The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024 531

Improvised Software Code Comprehension Using
Data Mining

Ankur Dumka Bireshwar Dass Mazumdar
Department of Computer Science and  School of Computer Science Engineering
Engineering, Women Institute of and Technology, Bennett University

Technology-UTU Campus, India India
ankurdumka2@gmail.com bireshwardm@gmail.com

Ram Gopal Gupta
Department of Computer Science and
Engineering, VMSB Uttarakhand
Technical University, India
rgmail@rediffmail.com

Abstract: Millions of lines of code are used to create the modern software applications, which are more complicated in terms
of their structure, behaviour, and functionality. The rapid advancement of supporting and enabling technologies, for example,
is one reason why the development life cycles of these applications show a propensity to get shorter. As a result, a growing
amount of the expense associated with software development moves from the generation of new artefacts to their adaption.
Understanding the layout, functionality, and behaviour of current code artefacts is essential to this activity. The task of
understanding code is crucial to software maintenance. We employed data mining techniques including clustering, classification,
and associative rules to improvise software code comprehension.

Keywords: Software code comprehension, code mining, software maintainability, association, classification, correlation,
coupling, cohesion.

Received December 22, 2023; accepted May 9, 2024
https://doi.org/10.34028/iajit/21/3/15

1. Introduction

Understanding software source code is crucial to
performing software maintenance activities [2, 18, 19,
28, 32]. For this, a variety of traditional and intelligent
computing techniques have been used. However, it has
been demonstrated that data mining techniques are quite
beneficial and effective in retrieving necessary
information at various levels of abstraction. In order to
extract data about a specific C++ software from its
source code, correlation must be determined at the class
and function levels. It governs how difficult it would be
to alter a function within a class and how that would
affect the other correlated classes. We give a succinct
overview of data mining techniques with a focus on
source code comprehension in this paper.

Numerous elements of software maintenance,
including corrective maintenance, adaptive
maintenance, preventive maintenance and perfective
maintenance, and approximation of maintenance effort
time and cost, have made substantial use of data mining
techniques [5, 17]. The deployment of computing
methods and the software design perspective are the two
fundamental perspectives on software maintenance.
Data mining has been shown to be a very flexible and
valuable way for analyzing software from the level of
the source code to the level of the program [1]. The
interpretation and analysis of source code frequently use
clustering techniques from the data mining perspective.
Here, we discuss some of the pertinent research and
methods in this area.

2. Literature Review

Software is being utilized and developed in greater
guantities as a result of the rising demand. Software is
getting significantly bigger. Software maintenance tasks
including repair, expansion, and improvement start once
the software is in use [38]. The process of maintaining
software involves understanding, modifying, and
reconfirming the software [34]. The present software
business is dealing with significant concerns related to
program maintenance. The secret to effective software
maintenance is having a precise, quick, and thorough
grasp of the program. The best way to maintain software
is therefore to analyse and comprehend the program.

Clustering method is applied, in order to extract high
level subsystems [15, 26]. They have defined linkages:
single, combined, weighted and unweighted average
among various individual clusters, to measure the
detachment and likeness between the new cluster and
the other objects (A, B, C). They have demonstrated that
their correlation measure operates similarly to the
Jaccard metric by using the detachment and correlation
metrics for dual features.

Classified the issues in the software alteration record
using machine learning and data mining approaches
[27]. For the cataloguing of relevant and irrelevant files
using a cohesiveness measure, they have combined
syntactical and text-based features. A relationship that
may be used to anticipate if an alteration in a source file
may need variable alteration in other file has been
demonstrated using the induction approach of machine
learning.



532 The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

The difficulty of the program assembly, a solution to
the problem of clustering software segments has been
offered [25, 29]. By constructing the complicated
network module in accordance with the software
system, they convert the software module clustering
problem into a graph clustering problem. The software
module clustering problem is then solved using the SPS
software module clustering algorithm, and the best
clustering scheme is obtained by dynamic adjustment
and optimization that adheres to the “high cohesion” and
“low coupling” software design principles.

Software segmentation, recovery, and restructure
utilizing clustering approaches in Kunz and Black [12]
and Lung et al. [14]. They sought to incorporate
software applications using numerical taxonomy
clustering techniques. The approach has been used in:

« Software division during the design phase.

« In the process of reverse engineering.

» Software reorganization to facilitate evolution
throughout the maintenance phase.

» Enhancing the coupling and cohesion source code.

In order to find modification patterns-a method which
uses data mining over frequently modified source files
to analysis the alteration history of the code [37]. They
used frequent pattern-mining algorithm for association
rule mining and tested their methodology on different
sizable projects named Mozilla, Eclipse. Their approach
has been contrasted in a Comma Separated Values
(CSV) dataset with an association rule to recommend
program-code that could be related to a specified
source-code portion which describes changing
associations between files or functions [3, 36].

An association rule mining system based on Meta
rules [18] for pattern interpretation in software system
supplied source files. On five legacy systems,
association mining restrictions have been put in place.
Support, Confidence, and Coverage were utilised as
three indicators to assess the success of the association
rules [30].

A strategy based on data mining was developed to
understand the source code of Object-Oriented System
(0O0S) for maintainability [9, 10]. In order to more
clearly describe this class entity, presented the code in
Extensible Markup Language (XML) format and taken
into account a variety of Object Oriented Programming
(OOP) metrics. A data mining technique called K-
means clustering uses different input sets for classes
based on metric values and classes based on structural
criteria, such as the packages or subclasses to which
they belong. A program called JBoss, which includes
569 packages, 4,717 Java files, 6,448 classes and
1,615,289 lines of code has been taken into account.

The time to extract both static and dynamic
dependency graphs from the vast Mozilla.browser.1.3v
software system in an effort to evaluate the efficacy of
employing dependencies between software components
as input to a clustering approach [35]. Experimented

with various software clustering algorithms in a number
of different ways. By gathering data on function calls
made during runtime and outputted as output, they were
able to identify the dynamic dependency. The file that
defines the relation between the files substitutes
functions in a specially built script. From a total of 3,559
source files, they discovered a dynamical dependency
between 1,023 of them in this context. Then, they have
employed several filtering techniques to extract relevant
information.

The ability to understand software code is crucial for
code analysis [4]. Based on a review of the literature, we
have approached this issue by employing data mining
techniques to extract data at the file, class, and method
levels in order to compute coupling and cohesion using
various methods in this situation.

Creating new correlation metrics for calculating
cumulative coupling and cohesion indices is the main
goal of our work [22]. Source code understanding was
used to extract file, class, method, and other parameter
level information from source code [21]. Data mining
techniques such as C5.0, clustering and association were
used to examine the data at the file, class, and method
level. A knowledge base was created using this
information. In this work, we use standard class-level
calculation methods to relate the numbers of a particular
class to the different number of classes at various levels
(Very Low (VL), Low (L), Medium (M), High (H) and
Very High (VH)). Correlations between classes were
established based on shared functions within and
between classes. This article covers the following
topics: Section 1 describes the purpose of the work and
section 2 defines the literature review. Problem
description is stated in section 3 and solved in section 4
with k-means data mining techniques and the
association algorithm Apriori. Major contributions are
described in section 5 commutative coupling and
cohesion are computed through correlation matrices.
Section 6 describes the discussion. Section 7 defines the
conclusion of the work.

3. Problem Description

We have worked on software source-code of GitAhead
C++ project. It is an open-source Git client Graphical
User Interface (GUI) and is accessible to all. It is a
Medium-Large size application consists 494 classes,
9,902 functions and around 4,312 parameters.

In our research, we went through the steps of getting
the software code data from the GitAhead project then
extracting all pertinent data about the parent classes,
classes, data members, functions, function parameters
using one of the program code comprehension tools sci-
understand [33]. The segmental problem-solving
approaches have been used. The output from one
module is passed on to the next in a sequential order.
Each module’s performance can be checked again.
Block diagrams are used in this method to depict the



Improvised Software Code Comprehension Using Data Mining

different key phases and descriptions, as seen in Figure
1.

‘ C++ project ‘

.

‘ Code Comprehension Tools ‘

;

‘ Data Extraction ‘

:

‘ Populate Database ‘

.

Execute queries to extract data to apply Data Mining

;

‘ Implement Data Mining Method ‘

!

‘ Result Examination ‘

:

‘ Knowledge Creation ‘

Figure 1. Process work flow.

3.1. Explanation of Block Diagram in Figure 1

e C++ Project: in first phase’s, used GitAhead project
with open source code developed in the C++
programming language.

e Code Comprehension Tools: the sci-understand tools
are now used to parse source code projects. They
parse the entire project and provide information on
its classes, functions, member functions, and other
important  components.  Other  programming
languages supported by this tool include Java, C#,
Python, Ada, etc. It has the capacity to parse any
project type and provides important details for
understanding source code.

o Data Extraction: this step involves taking the parsed
output data from the tool, modifying it for the input
model, and saving it as an excel file. Now, we'll
utilise this excel file as an input to fill out a database
with all the information required for our job.

e Populate Database: the populated database using the
excel data that was used as input during this step. The
database was created using import and export
functionality of MySQL Service.

e Execute Queries to Extract Data to Apply Data
Mining: after building the database, we have
executed Structured Query Language (SQL) to
obtain the information we need. The next phase used
this resultant data which is stored into the excel file
to apply the data mining techniques.

e Implement Data Mining Methods: to the result
produced from the preceding phase, put on various
data mining techniques, such as classification,
association and clustering then analyse each

533

technique, which will be covered under section 4
below.

e Result Examination: the results will include
association method-Apriori, the rule set-C5.0, and
clustering with K-means of the class, functions, etc.,
which will be covered in further detail in sections 4
through 5.

e Knowledge Creation: In this stage, we will build a
knowledge base with information about the job that
is both quantitative and qualitative, as well as a
correlation matrix and a qualitative correlation
matrix. This block derives coupling, the National
Correct Coding Initiative (NCCI), Correct Coding
Initiative (CCI) and cohesion using diverse levels of
notion.

3.2. SQL Queries to Extract Data

The exported data in excel file format through software
code comprehension tools is imported into MySQL to
populated the database such as clustermatrix,
Filematrix, classmatrix, classdependencies,
functionmatrix etc., then executed several SQL queries
to extract the data from the database on different classes,
function, it’s types etc., S0 that the desired outcome can
be derived. for example:

e To determine which cluster we have to consider in
out study: The cluster that has high number of
records.

