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Abstract: Let S and T be the set of sources and sinks of a digraph G. Valdes et al. [16] defined the Series-Parallel digraph (SP-

dags) as a digraph whose reduction transitive is a Minimal Series-Parallel-digraph (MSP-dags). An MSP digraph is any digraph 

that can be constructed starting with one vertex by applying two composition operators, a parallel composition which is the 

disjoint union of two MSP-dags, and a series composition which is the disjoint union of two MSP-dags G1 and G2 with adding 

the arcs of T1×S2. This famous class of digraphs has numerous theoretical and applied information technology applications. We 

show in this paper that if we consider the multiplication in the series operation as S1×T2, T1×T2, or S1×S2 then the obtained 

symmetric classes of series-parallel digraphs are recognizable in linear time. 
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1. Introduction 

Series-Parallel digraphs (SP-dags) for short serve as 

powerful tools for modeling, analyzing, and optimizing 

complex systems across various disciplines, making 

them indispensable in both theoretical research and 

practical applications [3]. The class of SP-dags was 

defined by Valdes et al. [16] in terms of minimal series-

parallel digraphs (MSP-dags) as follows: 

Definition 1: An MSP-dag is defined recursively as 

follows: 

a) A dag containing only one vertex is an MSP-dag. 

b) If G1=(V1, E1) and G2=(V2, E2) are two MSP-dags 

then the dag constructed by each of the following 

operations is also an MSP-dag: 

• Parallel composition: G=G1PG2=(V1 ∪ V2, E1 ∪ E2). 

• Series composition: G=G1SG2=(V1∪ V2, E1∪ E2 ∪ 
T1× S2) where T1 is the set of sinks of G1 and S2 is the 

set of sources of G2. 

A dag is an SP if and only if its transitive reduction is an 

MSP-dag. It is proved by Valdes et al. [16] that a dag is 

an MSP if and only if it doesn’t contain a sub-graph 

isomorphic to the configuration in Figure 1. In addition, 

a linear time recognition algorithm for SP dags has been 

presented by Valdes et al. [16]. This algorithm 

effectively helps to find solutions to many problems 

related to this type of dag, for example [2, 10, 12]. 

 

Figure 1. The forbidden configuration of an MSP-dag. 

We propose in this work to study three symmetric 

classes of SP-dags by considering the multiplication in 

the series operation of the minimal members to be one 

of S1×T2, S1×S2, or T1×T2. The first class is called Series- 

 
Parallel Sources Sinks and is denoted by (SP-ST), the 

multiplication in the series operation of the minimal 

members in this class is S1×T2. The second class is called 

Series-Parallel Sources Sources and is denoted by (SP-

SS), the multiplication in the series operation of the 

minimal members in this class is S1×S2. The third class 

is called series-parallel sinks sinks and is denoted by SP-

TT, the multiplication in the series operation of the 

minimal members in this class is T1×T2. For each case, 

we will show that the minimal members of the 

corresponding class of dags can be defined by some of 

the forbidden configurations. Using this result, we will 

show that all these classes can be recognized in linear 

time. The motivation of this study is currently a purely 

mathematical point of view, hoping that it will find light 

in practical and theoretical applications. The paper is 

organized as follows: The fundamental ideas and 

notations that will be utilized throughout this study are 

provided in section 2. The class SP-ST dags is presented 

in section 3. The class SP-SS dags and the class SP-TT 

dags are presented in section 4 and section 5 

respectively. We present in section 6, as a conclusion, 

two potential uses of these classes. 

2. Preliminaries 

A directed graph (or a digraph for short) G=(V, E) is 

defined by two sets, V(G) or simply V is the vertex set, 

and E(G) or simply E is the arc set. Every arc of E is an 

ordered pair of vertices of V. The number n indicates the 

number of vertices of G and the number m indicates the 

number of edges of G. If (x, y) ∈ E then x is called a 

predecessor of y, and y is called a successor of x. The set 

of all predecessors of a vertex x is denoted by N+(x), and 

the set of all successors of x is denoted by N-(x). The set 

of neighbors of x is the set N(x) = N+(x) ∪ N-(x). The 
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number |N+(x)| is called the positive degree of x and 

