning 

integrated into the Aloha anti-collision protocol for 

energy-efficient RFID systems. Specifically, we suggest 

an energy-efficient Q-learning algorithm for adjusting 

frame size by learning from tag interrogation results. In 

most previous studies, anti-collision algorithms aim to 

reduce the number of collision slots, which often 

increases the number of idle slots, causing a waste of 

bandwidth occupied by idle slots. The result is reducing 

the overall performance of the entire system. The paper 

proposes an energy-efficient Q-learning algorithm in 

which the Interrogation Efficiency (IE) is used to 

determine the reward. For each reader, improving IE 

increases Energy Efficiency (EE). The cases of fixed 

and dynamic frame sizes are also considered and 

analyzed. 

Contributions to the paper include: 

 Proposing an improvement of the Q-learning 

algorithm, called the energy-efficient Q-learning 

algorithm, which adjusts frame size based on EE; 

 Integrating the energy-efficient Q-learning algorithm 

into the Aloha anti-collision protocol with the fixed 

frame, called the Fixed-frame Q-learning-integrated 

Aloha Anti-Collision (FQAAC) protocol, and with 

the dynamic frame, called the Dynamic-frame Q-

learning-integrated Aloha Anti-Collision (DQAAC) 

protocol; and 

 Implementing and evaluating the efficiency of 

FQAAC and DQAAC by comparing them with 

Framed Slotted Aloha (FSA) and DFSA protocols. 

The remainder of the paper is organized as follows. 

Section 2 introduces the Aloha protocol for RFID 

systems and the Q-learning algorithm. A review of 

related works related to the application of Q-learning in 

the Aloha anti-collision protocol is analyzed in section 

3. An improvement of the Q-learning algorithm 

integrated into the Aloha anti-collision protocol is 

presented in section 4, where the EE model in tag 

interrogation and the energy-efficient Q-learning 

algorithm are discussed. Simulation results are 

compared and evaluated in section 5. Finally, the 

conclusion is provided in section 6. 

2. Background 

2.1. Aloha Anti-Collision Protocols 

Aloha is a data link layer multiple access protocol that 

describes how multiple terminals can access a 

transmission channel at random intervals. Due to the 

random and independent nature of access, collisions are 

unavoidable. An improvement of Aloha, named FSA 

[12], is proposed to reduce collisions for multiple 

access. In FSA, a frame is divided into multiple time 

slots, and a tag randomly chooses one to transmit data. 

When a collision occurs, the tag randomly reselects 

another time slot and waits for the next frame to transmit 

its data. 

The FSA has a static frame size, which means the 

frame size is determined from the beginning and does 

not change during the tag interrogation process. 

However, determining the correct initial frame size is 

difficult because the number of appearing tags in the 

reader’s coverage area is unknown. The Dynamic FSA 

protocol (DFSA) [3], is proposed to improve the system 

efficiency, where the frame size is adaptively adjusted 

based on the estimate of the number of remaining 

(uninterrogated) tags in the reader coverage. Several 

techniques for estimating the number of tags have also 

been proposed to reduce collisions and enhance system 

efficiency. Recently, reinforcement learning-based 

approaches have also been introduced [9, 10, 14] that 

can adjust the frame size without estimating the number 

of tags. This paper focuses on the reinforcement 

learning-based approach. 

2.2. The Q-Learning Algorithm 

The reinforcement learning model considered in this 

paper is Q-learning [7], which is, in essence, a 

memoryless reinforcement learning algorithm that 

learns by interacting with the environment and 

determining the Q-value for a state-action pair, Q(st, at), 

where st and at is the state and the action at time t. The 

Q-value represents the priority of choosing the action at 

over other available actions when the system is in the 

state st. Figure 1 describes the principle diagram of the 

Q-learning algorithm. 

 

Figure 1. Principle diagram of the Q-learning algorithm [7]. 

Formally, for each state st ∈ S and action at∈A, the Q-

value is determined in Equation (1), 

( , ) (1 ) ( , ) ( max ( , ))1 1Q s a Q s a r Q s at t t t t t tt a A t         

where α is the learning rate, γ is the discount factor, and 

rt is the delayed reward. 