Select cluster_name, count(*)
from clustermetrix
group by cluster_name

e To find out which class is more valuable: Through
getting the occurrence of the classes in cluster2
Select count(*) cnt, ClassID, ClassName
from ClassMatrix
where ClasslID in
(Select ClassID from ClusterMatrix where
Cluster_name=....)
group by ClassID
order by cnt desc

e To know the most appreciated function: by getting
the frequently used function
Select count(*) fcnt, functionname
from FunctionMetrics fm, (select count(*) cnt,
ClassID, ClassName
from ClassMetrix
where ClassID in
(select ClassID from ClusterMetrix where
Cluster_ name=...)
group by ClassID
order by cnt DESC) clData
where fm.ClassID = clData.ClassID
group by FunactionName
order by clData.ClassID

e To extract the function types used in majority to the
given cluster



534

Select count(*), functiontype

From FucntionMetrix

where ClassID in

(Select ClassID from mfun

where mfun.cnt= (Select Max(cnt) from
(Select count(*) cnt, ClassID, ClassName from
ClassMatrix where ClassID in

(Select ClassID from ClusterMetrix where
Cluster Name=....)

group by ClassID) mfun))

group by functiontype

4. Application and Result Analysis
4.1. K-means Clustering

The project comprises of 494 classes and 9,902
functions. In our attempt to cluster data using the K-
means algorithm of data mining, we were successful in
obtaining five clusters. Significant source code

The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

information is present in each cluster. In this study, we
took into account the cluster2 data and examined the
cluster data for several factors, as indicated in Table 1.
This table reveals that cluster 2 accounts for the majority
of the data and includes 2905 records out of 2994.
Similar results may be found for clusters 1, 3, 4, and 5,
which include 34, 13, and 23 records, respectively.
These records show the percentage of frequency with
which each clustered class, class id, file, function, and
function type occurs. The class HunkWidget has the
maximum percentage, or 9.35 percent of occurrence,
among the additional classes in the identical cluster2, as
shown in Table 1. In the same cluster, class ID, file,
function, and function type percentage occurrences are
9.35 percent, 94.21 percent, 2.34 percent, and 100
percent, respectively. It also provides information on
which functions belong to which classes, their function
types, and how many times a function has been applied
to a cluster, for example, it also provides information on
how many specific functions are included in a given
class.

Table 1. Cluster-wise result where inputs are class, class 1D, file, function and function type.

Cluster | Records File Class ID Class Function Function type
Cluster 1 34 CommitList.cpp (38.23%) | 225 (41.32%) | CommitModel (41.32%) | fetchMore (17.22%) | public virtual (31.25%)
Cluster 2 2905 DiffView.cpp (94.21%) 549 (9.35%) HunkWidget (9.35%) Invalidate (2.34%) public (100%)
Cluster 3 13 StartDialog.cpp (88.34%) | 902 (99.78%) | RepoModel (99.78%) setShow (12.11%) public (12.11%)
Cluster 4 19 Commit.cpp (92.45%) 133 (100%) | CommitDelegate (100%) paint (24.56%) public (24.56%)
Cluster 5 23 ConfigDialog.cpp (58.35%) | 118 (58.35%) | GeneralPanel (58.35%) | gt_metacall (17.65%) | public virtual (50%)

4.1.1. Class and File Level Examination in Cluster

The two files  “AdvancedButton.cpp”  and
“BranchesPanel.cpp” have important contributions in
cluster2 as we can see in Figure 2-a) and (b). This allows
us to perform analysis at the file and class level.
Additionally, we observe that when software
maintenance is concerned with files and classes, files
with single connections--or, more precisely, links-to

250
200

150

count

100

50 ||
, ||||| ([T

m AdvancedButton
CommitDelegate

® BranchesPancl

m BranchesPanel

= CommitDetal
AuthorDate

mRepoModel
BooleanQuery
CheckoutCallbacks

LRI
files in classes

EditButton
BooleanQuery

 BoolcanQuery

m Editor
Amnotation
HostModel

u AdvancedButton

u EditorPanel
CommitDelegate
CommitModel

m AuthorDate

m AdvancedButton
ColumnViewDelegate
Comment

u LineVector

n DateRangeQuery

BranchesPanel
AdvancedButton

u AdvancedBution

m CommitModel
CommitEditor
AdvancedButton

= DefaltWidget

o AdvancedButton
BuiltinRegex
CommitDelegate

u CommitDetal

m BranchesPanel
FileWidget Header
ContractionState

 BuiltinRegex

u CheckoutCallbacks

FileWidget
w ColumnViewDelegate
mLexerLPeg

Button

Map
® ColumnViewDelegate
u CommitDelegate

a) Depiction of file and classes.

other classes play a significant role. Quantitative data
about the number and proportion of classes in each File
are shown in  Figure 2-¢). The file
‘AdvancedButton.cpp’ has the maximum percentage of
46.15 percent and count of 228; the lowest percentage
for files like ‘DiffCallbacks.cpp,” ‘unpacked.cpp,’ etc.,
is 0.20 percent and count of 1. It indicates that, among
other files used in the project, AdvancedButton.cpp is

the most frequently used and important file.

File Name

|ccunt

‘percentage ‘

File Name ‘count ‘percenrage ‘
AdvancedButton 228 46.15 DiffCallbacks 1 0.20
BranchesPanel 143 28.95
EditButton 113 2287 Documentindexer 1 0.20
CommitDelegate 104 21.05 pack_writepack 1 0.20
BooleanQuery 84 17.00  |mages 1 0.20
CommitModel 57 1154 EikterproxyModel 1 0.20
Editor 55 11.13
CommitDetail a9 9.92 | FooterButton 1 0.20
CommitEditor 49 9.92 bracket 1 0.20
Annotation 40 810  PpreviewWidget 1 0.20
AuthorDate 40 810 ¢ bmodulesPanel 1 0.20
HostModel 35 7.09
RepoModel 34 6.g Completer 1 0.20
Defaultwidget 33 6.68  known_host 1 0.20
EditorPanel 30 6.07  ToolsPanel 1 0.20
CheckoutCallbacks 29 5.87 Relative 1 0.20
BuiltinRegex 29 5.87 N
Filewidget 2% 506 8it_delta_index 1 0.20
ColumnViewDelegate 24 4.86 unpacked 1 0.20

b) Praportion of classes in their individual

files.

Figure 2. Percentage and count of classes in their individual files.

¢) Percentage and count of classes in their
individual files.



Improvised Software Code Comprehension Using Data Mining

4.1.2. Function and Class Level Examination in
Cluster

In cluster2, we can observe the correlation in great
extent between class and function. The class “LexState”
in Figure 3 has the most functions, close to 150
functions. There are numerous common functions that
are connected to various classes; this correlation matrix

160
140
120
100

80

Methods

60
40

0 H

20

hhhhh
T 225558

wwwwwww

LexStat

LineVectol

CommitEditol

HunkWidge

UTF8Iteratol
CommitDet:
PreviewWidg:
AuthorDa

File Delegat

File Lab:

535

will be covered in a later section. As indicated in Table
2, there is also a percentage and count of functions for
each class of cluster 2. For example, the class
“LexState” has 144 functions and a 5.16 percent
frequency within cluster 2, which is a significant
contribution to this cluster and the project code as a
whole.

\|||||||||||||||||||||||||||||||||||uuumummuu....
Lt

S

on

aeSgsS

Edlmr

StarredQue

Scintilla::DynamicLibrary|

s E

DateRangeQy
Progre ssDeIeg
Stacke dWidg
CaseFolderA
Submodule sPan

Classes

Figure 3. Representation of file and classes.

Table 2. Percentage and count of functions in class of cluster 2.

Class Count Percentage (%)
LexState 144 5.16
ContractionState 141 4.99
CommitModel 110 4.72
LineVector 115 4.10
ToolsPanel 25 1.24
DocumentIndexer 22 1.14
Indexer 22 1.14
TreeView 9 0.31
CommentWidget 5 0.17

4.2. Apriori Association Method

In data mining, the Apriori approach is mostly used for
data association [13]. Before being utilized as a
parameter in an association rule, specific terms must be
defined and illustrated.

We have taken into account the 5 classes and 4 related
functions in this situation, as in Table 3. As we can see
in the MarginView class, there are two functions; if a
function is in a class, indicated by 1, otherwise 0. The
functions Compile and PaintMargin have been taken into
consideration, whereas FindText and LayoutLine have
not been. Four additional classes and their corresponding
function combinations are present. The following
association approaches’ characteristic (metrics) will be
easier to grasp with the aid of this table.

 Support: the portion of occurrences in the dataset that
comprise the itemset is support or supp(A), of an
itemset, for example,

Supp(Compile, PrintMargin)=1/5= 0.2, meaning that

20% of all occurrences involve it.

Confidence: the likelihood that an antecedent and a
consequent will appear in the same transaction is
indicated by a rule's confidence level. The
conditional likelihood that something will happen
given a specific antecedent, for example,

Conf (=>A)=Supp(AUB)/Supp(A)
Rule for {PrintMargin}=>{LayouLine}

A B

Hence, Conf(A=> B) = Supp(AUB)/Supp(A) => (1/5)/
(2/5) = 1/2 = 0.5, means the rule has 50% confidence.

Lift: denoted as Lift(A=>B)=Supp(AUB)/Supp(A)*
Supp(B)=>0.2/(0.2 * 0.4)=0.2/0.08=2.5.

Instances: the quantity of instances for a specific
consequence and antecedent is known as instance.
Rule provision: reflects IDs percentage for whose
rule or consequent, antecedent is true. For instance,
if FindText and Compile together exits 20% in
exercise data, then the rule FindText=>Compile is
supported by 20% IDs.

Deployment: it measures the proportion of training
data that meets the prerequisite for the antecedent and
excluding consequent.

( Antecedent support in #of recors) — (Rule provision in #records)

Depl t=
epeoymen Number of recods

where
e Antecedent support: how many entries have the

antecedent being true in them
o Rule provision: entries where the consequent and the



536

antecedent are both true.

