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Abstract: In the field of actual Video Object Segmentation (VOS), traditional techniques have poor adaptability and insufficient 

segmentation results. Therefore, based on existing problems, an Unsupervised Video Object Segmentation (UVOS) technique 

based on convolutional networks is proposed. Firstly, the method of decomposing expressions is used to handle the 

spatiotemporal relationship between the reference frame and the target frame, and video object reconstruction is achieved 

through similarity calculation. For target segmentation in motion scenes, a Single Linear Bottleneck Operator (SLBO) is 

introduced for feature extraction, and pooling compensation is used to optimize feature information loss. For general scene 

segmentation, a spatiotemporal similarity segmentation technique is introduced to achieve target video segmentation for 

complex scenes. In the foreground segmentation test of sports scenes, the Change Detection Benchmark Dataset 2014 

(CDNet.20I4SM) dataset was selected to test the model's loss performance in different scenarios. In adverse weather scenario 

training, the proposed model tends to converge after 40 iterations, with a loss value of 0.276, which is superior to the Foreground 

image Segmentation (FgSegNet_), the Convolutional Networks for Biomedical Image Segmentation (MU Net), Cascade 

Convolutional Neural Network (Cascade CNN) models; In the accuracy test, the proposed FS-LBPC model tended to converge 

after 50 iterations, with a precision P-value of 0.963. It performed the best among the four segmentation models the FgSegNet_, 

MU Net, Cascade CNN, and a real-time Foreground Segmentation network based on single Linear Bottleneck and Pooling 

Compensation (FS-LBPC). Usually, the Densely Annotated VIdeo Segmentation (DAVIS16) dataset is selected for video scene 

segmentation, which has the best segmentation performance in horse racing and animal flight scenes, with segmentation 

accuracy of 0.976 and 0.965, respectively. In summary, the VOS technology has excellent application effects in practical 

scenarios, providing important technical references for the improvement of image and video processing and segmentation 

technology. 
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1. Introduction 

In the era of rapid development of information and data, 

the entertainment industry led by video is thriving. 

Video Object Segmentation (VOS) is a fundamental 

task in digital vision technology and plays an important 

role in the field of image vision [32]. VOS is an 

important computer vision task with broad application 

potential. Traditional VOS techniques mainly use 

methods based on frame difference, gradient, and region 

growth [28]. Although the above technologies have 

good applications in video object segmentation, they are 

generally suitable for general scenarios and do not 

accurately handle targets and boundaries, making them 

unable to meet the segmentation requirements of more 

complex scenes [19]. Therefore, in response to the 

problems faced by traditional technologies, a 

decomposition based Unsupervised Video Object 

Segmentation (UVOS) technique based on 

convolutional frameworks is proposed. By calculating 

the similarity between the target frame and the reference 

frame, the reconstruction of the video target is achieved. 

Simultaneously considering the difficulty of video  

 
segmentation in both motion and general scenes, a 

single linear bottleneck and spatiotemporal similarity 

calculation are introduced to achieve the processing of 

video segmentation problems in different scenes. There 

are two innovative points in the research content. 

Firstly, a separately expressed UVOS technique is 

proposed, which utilizes deep network structures to 

automatically learn feature representations, 

significantly improving the accuracy and stability of 

segmentation. Secondly, considering the issue of 

insufficient segmentation performance in different 

scenes, separate processing is carried out for both 

motion scenes and general scenes to improve the 

adaptability and segmentation performance of the 

research technology. There are two novelty points to 

this study. One is to optimize the problem of traditional 

techniques being unable to adapt to complex 

segmentation scenarios, and propose a segmentation 

technique based on improved Convolutional Neural 

Network (CNN) to achieve processing of more complex 

segmentation tasks. Secondly, it improves the problem 

of traditional CNNs being unable to process global 
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information features by introducing linear bottleneck 

operators and pooling compensation optimization 

models to further enhance the application effectiveness 

of the technology. The main contribution of the research 

content is twofold. The first point is that the research 

technology has better segmentation performance, 

providing support for the improvement of VOS 

technology. The second point is that the proposed 

technology has better adaptability and processing 

ability, adding considerations for multiple segmentation 

scenarios, and providing effective technical references 

for VOS. The entire research work is divided into four 

parts, one of which is related research and discussion on 

the latest VOS technology; the second part is to 

establish an unsupervised video segmentation model 

based on convolutional networks and improve the 

model; the third part conducts performance testing and 

discussion on the video segmentation technology 

proposed by the research institute. The fourth part is a 

summary of the entire article. 

2. Related Work 

VOS is a computer vision technology that performs 

pixel segmentation on continuous frame images, which 

can accurately locate and track different objects or 

targets in the image. It is widely used in intelligent 

monitoring, automatic driving, medical imaging 

analysis and other fields, providing a powerful tool for 

automation and intelligence. Fan et al. [8] found that 

digital video has visual distortion issues, which can 

affect users’ experience of video quality. To more 

accurately evaluate the impact of these distortions on 

vision, researchers proposed a new database and 

conducted a subjective quality assessment of the 

database. At the same time, they also evaluated several 

of the best performing video processing technologies 

and found that the video database can accurately 

evaluate real-time mobile videos, which has broad 

application prospects. Falaschetti et al. [7] conducted 

research on semantic segmentation in modern 

intelligent vehicles to address the challenges faced by 

modern intelligent vehicles in intensive operations. The 

semantic video segmentation scene on smart cars is 

complex, requiring high computational power and 

energy consumption. To achieve this goal, a low rank 

CNN architecture for real-time semantic segmentation 

is proposed, and tensor decomposition technology has 

been applied to the kernel of the universal convolutional 

layer, while combining UNet and ResNet models to 

optimize the architecture. Through experimental testing, 

the research technology has good stability and low 

power consumption capabilities. Wang et al.’s [29] 