The value α∈[0, 1] controls the rate at which learning 

occurs, and γ∈[0, 1] controls the readiness or delay of 

the reward rt. The goal of the reward rt is to guide the 

agent to a goal by rewarding or punishing the agent for 

the action at performed in the state st. The reward 

(1) 
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function needs to be carefully defined to guide the Q-

learning algorithm to convergence in a reasonable time. 

The agent’s learning goal is to map each state st to an 

action at that maximizes the reward. However, learning 

often chooses the known optimal action without 

occasionally probing whether a globally optimal 

solution can be reached. This approach can guide the 

agent to a local optimal solution. Therefore, several 

exploration-exploitation strategies have been proposed 

in the literature to address the problem. Our study 

chooses the epsilon-greedy strategy [15] to balance 

exploitation and exploration. Following the epsilon-

greedy strategy, the agent sometimes chooses an action 

with a lower Q-value with the probability ε. 

3. Related Works 

There have been many studies on applying Q-learning 

to the Aloha anti-collision protocol, but mainly for 

wireless sensor or ad hoc networks [2, 4, 15], where the 

nodes involved in data transmission have massive 

computing and storage. For RFID systems where tags 

have poor computing and storage capacity, research on 

applying Q-learning to the Aloha anti-collision protocol 

is quite limited. The following are analyses and 

evaluations of some applications of Q-learning to the 

Aloha anti-collision protocol in RFID systems. 

Xu and Yang [14] proposed an algorithm based on 

Q-learning, in which the existing environmental 

conditions and those of the following n states are 

considered. The Q-value is then determined by 

1
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where, ct=rt+γVt-1(st+1)-Vt-1(st), c’t=rt+γVt-1(st+1)-Q(st,at) 

and Vt(st) is a merit function. 

Simulation results show that although the proposed 

algorithm is more complex than the traditional Q-

learning algorithm, it significantly reduces collisions. 

However, the efficiency of the new algorithm depends 

on the n-state parameter, but how to determine n has not 

been analyzed. As the number of states increases, the 

computational complexity explodes. 

Loganathan et al. [10] and Loganathan et al. [9] 

suggested a Reinforcement Learning-based Dynamic 

Aloha anti-collision (RL-DFSA) protocol to provide 

better time efficiency while saving energy by reducing 

the overhead of control messages. RL-DFSA includes a 

policy for the reader to adjust the frame size between 

different estimates of the number of tags. The estimate 

is calculated based on the inference that the number of 

collision tags in a time slot can only be equal to or 

greater than two. Therefore, RL-DFSA divided the 

action space of the Q-learning algorithm into 11 levels 

to increase the smoothness of adjusting the frame size 

while not excessively increasing the algorithm’s 

complexity. 

Anti-collision solutions proposed for RFID systems 

must consider the asymmetry, where readers are rich in 

computing and storage resources while passive tags 

only backscatter their ID and do not know anything 

about the surrounding environment. Reducing the 

complexity of the implemented anti-collision protocol is 

a priority that needs attention. The paper proposes an 

improvement to the Q-learning algorithm, in which 

frame size adjustment is mainly based on IE. Details of 

our proposal are presented in the next section. 

4. An Improvement of Q-Learning Based 

on Energy Efficiency 

4.1. The Energy Efficiency Model in Tag 

Interrogation 

The tag interrogation model considered in the paper 

corresponds to EPC-C1G2 standards, where the 

communication time between the reader and tags is 

divided into slots [16]. Figure 2 shows the time 

associated with three types of collision, success, and idle 

slots. The reader begins transmission by sending a 

command during a time tR. The reader maintains the 

downlink carrier, also known as Continuous Wave 

(CW), so that tags can utilize its power to backscatter 

their data. After each command, there is a time T1 

required for the tag to generate its response and a time 

T2 required for the reader to receive the tag data. A slot 

is considered idle when the reader waits for an 

unresponse in a time T3. Tag data is responded to in a 

time tT. 

 

Figure 2. Example of a collision/success/idle slot in the tag 

interrogation model [8]. 