Table 3. Class and functions relation.
FindText

unctions Compile | PaintMargin |LayoutLine
Class
Document
RESearch
MarginView
EditView

RepoView

OO Ok
| OoOr|lolo
O Flolo
o ololo

4.2.1. Class and File Level Association

We identified a number of rules and a substantial
correlation between the cluster2 data and the file
AdvancedButton.cpp using the Apriori method.
Because with 98.74% and 8.52% levels of confidence
and support, class “LexState” is used 239 times in this
consequence, Table4 demonstrates that it has a
substantial  association with  five  antecedent
circumstances. The deployment and lift of the rule are

The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

also 0.107 and 1.04, respectively. The class “LexSate”
has the most confidence, instances and support in a
specific file called AdvancedButton.cpp, with 98.74
percent, 239 and 8.52 percent respectively, while the
class “ContractionState” has the fewest confidence,
instances and support, with 97.94 percent, 146 and 5.20
percent. To ensure that any changes to a class would
need a correspondingly high number of changes, the
information acquired would be helpful in enumerating
the relevance and closeness of a class inside a file. As a
result, class “LexState” undergoes the most changes,
whilst class “ContractionState” undergoes the least
changes.

Table 4 illustrates the comparison between Figures 2-
¢) and 3. We can see that the rule was mostly developed
for the “AdvancedButton.cpp” file because it made a
significant contribution.

Table 4. Association rules for file and class in cluster2 data.

Cg?:egg;r}?lis()a” Antecedent Rule ID| Instances | Confidence% |Support%|Rule provision%|Deployment | Lift
. i
AdvancedButton |Class=LexStae and ClassID=31 and FunctionTypp=Public| 31 249 97.34 8.52 8.41 0.107 1.04
Function
AdvancedButton |Class=LexStae and ClassID=26 and FunctionTypp=Public| 30 170 98.23 6.06 5.95 0.107 1.04
Function
AdvancedButton |Class=LexStae and ClassID=48 and FunctionTypp=Public| 29 164 98.17 5.85 5.74 0.107 1.03
Function
AdvancedButton |Class=LexStae and ClassID=53 and FunctionTypp=Public, 28 149 97.98 5.31 5.20 0.107  |1.03
Function
BranchesPanel Class=ContractionState and Class|D=38 and 27 146 97.94 5.20 5.10 0.107  |1.03
FunctionType=PublicFunction
160
140
120
100
w
=]
[=]
£ 80
L
=
60
40
. HHH I
0 ..
Ehh‘—‘h:—LHEELmhc:—i—g—ha—aa:mgtg“:::h:c:tg—
EBESEZIfLEEiLEEEIE IR EREgEEaiEEElE
5cE322323532Ee28529552 250055238388 8383383
SELEEEREZ T FECIL SEIRSFSET 523°09°9F38: ¥EF Sfz
"EEEET $2Eg ¥S5:rgl2 g3es 5 lfgi s %
S ° & 53 S £ = TEEE E gas B3 5
S3 z ga e & ° 3
= = & 2
é =]
£
=}
(%]
Classes

Figure 4. Functions association in classes within cluster2.

4.2.2. Association between Function and Class

The relationship among the classes and the functions
defined for them in cluster2 is illustrated in Figure 4.
There were 861 rules generated for 2905 entries. Table
5 displays the study of the association rule and observed
how the functions are linked to their respective classes.

Table 5. Study of class and function of rule for cluster2.

Records 2,905

Rule produced 861
Maximum support 0.178%
Minimum support 0.036%

Maximum confidence 100%

Minimum confidence 20%
Maximum lift 2803.0%
Minimum lift 2.932%




Improvised Software Code Comprehension Using Data Mining

4.3. C5.0 Method

As shown in Figure 5, the cluster2 data was also
exposed to the data mining approach of rule generation,
and interesting rules for the occurrences and
significance of those classes and techniques were found.
A class and several functions are associated within a
rule. The “LexState” class has a lot of connectedness

537

with functions, and most rules have been written for it,
according to the graph. The rule here gives the overall
number of functions pertaining to or linked to the
particular class. We receive the confidence level for the
rule generated and the number of occurrences of the
function in each rule, for example, Rule-4 for the class
DefaultWidget (1; 0.667).

Figure 5. Class and functions for rule set with C5.0.

If Function=ClasslInstance, then DefaultWidget: the
function “ClassInstance” belongs to the class
“DefaultWidget” using just one instance of their
relationship, and the rule has a confidence level of 66.7
percent.

4.3.1. Rule Generations

The rule created for each class and its related functions
was acquired when the C5.0 methodology was applied,
as shown in Table 6. This table lists all of the rules that
have been created for each class; for example, there
have been 2, 1, and 121 rules generated for model,
editor, and LexState, respectively. The chart also shows
the total rule produced for the other classes.

Table 6. Class and total rules produced with C5.0.

Class Total Rules Produced
Model 2
Editor 1
ListModel 3
DefaultWidget 45
Label 8
LexerPool 15
LexState 121
DiffCallbacks 9

The extended version of the rules is displayed in
Table 7, where each associated rule's condition is shown
in terms if-then, and the values inside the brackets are
structured as (x; y), signifying the rule’s confidence
level and the number of instances. For instance,
ListModel (3; 0.8) rule shows that the rule's confidence

level is 0.8, or 80%, and that the rule has been applied
to three occurrences of the condition.

Table 7. Rules produced with reference to Table 6.

Rules for Editor-contains 1 rule(s)
Rule 1for Editor (1; 0.667)
if Function=Editor
then Editor

Rules for ListModel-contains 3 rule(s)
Rule 1 for ListModel (3; 0.8)
if Function=ShowL.ist
then ListModel
Rule 2 for ListModel (9; 0.182)
if Function=GetL.ist
then ListModel
Rule 3 for ListModel (13; 0.133)
if Function=SetModel
then ListModel

Rules for Model-contains 2 rule(s)
Rule 1 for Model (1; 0.667)
if Function=SetModel
then Model
Rule 2 for Model (1; 0.667)
if Function=OnOpenModel
then Model

5. Knowledgebase Formation

Using the aforementioned beneficial outcomes for
GitAhead project, On the basis of shared behaviour
between classes, the knowledgebase formation has been
taken place. The same process we have adopted for two
other open-source projects Personal Software Process
(PSP) and Jet. These are downloaded from GitHub and
Thales [6, 23]. The actual structure of these projects has
been compared to discuss the outcome validity, novelty
and usefulness to the software maintainer.



538 The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

5.1. First Open-Source Project Study

The GitAhead application knowledge formation has
been explained here in detail, using the common
behaviour between classes, we may create a correlation
matrix. This correlation matrix shows the common
functions found in the related classes; for instance, in
the given below table; first row shows the C1 class, and
the data in adjacent columns displays how many
functions in C1, C3, C6, and C51 are shared. The count
of shared functions between C1 and C3, C5, C6, C7, and
the rest will be represented by equivalent column values
in a second row, C3. An analytical numerical
breakdown of the class and techniques is provided by

For simplicity, the various class names labelled as
C1, C3, and C5, etc., Our database contains details on
each Ci and the name of the related class.

Now, based on the five qualitative values (Very
High-VH, Hight-H, Medium-M, Low-L, Very Low-
VL) and the correlation matrix in Figure 6, we
constructed a new qualitative matrix.

For each of the aforementioned qualitative
characteristics, we have allocated a range of numerical
values, as indicated in Table 8. The frequent functions
used count shown in the Figure 6 correlation matrix.

Table 8. The qualitative values’ for quantitative range (X denotes the
count of functions).

this symmetric matrix. Here, the class name is X<10 VL
represented by C1, C3, ...C53 as illustrated in Figure 6. X>=10 AND X<25 | L
Additionall h q i b X>=25 AND X<35 | M
_ itionally, we have removed any matrix members X>=35 AND X<50 m
with values lower than 2, or filters above a threshold. X>=50 VH
61 C]1C8; C131C161C17 C18/C20[C23]C24/C27|C281C31/C36 €38 | CA0 1 C831CA5|CSO | (51 sS4
95 197 128 | 5SS 188 123138193 |43 1941 |(4821971 9 2815 S 7 19|51 6 | S8 153197155
calss 1051 26 {5296 123 asf107]as 10680 aof105] 9 [2¢] s 1 51 7 J1o8]s11 6 |ss]sslz0s]ss
97 | 105 32| ss|9si35las |17l 63la0a[9s a2 1322/ 10 (241 51 5| 7 (1061511 6 | 58] 73]338] 359
cs|28]26] 32 28 |28 |12 20|26 |27)28|26]|27]28) &4 |13]| s ] 3| s |2s]26) a8 16]25]128]20
FAEREIES 29|35 |s6 s31s2|61]a2]55) 928|513 7 615116 a2asiss]3s
€888 | 96|98 |28 |56 23 | 43 | 56 | 48 196 | 82 142198 10|24 5 S 7 11241 51 6 | 72159198155
] 23123135112129123 98 |41 137123141 1381351 6 (1815 3 5 1231291 8 1211331351} 20|
13| 38 |as |aa |20 35 | a3 | 50 a3 |as|22laal o310 71 31 5 a3l351 8 |21]33/as}]16]

Ci16] 93 |107]117] 26 | S6 | 96 | 41 | SO 60 110611021 33 {117] 9 | 24| S - 7 108157 ) 6 | S8 | 71 1117) S3

C17las|as 63l 27153/a8]137(28]|60 26 421631 5 241 al 3|5 |aslasi 6 |3a(/sai63]30

€18] 92 [1065]108) 28 | 52 | 96 | 23 | 43 | 106] 46 80 |20 ji0e)] 8 [2¢] 5] 5] 7li08ls51)] 6 )|56]59 |108]53

C20| 70 | 80 | 95 | 26 | 61 | 82 ] 41 | &5 | 102] 65 | 80 331951 9 1241 S 3 7 |82 1571 6 |S8|71195]51

3| e2 a0 a2 |27 |a2 a2l 18] 2238|2210 4 |28 al 3|5 |ax 38| 4 30|38 a2]30]

€28 97 | 105|122 28 | 55 | 98 | 35 | &4 [117] 63 [108] 55 | 42 15| 28| s | 5| 7 |318]511 6 | 58|71 |3a0] 55

€2 3 S 1101l & 9 1101l 6 S S S 8 9 4 115 4 3 3 3 1101 7 2 110 6 1131 9

241 2al2al 33 2sl2al3a 3028122626128 2a] & a1 31 s5s2al2a] a 28|28l 2a]2s
1) 5 5 5 & 5 S S 7 S < S 5 2 S 3 * 2 5 S S 5 S 4 S S
el s | s|1sl13]31si13l3lslaislalalsisz]sl]2 3| s13121s131s]3
7 7 7 5 7 7 - S 7 3 7 7 S 7 3 S S 3 7 S 2 7 7 7 S

CA0| 56 | 1031 306) 28 | 56 1124) 23 | 43 |105] 48 1108} 82 | 42 11141 10 | 23| S S 7 51 6 | 7|55 1114 61

cas| sy st s1l26 st s1l29 35 |s7lasls1lsrlasistl 7 28] 5135|518 37 |as 151135

cas| 6 5 ) B 6 6 -3 8 6 ) 6 6 < () 2 < S 2 2 L) 6 2 ) & 4

sslsslsslsla2|ml21l21]ss|3sis6|ssl3oissl1ol20]si1s]7[2w|37] s 39 s8] as
s3|s9l73l2s|as sol33l33|7alsalso|zn|3s|lnnle 2] a] 3|7 55]a6l6 73
€53]| 97 |105/138) 28 | S5 |98 | 35 | &8 1117 63 j1048) 95 | 42 11480 13 | 28 S S 7 11148] 51 6 |S8|73 S5
€sa| ss |55 155120133 155120 16|53 130153|51 3015519 28] 51 3|5 611351 a]a5]36]55
Figure 6. Correlation matrix.