study explored the impact of visual attention on the 

understanding of video object patterns. They found that 

in dynamic, task driven viewing processes, there is a 

strong correlation between the objects of human 

attention and clear judgments of the main objects. Based 

on these findings, researchers proposed a video solution 

and demonstrated its superiority and fast processing 

speed through experiments. Giraldo et al. [10] focused 

their research on video segmentation processing 

techniques. They proposed a semi supervised 

processing model that can achieve competitive results 

on both static and mobile camera videos, and requires 

less labeled data compared to current state-of-the-art 

methods. Ammar et al. [2] proposed a new method that 

utilizes a deep unsupervised anomaly detection 

framework and generative adversarial models to 

segment and classify moving objects in video 

sequences. This method has been evaluated on multiple 

datasets, demonstrating its effectiveness and 

superiority. Fu et al. [9] proposed a novel multimodal 

video instance segmentation method. This method 

combines motion information and appearance 

information to improve segmentation accuracy and 

achieves state-of-the-art segmentation performance on 

multiple datasets, demonstrating its superiority and 

robustness. Chan et al. [4] conducted research on video 

image segmentation techniques in the medical field and 

found that traditional image annotation is time-

consuming and difficult to manually annotate. Deep 

learning-based video segmentation technology can 

effectively address this issue. Therefore, a deep learning 

video multi-scale segmentation framework is proposed 

to better obtain image scale information through 

encoders and decoders. Applying it to specific 

scenarios, this technology has excellent application 

effects and important research value for medical image 

processing. Logeshwaran et al. [18] conducted research 

on current photography techniques, where image 

segmentation, calibration, and pixel processing are key 

tasks in the field of photography. In order to improve the 

quality of shooting images, an enhanced video 

segmentation processing technique is proposed, which 

improves the overall video effect by increasing video 

resolution, color, and image contrast. Finally, the 

technology was applied to specific scenarios, and the 

results showed that compared to similar technologies, it 

has better performance in video processing. Zheng et al. 

[30] found that in the field of video segmentation, 

weakly supervised training cannot meet the 

requirements of high-quality video segmentation. 

Therefore, in order to address the aforementioned 

issues, a study was conducted on the characteristics of 

video segmentation, and a solution was proposed to 

address weak supervision. Among them, contrastive 

negative sample mining is introduced, using learnable 

Gaussian masks to generate positive samples, 

highlighting the most relevant video frames for 

querying, thereby improving video segmentation 

performance. Relevant experimental analysis shows 

that this technology has good application effects in 

practical scenarios, overcoming the shortcomings of 

traditional weakly supervised video processing. 

In the field of video segmentation processing, 
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unsupervised video segmentation technology has 

attracted much attention. The UVOS proposed by Lee et 

al. [14] is a binary labeling problem per pixel, which 

aims to separate foreground objects from the 

background in the video without using the ground truth 

mask of the foreground objects. In order to improve the 

performance of UVOS, a simple frame selector was 

proposed in the study, which can select a “simple” 

reference frame to make subsequent VOS simpler. In 

addition, a new framework called iterative mask 

prediction was proposed in the study. Tested on three 

UVOS benchmark sets, including the Densely 

Annotated VIdeo Segmentation (DAVIS16) dataset, 

Freiburg Berkeley Motion Segmentation (FBMS) 

dataset, and SegTrack dataset, the proposed models by 

all exhibit excellent performance. Zhou et al. [33] 

proposed a motion attention model based on flow edges 

to solve the UVOS problem. He uses motion focused 

encoders to combine learning space and time 

characteristics, and designs a flow edge connection 

module to hallucinate the edges of blurred or missing 

areas in the optical flow. The experimental results on 

two challenging common benchmark FBMS datasets 

show that the proposed scheme is advantageous 

compared to state-of-the-art methods. Vecchio et al. 

[27] found that integrating position prior into VOS has 

been proven to be an effective strategy for improving 

performance. However, their large-scale application is 

not feasible. Gamification can help reduce annotation 

burden, but it still requires user participation. To address 

this issue, they proposed a VOS framework that utilizes 

the combined advantages of user feedback for 

segmentation and gamification strategies. This 

framework reproduces the ability of humans to 

accurately locate moving objects and uses simulated 

feedback to drive decisions in fully convolutional deep 

segmentation networks. Experiments on the DAVIS-17 

benchmark show that the model can provide users with 

prior knowledge. Huang et al. [11] conducted research 

on video segmentation and found that most methods rely 

on pixel-by-pixel manual annotation, which is very 

time-consuming and expensive. To solve this problem, 

researchers experimented with the method of achieving 

VOS through graffiti level supervision. However, using 

traditional network architecture and learning objective 

functions does not work well because the supervised 

information is sparse and incomplete. Therefore, they 

proposed the graffiti attention module and graffiti 

supervision loss as new elements to learn the VOS 

model to solve this problem. This method is close to the 

method that requires dense pixel by pixel annotation 

[16]. Raman et al. [23] proposed an algorithm to 

measure the efficiency of workflow scheduling in their 

research, which is used to solve traditional segmentation 

task problems. In the cloud environment, this 

technology schedules tasks to available resources 

through backfill algorithms and reduces the percentage 

of migration, compared to traditional “first come, first 

served” algorithms. In addition, they use the Berger 

model to measure the fairness of resource allocation and 

determine task reassignment based on the fairness value. 

