
The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024                                                             531 

Improvised Software Code Comprehension Using 

Data Mining 

Ram Gopal Gupta 

Department of Computer Science and 

Engineering, VMSB Uttarakhand 

Technical University, India 

rgmail@rediffmail.com 

Ankur Dumka 

Department of Computer Science and 

Engineering, Women Institute of 

Technology-UTU Campus, India 

ankurdumka2@gmail.com 

Bireshwar Dass Mazumdar 

School of Computer Science Engineering 

and Technology, Bennett University 

 India 

bireshwardm@gmail.com 

Abstract: Millions of lines of code are used to create the modern software applications, which are more complicated in terms 

of their structure, behaviour, and functionality. The rapid advancement of supporting and enabling technologies, for example, 

is one reason why the development life cycles of these applications show a propensity to get shorter. As a result, a growing 

amount of the expense associated with software development moves from the generation of new artefacts to their adaption. 

Understanding the layout, functionality, and behaviour of current code artefacts is essential to this activity. The task of 

understanding code is crucial to software maintenance. We employed data mining techniques including clustering, classification, 

and associative rules to improvise software code comprehension. 

Keywords: Software code comprehension, code mining, software maintainability, association, classification, correlation, 

coupling, cohesion. 

Received December 22, 2023; accepted May 9, 2024  
https://doi.org/10.34028/iajit/21/3/15 

 

1. Introduction 

Understanding software source code is crucial to 

performing software maintenance activities [2, 18, 19, 

28, 32]. For this, a variety of traditional and intelligent 

computing techniques have been used. However, it has 

been demonstrated that data mining techniques are quite 

beneficial and effective in retrieving necessary 

information at various levels of abstraction. In order to 

extract data about a specific C++ software from its 

source code, correlation must be determined at the class 

and function levels. It governs how difficult it would be 

to alter a function within a class and how that would 

affect the other correlated classes. We give a succinct 

overview of data mining techniques with a focus on 

source code comprehension in this paper. 

Numerous elements of software maintenance, 

including corrective maintenance, adaptive 

maintenance, preventive maintenance and perfective 

maintenance, and approximation of maintenance effort 

time and cost, have made substantial use of data mining 

techniques [5, 17]. The deployment of computing 

methods and the software design perspective are the two 

fundamental perspectives on software maintenance. 

Data mining has been shown to be a very flexible and 

valuable way for analyzing software from the level of 

the source code to the level of the program [1]. The 

interpretation and analysis of source code frequently use 

clustering techniques from the data mining perspective. 

Here, we discuss some of the pertinent research and 

methods in this area. 

2. Literature Review 

Software is being utilized and developed in greater 

quantities as a result of the rising demand. Software is 

getting significantly bigger. Software maintenance tasks 

including repair, expansion, and improvement start once 

the software is in use [38]. The process of maintaining 

software involves understanding, modifying, and 

reconfirming the software [34]. The present software 

business is dealing with significant concerns related to 

program maintenance. The secret to effective software 

maintenance is having a precise, quick, and thorough 

grasp of the program. The best way to maintain software 

is therefore to analyse and comprehend the program. 

Clustering method is applied, in order to extract high 

level subsystems [15, 26]. They have defined linkages: 

single, combined, weighted and unweighted average 

among various individual clusters, to measure the 

detachment and likeness between the new cluster and 

the other objects (A, B, C). They have demonstrated that 

their correlation measure operates similarly to the 

Jaccard metric by using the detachment and correlation 

metrics for dual features. 

Classified the issues in the software alteration record 

using machine learning and data mining approaches 

[27]. For the cataloguing of relevant and irrelevant files 

using a cohesiveness measure, they have combined 

syntactical and text-based features. A relationship that 

may be used to anticipate if an alteration in a source file 

may need variable alteration in other file has been 

demonstrated using the induction approach of machine 

learning. 



532                                                             The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024 

The difficulty of the program assembly, a solution to 

the problem of clustering software segments has been 

offered [25, 29]. By constructing the complicated 

network module in accordance with the software 

system, they convert the software module clustering 

problem into a graph clustering problem. The software 

module clustering problem is then solved using the SPS 

software module clustering algorithm, and the best 

clustering scheme is obtained by dynamic adjustment 

and optimization that adheres to the “high cohesion” and 

“low coupling” software design principles. 

Software segmentation, recovery, and restructure 

utilizing clustering approaches in Kunz and Black [12] 

and Lung et al. [14]. They sought to incorporate 

software applications using numerical taxonomy 

clustering techniques. The approach has been used in: 

• Software division during the design phase. 

• In the process of reverse engineering. 

• Software reorganization to facilitate evolution 

throughout the maintenance phase. 

• Enhancing the coupling and cohesion source code. 

In order to find modification patterns-a method which 

uses data mining over frequently modified source files 

to analysis the alteration history of the code [37]. They 

used frequent pattern-mining algorithm for association 

rule mining and tested their methodology on different 

sizable projects named Mozilla, Eclipse. Their approach 

has been contrasted in a Comma Separated Values 

(CSV) dataset with an association rule to recommend 

program-code that could be related to a specified 

source-code portion which describes changing 

associations between files or functions [3, 36]. 

An association rule mining system based on Meta 

rules [18] for pattern interpretation in software system 

supplied source files. On five legacy systems, 

association mining restrictions have been put in place. 

Support, Confidence, and Coverage were utilised as 

three indicators to assess the success of the association 

rules [30]. 

A strategy based on data mining was developed to 

understand the source code of Object-Oriented System 

(OOS) for maintainability [9, 10]. In order to more 

clearly describe this class entity, presented the code in 

Extensible Markup Language (XML) format and taken 

into account a variety of Object Oriented Programming 

(OOP) metrics. A data mining technique called K-

means clustering uses different input sets for classes 

based on metric values and classes based on structural 

criteria, such as the packages or subclasses to which 

they belong. A program called JBoss, which includes 

569 packages, 4,717 Java files, 6,448 classes and 

1,615,289 lines of code has been taken into account. 

The time to extract both static and dynamic 

dependency graphs from the vast Mozilla.browser.1.3v 

software system in an effort to evaluate the efficacy of 

employing dependencies between software components 

as input to a clustering approach [35]. Experimented 

with various software clustering algorithms in a number 

of different ways. By gathering data on function calls 

made during runtime and outputted as output, they were 

able to identify the dynamic dependency. The file that 

defines the relation between the files substitutes 

functions in a specially built script. From a total of 3,559 

source files, they discovered a dynamical dependency 

between 1,023 of them in this context. Then, they have 

employed several filtering techniques to extract relevant 

information. 

The ability to understand software code is crucial for 

code analysis [4]. Based on a review of the literature, we 

have approached this issue by employing data mining 

techniques to extract data at the file, class, and method 

levels in order to compute coupling and cohesion using 

various methods in this situation. 

Creating new correlation metrics for calculating 

cumulative coupling and cohesion indices is the main 

goal of our work [22]. Source code understanding was 

used to extract file, class, method, and other parameter 

level information from source code [21]. Data mining 

techniques such as C5.0, clustering and association were 

used to examine the data at the file, class, and method 

level. A knowledge base was created using this 

information. In this work, we use standard class-level 

calculation methods to relate the numbers of a particular 

class to the different number of classes at various levels 

(Very Low (VL), Low (L), Medium (M), High (H) and 

Very High (VH)). Correlations between classes were 

established based on shared functions within and 

between classes. This article covers the following 

topics: Section 1 describes the purpose of the work and 

section 2 defines the literature review. Problem 

description is stated in section 3 and solved in section 4 

with k-means data mining techniques and the 

association algorithm Apriori. Major contributions are 

described in section 5 commutative coupling and 

cohesion are computed through correlation matrices. 

Section 6 describes the discussion. Section 7 defines the 

conclusion of the work. 

3. Problem Description 

We have worked on software source-code of GitAhead 

C++ project. It is an open-source Git client Graphical 

User Interface (GUI) and is accessible to all. It is a 

Medium-Large size application consists 494 classes, 

9,902 functions and around 4,312 parameters. 

In our research, we went through the steps of getting 

the software code data from the GitAhead project then 

extracting all pertinent data about the parent classes, 

classes, data members, functions, function parameters 

using one of the program code comprehension tools sci-

understand [33]. The segmental problem-solving 

approaches have been used. The output from one 

module is passed on to the next in a sequential order. 

Each module’s performance can be checked again. 

Block diagrams are used in this method to depict the 



Improvised Software Code Comprehension Using Data Mining                                                                                                533 

different key phases and descriptions, as seen in Figure 

1. 

 

Figure 1. Process work flow. 

3.1. Explanation of Block Diagram in Figure 1 

 C++ Project: in first phase’s, used GitAhead project 

with open source code developed in the C++ 

programming language. 

 Code Comprehension Tools: the sci-understand tools 

are now used to parse source code projects. They 

parse the entire project and provide information on 

its classes, functions, member functions, and other 

important components. Other programming 

languages supported by this tool include Java, C#, 

Python, Ada, etc. It has the capacity to parse any 

project type and provides important details for 

understanding source code. 