Class | C1 nlasaaacommmmwmammwmmmawwwwwuwmmcss(.u
LCIR'e XH oA LN byl WIViIH!l M Nl il i viivliv VERCIRVERVEREVRAUTERSTARUTERCE
vilvilviviviviviiviviiaviviilviyvilvilyviviviiviiysiviiviviiviviiviviviivivilag

YHIYL YHIYHE. LIV H I HIWIVIIWI BIvHIWM L I M IV IV IV I VIV I I MLV YH YN
Yrlulyn ALl LRAYSERACIA UL IAYE 1] bt L YLLY VCEAYVEATCERYERUNERVERU AR EAG TR
EKNETR Alwvii lsmimismiviismimisivil i IVIVIIW Miviisiviiv A lw ] L
YHIVLEIVH ] YH | MIHIYHIVHIYHIVIIYH! H IVHI WL L I MV IV IV IYHIVIIYH IV IV WM H L W Iyl M
VOAERSEAY RN W VCAETRATIRVEA IR |4 A AAER SRS CIAVEL IR YEATERTSATRRCEALTERY R
| § il H A M| YHl M 1) ALViLM L Hlwiliivivilivivil i iviiM I ViIiviivii M A
vilviviiviiviviiwviv LUATEATEAYEASNAYERSAYEREAS iviiviiviiviiviiviiviiviisvwiviy

ﬁ: 0niln H A H N oyl MYl I8 M ISt L Ve AVTER R SN Sl il i M A

YHIV IV M IYHMIYHLE I LYL VI IWIVMI A IV I VIV IV IV L VLIV WM L VM LYY
HiVi! H Iy L_ﬂ! H CHESE'R YilyH!l B Iy LIV I VISPV WV VLI M IVHIVHT M
el iyl m_ o L A 8 Al VL AETEA RS nNiviynly Yi AR RLSRYEATERCERYIRRCE
vilvilvilvilviiviviviiviviivalivilw Mivlyi. v vilviviliviviiviviiviiviiviiwvivilag
VLBRTEACER R YHIYH! H LWL N I I VE Y VLIRS R WA SRR SAVERCIAVER AR RUERYRA ] YHIYH
sl l el s il sl il Il i Iy THER wviilwalvlialivl sl il lyl ) a
YEIVLIVHIYH L M IVHIVHL M LWL M IYMIVHIYE L VLY N ALV IVIIVIVIIWIVIIYWIVII VLI WL IV WML Ve W
vilviviiliiviiviliiviisvtiviivtiviiviivniviiwvid | MIViIVEIVLL L IVIIVIEINI IV NSl L ISt L YL
A VS . S | & A Al L L ' Al Yil L |8 L.LXL ywiwvivii L iyl L VVEATUR UNT A | & .
vilvalviiviilviilviiviiviiviviiviivilvaiviiviviiviiwviv YiIvVviilyvilviiviiviiviivmIiviivivily
viiyagiviiviviiy alviiviiviiviiviiviiviiviiviiviiivilws viiviviiviiviiiviviiviviiy
ERTEAVERA SAVEA A VERAEAVERVEA ' SALEA SAVEASAEASATEASA TSRS Ll yilalyily il il iylyn
YiVviVviilyvilyviIiviiviiviiYviilviiviviiviilviiviilviiviiviiviivivilw MIVEIVIIVLIVL VLIV L VLIS
YHIVIIVHIWHI M Iy YN L VNIHIW!I HIWIVILIYHI B Iy L [} uwivnniwviv YHIMVIIVL I VLIV INH L YR LYY
Yl lyily LYl LEAUERSERY SRS viviilyvlyviilvixivlyvivilaol vy il ly i yily iyl
YHIVLIVH MIVHIVH MIHIWIH Vil M I IVMI L IVEIVII L VLIW L VL Y ViIWilH HIVHELH
VEREAYEATSATEATEATEATEATIATEATAVEA SRTEATSAVEATSATEAEAYEALEA ' SAVSR T UAYEA"T niviiwviviiw
VEREATERATNATEAEATTASA TAEA ' SASA ' SA'EA'SATEASA SR NA SN WA SA SR ' SA'EN WA\. wix iyl
vilivlviliviivilviiviiviiviviiviviiviiviiviiviiviiviiviiviviiviviiviviiviwviv nwivilye
YEIVLIYHIYH! L HIVHE LI L IyHEMIYMIYLIYH YHl L WA SATERATEAVRELIAR VSR . EAYEAR NAYT YHI1H
Yl ol ot M L H L A iyl vl Nl A Gi Al i vl Lyl Yl M

: YHIWV I VHIYHI M IVHIVHL M IV LN IWHIVHEIWYNI VLIS M IYE ] L LIV IVIiIVIVIIWIVIIVHIVIIVLIWMIVE

calviliviiviiwl c Tl c TVl iwimiwiiviiwiMmiwivel t Iiveiviiveliviiwivii W LtiviiIvMI T HIVH

Figure 7. Qualitative correlation matrix.



Improvised Software Code Comprehension Using Data Mining 539

v

Figure 8. An illustration of class C1 using a qualitative correlation matrix.

Based on shared functions, table in Figure 7
illustrates the reasonable connection among C13 Class
with others. For instance, the logical attribute (VH)
linking Class C13 and Class C9 shows that they have
more than 50 identical functions. Similar to this, logical
relationships between classes C13, C3, and C5.., are

in the row we find the occurrences of VH records,
multiply by 0.8, After entering the outcomes into the
matrix of column correlation, normalise the data using
the procedure indicated below. In the column NCCI, we
input the normalised value.

Normalisation(Ni) =

[{Ni — Minimum(i)}/{Maximum(i) — Minimum(i)}] * [C + {D — C}]
which [C-D]=[0-1].

It has been discovered that C53, C24, C20, C16, and
C5 classes are having a 100% coupling or correlation,
but classes C9 and C13 have a minimal coupling of 0%.

Similar to this, by utilising the H, M, L and VL
degrees of correlation by numerical value 0.6, 0.4, 0.2
and 0.1 respectively between the classes, we can also
compute the normalised coupling index for certain
classes, as shown in Tables 10, 11, 12, 13, and 14
appropriately.

In the example of “H” we can see that class C23 has
a greatest coupling of 100% whereas classes “C16” and
“C1” have a least coupling of 0% and similarly for M,
L, VL is reflected in other tables.

linked with the logical attribute (H), which indicates that
they share more than 35 but fewer than 50 functions in
common. Similar to this, relationships between classes
C13, C17 and C1 are connected using the attribute (M),
indicating that they share more than 25 but fewer than
35 common functions; C13 and C6 and C28 classes are
connected using the reasonable attribute (L), indicating
that they share more than 10 but fewer than 25 common
functions; and Classes C13 and C2, C10, C16, and
others are connected by the attribute (\VL), suggesting
that there are a total shared functions between them. For
further classes, including C1, C2, and others. We can
also have web-graphical representations as shown in
Figure 8 and explanations.

5.1.1. Normalised Coupling Computation

We standardise the VH’s numerical value, which is
represented in Table 9. Assuming that VH is equal to 0.8,

Table 9. Highest and least coupling in Very High (VH).

Class |[C1|C3|C5|C7|C8|C9|C13 | Cl1l6 | C17 | C18 | C20 | C24 | C40 | C44 | C50 | C51 | C53 | C54 CCl NCCI
Cl | x |VH|VH|VH|VH VH VH|VH|VH|VH |VH |VH|VH|VH]| VH | 14*0.8-112| 0.92
C3 |VH| x |[VH|VH|VH VH VH|VH | VH|VH |VH|VH|VH|VH | VH 112 0.92
C5 |VH|VH| x |VH|VH VH|/VH|VH|VH|VH|VH |VH|VH|VH|VH | VH 12 1
C7 |VH|VH|VH| x |[VH VH|VH|VH |VH |VH|VH | VH VH 9.6 0.78
C8 |VH|VH|VH|VH| x VH VH|VH |VH|VH |VH | VH|VH | VH|VH 11.2 0.92
C9 X | VH 0.8 0
C13 VH| X 0.8 0
C16 |VH|VH|VH|VH|VH X |[VH|VH|VH|VH|VH |VH|VH |VH|VH|VH 12 1
C17 VH|VH VH | X VH | VH VH | VH 5.6 0.42
C18 |VH|VH|VH|VH|VH VH X |[VH|{VH|VH|VH|VH|VH | VH|VH 11.2 0.92
C20 |VH|VH|VH|VH|VH VH|VH|VH| x |[VH|VH |VH |VH|VH|VH]|VH 12 1
C24 |VH|VH|VH|VH|VH VH| VH|VH |VH| X [VH|VH|VH |VH | VH | VH 12 1
C40 |VH|VH|VH|VH|VH VH VH|VH|VH| X |VH | VH|VH | VH|VH 11.2 0.92
C44 |VH|VH|VH|VH|VH VH VH | VH | VH | VH | X VH 8.8 0.71
C50 |VH|VH|VH VH VH VH | VH | VH | VH X VH 8 0.64
C51 |VH|VH|VH VH VH | VH | VH | VH | VH | VH X | VH 8.8 0.71
C53 |VH|VH|VH|VH|VH VH|/VH|VH |VH|VH|VH |VH|VH|VH| x | VH 12 1
C54 |VH|VH|VH VH VH VH | VH | VH | VH VH | X 8 0.64




540 The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

Table 10. Highest and least coupling in High (H).