Through experimental research, it has been proven that 

the proposed technology has excellent performance in 

both performance and efficiency. On the other hand, 

Zhu et al. [34] proposed a separable structural modeling 

method for semi Supervised Video Object 

Segmentation (SVOS). Unlike existing methods, this 

method not only captures the pixel level similarity 

relationship between the reference frame and the target 

frame, but also reveals the separable structure of the 

specified object in the target frame. This technology 

calculates a pixel-by-pixel similarity matrix using the 

representation of reference pixels and target pixels, and 

selects the highest-level reference pixels for target pixel 

classification. In the structural modeling branch, 

research techniques have extracted shared and 

individual features that can effectively represent the 

entire object and its components. In addition, this 

method is a fast algorithm that does not require online 

fine-tuning or any post-processing. This method has 

achieved excellent performance in terms of speed and 

accuracy through experiments. 

Based on the above research, it can be seen that video 

segmentation technology has a large number of 

applications in many scenarios. Traditional supervised 

video segmentation has limitations in many scenarios, 

and traditional segmentation techniques face problems 

in feature extraction, background processing, and other 

aspects, which cannot meet specific scene requirements. 

In this regard, research mainly starts from the 

unsupervised direction, based on improved CNN 

network technology, to conduct research on VOS in 

specific scenarios, in order to improve the processing 

effect of computer vision technology and promote the 

effective application of intelligent video segmentation 

technology. 

3. Construction of Digital VOS Model 

Based on Decomposition Expression 

This section mainly conducts relevant research on 

UVOS technology and adopts unsupervised technology 

for VOS. On the basis of traditional UVOS technology, 

the decomposition method is adopted to improve the 

video segmentation effect. At the same time, target 

segmentation is targeted at different scenes, and VOS 

models are constructed for both motion scenes and 

general scenes to achieve effective processing of 

different targets. 

3.1. Construction of VOS Model Based on 

Decomposition Method 

VOS technology is one of the important research topics 

in the field of computing. Most traditional segmentation 

techniques are based on supervised segmentation, which 
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cannot meet the segmentation requirements for special 

and complex scenes. SVOS technology can achieve 

good video segmentation results through a large number 

of segmentation label training. However, model training 

relies on a large amount of annotated data, which cannot 

meet specific video segmentation scenarios [15]. 

Considering the segmentation problem faced by SVOS 

technology, a video foreground segmentation model 

based on spatiotemporal similarity is introduced on the 

basis of decomposed expression to solve the problem 

[21]. VOS has different segmentation standards based 

on the type of segmentation, including pixel level 

consistency, motion information, spatial relationships, 

and other segmentation standards. In unsupervised 

segmentation, color is an important consideration and a 

relatively stable supervised signal. The input color is 

compared with the target frame image to determine the 

loss. Unsupervised target frame reconstruction is shown 

in Figure 1. 

 

Figure 1. Target frame reconstruction process. 

The specific principle is to transfer the color of the 

previous frame of the original image to the next frame 

according to the set rules, and use the stability of the 

color of the next frame as an unsupervised model signal 

to optimize the model. Define the reference frame as It-

1, the target as It, and input {It-1, It} into the model. The 

model embeds image features through backbone 

network, and embeds reference frame features as 

Equation (1). 
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In Equation (1), yt-1 is the backbone network reference 

frame output, and 𝜃t-1 is the backbone network 

parameter. The target frame feature embedding is 

Equation (2) [1]. 
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In Equation (2), yt refers to the target backbone network 

reference frame output, and 𝜃t refers to the target 

backbone network parameters. Target frame 

reconstruction involves calculating the similarity 

between the target frame and the reference frame at the 

corresponding position of the pixel, as Equation (3). 
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In Equation (3), 𝑦 𝑡
𝑖  is the feature vector corresponding 

to the i-th pixel in the target frame. P1 is the set of 

adjacent target pixels corresponding to the reference 

frame. 𝑦𝑡−1
𝑗

 is the feature vector corresponding to the jth 

pixel in the reference frame. St,t-1 represents the Matrix 

similarity between the reference frame and the target 

frame. Each row in St,t-1 corresponds to a target frame 

pixel, so its corresponding row is weighted and 

summed, and the sum result is used as the color value of 

the pixels in the reconstructed image, as Equation (4) 

[6]. 

, 11

,
1

ii
t S Vt t ttj

j j

p t
=  − −

 

In Equation (4), 𝑉𝑡−1
𝑗

 is the color value of the jth adjacent 

pixel under the reference frame target pixel. In the 

study, the Huber loss function was used to optimize the 

guidance model, while Adam was used to optimize the 

model parameters. The results are Equation (5) [24].  