The energy consumption model considered in the 

paper is mainly the energy consumed by the reader, 

which is a function of the data transmission and 

reception time. The consumed energy thus includes the 

energy for the reader to transmit command, the energy 

to maintain CW to power passive tags (Ptx), and the 

energy to receive data from the tag (Prx). Therefore, the 

total energy consumed during an interrogation round (E) 

is expressed in Equation (3). 

𝐸 = 𝐸𝑐 + 𝐸𝑠 + 𝐸𝑖 = ∑(𝑃𝑡𝑥 × (𝑡𝑅𝑗 + 𝑇1 + 𝑡𝑇𝑗 + 𝑇2) + 𝑃𝑟𝑥 × 𝑡𝑇𝑗)

𝑐+𝑠

𝑗=1

+ ∑(𝑃𝑡𝑥 × (𝑡𝑅𝑗 + 𝑇1 + 𝑇3))

𝑙

𝑗=1

 

(2) 

(3) 
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where, Ec, Es and Ei are the energy consumed in 

collision, success and idle slots, respectively. C, S and 

I are the number of collision, success and idle slots, 

respectively. 

EE is determined by the ratio of the energy consumed 

for success slots (Es) to the total energy to identify all 

tags (Ec+Es+Ei). We assume that the times of collision, 

success, and idle slots are approximately equal, i.e., T; 

EE is thus equivalent to IE as in Equation (4).  
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In other words, we can determine the EE of the Aloha-

based anti-collision protocol by evaluating the IE. The 

EE increases if the number of collision (and idle) slots 

decreases. As shown in Figure 2, the idle slot size is 

always smaller than the collision slot size, so the more 

the collision slots reduce, the more the EE increases. 

4.2. The Energy-Efficient Q-Learning 

Algorithm 

The energy-efficient Q-learning algorithm is run on the 

reader. A Q-table is created where each row corresponds 

to each tag, and the number of columns corresponds to 

the number of slots in a frame. Assuming there are n 

appearing tags and the frame has L slots, each cell (i, j) 

of the Q-table carries a Q-value, Q(st, at), representing 

the priority to select the slot i, i=1..L, by tag j, j=1..n. 

The Q-value is initialized at 0 and is updated by an EE 

function as in Equation (5), where depending on the 

current interrogation state (st), an action at is chosen so 

that the IE does not decrease. In addition, a reward rt is 

also used to navigate the IE function as in Equation (6).  

( , ) max ( , )EE t t t a A t tf s a r Q s a    

/ ( )  

0  

/ ( )  
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Equation (7) shows the updating of Q-value.  

1( , ) (1 ) ( , ) ( , )t t t t t t EE t tQ s a Q s a f s a      

Two cases of integrating Q-learning into the Aloha anti-

collision protocol, fixed frame FQAAC and dynamic 

frame DQAAC, are considered, respectively. 

Algorithms (1) and Algorithm (2) describe the 

workflow of the FQAAC and DQAAC algorithms. 

Algorithm 1: FQAAC Algorithm. 

Input: , α, γ  // exploration-exploitation rate, 

                       // learning rate, discount factor 

Output: C, I, S // collision, idle and success slots 

Process 

1. Initiate t=0 and Q-table: Q(st, at), st S and atA 

2. Initiate C=0, I=0, S=0 

3. while t<max_iteration or n>0 do 

4. The reader sends a command to the tags in its coverage 

5. Select an action: Each tag chooses a slot in its row based on 

the epsilon-greedy strategy: if =0.1, a slot is selected randomly. 

Otherwise, the highest Q(st, at) is selected. 

6. Update the reward rt by Equation (6) 

7. Update the Q-value by Equation (7) 

8. Update C, I, S 

9. t=t+1 

10. end while 

Algorithm 2: DQAAC Algorithm. 

Input: , α, γ // exploration-exploitation rate, 

                     // learning rate, discount factor 

Output: C, I, S // collision, idle and success slots 

Process: 

1. Initiate t = 0 and Q-table: Q(st, at), stS and atA 

2. Initiate C=0, I=0, S=0 

3. Estimate n and initiate L //estimate the number of tags  

                    // and initiate the frame size 

4. while t<max_iteration or n>0 do 

5. The reader sends a command to the tags in its coverage 

6. Select an action: Each tag chooses a slot in its row based on 

the epsilon-greedy strategy: if =0.1, a slot is selected randomly. 