Class |C1|C3|C5|C7|C8|C9| C13 | C16 | C17 | C18 | C20 | C23 | C24 | C40 | C44 | C50 | C51 | C53 | C54 CCl NCCI
C1 X H H 2*0.6=1.2 0
C3 X H H H 1.8 0.08
C5 X H| H H 1.8 0.08
Cc7 X H H H H 2.4 0.16
C8 X H H H 1.8 0.08
Cc9 H X H H H H H 3.6 0.33
C13 HHH|IH X H H H H H H 6 0.67
C16 H X H 1.2 0
Cl7 |H|H H H X H H H H 4.8 0.5
C18 H H X H 1.8 0.08
C20 H| H X H 1.8 0.08
C23 |[H/H|H|H|H H H H H X H H H H H 8.4 1
C24 H| H H X 1.8 0.08
C40 H H H X 1.8 0.08
C44 H H H X H H H 3.6 0.5
C50 H H X H H 24 016
C51 H H H H X H 3 0.25
C53 H| H H X 1.8 0.08
Ch4 H H H X 1.8 0.08
Table 11. Highest and least coupling in Medium (M).
Class |[C1{C3|C5|C6|C7|C8|C9|C13 | C16 | C17 | C18 | C20 | C23 | C24 | C40 | C44 | C50 | C51 | C53 | C54 CCl NCCI
C1 X M M 2*0.4=0.8 | 0.07
C3 X M 0.4 0
C5 X | M 0.4 0
cC6 MIM|M|x | MM M M M M M M M M M M 6 1
C7 M| X M M 1.2 0.14
C8 M X 0.4 0
C9 M X M M 1.2 0.14
Ci3 |M X M M 1.2 0.14
C16 M X 0.4 0
C17 M M X M M 1.6 0.21
C18 M X 0.4 0
C20 M X 0.4 0
C23 M X M M 1.2 0.14
C24 M X 0.4 0
C40 M X 0.4 0
C44 M M X 0.8 0.07
C50 M M X 0.8 0.07
C51 M M| M X 1.2 0.14
C53 M X 0.4 0
C54 M M M X 1.2 0.07

Table 12. Highest and least coupling in Low (L).

Class |C1|C3|C5|C6|C7|C8|C9| C13 |C16/C17|C18|C20|C23|C24|C27|C28/C31|C40|C44|C48|C50|C51|C53|C54| CCI |NCCI
Cl | x L L 2*0.2 | 0.06
Cc3 X L L 0.4 | 0.06
C5 X L|L 0.4 | 0.06
C6 X L L L L L 1 0.21
c7 X L 0.2 0
cs X | L L|L 06 | 01
Co | L|L L L|Xx L L L L L L 2 0.47
C13 L X L L L L] 06 | 01
C16 X L 0.2 0
C17 X L 0.2 0
C18 L X L 04 | 0.6
C20 X L 0.2 0
C23 L L X L 06 | 01
C24 x | L|L 0.4 | 0.06
ca7 L L L |x L L L 1.2 | 0.26
c28 | L|L|L|L|L]L|L L LiL|jL]L]L|L X L|L LiL|L|L 4 1
C31 X L 0.2 0
C40 L L|L X 06 | 01
C44 L X 0.2 0
C48 L X 0.2 0
C50 L L L L|L X 1 0.21
C51 L X 0.2 0
C53 L|L X 0.4 | 0.06
C54 L L L L X | 03 ] 015




Improvised Software Code Comprehension Using Data Mining

541

Table 13. Highest and least coupling in Very Low (VL).

Class|C1|C2|C3|C5|C6|C7|C8|C9| C10 [ C13 | C16 | C17 | C18 | C19 | C20 [ C23 | C24 | C27 | C28 | C29 | C31 | C36 | C38 | C40 | C42 | C44 | C45 | C48 | C49 | C50 | C51 | C53 | C54 [ofe]} NCCI
Cl | x |VL| VL VL VL VL | VL | VL | VL VL VL | VL | VL 12*0.1=1.2 |0.047
C2 VL X VLVLVLVLVLVL| VL | VL | VL | VL | VL | VL [ VL | VL | VL | VL | VL [ VL | VL [ VL | VL | VL [ VL | VL |VL | VL [VL |VL |[VL |VL VL 3.2 1
C3 L x VL VL VL VL | VL | VL | VL VL VL | VL | VL 12 0.047
C5 L| X VL VL VL | VL | VL | VL VL VL | VL | VL 11 0
Cé L| X VL VL VL VL | VL | VL | VL VL VL | VL | VL 12 0.047
c7 L| X VL VL VL VL | VL | VL | VL VL VL | VL | VL 12 0.047
C8 L| X VL VL VL | VL | VL | VL VL VL | VL | VL 11 0
C9 L| x| VL VL VL VL | VL | VL | VL VL VL | VL | VL 12 0.047
C10 VLVLVLVLVLVLVLVL] x VL | VL [VL|[VL | VL |VL|[VL |VL|VL|VL|VL|VL|VL |VL|VL|VL|VL|VL|VL|VL|VL|VL|VL VL 3.2 1
C13 L VL X VL VL VL VL | VL | VL | VL VL VL | VL | VL 13 0.095
C16 L VL | VL X VL VL VL | VL | VL | VL VL VL | VL | VL 13 0.095
C17 L VL X VL VL VL | VL | VL | VL VL VL | VL | VL 12 0.047
C18 L VL X VL VL VL | VL | VL | VL VL VL | VL | VL 12 0.047
C19 VLVLVLVLVLVLVLVL| VL | VL | VL | VL | VL X VL | VL [ VL | VL | VL | VL | VL [ VL | VL | VL | VL | VL [ VL | VL | VL | VL | VL | VL [ VL 3.2 1
C20 L| VL VL X VL VL | VL | VL | VL VL VL | VL | VL 12 0.047
C23 L| VL VL X VL VL | VL | VL | VL VL VL | VL | VL 12 0.047
C24 L| VL VL X VL | VL | VL | VL VL VL | VL | VL 11 0
C27 VLVL|VL| LIVL] LI VL | VL [ VL | VL | VL | VL | VL | VL X VL [ VL | VL | VL | VL VL | VL | VL [ VL | VL VL VL 2.6 071
Table 14. Highest and least coupling in Very Low (VL).

Class |C1|C2|C3|C5|C6|C7|C8|C9| C10 | C13 | C16 | C17 | C18 | C19 | C20 | C23 | C24 | C27 | C28 | C29 | C31 | C36 | C38 | C40 | C42 | C44 | C45 | C48 | C49 | C50 | C51 | C53 | C54 | CCI [NCCI

C28 L VL VL VL VL | VL | VL | VL VL VL | VL | VL 1.2 10.047

C29 VLVLVLVLVLVLVLVL| VL | VL | VL | VL | VL | VL | VL | VL | VL | VL | VL VL | VL [ VL | VL [ VL | VL [ VL | VL | VL | VL | VL [ VL | VL |12 1

C31 VLVLVLVLVLVLVLVL VL | VL | VL | VL | VL | VL | VL | VL | VL [ VL | VL | VL X VL [ VL | VL [ VL | VL | VL VL | VL | VL | VL | VL | 31 |0.95

C36 VLVLVLVLVLVLVLVL VL | VL | VL | VL | VL | VL | VL | VL | VL [ VL | VL | VL | VL X VL | VL | VL [ VL |VL | VL |[VL|VL |VL|VL]|VL]|32 1

C38 VLVLVLVLVLVLVLVL VL | VL | VL | VL | VL | VL | VL | VL | VL [ VL | VL | VL | VL | VL X VL | VL | VL [ VL |VL | VL |[VL|VL|VL]|VL]|32 1

C40 L VL VL VL | VL | VL | VL X VL VL | VL | VL 11 0

C42 VLVLVLVLVLVLVLVL VL | VL | VL | VL | VL | VL [ VL | VL | VL | VL | VL | VL [ VL [ VL | VL | VL X VL | VL [ VL [ VL [ VL | VL | VL | VL | 32 1

C44 L VL VL VL VL | VL | VL | VL VL X VL | VL | VL 1.2 10.047

C45 VLVLVLVLVLVLVLVL VL | VL | VL | VL | VL | VL [ VL | VL | VL | VL | VL | VL [ VL [ VL | VL | VL | VL | VL X VL | VL | VL | VL | VL | VL | 32 1

C48 VLVLVLVLVLVLVLVL| VL | VL | VL | VL | VL | VL | VL | VL | VL [ VL | VL | VL VL | VL [ VL | VL | VL | VL X VL | VL | VL | VL | VL | 3.1 | 0.95

C49 VLVLVLVLVLVLVLVL| VL | VL | VL | VL | VL | VL | VL | VL | VL | VL | VL | VL | VL | VL | VL | VL [ VL | VL | VL | VL X VL | VL | VL | VL | 32 1

C50 L VL VL VL | VL | VL | VL VL VL | VL | VL X 11 0

C51 L VL VL VL VL | VL | VL | VL VL VL | VL | VL X 1.2 |0.047

C53 L VL VL VL | VL | VL | VL VL VL | VL | VL X 11 0

C54 L VL VL VL VL | VL | VL | VL VL VL | VL | VL X 1.2 |0.047

The idea of logical classification rule-based model to
put them in qualitative composition rule is being used in
Mazumdar and Mishra [20]. Here in Table 15 specifies
the classes name, class ID for various Levels which are
extracted from above results.

Table 15. Class Names with their 1D and quantitative level [20].

CLASS Class label Level
CommitDelegate Cc2 VL
CommitDetail C5 VH
CommitEditor C6 M
BuiltinRegex C10 VL
CommitDelegate C16 VH
GeneralPanel C19 VL
LexerLPeg C20 VH
LfsPanel C23 H
CommitModel Cc24 VH
RemotePage C28 L
RemotesPanel C29 VL
Indexer C36 VL
Model C38 VL
Bytelterator C42 VL
HistoryButton C45 VL
PhraseQuery C49 VL
HunkWidget C53 VH

5.1.2. Class Level Cohesion

We have defined in our work a formula to find
cumulative cohesiveness of a class in regard to the
function and types of function parameter inside a
cluster. For example, we have taken into consideration
the class “LexState,” which has 144 methods and 5
parameter types. As indicated in Table 16, we have
counted the actual instances of each parameter type and
added them, totaling 115 in this instance. So, the
following formula will be used to determine the
cumulative cohesion for class “LexState”.