1
Loss Hiin

=   

In Equation (5), Hi represents the pixel loss of the i-th 

reconstructed target frame. The reconstruction of target 

frames represents weights through the similarity 

between adjacent and target pixels, and it is necessary 

to ensure the consistency of time and space in video 

processing, ensuring the stability of each frame is the 

key to construction [14]. In this regard, decomposition 

expression is introduced to improve the training effect 

of the model. The matching module will be divided into 

saliency and spatiotemporal modules [25]. The saliency 

module is responsible for enhancing the target of each 

frame, while the spatiotemporal module ensures 

spatiotemporal consistency. The purpose of 

decomposition expression is to learn different potential 

variables in a task, and the change of one variable does 

not affect other variables, but it will learn independently 

from each other [22]. The set of variables is Equation 

(6).  
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Z1, Z2, …, Zn in Equation (6) represents a potential 

learning variable, and the potential variable meets the 

requirements of Equation (7).  
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In Equation (7), Zk represents the potential learning 

variable. Meanwhile, different variables will match 

different visual cues, as Equation (8).  

sin( , , , )
1 2

I v v vn=  

In Equation (8), sin() is a nonlinear mapping, and vn is a 

visual cue of potential variable Zk matching. Figure 2 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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shows the video segmentation process based on 

decomposition representation. 

 

 

Figure 2. Video segmentation process based on decomposition representation. 

3.2. Constructing a Video Foreground 

Segmentation Model Considering Motion 

Scenes 

For specific motion segmentation scenarios, the 

segmentation model based on decomposition 

representation cannot meet the real-time requirements, 

so a joint video segmentation strategy is adopted for 

optimization. In this regard, a real-time Foreground 

Segmentation Network based on single Linear 

Bottleneck and Pooling Compensation (FS-LBPC) 

segmentation method is proposed for motion scene 

segmentation. According to Lee et al. [14] research, the 

Linear Bottleneck and Pooling Compensation (LBPC) 

model utilizes an encoder decoder to achieve binary 

classification of video background and foreground 

pixels [5]. The encoder in the model will select the first 

four convolutional blocks of the VGG16 model for 

adjustment, and replace the convolution of the four 

convolutional blocks with a single linear bottleneck. 

Adopting the Tan et al. [26] framework, the decoder 

part consists of an activation function, double sampling, 

and convolution [13]. The model encoding and 

decoding structure is shown in Figure 3. 

The model decoding is mainly performed by the 

pyramid pooling module for multi-scale feature 

learning, while upsampling processes the output 

information of pooling compensation on the previous 

decoding output, and finally outputs the class 

probability using the sigmoid function. Using a Single 

Linear Bottleneck Operator (SLBO) in the model to 

reduce the computational burden, reducing channel 

dimensions through convolution designed in the 

module, and subsequently recovering through 

convolution. ReLU function is used in the bottle neck 

sub layer recovery channel, and the helix is mapped to 

the dimensional space through ReLU function and 

Random matrix. The SLBO is represented as Φ(x), as 

Equation (9).  

 ( )x A NoB x =   
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Figure 3. Structure diagram of model encoder and decoder. 

In Equation (9), A and B are both standard 

convolutions. Among them, A⋅N is a linear 

transformation, B is a nonlinear transformation, and N is 

a separable convolution. In order to reduce the amount 

of convolution operations, a single bottleneck operator 

is introduced into the model, which aims to increase the 
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depth and complexity of the network model while 

keeping the model parameters small, in order to better 

capture the feature information in the input data. The 

SLBO uses a module composed of four convolutions, as 

shown in Figure 4. 

 

  

a) Residual bottleneck operator. b) Single line layer bottleneck operator. 

Figure 4. Bottleneck operator structure diagram. 

The residual bottleneck operator in Figure 4 has 

undergone linear processing on both ends, while SLBO 

only retains one end of the bottleneck as linear, 

improving the computational efficiency of the model. 

The research adopts pooling compensation to solve the 

problem of information loss caused by encoding 

decoding structure in compression processing, mainly 

applying skip link theory and attention mechanism to 

improve the processing of details. The model pooling 

operation can be understood as down sampling the data, 

expressed using P-norm as Equation (10).  
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In Equation (10), m and n represent the upper and lower 

limits of numerical values, p represents positive real 

numbers, and aij is the operation matrix. The research 

mainly compensates for lost information through 

compensation pooling while suppressing irrelevant 

information. The processed weighted feature map is 

Equation (11).  

( )
k k

Y f X X


=  

In Equation (11), 𝜎 represents the activation function, 

fk×k represents the k×k convolution operation, and X 

represents the operated feature map. The detailed 

compensation for the entire pooling loss is Equation 

(12). Compensation pooling is used to compensate for 

lost information in the model and suppress irrelevant 

data. The details of the entire pooling loss compensation 

are shown in Figure 5. 

 

Figure 5. Schematic diagram of enhanced pooling loss details. 

The pooling operation processes the feature maps 

before the maximum pooling layer in the encoder layer 

through an attention mechanism, while suppressing 

irrelevant features. Finally, the encoder and skip links 

weight the feature map to compensate for lost details. 

3.3. Constructing a Video Segmentation Model 

Considering General Scenes 

The previous section mainly discussed video 

segmentation techniques for moving scenes, but in 

actual segmentation, the target may be either moving or 

stationary. At the same time, the video scene also 

changes with the camera scene, and the segmentation 

requirements for general scenes are actually higher. In 

order to achieve the processing of general video scenes, 

a spatiotemporal Sequence Modeling and Similarity 

Learning (STS) model for video foreground 

segmentation based on spatiotemporal similarity is 

proposed. The structure of the STS model is shown in 

Figure 6. 

 

Figure 6. Schematic diagram of STS model structure. 