 Data Extraction: this step involves taking the parsed 

output data from the tool, modifying it for the input 

model, and saving it as an excel file. Now, we'll 

utilise this excel file as an input to fill out a database 

with all the information required for our job. 

 Populate Database: the populated database using the 

excel data that was used as input during this step. The 

database was created using import and export 

functionality of MySQL Service. 

 Execute Queries to Extract Data to Apply Data 

Mining: after building the database, we have 

executed Structured Query Language (SQL) to 

obtain the information we need. The next phase used 

this resultant data which is stored into the excel file 

to apply the data mining techniques. 

 Implement Data Mining Methods: to the result 

produced from the preceding phase, put on various 

data mining techniques, such as classification, 

association and clustering then analyse each 

technique, which will be covered under section 4 

below.  

 Result Examination: the results will include 

association method-Apriori, the rule set-C5.0, and 

clustering with K-means of the class, functions, etc., 

which will be covered in further detail in sections 4 

through 5. 

 Knowledge Creation: In this stage, we will build a 

knowledge base with information about the job that 

is both quantitative and qualitative, as well as a 

correlation matrix and a qualitative correlation 

matrix. This block derives coupling, the National 

Correct Coding Initiative (NCCI), Correct Coding 

Initiative (CCI) and cohesion using diverse levels of 

notion. 

3.2. SQL Queries to Extract Data 

The exported data in excel file format through software 

code comprehension tools is imported into MySQL to 

populated the database such as clustermatrix, 

Filematrix, classmatrix, classdependencies, 

functionmatrix etc., then executed several SQL queries 

to extract the data from the database on different classes, 

function, it’s types etc., so that the desired outcome can 

be derived. for example: 

 To determine which cluster we have to consider in 

out study: The cluster that has high number of 

records. 

Select cluster_name, count(*) 

from clustermetrix 

group by cluster_name 

 To find out which class is more valuable: Through 

getting the occurrence of the classes in cluster2 

Select count(*) cnt, ClassID, ClassName  

from ClassMatrix 

where ClassID in  

(Select ClassID from ClusterMatrix where 

Cluster_name=….) 

group by ClassID 

order by cnt desc 

 To know the most appreciated function: by getting 

the frequently used function 

Select count(*) fcnt, functionname  

from FunctionMetrics fm, (select count(*) cnt, 

ClassID, ClassName  

from ClassMetrix 

where ClassID in 

(select ClassID from ClusterMetrix where 

Cluster_name=…) 

group by ClassID  

order by cnt DESC) clData 

where fm.ClassID = clData.ClassID 

group by FunactionName 

order by clData.ClassID 

 To extract the function types used in majority to the 

given cluster 



534                                                             The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024 

Select count(*), functiontype 

From FucntionMetrix 

where ClassID in 

(Select ClassID from mfun 

where mfun.cnt= (Select Max(cnt) from 

(Select count(*) cnt, ClassID, ClassName from 

ClassMatrix where ClassID in  

(Select ClassID from ClusterMetrix where 

Cluster_Name=….) 

group by ClassID) mfun)) 

group by functiontype 

……………………………….. 

……………………………….. 

4. Application and Result Analysis 

4.1. K-means Clustering 

The project comprises of 494 classes and 9,902 

functions. In our attempt to cluster data using the K-

means algorithm of data mining, we were successful in 

obtaining five clusters. Significant source code 

information is present in each cluster. In this study, we 

took into account the cluster2 data and examined the 

cluster data for several factors, as indicated in Table 1. 

This table reveals that cluster 2 accounts for the majority 

of the data and includes 2905 records out of 2994. 

Similar results may be found for clusters 1, 3, 4, and 5, 

which include 34, 13, and 23 records, respectively. 

These records show the percentage of frequency with 

which each clustered class, class id, file, function, and 

function type occurs. The class HunkWidget has the 

maximum percentage, or 9.35 percent of occurrence, 

among the additional classes in the identical cluster2, as 

shown in Table 1. In the same cluster, class ID, file, 

function, and function type percentage occurrences are 

9.35 percent, 94.21 percent, 2.34 percent, and 100 

percent, respectively. It also provides information on 

which functions belong to which classes, their function 

types, and how many times a function has been applied 

to a cluster, for example, it also provides information on 

how many specific functions are included in a given 

class. 

Table 1. Cluster-wise result where inputs are class, class ID, file, function and function type. 

Cluster Records File Class ID Class Function Function type 

Cluster 1 34 CommitList.cpp (38.23%) 225 (41.32%) CommitModel (41.32%) fetchMore (17.22%) public virtual (31.25%) 

Cluster 2 2905 DiffView.cpp (94.21%) 549 (9.35%) HunkWidget (9.35%) Invalidate (2.34%) public (100%) 

Cluster 3 13 StartDialog.cpp (88.34%) 902 (99.78%) RepoModel (99.78%) setShow (12.11%) public (12.11%) 

Cluster 4 19 Commit.cpp (92.45%)  133 (100%) CommitDelegate (100%) paint (24.56%) public (24.56%) 

Cluster 5 23 ConfigDialog.cpp (58.35%) 118 (58.35%) GeneralPanel (58.35%) qt_metacall (17.65%) public virtual (50%) 

 

4.1.1. Class and File Level Examination in Cluster 

The two files “AdvancedButton.cpp” and 

“BranchesPanel.cpp” have important contributions in 

cluster2 as we can see in Figure 2-a) and (b). This allows 

us to perform analysis at the file and class level. 

Additionally, we observe that when software 

maintenance is concerned with files and classes, files 

with single connections--or, more precisely, links-to 

other classes play a significant role. Quantitative data 

about the number and proportion of classes in each File 

are shown in Figure 2-c). The file 

‘AdvancedButton.cpp’ has the maximum percentage of 

46.15 percent and count of 228; the lowest percentage 

for files like ‘DiffCallbacks.cpp,’ ‘unpacked.cpp,’ etc., 

is 0.20 percent and count of 1. It indicates that, among 

other files used in the project, AdvancedButton.cpp is 

the most frequently used and important file. 

 

  

a) Depiction of file and classes. b) Praportion of classes in their individual 

files. 

c) Percentage and count of classes in their 

individual files. 

Figure 2. Percentage and count of classes in their individual files. 

 



Improvised Software Code Comprehension Using Data Mining                                                                                                535 

4.1.2. Function and Class Level Examination in 

Cluster 

In cluster2, we can observe the correlation in great 

extent between class and function. The class “LexState” 

in Figure 3 has the most functions, close to 150 

functions. There are numerous common functions that 

are connected to various classes; this correlation matrix 

will be covered in a later section. As indicated in Table 

2, there is also a percentage and count of functions for 

each class of cluster 2. For example, the class 

“LexState” has 144 functions and a 5.16 percent 

frequency within cluster 2, which is a significant 

contribution to this cluster and the project code as a 

whole. 

 

Figure 3. Representation of file and classes. 

Table 2. Percentage and count of functions in class of cluster 2. 

Class Count Percentage (%) 

LexState 144 5.16 

ContractionState 141 4.99 

CommitModel 110 4.72 

LineVector 115 4.10 

…. …. …. 

…. …. …. 

ToolsPanel 25 1.24 

DocumentIndexer 22 1.14 

Indexer 22 1.14 

….  …. …. 

TreeView 9 0.31 

CommentWidget 5 0.17 

…. …. …. 

4.2. Apriori Association Method 

In data mining, the Apriori approach is mostly used for 

data association [13]. Before being utilized as a 

parameter in an association rule, specific terms must be 

defined and illustrated.  

We have taken into account the 5 classes and 4 related 

functions in this situation, as in Table 3. As we can see 

in the MarginView class, there are two functions; if a 

function is in a class, indicated by 1, otherwise 0. The 

functions Compile and PaintMargin have been taken into 

consideration, whereas FindText and LayoutLine have 

not been. Four additional classes and their corresponding 

function combinations are present. The following 

association approaches’ characteristic (metrics) will be 

easier to grasp with the aid of this table. 

 Support: the portion of occurrences in the dataset that 

comprise the itemset is support or supp(A), of an 

itemset, for example, 

Supp(Compile, PrintMargin)=1/5= 0.2, meaning that 

20% of all occurrences involve it. 

 Confidence: the likelihood that an antecedent and a 

consequent will appear in the same transaction is 

indicated by a rule's confidence level. The 

conditional likelihood that something will happen 

given a specific antecedent, for example, 

Conf (=>A)=Supp(AUB)/Supp(A) 

Rule for {PrintMargin}=>{LayouLine} 

  

A B 

Hence, Conf(A=> B) = Supp(AUB)/Supp(A) => (1/5)/ 

(2/5) = 1/2 = 0.5, means the rule has 50% confidence. 

 Lift: denoted as Lift(A=>B)=Supp(AUB)/Supp(A)* 

Supp(B)=>0.2/(0.2 * 0.4)=0.2/0.08=2.5. 

 Instances: the quantity of instances for a specific 

consequence and antecedent is known as instance.  