Otherwise, the highest Q(st, at) is selected. 

7. Update the reward rt by Equation (6) 

8: Update the Q-value by Equation (7) 

9. Update C, I, S 

10. Update n=S+2.39C // estimate the remaining tags 

11. Update the frame size L value based on n as in Table 1 

12. t=t+1 

13. end while 

One limitation of FQAAC is the fixed frame size, so 

collision occurrence is still significant, especially when 

tag density is high. DQAAC improves on FQAAC by 

dynamically adjusting the frame size. Note that the 

number of unrecognized tags (n) reduced at the t+1th 

interrogation epoch equals the number of success slots 

(S) at the tth interrogation epoch. Therefore, the frame 

size at the t+1th interrogation epoch can be reduced by 

the number of success slots at the tth interrogation epoch 

plus a variance (v). The value L is updated depending on 

the estimated number of remaining uninterrogated tags 

(Lines 10 and 11 in Algorithm (2)) and two upper/lower 

thresholds, as described in Table 1. Accordingly, the Q-

table is updated. 

Table 1. The upper and lower thresholds corresponding to the frame 
size. 

Frame size 1 4 8 16 32 64 128 256 

Lower - - - 1 10 17 51 112 

Upper - - - 9 27 56 129  

With DQAAC, because the frame size changes, the 

dimension of the Q matrix also changes. There are two 

cases to be considered: 

1. The Q matrix is reset, meaning the Q-values are reset 

to 0 every time the frame size changes. 

2. The Q matrix continues to inherit the learning results 

of the previous Q matrix.  

(4) 

(5) 

(6) 

(7) 
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In fact, the Q matrix size will become smaller over time 

as the number of remaining uninterrogated tags 

decreases. Inheriting the knowledge learned from the 

previous Q matrix will help the algorithm converge 

faster and thus reduce the resources needed by the 

system. 

The computational complexity of FQAAC and 

DQAAC is O(m), where m is the number of iterations 

required to identify all n tags. The complexity is also 

equal to that of FSA and DFSA. However, FQAAC and 

DQAAC have an additional operation of updating Q-

table, so the actual complexity of FQAAC and DQAAC 

is O(n*L). 

4.3. The Operation Model of FQAAC and 

DQAAC Protocols 

Implementing the FQAAC and DQAAC algorithms 

requires the device to have memory and computing 

capacity. Due to the asymmetric nature of RFID 

systems, where readers are resource-rich, while tags 

have limited memory and computing capacity, the 

implementation of FQAAC and DQAAC algorithms 

takes place on the reader. Current readers can compute 

like a minicomputer with memory of 128MB or more 

[1]. For passive tags, in addition to the ability to match 

the prefix received from the reader with its ID, some 

tags also have memory (i.e., EPC memory) to maintain 

some variables and perform some simple calculations to 

update the values for these variables [1]. Accordingly, 

the FQAAC and DQAAC protocols are implemented as 

follows. 

First, the reader initializes the Q-table with the cell 

values equal to 0. Depending on the status of the tag 

responses in each interrogation cycle, the cell values are 

updated by Q-values (as in Equation (7)). The packet 

command sent from the reader carries a reference list in 

which each tag registers a cell index, and the cell value 

is the time slot at which the tag responds to its data. The 

reference list is carried in the data field, as shown in 

Figure 3. 

 

Figure 3. Integrating the reference list in RFID Data packet structure 

[11]. 

Each tag maintains a pointer variable (p) that 

indicates its cell position in the reference list that is 

carried in the packet command. Upon receiving a 

command, the tag checks the cell value at pointer p in 

the reference list. If this value is zero, the tag is 

determined to have been successfully identified and is 

silent. Otherwise, the cell value is the suggested slot for 

the tag to respond. Figure 4 illustrates how the FQAAC 

or DQAAC protocol works. 

 

Figure 4. The operation model of FQAAC or DQAAC protocols. 

5. Simulation and Analysis 

Four algorithms, FSA, DFSA, FQAAC and DQAAC, 

are implemented on a PC with 2.4 GHz Intel Core 2 

CPU, 8G RAM, in Python. The simulation parameters 

are described in Table 2. 