The STS model mainly recognizes the appearance 

information of the target, without the use of optical flow 

calculation to achieve segmentation of the target. The 

model consists of twin encoders, decoders, 

segmentation modules, and similarity habits modules, 

with the core components being the similarity learning 

mechanism and transformer. The twin encoder is 

responsible for extracting features from image data, one 

for extracting historical frame data and the other for 

extracting current frame data, consisting of five 

convolutional modules. The Transformer module is 

mainly used for learning the features of historical frame 

backgrounds and foreground sequences, and provides 

reference for segmentation. The information generated 

by this module will undergo similar learning with the 

attention module to obtain more accurate segmentation 

feature maps, and the final binary classification results 

will be output by the segmentation module. The model 

uses Transformer to collect spatiotemporal information 

features of historical frames, and the main module will 

output corresponding values to the Transformer, 

responsible for predicting the sequence information of 

historical frame data. Define the decoder’s last output as 

z0∈ℝd, which serves as a query to output historical 

frame object feature data. The multi attention output is 

Equation (12). 

(10) 

(11) 
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In Equation (12), 𝑊𝑜
𝑛 and 𝑊𝑣

𝑛 are both weight matrices. 

In the attention module, if any position feature in the 

Transformer encoder represents ys,t∈ℝd, the output 

expression of the first cross attention module is 

Equation (13).  

, ,
n n

k W ys t s tk
=  

In Equation (13), 𝑊𝑘
𝑛 represents the attention output 

weight corresponding to the first crossover module, and 

the output expression of the second crossover module is 

Equation (14). 
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In Equation (14), 𝑊𝑘
𝑛 represents the attention output 

weight corresponding to the second crossover module. 

The final model decoder output is represented by 𝑧̂∞ , 

as Equation (15).  
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In Equation (15), 𝑊𝑞
𝑛 represents the corresponding 

weight output by the encoder, while H and W represent 

the height and width of the feature map, respectively. 

The transformer encoder is an important component in 

the transformer model, responsible for encoding and 

feature extraction of input sequences. The structure of 

the Transformer module is shown in Figure 7. 

 

Figure 7. Schematic diagram of Transformer module structure. 

The similarity learning between the output historical 

frame and the current frame results is mainly achieved 

by transforming the similarity matrix of the historical 

frame to obtain foreground features similar to the 

current frame. Finally, the final segmented feature map 

is obtained by fusing features into the segmentation 

module. Define Ua∈ℝW×H×C as the historical frame map 

vector, C as the current frame map vector, Ub∈ℝW×H×C 

as the number of feature map channels, and the affine 

matrix as S. In the affine matrix, each element represents 

a similarity between 𝑈𝑏
𝑇 and the historical frame Ua, as 

expressed in Equation (16). 

( ) ( )WH WHT
S U WUab


=   

Assuming that the weight matrix W can represent a 

diagonal matrix, the diagonalization is Equation (17). 

𝑊 = 𝑃−1𝐷𝑃 

In Equation (17), D represents a Diagonal matrix, and P 

represents a variable matrix. By changing the matrix, Ua 

and Ub are projected onto an orthogonal space. The 

calculation of the similarity distance between the two 

can remove the influence of ablation channel and reduce 

the feature Data redundancy. Finally, the affine output 

weight probability is calculated using the Softmax 

function, and the feature maps are concatenated 

according to the calculation dimension, which is input 

into the segmentation module to complete the target 

segmentation. The entire VOS process based on 

decomposition expression is shown in Figure 8. 

The research proposes a target video segmentation 

technique based on decomposition expression, which 

uses decomposition expression to calculate the target 

frame and reference frame of the video sequence, and 

obtains more accurate video reconstruction target data 

through similarity calculation. At the same time, 

considering both motion and general scenes, FS-LBPC 

and STS models were used to process the foreground 

information of motion and general scenes respectively. 

Finally, the segmentation model was used to achieve 

segmentation processing of the target video. 

 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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Figure 8. VOS based on decomposition representation. 

4. Algorithm Model Simulation Testing 

This section will conduct experimental analysis from 

two aspects: sports scenes and general scenes, in order 

to discuss the application effect of the proposed 

technology in VOS scenes. The testing content includes 

comparison of segmentation stability, segmentation 

loss, segmentation accuracy, etc., in order to evaluate 

the comprehensive application effect of the model. 

4.1. Video Foreground Segmentation Testing 

Considering Motion Scenes 

To verify the performance of the proposed model, 

experimental performance tests will be conducted on the 

universal dataset Change Detection Benchmark Dataset 

2014 (CDNet.20I4SM) and University of California, 

San Diego (UCSD). The CDNet.20I4SM dataset 

includes scenes such as adverse weather, camera shake, 

low frame rate, heat and turbulence, and shadows. The 

UCSD dataset mainly consists of 18 video sequences 

with truth labels, including dynamic backgrounds, 

which test the training performance of the model [12]. 

The testing system platform is WINDOWS 10, the 

graphics card is NVIDIA RTX2070, the running 

memory is 32GB, and the processor is Intel I7 16 core. 