 Rule provision: reflects IDs percentage for whose 

rule or consequent, antecedent is true. For instance, 

if FindText and Compile together exits 20% in 

exercise data, then the rule FindText=>Compile is 

supported by 20% IDs. 

 Deployment: it measures the proportion of training 

data that meets the prerequisite for the antecedent and 

excluding consequent. 

𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 =
( 𝐴𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑛 #𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑠) − (𝑅𝑢𝑙𝑒 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛 𝑖𝑛 #𝑟𝑒𝑐𝑜𝑟𝑑𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑑𝑠
 

where 

 Antecedent support: how many entries have the 

antecedent being true in them 

 Rule provision: entries where the consequent and the 



536                                                             The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024 

antecedent are both true. 

Table 3. Class and functions relation. 

Functions 

Class 

FindText Compile PaintMargin LayoutLine 

Document 1 0 0 0 

RESearch 1 0 0 0 

MarginView 0 1 1 0 

EditView 0 0 1 1 

RepoView 0 1 0 0 

4.2.1. Class and File Level Association 

We identified a number of rules and a substantial 

correlation between the cluster2 data and the file 

AdvancedButton.cpp using the Apriori method. 

Because with 98.74% and 8.52% levels of confidence 

and support, class “LexState” is used 239 times in this 

consequence, Table4 demonstrates that it has a 

substantial association with five antecedent 

circumstances. The deployment and lift of the rule are 

also 0.107 and 1.04, respectively. The class “LexSate” 

has the most confidence, instances and support in a 

specific file called AdvancedButton.cpp, with 98.74 

percent, 239 and 8.52 percent respectively, while the 

class “ContractionState” has the fewest confidence, 

instances and support, with 97.94 percent, 146 and 5.20 

percent. To ensure that any changes to a class would 

need a correspondingly high number of changes, the 

information acquired would be helpful in enumerating 

the relevance and closeness of a class inside a file. As a 

result, class “LexState” undergoes the most changes, 

whilst class “ContractionState” undergoes the least 

changes. 

Table 4 illustrates the comparison between Figures 2-

c) and 3. We can see that the rule was mostly developed 

for the “AdvancedButton.cpp” file because it made a 

significant contribution. 

 

Table 4. Association rules for file and class in cluster2 data. 

Consequence (all 

are .cpp files) 
Antecedent Rule ID Instances Confidence% Support% Rule provision% Deployment Lift 

AdvancedButton Class=LexStae and ClassID=31 and FunctionTypp=Public 

Function 

31 249 97.34 8.52 8.41 0.107 1.04 

AdvancedButton Class=LexStae and ClassID=26 and FunctionTypp=Public 

Function 

30 170 98.23 6.06 5.95 0.107 1.04 

AdvancedButton Class=LexStae and ClassID=48 and FunctionTypp=Public 
Function 

29 164 98.17 5.85 5.74 0.107 1.03 

AdvancedButton Class=LexStae and ClassID=53 and FunctionTypp=Public 

Function 

28 149 97.98 5.31 5.20 0.107 1.03 

BranchesPanel Class=ContractionState and ClassID=38 and 

FunctionType=PublicFunction 

27 146 97.94 5.20 5.10 0.107 1.03 

 

Figure 4. Functions association in classes within cluster2. 

4.2.2. Association between Function and Class 

The relationship among the classes and the functions 

defined for them in cluster2 is illustrated in Figure 4. 

There were 861 rules generated for 2905 entries. Table 

5 displays the study of the association rule and observed 

how the functions are linked to their respective classes. 
 

Table 5. Study of class and function of rule for cluster2. 

Records 2,905 

Rule produced 861 

Maximum support 0.178% 

Minimum support 0.036% 
Maximum confidence 100% 
Minimum confidence 20% 

Maximum lift 2803.0% 

Minimum lift 2.932% 



Improvised Software Code Comprehension Using Data Mining                                                                                                537 

4.3. C5.0 Method 

As shown in Figure 5, the cluster2 data was also 

exposed to the data mining approach of rule generation, 

and interesting rules for the occurrences and 

significance of those classes and techniques were found. 

A class and several functions are associated within a 

rule. The “LexState” class has a lot of connectedness 

with functions, and most rules have been written for it, 

according to the graph. The rule here gives the overall 

number of functions pertaining to or linked to the 

particular class. We receive the confidence level for the 

rule generated and the number of occurrences of the 

function in each rule, for example, Rule-4 for the class 

DefaultWidget (1; 0.667). 

 

Figure 5. Class and functions for rule set with C5.0. 

If Function=ClassInstance, then DefaultWidget: the 

function “ClassInstance” belongs to the class 

“DefaultWidget” using just one instance of their 

relationship, and the rule has a confidence level of 66.7 

percent. 

4.3.1. Rule Generations 

The rule created for each class and its related functions 

was acquired when the C5.0 methodology was applied, 

as shown in Table 6. This table lists all of the rules that 

have been created for each class; for example, there 

have been 2, 1, and 121 rules generated for model, 

editor, and LexState, respectively. The chart also shows 

the total rule produced for the other classes. 

Table 6. Class and total rules produced with C5.0. 

Class Total Rules Produced 

Model 2 

Editor 1 

ListModel  3 
…… …… 
…… …… 

DefaultWidget 45 
Label 8 

LexerPool 15 

…… …… 
…… …… 

LexState 121 

DiffCallbacks 9 

.. … 

The extended version of the rules is displayed in 

Table 7, where each associated rule's condition is shown 

in terms if-then, and the values inside the brackets are 

structured as (x; y), signifying the rule’s confidence 

level and the number of instances. For instance, 

ListModel (3; 0.8) rule shows that the rule's confidence 

level is 0.8, or 80%, and that the rule has been applied 

to three occurrences of the condition. 

Table 7. Rules produced with reference to Table 6. 

Rules for Editor-contains 1 rule(s) 

Rule 1for Editor (1; 0.667) 
if Function=Editor 

then Editor 

Rules for ListModel-contains 3 rule(s) 
Rule 1 for ListModel (3; 0.8) 

if Function=ShowList 

then ListModel 
Rule 2 for ListModel (9; 0.182) 

if Function=GetList 

then ListModel 
Rule 3 for ListModel (13; 0.133) 

if Function=SetModel 

then ListModel 

Rules for Model-contains 2 rule(s) 

Rule 1 for Model (1; 0.667) 

if Function=SetModel 
then Model 

Rule 2 for Model (1; 0.667) 

if Function=OnOpenModel 
then Model 

…..                              …..                           ….                              

5. Knowledgebase Formation 

Using the aforementioned beneficial outcomes for 

GitAhead project, On the basis of shared behaviour 

between classes, the knowledgebase formation has been 

taken place. The same process we have adopted for two 

other open-source projects Personal Software Process 

(PSP) and Jet. These are downloaded from GitHub and 

Thales [6, 23]. The actual structure of these projects has 

been compared to discuss the outcome validity, novelty 

and usefulness to the software maintainer. 



538                                                             The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024 

5.1. First Open-Source Project Study 

The GitAhead application knowledge formation has 

been explained here in detail, using the common 

behaviour between classes, we may create a correlation 

matrix. This correlation matrix shows the common 

functions found in the related classes; for instance, in 

the given below table; first row shows the C1 class, and 

the data in adjacent columns displays how many 

functions in C1, C3, C6, and C51 are shared. The count 

of shared functions between C1 and C3, C5, C6, C7, and 

the rest will be represented by equivalent column values 

in a second row, C3. An analytical numerical 

breakdown of the class and techniques is provided by 

this symmetric matrix. Here, the class name is 

represented by C1, C3, ...C53 as illustrated in Figure 6. 

Additionally, we have removed any matrix members 

with values lower than 2, or filters above a threshold. 

For simplicity, the various class names labelled as 

C1, C3, and C5, etc., Our database contains details on 

each Ci and the name of the related class. 

Now, based on the five qualitative values (Very 

High-VH, Hight-H, Medium-M, Low-L, Very Low-

VL) and the correlation matrix in Figure 6, we 

constructed a new qualitative matrix. 

For each of the aforementioned qualitative 

characteristics, we have allocated a range of numerical 

values, as indicated in Table 8. The frequent functions 

used count shown in the Figure 6 correlation matrix. 

Table 8. The qualitative values’ for quantitative range (X denotes the 

count of functions). 

X<10 VL 

X>=10 AND X<25 L 

X>=25 AND X<35 M 

X>=35 AND X<50 H 

X>=50 VH 

 

 

Figure 6. Correlation matrix. 

 

Figure 7. Qualitative correlation matrix. 



Improvised Software Code Comprehension Using Data Mining                                                                                                539 

 

Figure 8. An illustration of class C1 using a qualitative correlation matrix. 