Metrics to evaluate the algorithms include: 

 IE: determined by the ratio of the number of success 

slots to the total number of collision, success and idle 

slots as in Equation (8).  

𝐼𝐸 =  𝑆 / (𝐶 +  𝑆 +  𝐼) 

 Runtime: the total time needed to interrogate all tags. 

 Bandwidth Efficiency (BE): calculated by the 

amount of bandwidth reduced due to the reduced 

frame size. In the paper, the BE is the ratio of the 

number of slots reduced (framesizeDQAAC-

framesizeDFSA) to the number of slots normally 

needed (framesizeDFSA) as in Equation (9).  

 DQAAC DFSA

DFSA

framesize framesize
BE

framesize


  

Table 2. Simulation parameters. 

Parameters Value 

Number of uninterrogated tags (n) from 10 to 100 tags 

Frame size (L) from 16 

Maximal interation (max_interation) 1000 

Exploration-exploitation rate () 0.1 

Learning rate (α) 0.1 

Discount factor (γ) 0.9 

5.1. Interrogation Efficiency (IE) 

The IE over epochs is shown in Figure 5-a), where 

initially, FSA and DFSA have high IE (in which DFSA 

is better than FSA), but their IE gradually decreases over 

time (epochs). The reason is that, with an initial frame 

size of 64 and 100 tags randomly distributed in the 

reading area, the probability of a tag successfully 

accessing an empty slot is relatively high. In the early 

stages, DFSA’s IE is better than FSA’s IE because 

DFSA adjusts the dynamic frame size from 64 to 128 

(8) 

(9) 
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(Figure 9), and as a result, the number of success slots 

achieved is high. However, later on, as the number of 

remaining unrecognized tags decreased, the number of 

collision slots also decreased, but the number of idle 

slots remained high. According to Equation (4), IE is 

therefore reduced. 

 
a) The interrogation efficiency over epochs of FSA, DFSA, FQAAC, and DQAAC. 

 
b) A comparison of the interrogation efficiency over epochs between FQAAC and DQAAC. 

Figure 5. The IE of 4 algorithms over epochs (with 100 tags and frame size of 64). 

For FQAAC and DQAAC, their IE is initially low but 

then increases over time and is better than the IE of 

BFSA and DFSA, as shown in Figure 5-a). To clarify, 

Figure 5-b) depicts the comparison between FQAAC 

and DQAAC, in which DQAAC initially has a lower IE 

than FQAAC but later gets better and surpasses 

FQAAC. The reason is as follows. With FQAAC, 

initially, the frame size is initialized to 64, and the tags 

choose empty slots randomly. The knowledge at this 

time is not enough to help each tag accurately determine 

the empty slot. Over time, learning brings more 

knowledge, and with the number of remaining 

unrecognized tags decreasing, the IE of algorithms with 

Q-learning improves more clearly. As for FQAAC, its 

IE quickly saturates because the frame size does not 

change, so the number of idle slots increases even 

though the number of collision slots decreases. 

According to Equation (4), the IE value remains 

constant. For DQAAC, adaptively adjusting the frame 

size (Figure 9) reduced the number of idle slots. Along 

with the decrease in the number of collision slots, the IE 

of DQAAC gradually increases (Figure 5-b)) according 

to Equation (4). 

Regarding the efficiency comparison of the four 

algorithms when the number of tags increases, Figure 6 

shows that the Q-learning integrated Aloha anti-

collision protocols, FQAAC and DQAAC, consistently 

achieve better results than the traditional Aloha 

protocols, BFSA and DFSA. Specifically, when the 

number of tags is sparse, there is a significant difference 

in the IE between the Q-learning integrated and 

traditional algorithms. Calculating Q-values based on 

the knowledge of the system state helps the tags choose 

slots with low collision probability. However, when the 

tag density increases, the frame size limit (Table 1) does 

not allow the infinite expansion of the number of slots, 

so the IE gradually decreases. Despite the decrease in 

efficiency, DQAAC is always better than FQAAC, 

thanks to the policy of adjusting the number of time 

slots, which reduces the number of collisions. The 

convergence of the IE of the algorithms reflects the 

existence of an efficiency threshold limited by the tag 

density. Beyond this threshold, Q-learning-based 

collision prevention algorithms are no longer practical. 