denoted by d+(x), and the number |N-(x)| is called the 

negative degree of x and denoted by d-(x), the degree of 

a vertex x is the number d(x)=|N(x)|. A vertex x is called 

a source if d+(x)=0 and is called a sink if d-(x)=0. Given 

a subset X of the vertices set V, the sub-graph induced 

by X will be denoted by G[X]. The set N+(X) is the set of 

successors of all elements of X, and the set N-(X) is the 

set of predecessors of all elements of X. A path of length 

k is a sequence of vertices x1, x2, ..., xk such that any two 

consecutive vertices form an arc. A path x1, x2, ..., xk is 

called a circuit if x1=xk and k ≥ 2. A directed acyclic 

graph, denoted by dag, is a digraph with no circuit. A 

chain of length k is a sequence of vertices x1, x2, ..., xk 

such that (xi, xi+1) or (xi+1, xi) is an arc. If x1=xk and k ≥ 2 

the chain is called a cycle. An arc (x, y) is called a 

transitive arc if there is a path from x to y of length at 

least 3. A dag G is minimal if any arc of G is not 

transitive. The transitive reduction of a dag G is 

obtained by removing from G all transitive arcs. A 

bipartite graph G=(B ∪ W, E) is given by a set of black 

vertices B and a set of white vertices W and a set of 

edges E ⊆ B × W. A subset S of vertices of V(G) is called 

an independent set if there is no edge between any two 

vertices of S. A bi-clique is the complement in the 

bipartite sense of an independent set. A graph G is called 

F-free where F is a set of graphs when G does not 

contain an induced sub-graph isomorphic to a graph of 

F. 

3. Series-Parallel Sources Sinks Dags 

We define the class of series-parallel sources sinks dags 

in terms of minimal series-parallel sources sinks dags as 

follows: 

Definition 2: (Minimal series-parallel sources sinks) 

a) A dag containing only one vertex is an MSP-ST dag. 

b) If G1=(V1, E1) and G2=(V2, E2) are two MSP-ST dags 

then the dag constructed by each of the following 

operations is also an MSP-ST dag : 

• Parallel composition: G=G1PG2=(V1 ∪ V2, E1 ∪ E2). 

• Series composition: G=G1SG2=(V1 ∪ V2, E1 ∪ E2 ∪  
S1 × T2) where S1 is the set of sources of G1 and T2 is 

the set of sinks of G2. 

Definition 3: A dag is an SP-ST dag if and only if its 

transitive reduction is an MSP-ST dag. 

As MSP-dags, an MSP-ST dag G can be represented by 

a binary decomposition tree T(G) that reflects the 

construction of G starting of its vertices using series and 

parallel operations as follows: 

• The leaves correspond to the vertices of G. 

• Let α be an internal node and α1, and α2 are 

respectively the left and right child of α, then α is 

labeled by P (resp. S) if G[α]=G[α1]PG[α2] (resp. 

G[α]=G[α1]SG[α2]) where G[αi], i=1, 2 is the sub-

graph of G induced by the set of vertices having αi as 

their least common ancestor. 

Figure 2 illustrates an example of an MSP-ST dag and 

its binary decomposition tree. It is worth mentioning 

that the two children of an S-node are ordered according 

to the series operation of that node. 

 

Figure 2. An MSP-ST dag and its binary decomposition tree. 

There is a strong relationship between an MSP-ST 

dag and the notion of a K⨁S-bipartite graph defined in 

[11] as follows: 

Definition 4: A bipartite graph G=(B ∪ W, E) such that 

n ≥ 2 is a K⨁S graph if the vertex set V(G) contains an 

isolated vertex or there is a partition of V(G) into two 

sets: a bi-clique K and an independent set S. 

This relation is established by the following property: 

Property 1: A bipartite graph G=(B ∪ W, E) with n ≥ 2 

is a K⨁S-graph if and only if V(G) can be partitioned 

into two sets V1 and V2, such that for every black vertex 

b ∈ V1 and every white vertex w ∈V2, bw ∈ E, and for 

every white vertex w∈V1 and every black vertex b∈ V2, 

bw ∉ E. 