Based on shared functions, table in Figure 7 

illustrates the reasonable connection among C13 Class 

with others. For instance, the logical attribute (VH) 

linking Class C13 and Class C9 shows that they have 

more than 50 identical functions. Similar to this, logical 

relationships between classes C13, C3, and C5.., are 

linked with the logical attribute (H), which indicates that 

they share more than 35 but fewer than 50 functions in 

common. Similar to this, relationships between classes 

C13, C17 and C1 are connected using the attribute (M), 

indicating that they share more than 25 but fewer than 

35 common functions; C13 and C6 and C28 classes are 

connected using the reasonable attribute (L), indicating 

that they share more than 10 but fewer than 25 common 

functions; and Classes C13 and C2, C10, C16, and 

others are connected by the attribute (VL), suggesting 

that there are a total shared functions between them. For 

further classes, including C1, C2, and others. We can 

also have web-graphical representations as shown in 

Figure 8 and explanations. 

5.1.1. Normalised Coupling Computation 

We standardise the VH’s numerical value, which is 
represented in Table 9. Assuming that VH is equal to 0.8, 

in the row we find the occurrences of VH records, 
multiply by 0.8, After entering the outcomes into the 
matrix of column correlation, normalise the data using 
the procedure indicated below. In the column NCCI, we 
input the normalised value. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑁𝑖) = 

[{𝑁𝑖 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑖)}/{𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑖) − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑖)}] ∗ [𝐶 + {𝐷 − 𝐶}] 

which [C-D]=[0-1]. 

It has been discovered that C53, C24, C20, C16, and 

C5 classes are having a 100% coupling or correlation, 

but classes C9 and C13 have a minimal coupling of 0%. 

Similar to this, by utilising the H, M, L and VL 

degrees of correlation by numerical value 0.6, 0.4, 0.2 

and 0.1 respectively between the classes, we can also 

compute the normalised coupling index for certain 

classes, as shown in Tables 10, 11, 12, 13, and 14 

appropriately. 

In the example of “H” we can see that class C23 has 

a greatest coupling of 100% whereas classes “C16” and 

“C1” have a least coupling of 0% and similarly for M, 

L, VL is reflected in other tables. 

Table 9. Highest and least coupling in Very High (VH). 

Class C1 C3 C5 C7 C8 C9 C13 C16 C17 C18 C20 C24 C40 C44 C50 C51 C53 C54 CCI NCCI 

C1 x VH VH VH VH   VH  VH VH VH VH VH VH VH VH VH 14*0.8-112 0.92 

C3 VH x VH VH VH   VH  VH VH VH VH VH VH VH VH VH 112 0.92 

C5 VH VH x VH VH   VH VH VH VH VH VH VH VH VH VH VH 12 1 

C7 VH VH VH x VH   VH VH VH VH VH VH VH   VH  9.6 0.78 

C8 VH VH VH VH x   VH  VH VH VH VH VH VH VH VH VH 11.2 0.92 

C9      x VH            0.8 0 

C13      VH x            0.8 0 

C16 VH VH VH VH VH   x VH VH VH VH VH VH VH VH VH VH 12 1 

C17   VH VH    VH x  VH VH    VH VH  5.6 0.42 

C18 VH VH VH VH VH   VH  x VH VH VH VH VH VH VH VH 11.2 0.92 

C20 VH VH VH VH VH   VH VH VH x VH VH VH VH VH VH VH 12 1 

C24 VH VH VH VH VH   VH VH VH VH x VH VH VH VH VH VH 12 1 

C40 VH VH VH VH VH   VH  VH VH VH x VH VH VH VH VH 11.2 0.92 

C44 VH VH VH VH VH   VH  VH VH VH VH x   VH  8.8 0.71 

C50 VH VH VH  VH   VH  VH VH VH VH  x  VH  8 0.64 

C51 VH VH VH  VH   VH VH VH VH VH VH   x VH  8.8 0.71 

C53 VH VH VH VH VH   VH VH VH VH VH VH VH VH VH x VH 12 1 

C54 VH VH VH  VH   VH  VH VH VH VH    VH x 8 0.64 

 



540                                                             The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024 

Table 10. Highest and least coupling in High (H). 

Class C1 C3 C5 C7 C8 C9 C13 C16 C17 C18 C20 C23 C24 C40 C44 C50 C51 C53 C54 CCI NCCI 

C1 x        H   H        2*0.6=1.2 0 

C3  x     H  H   H        1.8 0.08 

C5   x   H H     H        1.8 0.08 

C7    x   H     H    H H   2.4 0.16 

C8     x  H  H   H        1.8 0.08 

C9   H   x  H H  H  H     H  3.6 0.33 

C13  H H H H  x   H H  H H H   H  6 0.67 

C16      H  x    H        1.2 0 

C17 H H   H H   x H  H  H H     4.8 0.5 

C18       H  H x  H        1.8 0.08 

C20      H H    x H        1.8 0.08 

C23 H H H H H   H H H H x H H H  H H  8.4 1 

C24      H H     H x       1.8 0.08 

C40       H  H   H  x      1.8 0.08 

C44       H  H   H   x H H  H 3.6 0.5 

C50    H           H x H  H 2.4 016 

C51    H        H   H H x  H 3 0.25 

C53      H H     H      x  1.8 0.08 

C54               H H H  x 1.8 0.08 

Table 11. Highest and least coupling in Medium (M). 

Class C1 C3 C5 C6 C7 C8 C9 C13 C16 C17 C18 C20 C23 C24 C40 C44 C50 C51 C53 C54 CCI NCCI 

C1 x   M    M             2*0.4=0.8 0.07 

C3  x  M                 0.4 0 

C5   x M                 0.4 0 

C6 M M M x M M   M M M M M M M M  M M  6 1 

C7    M x  M             M 1.2 0.14 

C8    M  x               0.4 0 

C9     M  x         M  M   1.2 0.14 

C13 M       x  M      M     1.2 0.14 

C16    M     x            0.4 0 

C17    M    M  x       M   M 1.6 0.21 

C18    M       x          0.4 0 

C20    M        x         0.4 0 

C23    M         x     M  M 1.2 0.14 

C24    M          x       0.4 0 

C40    M           x      0.4 0 

C44    M   M         x     0.8 0.07 

C50          M   M    x    0.8 0.07 

C51    M   M M          x   1.2 0.14 

C53    M               x  0.4 0 

C54     M     M   M       x 1.2 0.07 

Table 12. Highest and least coupling in Low (L). 

Class C1 C3 C5 C6 C7 C8 C9 C13 C16 C17 C18 C20 C23 C24 C27 C28 C31 C40 C44 C48 C50 C51 C53 C54 CCI NCCI 

C1 x      L         L         2*0.2 0.06 

C3  x     L         L         0.4 0.06 

C5   x            L L         0.4 0.06 

C6    x   L L        L     L   L 1 0.21 

C7     x           L         0.2 0 

C8      x L        L L         0.6 0.1 

C9 L L  L  L x    L  L   L  L   L   L 2 0.47 

C13    L    x     L   L     L   L 0.6 0.1 

C16         x       L         0.2 0 

C17          x      L         0.2 0 

C18       L    x     L         0.4 0.6 

C20            x    L         0.2 0 

C23       L L     x   L         0.6 0.1 

C24              x L L         0.4 0.06 

C27   L   L        L x   L   L  L  1.2 0.26 

C28 L L L L L L L L L L L L L L  x  L L  L L L L 4 1 

C31                 x   L     0.2 0 

C40       L        L L  x       0.6 0.1 

C44                L   x      0.2 0 

C48                 L   x     0.2 0 

C50    L   L L       L L     x    1 0.21 

C51                L      x   0.2 0 

C53               L L       x  0.4 0.06 

C54    L   L L        L        x 0.3 0.15 

 

 

 

 



Improvised Software Code Comprehension Using Data Mining                                                                                                541 

Table 13. Highest and least coupling in Very Low (VL). 

Class C1 C2 C3 C5 C6 C7 C8 C9 C10 C13 C16 C17 C18 C19 C20 C23 C24 C27 C28 C29 C31 C36 C38 C40 C42 C44 C45 C48 C49 C50 C51 C53 C54 CCI NCCI 

C1 x VL       VL     VL    VL  VL VL VL VL  VL  VL VL VL     12*0.1=1.2 0.047 

C2 VL x VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL 3.2 1 

C3  VL x      VL     VL    VL  VL VL VL VL  VL  VL VL VL     1.2 0.047 

C5  VL  x     VL     VL      VL VL VL VL  VL  VL VL VL     1.1 0 

C6  VL   x    VL     VL    VL  VL VL VL VL  VL  VL VL VL     1.2 0.047 

C7  VL    x   VL     VL    VL  VL VL VL VL  VL  VL VL VL     1.2 0.047 

C8  VL     x  VL     VL      VL VL VL VL  VL  VL VL VL     1.1 0 

C9  VL      x VL     VL    VL  VL VL VL VL  VL  VL VL VL     1.2 0.047 

C10 VL VL VL VL VL VL VL VL x VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL 3.2 1 

C13  VL       VL x VL   VL    VL  VL VL VL VL  VL  VL VL VL     1.3 0.095 

C16  VL       VL VL x   VL    VL  VL VL VL VL  VL  VL VL VL     1.3 0.095 

C17  VL       VL   x  VL    VL  VL VL VL VL  VL  VL VL VL     1.2 0.047 

C18  VL       VL    x VL    VL  VL VL VL VL  VL  VL VL VL     1.2 0.047 

C19 VL VL VL VL VL VL VL VL VL VL VL VL VL x VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL 3.2 1 

C20  VL       VL     VL x   VL  VL VL VL VL  VL  VL VL VL     1.2 0.047 

C23  VL       VL     VL  x  VL  VL VL VL VL  VL  VL VL VL     1.2 0.047 

C24  VL       VL     VL   x   VL VL VL VL  VL  VL VL VL     1.1 0 

C27 VL VL VL  VL VL  VL VL VL VL VL VL VL VL VL  x VL VL VL VL VL  VL VL VL VL VL  VL  VL 2.6 0.71 

Table 14. Highest and least coupling in Very Low (VL). 