To ensure the accuracy of the experiment and avoid 

errors, all tests are completed in a unified software and 

hardware environment, and simulation testing is 

completed on the Matlab experimental platform. The 

Foreground Image Segmentation (FgSegNet_) model, 

the Convolutional Networks for Biomedical Image 

Segmentation (MU Net) model, and the Cascade 

Convolutional Neural Network (Cascade CNN) model 

are used as benchmark models. The FgSegNet model is 

a deep learning-based foreground segmentation network 

designed specifically for real-time video analysis. It 

utilizes convolution for multi-scale feature encoding to 

improve the accuracy and efficiency of foreground 

segmentation. The MU Net model is a CNN designed 

specifically for biomedical image segmentation, which 

is used in medical image processing fields such as cell 

segmentation and neural structure recognition. Cascade 

CNN is a facial image detection model that utilizes 

multiple simple networks cascaded into a strong 

classifier, which is particularly suitable for image task 

processing in complex backgrounds [31]. The 

experiment selects the optimal model training j basic 

parameters through multiple trainings, and the basic 

parameters for model training are shown in Table 1. 

Table 1. Basic parameters for model training. 

Model training configuration parameters Numerical value 

Iterations 100 

Optimizer rho value 0.9 

Optimizer epsilon le-8 

Initial Learning rate 1e-4 

In addition, in the study, the Encoder module was 

selected as Imagenet, and the Optimizer was selected as 

MSProp. Select night scenes, adverse weather scenes, 

camera scenes, and turbulent weather scenes from the 

CDNet.20I4SM dataset to test the FS-LBPC model. The 

evaluation metrics include loss, precision, F-measure 

(F), Percentage of Wrong Classification (PWC), Frame 

rate Per Second (FPS), and segmentation accuracy. 

The loss measures the difference between the 

predicted and true values of the model, which is used to 

guide model training; Precision evaluates the accuracy 

of prediction results and calculates the proportion of 

samples that are actually positive in the predicted 

positive category; the F-value is the harmonic average 

of precision and recall, used to comprehensively 

evaluate the performance of the model. When the F-

value is high, the precision and recall of the model are 
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relatively good; PWC measures the proportion of 

misclassified samples in the total sample, which is an 

intuitive indicator for evaluating the performance of 

classification models; FPS is the frame rate per second, 

which measures the smoothness of a video. The better 

the value, the better; the segmentation accuracy 

represents the proportion of correctly segmented pixels 

to the total number of pixels, evaluating segmentation 

performance. The higher the value, the better the 

segmentation effect [26]. In the study, four scenarios 

were selected from the CDNet.2014SM dataset for 

training loss testing, including NightVid, Bad Weather, 

CameraJit, and Turbulence. The segmentation loss is 

shown in Figure 9. 

 

  

a) NightVid. b) Bad Weather. 

  

c) CamiraJit. d) Turbulence. 

Figure 9. Comparison of training losses based on FS-LBPC model. 

Figure 9-a), (b), (c), and (d) show the training losses 

of FS-LBPC under night, adverse weather, camera, and 

turbulent weather scenarios, respectively. According to 

the training effects in different scenarios, as the number 

of iterations increases, the Loss values of the training set 

and the testing set both decrease continuously, and at 

around 40 iterations, the training set and the validation 

set gradually converge. In the comparison of loss in 

different scenarios, the loss value at night convergence 

is 0.089, and the validation set is 0.268. According to its 

training results, the requirements for model training 

vary in different scenarios. In adverse weather 

scenarios, the loss of model training set is significant, 

while in camera scenarios, the loss of model validation 

set is significant. From the test results, it can be seen that 

adverse weather scenarios are more complex and test the 

segmentation performance of the technology. For this, 

select adverse weather scenarios and camera scenarios 

for further training. Figure 10 shows the training loss 

situation of multiple models. 

 

  

a) Bad Weather. b) CamiraJit. 

Figure 10. Multi model training loss situation. 

Figure10-a) and (b) show the training results for 

adverse weather scenarios and camera scenario loss, 

respectively. In the training of adverse weather 

scenarios, there are significant differences in the 

training results of different segmentation models. The 

best performing model is FS-LBPC, which tends to 

converge after 40 iterations, and at this point, the Loss 

value is 0.276. Next in performance is FgSegNet, which 

tends to converge after 47 iterations, with a Loss value 

of 0.586 at this point. The worst performing is Cascade 

CNN, which tends to converge after 48 iterations, with 

a Loss value of 0.903 at this point. The best performing 

camera scene is FS-LBPC, which tends to converge 

after 32 iterations with a Loss value of 0.216. The worst 
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case is Cascade CNN, which converges with a Loss 

value of 0.903 after 50 iterations. Select the Precision 

(P) indicator to evaluate the video segmentation effect 

of the model, as displayed in Figure 11. 

 

  

a) Bad Weather. b) CamiraJit. 

Figure 11. Test results of video segmentation precision for each model. 

It is still selected adverse weather scenes and camera 

scenes for segmentation training, as shown in Figure 11-

a) and (b), respectively. In adverse weather scenarios, 

the four models have different segmentation effects on 

videos, with the best performing being FS-LBPC, which 

tends to converge after 50 iterations with a P of 0.963; 

The P values for FgSegNet, MU Net, and Cascade CNN 

were 0.936, 0.863, and 0.806, respectively. In the 

camera scenario, similar to the test results in adverse 

weather scenarios, the P values for FS-LBPC, 

FgSegNet, MU Net, and Cascade CNN were 0.968, 

0.916, 0.846, and 0.796. According to the test results, 

the FS-LBPC model can achieve the best Precision 

performance in adverse weather and camera scenarios, 

indicating its excellent appearance in different 

scenarios. Figure 12 shows the stability test results of 

video segmentation for multiple models. 

 

 

a) F-value test results. 

 

b) Percent of false classification. 

Figure 12. Model video segmentation stability test. 