The total value of the column indicates the number of
times the parameter type has been used; for example,
Table 16’s total value of 67 reveals that 67 out of 144
methods in the class “LexState” have used the int

parameter type. Similar to this, every other number
represents the entire amount of that parameter type. As
a result, we are able to determine how many different
parameter types are present in a class as:

[67+44+2+1+1=115]

We define intra-class cumulative cohesion, or
cumulative cohesiveness within a class, based on
heuristics as shown in Table 16 between functions and
parameters.

Cumulative cohesion

(Total number of occurrences of parameter types in a class)

- (Number of types of parameters * total number of methods)

=115/(5*144)=0.16

Table 16. Count of function’s parameters type for class ‘LexState’.

Functions int | const char * | Document * |uptr_t| LexerModule *
AllocateSubStyles 1 0 0 0 0
DescribeProperty 0 1 0 0 0
DescriptionOfStyle 1 0 0 0 0
LexState 0 0 0 0 0
LineEndTypesSupported| 0 0 0 0 0
NameOfStyle 0 0 0 0 0
NameOfStyle 0 0 0 0 0
NamedStyles 0 0 0 0 0
PrimaryStyleFromStyle | 1 1 0 0 0
PrivateCall 0 1 0 0 0
PropGetExpanded 1 0 1 0 0
PropGetint 1 0 0 0 0
PropSet 0 0 0 0 0
PropertyNames 0 1 0 0 0
Property Type 0 0 0 0 0
Setldentifiers 0 1 1 0 0
SetLexerLanguage 0 1 0 1 0
SetLexerModule 0 1 0 0 1
SetWordList 1 0 0 0 0
Total Count 67 44 2 1 1

5.2. Second Open-Source Project Study

PSP is a small-medium size open-source project. It
consists of 107 classes and 2,703 functions. After
applying clustering techniques, four clusters were found



542 The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

and we considered cluster 1 for our examination on the
basis of majority number of records and this cluster
includes 539 records out of 634. Similarly, records were
found for cluster 2, 3 and 4, which are 11, 46 and 38
respectively. These records show the percentage of
frequency with which each clustered class, it’s ID, file,
function, and function type occurs. The class
‘MainFrameBase’ has the maximum percentage, or
14.45 percent of incidence, between the additional
classes in the identical clusterl, as shown in Table 17.

In the same cluster, class Id, File, Function, and
Function Type percentage occurrences are 14.45
percent, 95.14 percent, 9.14 percent, and 100 percent,
respectively. It also provides information on which
functions belong to which classes, their function types,
and how many times a function has been applied to a
cluster, for example, it also provides information on
how many specific functions are included in a given
class.

Table 17. Cluster-wise result where inputs are class, class ID, file, function and function type.

Cluster | Records File Class ID

Class Function Function type

Clusterl 539

MainFrameBase.cpp (95.14%) | 59 (14.45%) | MainFrameBase (14.45%) | ResetVoltagesClick(9.14%)

public (100%)

Cluster 2 11 Renderer.cpp (83.21%) 87 (99.11%) Renderer (99.11%) Ortho2D (13.41%) protected virtual (21%)
Cluster 3 46 SyncMotor.cpp (48.34%) 34 (51.45%) SyncMotor (51.45%) GetElectricalData (22.11%) public (38.22%)
Cluster 4 38 Shunt.cpp (68.34%) 23 (100%) Shunt (100%) UpdateNodes (19.36%) public (55%)

After applying the process flow in PSP open-source
project which were used with GitAhead project, the
correlation matrix has been derived. It shows the shared
behaviour among the related classes.

5.2.1. Normalised Coupling Computation

It has been discovered VH degree of correlation or
coupling is found in C15, C23, C67, and C84 classes are
having a 100% coupling or correlation whereas C14 and
C55 have least coupling of 0%. Similarly to this, by
utilising the H, M, L, and VL degree of correlation by
numerical value between classes, we found the C12 with
100% coupling and C2 has 0% coupling for H degree,
C83 and C34 with 100% coupling for M and L
respectively. C3 and C97 have VL degree with 100%
coupling. Table 18 depicts the result.

Table 18. Class names with their ID and quantitative level [20].

CLASS Class label Level
AboutForm C3 VL
Bus C12 H
Branch C15 VH
MainFrameBase C23 VH
RateLimiter C34 L
Renderer C67 VH
Shunt C83 M
Transformer C84 VH
VertexBuffer C97 VL

5.2.2. Class Level Cohesion

To find the class cumulative cohesion or cumulative
cohesiveness, we applied same formula as in First
application study. The capacitor class has 15 methods
with 4 parameter types. As indicated in Table 19, these
4 parameters actual instance into the methods 0’
represents parameter not used and ‘1’ signifies
parameter used in given method:

Cumulative cohesion=[5+4+2+1]/(4*15)
=12/(4*15)=0.2

Table 19. Count of function’s parameters type for class ‘capacitor’.

Functions int bool Element * |[ElectricalUnit
GetCopy 1 0 0 0
AddParent 0 1 0 0
Draw 1 0 0 0
Capacitor 0 0 0 0
DrawDC 0 0 0 0
Contains 0 0 0 0
Intersects 0 0 0 0
Rotate 0 0 0 0
GetContextMenu 1 0 0 0
GetTipText 0 1 0 0
ShowForm 0 1 1 1
GetElectricalData 1 0 1 0
GetPUElectricalData| 1 0 0 0
SetElectricalData 0 0 0 0
SaveElement 0 1 0 0
OpenElement 0 0 0 0
Total Count 5 4 2 1

5.3. Third Open-Source Project Study

Jet is a small size open-source project. It consists of 15
classes and 300 functions. After applying clustering
techniques, three clusters were found and we considered
cluster 1 for our examination on the basis of majority
number of records and this cluster includes 137 records
out of 185. Similarly, records were found for cluster 2
and 3 which are 33 and 15 respectively. These records
show the percentage of frequency with which each
clustered class, class ID, file, function, and function type
occurs. The class ‘Assembler’ has the maximum
percentage, or 45.21 percent of occurrence, among the
additional classes in the identical clusterl, as shown in
Table 20. In the same cluster, class ID, file, function,
and function type percentage occurrences are 45.21
percent, 93.25 percent, 12.34 percent, and 100 percent,
respectively. It also provides information on which
functions belong to which classes, their function types,
and how many times a function has been applied to a
cluster, for example, it also provides information on
how many specific functions are included in a given
class.

The correlation matrix has been derived after
applying the process flow in Jet open-source project



Improvised Software Code Comprehension Using Data Mining

which were used with GitAhead project. It shows the
shared behaviour among the related classes.

543

Table 20. Cluster-wise result where inputs are class, class ID, file, function and function type.

Cluster [Records File

Class ID

Class Function Function type

Cluster 1| 137

Jet assembler.cpp (93.25%) | 6 (45.21%)

Assembler (45.21%) | Write (12.34%) | Public (100%)

Cluster 2| 33 Jet-lexer.cpp (88.53%)

13 (91.21%)

Lexer (91.21%) Peek (23.41%) |Public (19.68%)

Cluster 3| 15

Jet-diagnostic.cpp (56.12%)| 9 (68.45%)

Diagnostic (68.45%) | Build (34.35%) |Public (45.32%)

5.3.1. Normalised Coupling Computation

It has been discovered VH degree of correlation or
coupling is found in C3 and C12 classes are having a
100% coupling or correlation whereas C1 and C5 have
least coupling of 0%. Similarly to this, by utilising the
H, M, L, and VL degree of correlation by numerical
value between classes, we found the C4 with 100%
coupling and C11 has 0% coupling for H degree, C10
and C7 with 100% coupling for M and L respectively.
C6 have VL degree with 100% coupling. The Table 21
shows the analysied results.

Table 21. Class Names with their ID and quantitative level [20].

CLASS Class label Level
Assembler C3 VH
FileBuf C4 H
Lexer C6 VL
Option C7 L
Parser C10 M
Token C12 VH

5.3.2. Class Level Cohesion

To find the class cumulative cohesion or cumulative
cohesiveness, we applied same formula as in First
application study. The ‘Lexer’ class has 8§ methods with
2 parameter types. As indicated in Table 22, these 2
parameters actual instance into the methods ‘0’
represents parameter not used and ‘1’ signifies
parameter used in given method.

Cumulative cohesion=[1+2]/(2*8)
=3/(2*8)=0.1875

Table 22. Count of function’s parameters type for class ‘Lexer’.

Functions int Size t
lex lex_ 1 0
int _float 0 0
lex_str 0 0
lex_ident 0 0
peek 0 1
curr 0 0
next 0 1
skip_new_line 0 0
Total Count 1 2

6. Discussions

Many academics and researchers have employed certain
data mining methods for understanding source code. In
this part, a comparative study on several methods is
presented.

Comment-Mine a semantic search architecture [16],
which extracts knowledge related to software design
elements. The implementation and evolution results of

method is in the form of a knowledge graph. This helps
only to put a basic idea of program comprehension and
analyse various comments exist in software.

Towards understanding Third-Party Library (TPL)
dependency in the C/C++ ecosystem [31] a tool was
developed to identify the dependency patterns of C/C++
projects and construct a comprehensive and precise
C/C++ dependency detector.

A system was developed for identifying the
identifiers names to code review methods [7]. This work
was exclusively based upon naming practices.

A matrix developed by Husein and Oxley [8] and
Liang et al. [13] depicts the interdependency of the
elements. The elements are at the function or file level,
and calling connection between the file and the
functions depicted in a table. Model Predictive Control
(MPC) explained in their work. Between clusters
connections to other subsystem parts: Internal coupling
is computed in our study based on class correlations to
other classes inside a particular cluster at the cluster
level. Similar to this, we computed coupling at inter and
intra class level, through figuring out how the common
methods in a class are connected to one another.