Class C1 C2 C3 C5 C6 C7 C8 C9 C10 C13 C16 C17 C18 C19 C20 C23 C24 C27 C28 C29 C31 C36 C38 C40 C42 C44 C45 C48 C49 C50 C51 C53 C54 CCI NCCI 

C28  VL       VL     VL    VL x VL VL VL VL  VL  VL VL VL     1.2 0.047 

C29 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL x VL VL VL VL VL VL VL VL VL VL VL VL VL 1.2 1 

C31 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL x VL VL VL VL VL VL  VL VL VL VL VL 3.1 0.95 

C36 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL x VL VL VL VL VL VL VL VL VL VL VL 3.2 1 

C38 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL x VL VL VL VL VL VL VL VL VL VL 3.2 1 

C40  VL       VL     VL      VL VL VL VL x VL  VL VL VL     1.1 0 

C42 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL x VL VL VL VL VL VL VL VL 3.2 1 

C44  VL       VL     VL    VL  VL VL VL VL  VL x VL VL VL     1.2 0.047 

C45 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL x VL VL VL VL VL VL 3.2 1 

C48 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL  VL VL VL VL VL VL x VL VL VL VL VL 3.1 0.95 

C49 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL x VL VL VL VL 3.2 1 

C50  VL       VL     VL      VL VL VL VL  VL  VL VL VL x    1.1 0 

C51  VL       VL     VL    VL  VL VL VL VL  VL  VL VL VL  x   1.2 0.047 

C53  VL       VL     VL      VL VL VL VL  VL  VL VL VL   x  1.1 0 

C54  VL       VL     VL    VL  VL VL VL VL  VL  VL VL VL    x 1.2 0.047 

 

The idea of logical classification rule-based model to 

put them in qualitative composition rule is being used in 

Mazumdar and Mishra [20]. Here in Table 15 specifies 

the classes name, class ID for various Levels which are 

extracted from above results.  

Table 15. Class Names with their ID and quantitative level [20]. 

CLASS Class label Level 

CommitDelegate C2 VL 

CommitDetail C5 VH 

CommitEditor C6 M 

BuiltinRegex C10 VL 

CommitDelegate C16 VH 

GeneralPanel C19 VL 

LexerLPeg  C20 VH 

LfsPanel C23 H 

CommitModel C24 VH 

RemotePage C28 L 

RemotesPanel C29 VL 

Indexer C36 VL 

Model C38 VL 

ByteIterator C42 VL 

HistoryButton C45 VL 

PhraseQuery C49 VL 

HunkWidget C53 VH 

5.1.2. Class Level Cohesion 

We have defined in our work a formula to find 

cumulative cohesiveness of a class in regard to the 

function and types of function parameter inside a 

cluster. For example, we have taken into consideration 

the class “LexState,” which has 144 methods and 5 

parameter types. As indicated in Table 16, we have 

counted the actual instances of each parameter type and 

added them, totaling 115 in this instance. So, the 

following formula will be used to determine the 

cumulative cohesion for class “LexState”. 

The total value of the column indicates the number of 

times the parameter type has been used; for example, 

Table 16’s total value of 67 reveals that 67 out of 144 

methods in the class “LexState” have used the int 

parameter type. Similar to this, every other number 

represents the entire amount of that parameter type. As 

a result, we are able to determine how many different 

parameter types are present in a class as: 

[67+44+2+1+1=115] 

We define intra-class cumulative cohesion, or 

cumulative cohesiveness within a class, based on 

heuristics as shown in Table 16 between functions and 

parameters. 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛

=
(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑡𝑦𝑝𝑒𝑠 𝑖𝑛 𝑎 𝑐𝑙𝑎𝑠𝑠)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑦𝑝𝑒𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡ℎ𝑜𝑑𝑠)
 

=115/(5*144)=0.16 

Table 16. Count of function’s parameters type for class ‘LexState’. 

Functions int const char * Document * uptr_t LexerModule * 

AllocateSubStyles 1 0 0 0 0 

DescribeProperty 0 1 0 0 0 

DescriptionOfStyle 1 0 0 0 0 

LexState 0 0 0 0 0 
LineEndTypesSupported 0 0 0 0 0 

NameOfStyle 0 0 0 0 0 

NameOfStyle 0 0 0 0 0 

NamedStyles 0 0 0 0 0 

PrimaryStyleFromStyle 1 1 0 0 0 

PrivateCall  0 1 0 0 0 

… … … … … … 
PropGetExpanded 1 0 1 0 0 

PropGetInt 1 0 0 0 0 

PropSet 0 0 0 0 0 

PropertyNames 0 1 0 0 0 

PropertyType 0 0 0 0 0 

SetIdentifiers 0 1 1 0 0 

… … … … … … 
SetLexerLanguage 0 1 0 1 0 

SetLexerModule 0 1 0 0 1 

SetWordList 1 0 0 0 0 

Total Count 67 44 2 1 1 

5.2. Second Open-Source Project Study 

PSP is a small-medium size open-source project. It 

consists of 107 classes and 2,703 functions. After 

applying clustering techniques, four clusters were found 



542                                                             The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024 

and we considered cluster 1 for our examination on the 

basis of majority number of records and this cluster 

includes 539 records out of 634. Similarly, records were 

found for cluster 2, 3 and 4, which are 11, 46 and 38 

respectively. These records show the percentage of 

frequency with which each clustered class, it’s ID, file, 

function, and function type occurs. The class 

‘MainFrameBase’ has the maximum percentage, or 

14.45 percent of incidence, between the additional 

classes in the identical cluster1, as shown in Table 17. 

In the same cluster, class Id, File, Function, and 

Function Type percentage occurrences are 14.45 

percent, 95.14 percent, 9.14 percent, and 100 percent, 

respectively. It also provides information on which 

functions belong to which classes, their function types, 

and how many times a function has been applied to a 

cluster, for example, it also provides information on 

how many specific functions are included in a given 

class. 

Table 17. Cluster-wise result where inputs are class, class ID, file, function and function type. 

Cluster Records File Class ID Class Function Function type 

Cluster1 539 MainFrameBase.cpp (95.14%) 59 (14.45%) MainFrameBase (14.45%) ResetVoltagesClick(9.14%) public (100%) 

Cluster 2 11 Renderer.cpp (83.21%) 87 (99.11%) Renderer (99.11%) Ortho2D (13.41%) protected virtual (21%) 

Cluster 3 46 SyncMotor.cpp (48.34%) 34 (51.45%) SyncMotor (51.45%) GetElectricalData (22.11%) public (38.22%) 

Cluster 4 38 Shunt.cpp (68.34%) 23 (100%) Shunt (100%) UpdateNodes (19.36%) public (55%) 

 

After applying the process flow in PSP open-source 

project which were used with GitAhead project, the 

correlation matrix has been derived. It shows the shared 

behaviour among the related classes. 

5.2.1. Normalised Coupling Computation 

It has been discovered VH degree of correlation or 

coupling is found in C15, C23, C67, and C84 classes are 

having a 100% coupling or correlation whereas C14 and 

C55 have least coupling of 0%. Similarly to this, by 

utilising the H, M, L, and VL degree of correlation by 

numerical value between classes, we found the C12 with 

100% coupling and C2 has 0% coupling for H degree, 

C83 and C34 with 100% coupling for M and L 

respectively. C3 and C97 have VL degree with 100% 

coupling. Table 18 depicts the result. 

Table 18. Class names with their ID and quantitative level [20]. 

CLASS Class label Level 

AboutForm C3 VL 

Bus C12 H 

Branch C15 VH 

MainFrameBase C23 VH 

RateLimiter C34 L 

Renderer C67 VH 

Shunt C83 M 

Transformer C84 VH 

VertexBuffer C97 VL 

5.2.2. Class Level Cohesion 

To find the class cumulative cohesion or cumulative 

cohesiveness, we applied same formula as in First 

application study. The capacitor class has 15 methods 

with 4 parameter types. As indicated in Table 19, these 

4 parameters actual instance into the methods ‘0’ 

represents parameter not used and ‘1’ signifies 

parameter used in given method: 

Cumulative cohesion=[5+4+2+1]/(4*15) 

=12/(4*15)=0.2 

 

 

Table 19. Count of function’s parameters type for class ‘capacitor’. 