Figure 12-a) shows the F-value test results of 

multiple models. The experiment selected 11 types of 

video scenes from the CDNet2014 dataset and UCSD 

data for segmentation, and tested the segmentation 

stability of different models in different video scenes. 

The higher the F value, the better the video 

segmentation effect of the model. According to the 

curve results, FS-LBPC has high segmentation 

performance in scenes 1-11, with F values stable around 

1.0 and above 0.9. The second-best performing model is 

the FgSegNet model, but there is significant fluctuation 

in Scenario 8, with an F1 value of 0.46. Overall 

comparison, FS-LBPC has good segmentation 

performance and stability. Figure 12-b) is the PWC 

value result of the model video segmentation 

classification error percentage. The higher the PWC 
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value, the higher the accuracy of the model in image 

segmentation and the better the video segmentation 

effect. According to the results of the Figure 12-b) 

curve, the most stable video image segmentation is FS-

LBPC. In 1-11 video segmentation scenarios, the 

model’s misclassification percentage PWC value is less 

than 0.9, while FgSegNet, MU-Net, and Cascade CNN 

have significant stable fluctuations in Scenario 8. The 

PWC values of the three models in Scenario 8 are 5.3, 

10.6, and 19.6, respectively. According to the test 

results, 11 scenarios were selected for comparison, and 

the F-value and PWC value of different technologies 

were compared. The FS-LBPC model performed better 

than the comparison technology in different scenarios, 

indicating its high video segmentation performance and 

stability. 

4.2. Video Segmentation Testing Considering 

General Scenarios 

Generally, the DAVIS 16 and the FBMS are chosen to 

verify the video segmentation effect of the model for 

video segmentation [3]. The DAVIS16 dataset is a 

widely used dataset in the field of video segmentation, 

which includes 50 types of video materials. The types of 

videos cover commonly seen blurred motion scenes, 

occluded motion scenes, and constantly changing 

appearance scenes in general videos. In addition, each 

scene in the dataset is labeled at the pixel level. Some 

scene graphs are exhibited in Figure 13. 

STS training adopts random gradient descent 

optimization for model training. The initial Learning 

rate of the model is 2.5e-4, the maximum number of 

iterations of the model is set to 100, the batch size is set 

to 4, and the regularization coefficient is set to 1e-4, and 

the number of iterations is 60. The first step is to test the 

loss performance of STS, selecting the Filter Summary 

Net (FSNet) model and the CO-attention Siamese 

network (COSnet) model as benchmark models to 

verify the training effectiveness of the model. Among 

them, the FSNe model is a parameter sharing 

convolutional layer representation method called Filter 

Summary (FS), which aims to compress convolutional 

kernel parameters through one-dimensional 

representation and has good applications in the field of 

image processing. The COSnet model is an innovative 

twin neural network model that solves UVOS tasks 

through a shared attention mechanism and has good 

segmentation capabilities [17]. The results are shown in 

Figure 14. 

 

   

a) Character. b) Puddle jumper. c) Flying animal. 

   

d) Camel. e) Horse race. f) Parachute. 

   

g) Play. h) Car. i) Stroller. 

Figure 13. Scene graph of DAVIS16 dataset. 

Figure 14 shows the training loss results of different 

scene models. Among them, Figure 14-a) represents the 

model video segmentation loss result for the car scene. 

The best performing STS gradually converges after 25 

iterations, with a Loss value of 0.320. The second best 

performance is FSNet, which gradually converges after 

40 iterations, with a Loss value of 0.605. The worst 

performing COSnet gradually converges after 45 

iterations, with a Loss value of 0.756. The data results 

indicate that STS has excellent segmentation 

performance and the overall loss is the lowest in video 

segmentation for car sports events. Figure 14-b) is the 

model video segmentation loss result for the character 

scene. Compared to complex car motion scenes, the loss 

of each model in character scenes is lower. The best 

performing loss performance is STS, followed by 

FSNet, and the worst is COSnet. When the three models 

tend to converge, the Loss values are 0.036, 0.092, and 

0.146, respectively. Therefore, STS has better video 

segmentation performance. Table 2 shows the test 

results of video segmentation accuracy for different 

models. 

 

  

a) Car. b) Character. 

Figure 14. Training loss results of different scene models. 
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Table 2. Video segmentation effects of different models. 

Evaluation model Video segmentation scene Segmentation accuracy Split frames (fps） Split F-value 

STS model 

Car scene 0.963 52 0.855 

Character scenes 0.975 51 0.864 

Parachute scene 0.986 53 0.868 

Camel scene 0.995 54 0.896 

Horse racing scene 0.976 50 0.894 

Flying Animal Scenes 0.965 51 0.886 

Play scenes 0.983 52 0.846 

FSNet model 

Car scene 0.923 47 0.802 

Character scenes 0.926 46 0.796 

Parachute scene 0.934 47 0.756 

Camel scene 0.905 45 0.756 

Horse racing scene 0.924 46 0.735 

Flying Animal Scenes 0.903 47 0.756 

Play scenes 0.914 50 0.765 

COSnet model 

Car scene 0.856 35 0.653 

Character scenes 0.846 32 0.634 

Parachute scene 0.843 31 0.681 

Camel scene 0.863 35 0.646 

Horse racing scene 0.825 30 0.674 

Flying Animal Scenes 0.806 30 0.675 

Play scenes 0.843 32 0.694 

 

Table 2 selected 8 classic scenes from the DAVIS16 

dataset for video segmentation training, including car 

movement, characters, parachute descent, camel 

walking, horse racing, animal flight, and character play. 