Remark: Let G=(B ∪ W, E) be a K⨁S-graph without 

isolated vertices, let (V1, V2) be the partition of V(G) 

defined as in Property 1 that we called a K⨁S-

decomposition of G. For i=1, 2, if we consider the black 

vertices of Vi as the set of sources of G[Vi] and the set of 

white vertices of Vi as the set of sinks of G[Vi] then, we 

can translate the partition (V1, V2) of G as a series 

decomposition of G to G[V1] and G[V2]. This remark 

and Theorem 1 which is proved by Quaddoura and Al-

Qerem [15] help us to characterize the MSP-ST dags as 

it shows in Theorem 2. 

Theorem 1: A bipartite graph G is (P6, C6)-free if and 

only if every connected sub-graph of G is a K⨁S-graph. 

Theorem 2: Let G be a dag. The following statements 

are equivalent, 

1. G is an MSP-ST dag. 

2. G is a bipartite {Z1, Z2, Z3}-free digraph. 

3. G is a bipartite digraph of depth 1 and every 

connected sub-graph of Gn0 is a K⨁S-graph, where 
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Gn0 is the graph obtained by omitting the orientation 

of G. 

 

Figure 3. The forbidden configurations of an MSP-ST dag. 

Proof 1⇒2: We observe that every vertex of an MSP-

ST dag is either a source or a sink, the reason for this 

fact is that the series operation does not change the 

identity of a source vertex or a sink vertex. 

Consequently, an MSP-ST dag does not contain a path 

of length 3. This means that an MSP-ST dag is a 

bipartite dag of depth one. So, an MSP-ST dag is Z3-

free. From the other part, we can check that a P6 or a C6 

has neither a series nor a parallel decomposition. Thus, 

if G is an MSP-ST dag and contains a P6 or a C6 then, 

there is a step during the construction of the binary 

decomposition tree T(G) for which the decomposition 

can no longer continue. So, G must be {Z1, Z2}-free. 

Proof 2⇒3: Assume that G is a bipartite {Z1, Z2, Z3}-

free digraph. Then G is a bipartite graph of depth 1 and 

Gn0 is a {P6, C6}-free. By Theorem 1, every connected 

sub-graph of Gn0 is a K⨁S- graph. 

Proof 3⇒1: To prove that G is an MSP-ST dag it is 

sufficient to prove that G can be reduced to its vertex set 

by a parallel and a series decomposition. We can 

suppose, without loss of generality, that Gno is 

connected, otherwise, since by supposition every 

connected sub-graph of Gno is a K⨁S-graph, we can 

apply this treatment for every connected component of 

Gno. Let (V1, V2) be the K⨁S-decomposition of Gno. 

Since G is a bipartite dag of depth 1 then, by the above 

Remark, (V1, V2) is a series decomposition of G to G[V1] 

and G[V2]. Thus, by considering the K⨁S-

decomposition of every connected component of Gno 

[V1] and those of Gno [V2], we deduce that G can be 

reduced to its vertex set by a parallel and a series 

decomposition, therefore G is an MSP-ST. 

The following Corollary is immediate since an MSP-ST 

dag is Z3-free. 

Corollary 1: The class of SP-ST dags and MSP-ST dags 

are identical. 

To recognize that an arbitrary dag G is an SP-ST dag, 

we check first that G is a Z3-free, this can be done in 

O(n) time complexity by checking that every vertex of 

G is a source or a sink. Then we check that the bipartite 

graph Gno is {P6, C6}-free, this can be done by the 

O(n+m) time recognition algorithm of the {P6, C6}-free 

bipartite graphs presented by Quaddoura and Al-Qerem 

[15]. 

Corollary 2: The class of SP-ST dags can be recognized 

in O(n+m) time complexity. 

4. Series-Parallel Sources Sources Dags 

We define the class of series-parallel sources sources 

dags in terms of minimal series-parallel sources sources 

dags as follows: 

Definition 5: (Minimal series-parallel sources sources) 

a) A dag having a single vertex is an MSP-SS dag. 

b) If G1=(V1, E1) and G2=(V2, E2) are two MSP-SS dags 

then the dag constructed by each of the following 

operations is also an MSP-SS dag: 

• Parallel composition: G=G1PG2=(V1 ∪ V2, E1 ∪ E2). 