Functions int bool Element * ElectricalUnit 

GetCopy 1 0 0 0 

AddParent  0 1 0 0 

Draw 1 0 0 0 

Capacitor 0 0 0 0 
DrawDC 0 0 0 0 
Contains 0 0 0 0 
Intersects 0 0 0 0 

Rotate 0 0 0 0 
GetContextMenu 1 0 0 0 

GetTipText 0 1 0 0 
ShowForm 0 1 1 1 

GetElectricalData 1 0 1 0 

GetPUElectricalData 1 0 0 0 
SetElectricalData 0 0 0 0 

SaveElement 0 1 0 0 
OpenElement 0 0 0 0 
Total Count 5 4 2 1 

5.3. Third Open-Source Project Study 

Jet is a small size open-source project. It consists of 15 

classes and 300 functions. After applying clustering 

techniques, three clusters were found and we considered 

cluster 1 for our examination on the basis of majority 

number of records and this cluster includes 137 records 

out of 185. Similarly, records were found for cluster 2 

and 3 which are 33 and 15 respectively. These records 

show the percentage of frequency with which each 

clustered class, class ID, file, function, and function type 

occurs. The class ‘Assembler’ has the maximum 

percentage, or 45.21 percent of occurrence, among the 

additional classes in the identical cluster1, as shown in 

Table 20. In the same cluster, class ID, file, function, 

and function type percentage occurrences are 45.21 

percent, 93.25 percent, 12.34 percent, and 100 percent, 

respectively. It also provides information on which 

functions belong to which classes, their function types, 

and how many times a function has been applied to a 

cluster, for example, it also provides information on 

how many specific functions are included in a given 

class. 

The correlation matrix has been derived after 

applying the process flow in Jet open-source project 



Improvised Software Code Comprehension Using Data Mining                                                                                                543 

which were used with GitAhead project. It shows the 

shared behaviour among the related classes. 

Table 20. Cluster-wise result where inputs are class, class ID, file, function and function type. 

Cluster Records File Class ID Class Function Function type 

Cluster 1 137 Jet assembler.cpp (93.25%) 6 (45.21%) Assembler (45.21%) Write (12.34%) Public (100%) 

Cluster 2 33 Jet-lexer.cpp (88.53%) 13 (91.21%) Lexer (91.21%) Peek (23.41%) Public (19.68%) 

Cluster 3 15 Jet-diagnostic.cpp (56.12%) 9 (68.45%) Diagnostic (68.45%) Build (34.35%) Public (45.32%) 

 

5.3.1. Normalised Coupling Computation 

It has been discovered VH degree of correlation or 

coupling is found in C3 and C12 classes are having a 

100% coupling or correlation whereas C1 and C5 have 

least coupling of 0%. Similarly to this, by utilising the 

H, M, L, and VL degree of correlation by numerical 

value between classes, we found the C4 with 100% 

coupling and C11 has 0% coupling for H degree, C10 

and C7 with 100% coupling for M and L respectively. 

C6 have VL degree with 100% coupling. The Table 21 

shows the analysied results. 

Table 21. Class Names with their ID and quantitative level [20]. 

CLASS Class label Level 

Assembler C3 VH 

FileBuf C4 H 

Lexer C6 VL 

Option C7 L 

Parser C10 M 

Token C12 VH 

5.3.2. Class Level Cohesion 

To find the class cumulative cohesion or cumulative 

cohesiveness, we applied same formula as in First 

application study. The ‘Lexer’ class has 8 methods with 

2 parameter types. As indicated in Table 22, these 2 

parameters actual instance into the methods ‘0’ 

represents parameter not used and ‘1’ signifies 

parameter used in given method. 

Cumulative cohesion=[1+2]/(2*8) 

=3/(2*8)=0.1875 

Table 22. Count of function’s parameters type for class ‘Lexer’. 

Functions int Size_t 

lex lex_ 1 0 

int _float 0 0 

lex_str 0 0 

lex_ident 0 0 

peek 0 1 

curr 0 0 

next 0 1 

skip_new_line 0 0 

Total Count 1 2 

6. Discussions 

Many academics and researchers have employed certain 

data mining methods for understanding source code. In 

this part, a comparative study on several methods is 

presented. 

Comment-Mine a semantic search architecture [16], 

which extracts knowledge related to software design 

elements. The implementation and evolution results of 

method is in the form of a knowledge graph. This helps 

only to put a basic idea of program comprehension and 

analyse various comments exist in software.  

Towards understanding Third-Party Library (TPL) 

dependency in the C/C++ ecosystem [31] a tool was 

developed to identify the dependency patterns of C/C++ 

projects and construct a comprehensive and precise 

C/C++ dependency detector. 

A system was developed for identifying the 

identifiers names to code review methods [7]. This work 

was exclusively based upon naming practices. 

A matrix developed by Husein and Oxley [8] and 

Liang et al. [13] depicts the interdependency of the 

elements. The elements are at the function or file level, 

and calling connection between the file and the 

functions depicted in a table. Model Predictive Control 

(MPC) explained in their work. Between clusters 

connections to other subsystem parts: Internal coupling 

is computed in our study based on class correlations to 

other classes inside a particular cluster at the cluster 

level. Similar to this, we computed coupling at inter and 

intra class level, through figuring out how the common 

methods in a class are connected to one another. 

System strength is the ratio of a subsystem’s internal 

cohesion to that subsystem's exterior connection to all 

other subsystems. This enables one to priorities or focus 

on a specific subsystem when rebuilding the system. 

Mining Program Source (MMS)-apriori association 

rules have been implemented [11]. To demonstrate 

associations between various members, methods, 

method’s parameters at inter-cluster and ultra-cluster 

associations. 

The total of all clusters’ internal edges ought to be 

greater than the sum of their outward edges [24]. To 

improve cohesiveness and reduce coupling both inside 

and across clusters of modules, or intra cluster and inter-

cluster, they have developed an optimisation approach 

based on evolutionary algorithms. As a criteria for 

evaluation, they computed cohesiveness and coupling 

based on modularization quality attribute. We computed 

class-level NCCI, CCI, and cohesiveness in our work. 

Using source code, framework of knowledge 

attainment is devised [9]. In order to facilitate partial-

automated program understanding, maintenance easier 

and to offer beneficial perceptions of framework 

features. Their technique is evaluated using a case study 

from the industry. We have also extracted valuable data 

for maintenance using clustering and association. 

Table 23 illustrates the superiority of our suggested 



544                                                             The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024 

work above other approaches found in the literature. 

This table provides a comparative perspective between 

our suggested method and other existing methods used 

to understand C++ code. The table presents results 

relating to Code Comprehension along with relevant 

observations about current practices and our suggested 

approach. The table's remark column demonstrates how 

our suggested work is superior to other current works 

that have been highlighted in the literature. 

Following are the main characteristics (strengths) of 

our work: 

As far as we are aware, no one has created correlation 

matrices for the two types of data using the common 

approaches used by the classes. 

Additionally, the computation of the normalised and 

cumulative coupling indices is unusual. 

The key distinguishing characteristics in our work are 

data mining techniques used for code comprehension 

and software code dependencies are derived in the form 

of a matrix of correlation among the classes by 

considering the common functions. On this basis, we 

have devised normalised cumulative coupling in terms 

of VH, H, M, L, and VL. Apart from this we have 

included the cumulative cohesion in consideration to 

function parameters. The most significant class of 

methods deriving from the clustering method's 

parameter types has been computed cumulative 

cohesion. 

 

Table 23. Comparative analysis of different S/w code comprehension methodology. 

SN Work Descriptions Data Mining Methodology Code Comprehension related Result Remarks 

1 
Comment-mine—a 

semantic search approach to 

program comprehension 

from code comments [16]. 

Knowledge graph. Knowledge representation based on 
comments to aid program comprehension. 

 No datamining method is proposed for 
identifying interdependency of code elements. 

 No computational model is proposed for 
measuring the cohesion or coupling. 

 No methods to determine size of each module. 

2 
Towards understanding TPL 

dependency in C/C++ 

ecosystem [31]. 

No standard data mining 
method is mentioned. 

In order to comprehend TPL dependencies 
within the C/C++ ecosystem, the writers 

compile the TPL databases, package 
management, and dependency detection 

tools that are currently available, as well as 

explain the dependence patterns found in 
C/C++ projects. 

 No datamining method is proposed for 
identifying interdependency of code elements. 

 No computational model is proposed for 
measuring the cohesion or coupling.  

 No methods to determine size of each module. 

3 
Naming practices in object-

oriented programming: an 

empirical study [7]. 

No data mining method is 

mentioned. 

Studies on naming identifiers demonstrate 

the importance of informative names in 

enhancing program readability and 
maintainability. 

 No datamining method is proposed for 

identifying interdependency of code elements 

 No computational model is proposed for 

measuring the cohesion or coupling. 

 No methods to determine size of each module. 

4 
Applications of clustering 

techniques to software 
portioning, recovery, and 

restructuring [13]. 

The clustering techniques 

adopted in this work are based 
on agglomerative hierarchical 

approaches. 

A matrix is developed for interdependency 

of the function or file level, and calling 
connection between the file and the 

functions. 

 No model is proposed for measuring the 
cohesion or coupling. 

 No methods to determine size of each module. 

5 
An improved methodology 
on information distillation 

by MMS code [11]. 