System strength is the ratio of a subsystem’s internal
cohesion to that subsystem's exterior connection to all
other subsystems. This enables one to priorities or focus
on a specific subsystem when rebuilding the system.

Mining Program Source (MMS)-apriori association
rules have been implemented [11]. To demonstrate
associations between various members, methods,
method’s parameters at inter-cluster and ultra-cluster
associations.

The total of all clusters’ internal edges ought to be
greater than the sum of their outward edges [24]. To
improve cohesiveness and reduce coupling both inside
and across clusters of modules, or intra cluster and inter-
cluster, they have developed an optimisation approach
based on evolutionary algorithms. As a criteria for
evaluation, they computed cohesiveness and coupling
based on modularization quality attribute. We computed
class-level NCCI, CCl, and cohesiveness in our work.

Using source code, framework of knowledge
attainment is devised [9]. In order to facilitate partial-
automated program understanding, maintenance easier
and to offer beneficial perceptions of framework
features. Their technique is evaluated using a case study
from the industry. We have also extracted valuable data
for maintenance using clustering and association.

Table 23 illustrates the superiority of our suggested



544

work above other approaches found in the literature.
This table provides a comparative perspective between
our suggested method and other existing methods used
to understand C++ code. The table presents results
relating to Code Comprehension along with relevant
observations about current practices and our suggested
approach. The table's remark column demonstrates how
our suggested work is superior to other current works
that have been highlighted in the literature.

Following are the main characteristics (strengths) of
our work:

As far as we are aware, no one has created correlation
matrices for the two types of data using the common
approaches used by the classes.

The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

Additionally, the computation of the normalised and
cumulative coupling indices is unusual.

The key distinguishing characteristics in our work are
data mining techniques used for code comprehension
and software code dependencies are derived in the form
of a matrix of correlation among the classes by
considering the common functions. On this basis, we
have devised normalised cumulative coupling in terms
of VH, H, M, L, and VL. Apart from this we have
included the cumulative cohesion in consideration to
function parameters. The most significant class of
methods deriving from the clustering method's
parameter types has been computed cumulative
cohesion.

Table 23. Comparative analysis of different S/w code comprehension methodology.

SN Work Descriptions Data Mining Methodology

Code Comprehension related Result

Remarks

Comment-mine—a
semantic search approach to
program comprehension
from code comments [16].

Knowledge graph.

Knowledge representation based on
comments to aid program comprehension.

e No datamining method is proposed for
identifying interdependency of code elements.

e No computational model is proposed fo
measuring the cohesion or coupling.

o No methods to determine size of each module.

'Towards understanding TPL|
dependency in C/C++
ecosystem [31].

No standard data mining
method is mentioned.

In order to comprehend TPL dependencies
within the C/C++ ecosystem, the writers
compile the TPL databases, package
management, and dependency detection

e No datamining method is proposed for
identifying interdependency of code elements.

e No computational model is proposed fo
measuring the cohesion or coupling.

tools that are currently available, as well as
explain the dependence patterns found in
C/C++ projects.

o No methods to determine size of each module.

Naming practices in object-

No data mining method is

Studies on naming identifiers demonstrate

e No datamining method is proposed for

techniques to software
portioning, recovery, and

adopted in this work are based
on agglomerative hierarchical

3| oriented programming: an mentioned. the importance of informative names in identifying interdependency of code elements
empirical study [7]. enhancing program readability and e No computational model is proposed for
maintainability. measuring the cohesion or coupling.
¢ No methods to determine size of each module.
4 Applications of clustering | The clustering techniques | A matrix is developed for interdependency | e No model is proposed for measuring the

of the function or file level, and calling
connection between the file and the

cohesion or coupling.
« No methods to determine size of each module.

by MMS code [11].

restructuring [13]. approaches. functions.
An improved methodology | Clustering and association Identifies hidden relationships between | e No computational model is proposed fo
5 | on information distillation rules mining. classes, methods, and member data. measuring the cohesion or coupling.

o No methods to determine size of each module.

Software module clustering
as a multi-objective search
problem [24].

Clustering techniques.

Identifies highest cohesion and the lowest
coupling module.

e No computational model is proposed for
measuring the cohesion or coupling.
» No methods to determine size of each module.

Mining source code
elements for comprehending
object-oriented systems and

evaluating their

maintainability [9].

Clustering techniques .

Identifies interdependency of the function
or file level.

e No computational model is proposed fo
measuring the cohesion or coupling.
* No methods to determine size of each module.

Improvised software code
comprehension using data
mining. (our proposed
work)

Classification, association,
and clustering.

Identifies cohesion and the coupling in
module with logical and deterministic
value.

e Analyse each data mining techniques for each
element of software project (class, function,
etc.).

e Computational models are proposed for
measuring the qualitative and quantitative level
of cohesion or coupling.

e Logical method is proposed to determine
qualitative size of each module.

7. Conclusions

display classes and methods, we discovered that the

“LexState”

class has the most methods (150),

We have used a variety of technologies in our work to
extract information and create knowledge bases that can
be used to maintain software or to help with other tasks.

Initially the class ID, class, method, its type and file
are used for the purpose of clustering using K-means
method. Using the web representation technique, we did
class and file level study to display the association
between classes and the file. Using a cluster diagram to

accounting for 5.16 percent of all the methods in the
software.

By using the Apriori method, we were able to
determine how a class and the file specified in Section 4
are related to one another. This study clarifies the
importance of a function in a file evident. The data
mining technique C5.0 allows to view all methods
connected to a particular class. The number of rules that



Improvised Software Code Comprehension Using Data Mining

link a method's instances and confidence factor to a
certain class may also be obtained by utilising the
graphical style of representation.

We generate a quantitative and qualitative matrix
from the aforementioned study to identify coupling and
cohesiveness at various levels of abstraction. On the
basis of standard techniques, we have determined the
quantitative level. The coupling between various classes
before giving various levels: VL, L, M, H, and VH to a
range of numerical values. We utilised this level range
for a filtered matrix. Then, as indicated in Tables 9 to
14, we arrive at the five matrices that simply reflect the
coupling between classes at various levels: VL, L, M,
H, and VH.

The average coupling normalised index was
calculated by multiplying the number of levels in the
row by 0.8 and assigning each level a numerical value,
such as VH equates to 0.8 in Table 9 of VH. The
cumulative coupling column is provided as a
consequence. We derive the normalised coupling using
the usual normalisation formula to produce NCCI. This
provides us with an index that ranges from 0 to 100%,
which we can use to determine the classes with the
highest and lowest NCCI. We have determined a class's
cohesiveness, or the methods inside a class that take the
same sorts of arguments.

This technique can be used in the future to identify
cohesion and coupling while performing adaptive
maintenance that takes into account local or global
variables. It is possible to calculate weighted
cohesiveness by assigning a value to each class member.
In adaptive maintenance, these findings can be
completely applied, if a modification in one place
affects other resources of the source-code.

References

[1] Anquetil N. and Lethbridge T., “Experiments with
Clustering as a Software Remodularization
Method,” in Proceedings of the 6" Working
Conference on Reverse Engineering, Atlanta, pp.

235-255, 1999.
DOI:10.1109/WCRE.1999.806964
[2] Balmas F., Wertz H., and Singer J.,

“Understanding Program Understanding,” in
Proceedings of the 8" International Workshop
Program Comprehension, Washington (DC), pp.
256, 2000.
https://dl.acm.org/doi/10.5555/518049.856959
[3] Chen K., Tjortjis C., and Layzell P., “A Method
for Legacy Systems Maintenance by Mining Data
Extracted from Source Code,” in Proceedings of
the IEEE 6" European Conference Software
Maintenance and Reengineering, Washington
(DOC), pp. 54-60, 2002.
https://www.ihu.edu.gr/tjortjis/publications.htm
[4] Eisenbarth T., Koschke R., and Simon D.,
“Locating Features in Source Code,” IEEE

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

545

Transactions on Software Engineering, vol. 29,
no. 3, pp. 210-224, 2003.
DOI:10.1109/TSE.2003.1183929

Fayyad U., Piatetsky-Shapiro G., and Smyth P.,
“From Data Mining to Knowledge Discovery: An
Overview,” Advances in Knowledge Discovery
and Data Mining, pp. 1-34, 1996.
https://dl.acm.org/doi/10.5555/257938.257942
GitHub, The-NextGen-Project/jet,
https://github.com/The-NextGen-Project/jet, Last
Visited, 2024.

Gresta R., Durelli V., and Cirilo E., “Naming
Practices in Object-Oriented Programming: An

Empirical ~ Study,” Journal of Software
Engineering Research and Development, vol. 11,
no. 1, pp. 1-16, 2023.

https://doi.org/10.5753/jserd.2023.2582

Husein S. and Oxley A., “A Coupling and
Cohesion Metrics Suite for Object-Oriented
Software,” in Proceedings of the International
Conference on Computer Technology and
Development, Kota Kinabalu, pp. 421-425, 2009.
DOI:10.1109/ICCTD.2009.209

Kanellopoulos Y., Dimopulos T., Tjortjis C., and
Makris C., “Mining Source Code Elements for
Comprehending Object-Oriented Systems and
Evaluating their Maintainability,” SIGKDD
Explorations, vol. 8, no. 1, pp. 33-40, 2006.
https://doi.org/10.1145/1147234.1147240
Kanellopoulos Y. and Tjortjis C., “Data Mining
Source Code to Facilitate Comprehension:
Experiments on Clustering Data Retrieved from
C++ Program,” in Proceedings of the 12" IEEE
International Workshop on Program
Comprehension, Bari, pp. 214-223, 2004.
DOI:10.1109/WPC.2004.1311063
Kanellopoulos Y., Makris C., and Tjortjis C., “An
Improved  Methodology on  Information
Distillation by Mining Program Source Code,”
Data and Knowledge Engineering, vol. 61, no. 2,
pp. 359-383, 2007.
https://doi.org/10.1016/j.datak.2006.06.002
Kunz T. and Black J., “Using Automatic Process
Clustering for Design Recovery and Distributed
Debugging,” |IEEE Transactions on Software
Engineering, vol. 21, no. 6, pp. 515-527, 1995.
DOI:10.1109/32.391378

Liang X., Xue C., and Huang M., “Improved
Apriori Algorithm for Mining Association Rules
of Many Diseases,” in Proceedings of the 5"
International Symposium, ISICA, Wuhan, pp. 272-
279, 2010.
https://link.springer.com/chapter/10.1007/978-3-
642-16388-3_30