It evaluates the video segmentation performance of each 

model using segmentation accuracy and the number of 

video segmentation frames. From the data in Table 2, 

there are significant differences in the effectiveness of 

model video segmentation in different scenarios. High 

speed motion scenes, such as horse racing, animal flying 

scenes, test the comprehensive segmentation ability of 

the model. The segmentation accuracy and the number 

of segmentation frames of the model in high-speed 

motion scenes will be affected. However, STS has the 

best comprehensive performance. In the horse racing 

and animal flight scenes, the segmentation accuracy of 

the model is 0.976 and 0.965 respectively; the 

segmentation accuracy of FSNet and COSnet in both 

scenarios is 0.924, 0.903, and 0.825, 0.806, respectively. 

At the same time, compare the number of split frames 

and F value in the horse racing and animal flying scenes: 

in horse racing, the frame rate values of STS, FSNet and 

COSnet are 50fps, 46fps and 30fps respectively, and the 

F values are 0.894, 0.735 and 0.674 respectively. In the 

animal flight scene, the frame rate values of STS, FSNet 

and COSnet are 51 fps, 47 fps and 30 fps respectively, 

and the F values are 0.886, 0.756 and 0.675 respectively. 

Therefore, STS has excellent video segmentation 

performance. Figure 15 shows the segmentation effect 

of the STS model. 

 

 

Figure 15. STS model video segmentation results. 

Figure 15 shows four sets of video segmentation 

results, including segmented frame images, background 

frame images, and real images. From the results, the 

proposed model can effectively segment video scenes. 

5. Discussion 

VOS is one of the important tasks in the field of 

computer vision, which aims to process video elements. 

It has a wide range of applications in various fields, such 

as video surveillance, intelligent transportation, medical 

image analysis, etc. For VOS tasks, researchers have 

proposed various methods and models to address this 

issue. An unsupervised decomposition expression VOS 

technique is proposed in the study, which considers 

complex segmentation scenarios. Compared with 

traditional segmentation techniques such as 
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unsupervised and supervised VOS techniques, this 

technique has higher segmentation accuracy and 

stronger adaptability [20]. 

Apply the proposed technology to specific 

experimental scenarios and select night scenes, adverse 

weather scenes, camera scenes, and turbulent weather 

scenes from the CDNet.2014SM dataset for 

experimental analysis. In sports scene analysis, 

FGSegNet model, MU Net model, and Cascade CNN 

model are selected as benchmark models. The proposed 

FS-LBPC model performs best in adverse weather and 

camera scenes, with accuracy rates of 0.963 and 0.968, 

respectively. However, the accuracy of other models is 

relatively low, with the worst being the Cascade CNN 

model, which has an accuracy of only 0.806. This 

indicates that the proposed FS-LBPC model has 

excellent performance in video segmentation. In 

addition, the researchers also tested the video 

segmentation stability of multiple models. According to 

the results of F-value and classification error percentage 

index, the proposed FS-LBPC model has high 

segmentation performance and stability in different 

video scenes. However, other models exhibit significant 

fluctuations in certain scenarios. 

In addition, considering video segmentation testing 

in general scenarios, the DAVIS16 dataset and FBMS 

dataset were selected to verify the performance of the 

model. Based on the evaluation of training loss results 

and segmentation accuracy, the proposed STS model 

performs well in different scenarios, with lower loss and 

higher segmentation accuracy. Especially in high-speed 

motion scenarios, the STS model performs better than 

other models. 

In summary, according to the research results, the 

proposed FS-LBPC model and STS model perform well 

in video segmentation tasks, with high segmentation 

accuracy and stability. These models have broad 

application prospects and can help improve the 

efficiency and accuracy of video segmentation, which is 

of great significance for research and application in 

related fields. 

6. Conclusions 

In the field of intelligent vision, VOS is one of the key 

contents of machine vision research. Traditional VOS 

focuses on supervised learning and relies on a large 

number of tag data. In order to overcome the problem of 

traditional supervised learning, this paper proposes a 

video segmentation method based on decomposition 

representation, which completes the recognition of 

spatio-temporal information and significant data 

through decomposition module. Considering the video 

segmentation of motion scenes and general scenes, the 

former proposes a joint pooling compensation technique 

and a single linear bottleneck video foreground 

segmentation technique, while the latter uses 

spatiotemporal similarity features to segment general 

video scenes by calculating similarity. The accuracy of 

model segmentation in adverse weather scenarios was 

tested using motion foreground segmentation. The 

precision P-values of FS-LBPC, FgSegNet, MU-Net, 

and Cascade CNN were 0.968, 0.916, 0.846, and 0.796, 

respectively. In general video scene segmentation 

testing, the training loss performance of the model is 

tested in the car scene: the proposed STS model 

performs best, gradually converging after 25 iterations, 

with a loss value of 0.320. In the test of video 

segmentation accuracy of different models, STS 

performs best in horse racing and animal flight scenes, 

with segmentation accuracy of 0.976 and 0.965 

respectively; the segmentation accuracy of FSNet and 

COSnet in both scenarios is 0.924, 0.903, and 0.825, 

0.806, respectively. Given this, the proposed video 

segmentation model has excellent segmentation 

performance. However, there are also shortcomings in 

the research. The unsupervised model designed only 

performs lightweight processing on some scenes, and in 

the future, some scenes can be compressed and pruned 

to improve the segmentation effect of the model. 
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