Clustering and association 
rules mining. 

Identifies hidden relationships between 
classes, methods, and member data. 

 No computational model is proposed for 
measuring the cohesion or coupling. 

  No methods to determine size of each module. 

6 
Software module clustering 

as a multi-objective search 

problem [24]. 

Clustering techniques. Identifies highest cohesion and the lowest 

coupling module. 
 No computational model is proposed for 

measuring the cohesion or coupling. 

 No methods to determine size of each module. 

7 
Mining source code 

elements for comprehending 
object-oriented systems and 

evaluating their 

maintainability [9]. 

Clustering techniques . Identifies interdependency of the function 

or file level. 
 No computational model is proposed for 

measuring the cohesion or coupling. 

 No methods to determine size of each module. 

8 
Improvised software code 

comprehension using data 

mining. (our proposed 
work) 

Classification, association, 

and clustering. 

Identifies cohesion and the coupling in 

module with logical and deterministic 

value. 

 Analyse each data mining techniques for each 

element of software project (class, function, 

etc.). 

 Computational models are proposed for 

measuring the qualitative and quantitative level 
of cohesion or coupling. 

 Logical method is proposed to determine 
qualitative size of each module. 

 

7. Conclusions  

We have used a variety of technologies in our work to 

extract information and create knowledge bases that can 

be used to maintain software or to help with other tasks. 

Initially the class ID, class, method, its type and file 

are used for the purpose of clustering using K-means 

method. Using the web representation technique, we did 

class and file level study to display the association 

between classes and the file. Using a cluster diagram to 

display classes and methods, we discovered that the 

“LexState” class has the most methods (150), 

accounting for 5.16 percent of all the methods in the 

software. 

By using the Apriori method, we were able to 

determine how a class and the file specified in Section 4 

are related to one another. This study clarifies the 

importance of a function in a file evident. The data 

mining technique C5.0 allows to view all methods 

connected to a particular class. The number of rules that 



Improvised Software Code Comprehension Using Data Mining                                                                                                545 

link a method's instances and confidence factor to a 

certain class may also be obtained by utilising the 

graphical style of representation. 

We generate a quantitative and qualitative matrix 

from the aforementioned study to identify coupling and 

cohesiveness at various levels of abstraction. On the 

basis of standard techniques, we have determined the 

quantitative level. The coupling between various classes 

before giving various levels: VL, L, M, H, and VH to a 

range of numerical values. We utilised this level range 

for a filtered matrix. Then, as indicated in Tables 9 to 

14, we arrive at the five matrices that simply reflect the 

coupling between classes at various levels: VL, L, M, 

H, and VH. 

The average coupling normalised index was 

calculated by multiplying the number of levels in the 

row by 0.8 and assigning each level a numerical value, 

such as VH equates to 0.8 in Table 9 of VH. The 

cumulative coupling column is provided as a 

consequence. We derive the normalised coupling using 

the usual normalisation formula to produce NCCI. This 

provides us with an index that ranges from 0 to 100%, 

which we can use to determine the classes with the 

highest and lowest NCCI. We have determined a class's 

cohesiveness, or the methods inside a class that take the 

same sorts of arguments.  

This technique can be used in the future to identify 

cohesion and coupling while performing adaptive 

maintenance that takes into account local or global 

variables. It is possible to calculate weighted 

cohesiveness by assigning a value to each class member. 

In adaptive maintenance, these findings can be 

completely applied, if a modification in one place 

affects other resources of the source-code. 

References 

[1] Anquetil N. and Lethbridge T., “Experiments with 

Clustering as a Software Remodularization 

Method,” in Proceedings of the 6th Working 

Conference on Reverse Engineering, Atlanta, pp. 

235-255, 1999. 

DOI:10.1109/WCRE.1999.806964 

[2] Balmas F., Wertz H., and Singer J., 

“Understanding Program Understanding,” in 

Proceedings of the 8th International Workshop 

Program Comprehension, Washington (DC), pp. 

256, 2000. 

https://dl.acm.org/doi/10.5555/518049.856959 

[3] Chen K., Tjortjis C., and Layzell P., “A Method 

for Legacy Systems Maintenance by Mining Data 

Extracted from Source Code,” in Proceedings of 

the IEEE 6th European Conference Software 

Maintenance and Reengineering, Washington 

(DC), pp. 54-60, 2002. 

https://www.ihu.edu.gr/tjortjis/publications.htm 

[4] Eisenbarth T., Koschke R., and Simon D., 

“Locating Features in Source Code,” IEEE 

Transactions on Software Engineering, vol. 29, 

no. 3, pp. 210-224, 2003. 

DOI:10.1109/TSE.2003.1183929 

[5] Fayyad U., Piatetsky-Shapiro G., and Smyth P., 

“From Data Mining to Knowledge Discovery: An 

Overview,” Advances in Knowledge Discovery 

and Data Mining, pp. 1-34, 1996. 

https://dl.acm.org/doi/10.5555/257938.257942 

[6] GitHub, The-NextGen-Project/jet, 

https://github.com/The-NextGen-Project/jet, Last 

Visited, 2024. 

[7] Gresta R., Durelli V., and Cirilo E., “Naming 

Practices in Object-Oriented Programming: An 

Empirical Study,” Journal of Software 

Engineering Research and Development, vol. 11, 

no. 1, pp. 1-16, 2023. 
https://doi.org/10.5753/jserd.2023.2582 

[8] Husein S. and Oxley A., “A Coupling and 

Cohesion Metrics Suite for Object-Oriented 

Software,” in Proceedings of the International 

Conference on Computer Technology and 

Development, Kota Kinabalu, pp. 421-425, 2009. 

DOI:10.1109/ICCTD.2009.209 

[9] Kanellopoulos Y., Dimopulos T., Tjortjis C., and 

Makris C., “Mining Source Code Elements for 

Comprehending Object-Oriented Systems and 

Evaluating their Maintainability,” SIGKDD 

Explorations, vol. 8, no. 1, pp. 33-40, 2006. 

https://doi.org/10.1145/1147234.1147240 

[10] Kanellopoulos Y. and Tjortjis C., “Data Mining 

Source Code to Facilitate Comprehension: 

Experiments on Clustering Data Retrieved from 

C++ Program,” in Proceedings of the 12th IEEE 

International Workshop on Program 

Comprehension, Bari, pp. 214-223, 2004. 

DOI:10.1109/WPC.2004.1311063 

[11] Kanellopoulos Y., Makris C., and Tjortjis C., “An 

Improved Methodology on Information 

Distillation by Mining Program Source Code,” 

Data and Knowledge Engineering, vol. 61, no. 2, 

pp. 359-383, 2007. 

https://doi.org/10.1016/j.datak.2006.06.002 

[12] Kunz T. and Black J., “Using Automatic Process 

Clustering for Design Recovery and Distributed 

Debugging,” IEEE Transactions on Software 

Engineering, vol. 21, no. 6, pp. 515-527, 1995. 

DOI:10.1109/32.391378 

[13] Liang X., Xue C., and Huang M., “Improved 

Apriori Algorithm for Mining Association Rules 

of Many Diseases,” in Proceedings of the 5th 

International Symposium, ISICA, Wuhan, pp. 272-

279, 2010. 

https://link.springer.com/chapter/10.1007/978-3-

642-16388-3_30 

[14] Lung C., Zaman M., and Nandi A., “Applications 

of Clustering Techniques to Software Portioning, 

Recovery and Restructuring,” The Journal of 

Systems and Software, vol. 73, no. 2, pp. 227-244, 

https://doi.org/10.1109/WCRE.1999.806964
https://dl.acm.org/doi/10.5555/518049.856959
https://www.ihu.edu.gr/tjortjis/publications.htm
https://doi.org/10.1109/TSE.2003.1183929
https://dl.acm.org/doi/10.5555/257938.257942
https://github.com/The-NextGen-Project/jet
https://doi.org/10.5753/jserd.2023.2582
https://doi.org/10.1109/ICCTD.2009.209
https://doi.org/10.1145/1147234.1147240
https://doi.org/10.1109/WPC.2004.1311063
https://doi.org/10.1016/j.datak.2006.06.002
https://doi.org/10.1109/32.391378
https://link.springer.com/chapter/10.1007/978-3-642-16388-3_30
https://link.springer.com/chapter/10.1007/978-3-642-16388-3_30


546                                                             The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024 

2004. https://doi.org/10.1016/S0164-

1212(03)00234-6 

[15] Maione C., Nelson D., and Barbosa R., “Research 

on Social Data by Means of Cluster Analysis,” 

Applied Computing and Informatics, vol. 

15, no. 2, pp. 153-162, 2019. 

https://doi.org/10.1016/j.aci.2018.02.003 

[16] Majumdar S., Papdeja S., Das P., and Ghosh S., 

Advanced Computing and Systems for Security, 

Springer, 2020. 

https://link.springer.com/chapter/10.1007/978-

981-15-2930-6_3 

[17] Mancoridis S., Mitchell B., Chen Y., and Gansner 

E., “Bunch: A Clustering Tool for the Recovery 

and Maintenance of Software System Structures,” 

in Proceedings of the IEEE International 

Conference on Software Maintenance for 

Business Change, Oxford, pp. 50-59, 1998. 