• Series composition: G=G1SG2=(V1 ∪ V2, E1∪ E2 ∪ 
S1×S2) where Si is the set of sources of Gi, i=1, 2. 

Definition 6: A dag is an SP-SS dag if and only if its 

transitive reduction is an MSP-SS dag. 

In the same way, as in the class of MSP dags, an MSP-

SS dag G can be represented by a binary decomposition 

tree T(G) that reflects the construction of G starting of 

its vertices using series and parallel operations. Also, as 

in the binary decomposition tree of an MSP dag, the two 

children of an S-node are ordered according to the series 

operation of that node. Figure 4 represents an SP-SS dag 

G, the transitive reduction of G which is the MSP-SS 

dag G’, and the binary decomposition tree T(G’). The 

following theorem is the key to our recognition 

algorithm of SP-SS dags, it characterizes the MSP-SS 

dags by two forbidden configurations. 

 

Figure 4. An SP-SS dag G, the transitive reduction of G which is the 

MSP-SS dag G’, and the binary decomposition tree T(G’). 
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Theorem 3: Let G be a connected dag without transitive 

arcs. G is an MSP-SS dag if and only if G is {F1, F2}-

free, as shown in Figure 5. 

 

Figure 5. The forbidden configurations of an MSP-SS dag. 

Proof: Suppose that G is an MSP-SS dag and let’s show 

that G is {F1, F2}-free. 

Claim 1: Let y1, y2 ∈ V(G) such that N-(y1) ∩ N-(y2) ≠ ∅ 

then N-(y1) ⊆ N-(y2) or N-(y2) ⊆ N-(y1). 

Proof: Since G is an MSP-SS, every arc in G is created 

by a series operation. According to the series operation, 

for any vertex y, all the arcs {(x, y) | x ∈ N-(y)} are 

created by the same series operation. So, if there is two 

vertices y1, y2 such that N-(y1) ∩ N-(y2) ≠ ∅ then, if the 

two sets of arcs {(x, y1) | x ∈ N-(y1)} and {(x, y2) | x ∈ N-

(y2)} are created by the same series operation then N-(y1) 

= N-(y2). Suppose that the set of arcs {(x, y1) | x ∈ N-(y1)} 

is created by a series operation S1 and the set of arcs {(x, 

y2) | x ∈ N-(y2)} is created by a series operation S2 where 

S1 precedes S2. Since N-(y1) ∩ N- (y2) ≠ ∅, the vertex y2 

was a source during the operation S2, so N-(y1) ⊆ N-(y2). 

If S2 precedes S1 then N-(y2) ⊆ N-(y1). 

By Claim 1, G is F1-free. 

Claim 2: Let y ∈ V(G), for every x1, x2 ∈ N-(y), N-(x1)=N-

(x2). 

Proof: Let x ∈ N-(x1). By the definition of the series 

operation, the arc (x1, y) is created by a series operation 

S1 that precedes the series operation S2 for which the arc 

(x, x1) has been created. Since the arcs (x1, y), (x2, y) were 

created by the same series operation S1 then, during the 

series operation S2 there exist as sources x1 and x2, 

therefore (x, x2) ∈ E, this implies that N-(x1)=N-(x2). 

By Claim 2, G is F2-free. 

Suppose now that G is a connected dag without 

transitive arcs and {F1, F2}-free. Let’s show that G is an 

MSP-SS dag. Let S be the set of all sources of G and Q 

= G[V - S]. 

Claim 3: Every vertex of Q that is a successor to a 

vertex of S is a source of Q. 