 

Figure 6. The IE gradually decreases as the number of tags increases. 

5.2. Runtime 

In order to achieve high IE, Q-learning-integrated Aloha 

anti-collision protocols suffer from loss in runtime. 

Figure 7 shows a rapid increase in runtime as tag density 

increases. When the tag density is too high, the loss in 

runtime is too significant compared to the gain in IE. 

There is a need to find a threshold in the tag density at 

which a compromise is reached in IE and runtime. 

 

Figure 7. Runtime increases rapidly as tag density increases. 
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Let  be the compromised weight, [0, 1], and IE 

and runtime are normalized to the interval [0, 1], Figure 

8-a) shows the graph of the normalized IE and runtime 

where the best compromise is achieved when the 

threshold in the number of tags is 40, corresponding to 

=0.5. A survey of different compromised weights  is 

performed in Figure 8-b), showing that the threshold in 

the number of tags changes as the compromised weights 

change. Thus, the IE of the two algorithms, FQAAC and 

DQAAC, is only good when the number of tags is 

smaller than the threshold in tag density. 

 

  

a) There exists a compromise point between interrogation efficiency and runtime. b) The compromise point found is at 400 tags with different compromised weights. 

Figure 8. There exists a threshold in tag density where IE and runtime reach a compromise. 

5.3. Bandwidth Efficiency 

Figure 9 depicts the frame size adjusted over 

interrogation rounds (epochs), with a dense tag density 

(Figure 9-a)) and a sparse tag density (Figure 9-b)). 

With DFSA, due to the limit on the maximum frame size 

[3], the frame size still is at most the maximum 

threshold 256 even though the tag density increases 

high. However, with DQAAC, the learning algorithm 

helps adjust the frame size more appropriately. After 

several iterations with a frame size of 256, DQAAC 

reduces the frame size to 16 (Figure 9-a)). In the case of 

sparse tag density (Figure 9-b)), although the reduction 

in frame size of DQAAC compared to DFSA is less, 

DQAAC always maintains the frame size at a minimum 

level (16). This means that DQAAC achieves better BE 

than DFSA. 

 
a) Frame size changes over epochs with sparse tag density. 

 
b) Frame size changes over epochs with dense tag density. 

Figure 9. The frame size is adjusted over interrogation rounds, where DQAAC achieves better BE than DFSA. 

5.4. Discussion 

Integrating Q-learning into the Aloha anti-collision 

protocol has significantly improved the efficiency of tag 

interrogation. However, the integration also complicates 

the processing (e.g., for the reward function and Q-value 

calculation). It increases the storage space (e.g., for the 

Q-table) and the data exchange bandwidth (e.g., for the 

suggested tag access slots). Security issues have also 

been raised for the two integrated protocols, FQAAC 

and DQAAC, and the suggestions in [6] can help 

improve the security capabilities of these two integrated 

protocols. 

6. Conclusions 

Aloha is one of the popular protocols used in natural 

RFID systems, where collision is a critical problem 

when deploying the Aloha protocol in practice. Several 

solutions are proposed that have only achieved a certain 

level of efficiency. The paper proposes a collision 

reduction approach based on Q-learning, in which two 

improvements to Q-learning are proposed to increase IE 

and reduce energy consumption. Specifically, FQAAC 

and DQAAC are two improvements of BFSA and 

DFSA that help determine the best slot based on a 

reinforcement learning process. Knowledge is learned 
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from the environment through identification results as 

collision, success or idleness. DQAAC differs from 

FQAAC in that it has a more flexible frame adjustment. 

Simulation results show that FQAAC and DQAAC 

achieve better interrogation and energy efficiencies than 

BFSA and DFSA. However, the difference in efficiency 

gradually decreases as tag density increases. 

Furthermore, runtimes of FQAAC and DQAAC are 

significant when tag density is high. A compromise 

between IE and runtime was also analyzed, which 

showed a compromise threshold in the number of tags 

corresponding to the compromise weight , at which 

FQAAC and DQAAC have IE and EE can be achieved. 
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