DOI:10.1109/ICSM.1999.792498 

[18] Maqbool O., Babri H., Karim A., and Sarwar M., 

“Metarule-Guided Association Rule Mining for 

Program Understanding,” IEE Proceedings-

Software, vol. 152, no. 6, pp. 281-296, 2005. 

DOI:10.1049/ip-sen:20050012  

[19] Mayrhauser A., Vans A., and Howe A., “Program 

Understanding Behaviour during Enhancement of 

Large-Scale Software,” Journal of Software 

Maintenance: Research and Practice, vol. 9, no. 

5, pp. 299-327, 1997. 

https://doi.org/10.1002/(SICI)1096-

908X(199709/10)9:5<299::AID-

SMR157>3.0.CO;2-S 

[20] Mazumdar B. and Mishra R., “Customer 

Orientation Based Multi-Agent Negotiation for 

B2C e-Commerce,” International Journal of 

Agent Technologies and Systems, vol. 2, no. 2, pp. 

24-48, 2010. https://www.igi-

global.com/article/customer-orientation-based-

multi-agent/43867 

[21] Moreira G. and Santos J., “Applying Coupling and 

Cohesion Concepts in Object-Oriented Software: 

A Controlled Experiment,” in Proceedings of the 

19th Brazilian Symposium on Software Quality, 

Sao Luis, pp. 1-10, 2020. 

https://doi.org/10.1145/3439961.3439969 

[22] Offutt J., Abdurazik A., and Schach S., 

“Quantitatively Measuring Object-Oriented 

Couplings,” Software Quality Journal, vol. 16, no. 

4, pp. 489-512, 2008. 

https://link.springer.com/article/10.1007/s11219-

008-9051-x 

[23] Oliveira T., Thales1330/PSP, 

https://github.com/Thales1330/PSP/tree/master, 

Last Visited, 2024. 

[24] Praditwong K., Harman M., and Yao X., 

“Software Module Clustering as a Multi-

Objective Search Problem,” IEEE Transactions 

on Software Engineering, vol. 37, no. 2, pp. 264-

282, 2011. DOI:10.1109/TSE.2010.26 

[25] Rathee A. and Chhabra J., “Improving Cohesion 

of Software System by Performing Usage Pattern 

Based Clustering,” in Proceedings of 6th 

International Conference on Smart Computing 

and Communication, Kurukshetra, pp. 740-746, 

2018. https://doi.org/10.1016/j.procs.2017.12.095 

[26] Saeed M., Maqbool O., Babri H., Hassan S., and 

Sarwar S., “Software Clustering Techniques and 

the Use of Combined Algorithm,” in Proceedings 

of the 7th European Conference on Software 

Maintenance and Reengineering, Benevento, pp. 

301-306, 2003. 

DOI:10.1109/CSMR.2003.1192438 

[27] Shirabad J., Lethbridge T., and Matwin S., 

“Mining the Maintenance History of Legacy 

Software System,” in Proceedings of the 

International Conference on Software 

Maintenance, Amsterdam, pp. 95-104, 2003. 

DOI:10.1109/ICSM.2003.1235410 

[28] Standish T., “An Essay on Software Reuse,” IEEE 

Transactions on Software Engineering, vol. SE-

10, no. 5, pp. 494-497, 1984. 

DOI:10.1109/TSE.1984.5010272 

[29] Sun J. and Ling B., “Software Module Clustering 

Algorithm Using Probability Selection,” Wuhan 

University Journal of Natural Sciences, vol. 23, 

no. 2, pp. 93-102, 2018. 

https://link.springer.com/article/10.1007/s11859-

018-1299-9 

[30] Supriyamenon M. and Rajarajeswari P., “A 

Review on Association Rule Mining Techniques 

with Respect to their Privacy Preserving 

Capabilities,” International Journal of Applied 

Engineering Research, vol. 12, no. 24, pp. 15484-

15488, 2017. 

https://www.ripublication.com/ijaer17/ijaerv12n2

4_216.pdf 

[31] Tang W., Xu Z., Liu C., Wu J., Yang S., Li Y., and 

Liu Y., “Towards Understanding Third-Party 

Library Dependency in C/C++ Ecosystem,” in 

Proceedings of the 37th IEEE/ACM International 

Conference on Automated Software Engineering, 

Michigan, pp. 1-12, 2022. 

https://doi.org/10.1145/3551349.3560432 

[32] Tiarks R., “What Programmers Really Do: An 

Observational Study,” Softwaretechnik-Trends, 

vol. 31, no. 2, pp. 36-37, 2011. 

https://api.semanticscholar.org/CorpusID:172263

04 

[33] Understand by SciTools, 

http://www.scitools.com/, Last Visited, 2024. 

[34] Wedyan F. and Abufakher S., “Impact of Design 

Patterns on Software Quality: A Systematic 

Literature Review,” IET Software, vol. 14, no. 1, 

1-17, 2020. https://doi.org/10.1049/iet-

sen.2018.5446 

https://doi.org/10.1016/S0164-1212(03)00234-6
https://doi.org/10.1016/S0164-1212(03)00234-6
https://doi.org/10.1016/j.aci.2018.02.003
https://link.springer.com/chapter/10.1007/978-981-15-2930-6_3
https://link.springer.com/chapter/10.1007/978-981-15-2930-6_3
https://doi.org/10.1109/ICSM.1999.792498
https://doi.org/10.1049/ip-sen:20050012
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5%3c299::AID-SMR157%3e3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5%3c299::AID-SMR157%3e3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5%3c299::AID-SMR157%3e3.0.CO;2-S
https://www.igi-global.com/article/customer-orientation-based-multi-agent/43867
https://www.igi-global.com/article/customer-orientation-based-multi-agent/43867
https://www.igi-global.com/article/customer-orientation-based-multi-agent/43867
https://doi.org/10.1145/3439961.3439969
https://link.springer.com/article/10.1007/s11219-008-9051-x
https://link.springer.com/article/10.1007/s11219-008-9051-x
https://github.com/Thales1330/PSP/tree/master
https://doi.org/10.1109/TSE.2010.26
https://doi.org/10.1016/j.procs.2017.12.095
https://doi.org/10.1109/CSMR.2003.1192438
https://doi.org/10.1109/ICSM.2003.1235410
https://doi.org/10.1109/TSE.1984.5010272
https://link.springer.com/article/10.1007/s11859-018-1299-9
https://link.springer.com/article/10.1007/s11859-018-1299-9
https://www.ripublication.com/ijaer17/ijaerv12n24_216.pdf
https://www.ripublication.com/ijaer17/ijaerv12n24_216.pdf
https://doi.org/10.1145/3551349.3560432
https://api.semanticscholar.org/CorpusID:17226304
https://api.semanticscholar.org/CorpusID:17226304
http://www.scitools.com/
https://doi.org/10.1049/iet-sen.2018.5446
https://doi.org/10.1049/iet-sen.2018.5446


Improvised Software Code Comprehension Using Data Mining                                                                                                547 

[35] Xiao C. and Tzerpos V., “Software Clustering 

Based on Dynamic Dependencies,” in 

Proceedings of the 9th European Conference on 

Software Maintenance and Reengineering, 

Manchester, pp. 124-133, 2005. 

DOI:10.1109/CSMR.2005.49 

[36] Yadav V., Singh R., and Yadav V., “Estimation 

Model for Enhanced Predictive Object Point 

Metric in OO Software Size Estimation Using 

Deep Learning,” The International Arab Journal 

of Information Technology, vol. 20, no. 3, pp. 293-

302, 2023. https://doi.org/10.34028/iajit/20/3/1 

[37] Ying A., Murphy G., Ng R., and Chu-Carroll M., 

“Predicting Source Code Changes by Mining 

Change History,” IEEE Transactions on Software 

Engineering, vol. 30, no. 9, pp. 574-586, 2004. 

DOI:10.1109/TSE.2004.52 

[38] Zhang M., Hall T., and Baddoo N., “Code Bad 

Smells: A Review of Current Knowledge,” 

Journal of Software Maintenance and Evolution: 

Research and Practice, vol. 23, no. 3, pp. 179-

202, 2011. https://doi.org/10.1002/smr.521 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ram Gopal Gupta research scholar, 

Department of Computer Science and 

Engineering, VMSB Uttarakhand 

Technical University, Dehradun, 

Uttarakhand-India. 

 

 

 

Ankur Dumka associate professor, 

Department of Computer Science and 

Engineering, Women Institute of 

Technology, Dehradun, Uttarakhand-

India. 

 

 

 

 

Bireshwar Dass Mazumdar 
associate professor, School of 

Computer Science Engineering and 

Technology (SCSET), Bennett 

University, Greater Noida, Uttar 

Pradesh-India. 

https://doi.org/10.1109/CSMR.2005.49
https://doi.org/10.34028/iajit/20/3/1
https://doi.org/10.1109/TSE.2004.52
https://doi.org/10.1002/smr.521