Lung C., Zaman M., and Nandi A., “Applications
of Clustering Techniques to Software Portioning,
Recovery and Restructuring,” The Journal of
Systems and Software, vol. 73, no. 2, pp. 227-244,


https://doi.org/10.1109/WCRE.1999.806964
https://dl.acm.org/doi/10.5555/518049.856959
https://www.ihu.edu.gr/tjortjis/publications.htm
https://doi.org/10.1109/TSE.2003.1183929
https://dl.acm.org/doi/10.5555/257938.257942
https://github.com/The-NextGen-Project/jet
https://doi.org/10.5753/jserd.2023.2582
https://doi.org/10.1109/ICCTD.2009.209
https://doi.org/10.1145/1147234.1147240
https://doi.org/10.1109/WPC.2004.1311063
https://doi.org/10.1016/j.datak.2006.06.002
https://doi.org/10.1109/32.391378
https://link.springer.com/chapter/10.1007/978-3-642-16388-3_30
https://link.springer.com/chapter/10.1007/978-3-642-16388-3_30

546

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

2004.
1212(03)00234-6
Maione C., Nelson D., and Barbosa R., “Research
on Social Data by Means of Cluster Analysis,”
Applied Computing and Informatics, vol.
15, no. 2, pp. 153-162, 20109.
https://doi.org/10.1016/j.aci.2018.02.003
Majumdar S., Papdeja S., Das P., and Ghosh S.,
Advanced Computing and Systems for Security,
Springer, 2020.
https://link.springer.com/chapter/10.1007/978-
981-15-2930-6_3

Mancoridis S., Mitchell B., Chen Y., and Gansner
E., “Bunch: A Clustering Tool for the Recovery
and Maintenance of Software System Structures,”
in Proceedings of the IEEE International
Conference on Software Maintenance for
Business Change, Oxford, pp. 50-59, 1998.
DOI:10.1109/1CSM.1999.792498

Magbool O., Babri H., Karim A., and Sarwar M.,
“Metarule-Guided Association Rule Mining for
Program Understanding,” IEE Proceedings-
Software, vol. 152, no. 6, pp. 281-296, 2005.
DOI:10.1049/ip-sen:20050012

Mayrhauser A., Vans A., and Howe A., “Program
Understanding Behaviour during Enhancement of
Large-Scale Software,” Journal of Software
Maintenance: Research and Practice, vol. 9, no.

https://doi.org/10.1016/S0164-

5, pp. 299-327, 1997.
https://doi.org/10.1002/(S1CI1)1096-

908X (199709/10)9:5<299::AlD-
SMR157>3.0.CO;2-S

Mazumdar B. and Mishra R., “Customer

Orientation Based Multi-Agent Negotiation for
B2C e-Commerce,” International Journal of
Agent Technologies and Systems, vol. 2, no. 2, pp.
24-48, 2010. https://www.igi-
global.com/article/customer-orientation-based-
multi-agent/43867

Moreira G. and Santos J., “Applying Coupling and
Cohesion Concepts in Object-Oriented Software:
A Controlled Experiment,” in Proceedings of the
19™ Brazilian Symposium on Software Quality,
Sao Luis, pp. 1-10, 2020.
https://doi.org/10.1145/3439961.3439969

Offutt J., Abdurazik A., and Schach S,
“Quantitatively ~ Measuring ~ Object-Oriented
Couplings,” Software Quality Journal, vol. 16, no.
4, pp. 489-512, 2008.
https://link.springer.com/article/10.1007/s11219-
008-9051-x

Oliveira T, Thales1330/PSP,
https://github.com/Thales1330/PSP/tree/master,
Last Visited, 2024.

Praditwong K., Harman M., and Yao X,
“Software Module Clustering as a Multi-
Objective Search Problem,” IEEE Transactions

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

on Software Engineering, vol. 37, no. 2, pp. 264-
282, 2011. DOI:10.1109/TSE.2010.26

Rathee A. and Chhabra J., “Improving Cohesion
of Software System by Performing Usage Pattern
Based Clustering,” in Proceedings of 6"
International Conference on Smart Computing
and Communication, Kurukshetra, pp. 740-746,
2018. https://doi.org/10.1016/j.procs.2017.12.095
Saeed M., Magbool O., Babri H., Hassan S., and
Sarwar S., “Software Clustering Techniques and
the Use of Combined Algorithm,” in Proceedings
of the 7" European Conference on Software
Maintenance and Reengineering, Benevento, pp.
301-306, 2003.
DOI:10.1109/CSMR.2003.1192438

Shirabad J., Lethbridge T., and Matwin S.,
“Mining the Maintenance History of Legacy
Software System,” in Proceedings of the
International Conference  on Software
Maintenance, Amsterdam, pp. 95-104, 2003.
DOI:10.1109/1ICSM.2003.1235410

Standish T., “An Essay on Software Reuse,” IEEE
Transactions on Software Engineering, vol. SE-
10, no. 5, pp. 494-497, 1984.
DOI:10.1109/TSE.1984.5010272

Sun J. and Ling B., “Software Module Clustering
Algorithm Using Probability Selection,” Wuhan
University Journal of Natural Sciences, vol. 23,
no. 2, pp. 93-102, 2018.
https://link.springer.com/article/10.1007/s11859-
018-1299-9

Supriyamenon M. and Rajarajeswari P., “A
Review on Association Rule Mining Techniques
with Respect to their Privacy Preserving
Capabilities,” International Journal of Applied
Engineering Research, vol. 12, no. 24, pp. 15484-
15488, 2017.
https://www.ripublication.com/ijaer17/ijaervi2n2
4 216.pdf

TangW., Xu Z., LiuC.,WuJ., Yang S., Li Y., and
Liu Y., “Towards Understanding Third-Party
Library Dependency in C/C++ Ecosystem,” in
Proceedings of the 37" IEEE/ACM International
Conference on Automated Software Engineering,
Michigan, pp. 1-12, 2022.
https://doi.org/10.1145/3551349.3560432

Tiarks R., “What Programmers Really Do: An
Observational Study,” Softwaretechnik-Trends,
vol. 31, no. 2, pp. 36-37, 2011
https://api.semanticscholar.org/CorpusiD:172263
04

Understand by SciTools,
http://www.scitools.com/, Last Visited, 2024.
Wedyan F. and Abufakher S., “Impact of Design
Patterns on Software Quality: A Systematic
Literature Review,” IET Software, vol. 14, no. 1,
1-17, 2020. https://doi.org/10.1049/iet-
sen.2018.5446


https://doi.org/10.1016/S0164-1212(03)00234-6
https://doi.org/10.1016/S0164-1212(03)00234-6
https://doi.org/10.1016/j.aci.2018.02.003
https://link.springer.com/chapter/10.1007/978-981-15-2930-6_3
https://link.springer.com/chapter/10.1007/978-981-15-2930-6_3
https://doi.org/10.1109/ICSM.1999.792498
https://doi.org/10.1049/ip-sen:20050012
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5%3c299::AID-SMR157%3e3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5%3c299::AID-SMR157%3e3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5%3c299::AID-SMR157%3e3.0.CO;2-S
https://www.igi-global.com/article/customer-orientation-based-multi-agent/43867
https://www.igi-global.com/article/customer-orientation-based-multi-agent/43867
https://www.igi-global.com/article/customer-orientation-based-multi-agent/43867
https://doi.org/10.1145/3439961.3439969
https://link.springer.com/article/10.1007/s11219-008-9051-x
https://link.springer.com/article/10.1007/s11219-008-9051-x
https://github.com/Thales1330/PSP/tree/master
https://doi.org/10.1109/TSE.2010.26
https://doi.org/10.1016/j.procs.2017.12.095
https://doi.org/10.1109/CSMR.2003.1192438
https://doi.org/10.1109/ICSM.2003.1235410
https://doi.org/10.1109/TSE.1984.5010272
https://link.springer.com/article/10.1007/s11859-018-1299-9
https://link.springer.com/article/10.1007/s11859-018-1299-9
https://www.ripublication.com/ijaer17/ijaerv12n24_216.pdf
https://www.ripublication.com/ijaer17/ijaerv12n24_216.pdf
https://doi.org/10.1145/3551349.3560432
https://api.semanticscholar.org/CorpusID:17226304
https://api.semanticscholar.org/CorpusID:17226304
http://www.scitools.com/
https://doi.org/10.1049/iet-sen.2018.5446
https://doi.org/10.1049/iet-sen.2018.5446

Improvised Software Code Comprehension Using Data Mining

[35]

[36]

[37]

[38]

Xiao C. and Tzerpos V., “Software Clustering
Based on Dynamic Dependencies,” in
Proceedings of the 9" European Conference on
Software Maintenance and Reengineering,
Manchester, pp. 124-133, 2005.
DOI:10.1109/CSMR.2005.49

Yadav V., Singh R., and Yadav V., “Estimation
Model for Enhanced Predictive Object Point
Metric in OO Software Size Estimation Using
Deep Learning,” The International Arab Journal
of Information Technology, vol. 20, no. 3, pp. 293-
302, 2023. https://doi.org/10.34028/iajit/20/3/1
Ying A., Murphy G., Ng R., and Chu-Carroll M.,
“Predicting Source Code Changes by Mining
Change History,” IEEE Transactions on Software
Engineering, vol. 30, no. 9, pp. 574-586, 2004.
DOI:10.1109/TSE.2004.52

Zhang M., Hall T., and Baddoo N., “Code Bad
Smells: A Review of Current Knowledge,”
Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, no. 3, pp. 179-
202, 2011. https://doi.org/10.1002/smr.521

547

Ram Gopal Gupta research scholar,
Department of Computer Science and
Engineering, VMSB Uttarakhand
Technical ~ University, Dehradun,
Uttarakhand-India.

Ankur Dumka associate professor,
Department of Computer Science and
Engineering, Women Institute of
Technology, Dehradun, Uttarakhand-
India.

Bireshwar Dass Mazumdar
associate  professor, School of
Computer Science Engineering and
Technology  (SCSET), Bennett
University, Greater Noida, Uttar
Pradesh-India.


https://doi.org/10.1109/CSMR.2005.49
https://doi.org/10.34028/iajit/20/3/1
https://doi.org/10.1109/TSE.2004.52
https://doi.org/10.1002/smr.521