Proof: Let y be a vertex of Q that is not a source and a 

successor to a vertex x ∈ S. Let z be a source in Q such 

that z is an ancestor of y. Since G does not contain 

transitive arcs, (x, u) ∉ E for every vertex u located on 

the path going from z to y. Suppose that z is a 

predecessor of y. Since S is the set of all sources of G, 

there is a source t ∈ S such that (t, z) ∈ E. Since G does 

not contain transitive arcs, the set {t, z, y, x} induces the 

configuration F2, a contradiction. Suppose that z is not 

a predecessor of y, let u1 and u2 be two vertices of the 

path going from z to y such that u1 is a predecessor of y 

and u2 is a predecessor of u1. Since G does not contain 

transitive arcs, the set {x, y, u1, u2} induces the 

configuration F2, a contradiction. 

Let C1, ..., Ck be the connected components of Q and S’ 

is the set of sources of Q. 

Claim 4: If a source x ∈ S is a predecessor to a source y 

of some connected component Ci, 1 ≤ I ≤ k then x is a 

predecessor to every source of Ci. 

Proof: Suppose the contrary then, there is a source y’ in 

Ci such that (x, y’) ∉ E. The vertices y and y’ have a 

common successor in Ci. Otherwise, let z be a successor 

of y in Ci and z’ is a successor of y’ in Ci, since G[Ci] is 

connected there is a chain in G[Ci] that connects (y, z) 

and (y’, z’), this chain contains the configuration F1, a 

contradiction. Now, let z ∈ Ci such that (y, z), (y’, z) ∈ E, 

the set {x, y’, y, z} induces the configuration F2, a 

contradiction. 

If k = 1 then by Claim 4, G[S ∪ S’] is a bipartite 

complete. By Claim 3, G admits a series decomposition 

into S and V(G) - S. 

Suppose k ≥ 2. If G[S ∪ S’] is a bipartite complete then 

as above G admits a series decomposition into S and 

V(G) - S. So, suppose that G[S ∪ S’] is not a bipartite 

complete. Since G is connected, G[S ∪ S’] must be also 

connected. 

Claim 5: There is a vertex y ∈ S’ such that for every x ∈ 
S, (x, y) ∈ E. 

Proof: Suppose the contrary, then for every vertex y ∈ 
S’ there is a vertex x ∈ S such that (x, y) ∉ E. Let y1, y2 ∈ 
S’ and x1, x2 ∈ S such that (x1, y1), (x2, y2) ∈ E and (x1, 

y2), (x2, y1) ∉ E. Since G[S ∪ S’] is connected, there is a 

chain in G[S ∪ S’] that connects (x1, y1) and (x2, y2). 

Without loss of generality, let x ∈ S such that (x, y1), (x, 

y2) ∈ E, then {x, x1, y1, x2, y2} induces the configuration 

F1, a contradiction. 

Let Y = {y ∈S’ : ∀ x ∈ S, (x, y) ∈ E} and C1, ..., Cr are 

the connected components of Q that contain the vertices 

of Y. It is proven in Claim 4 that every source of every 

connected component Ci (1 ≤ I ≤ r) is a successor of 

every source in S. Therefore, by Claim 5, G admits a 

series decomposition into V(G) - (C1, ..., Cr) and C1, ..., 

Cr. Now, by applying this treatment on V(G) - C1, ..., Cr) 

and C1, ..., Cr, it follows that we can always reduce G to 

its vertex set by a parallel decomposition and a series 

decomposition, this implies that G is an MSP-SS dag. 

4.1. Recognition of SP-SS Dags 

We present in this section a linear algorithm to recognize 

if an arbitrary dag is an SP-SS dag or not. We will take 

into account the topological sort of a dag G defined to 

be a linear ordering of all vertices, such that if G has an 

arc (x, y), then x appears before y in the ordering. It is 
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known that the topological sort of a dag can be obtained 

in O(n + m) time complexity [4]. We can define the 

topological sort of a dag to be suitable for our algorithm 

as follows: 

Definition 7: Let G be a dag and S is the set of sources 

of G, let A1=S, and Ai={x: there is a source s such that 

the length of the longest path from s to x is equal to i}. 

The sort ρ=(A1, ..., Ap) is called the topological sort of 

V(G). 

For example, the topological sort of the dag G in Figure 

4 is ρ =(A1, A2, A3) where, A1={a, b, c}, A2={d, e, f, g} 

and A3={h, i, j, k, l}. 

Our algorithm uses the following result: 

Lemma 1: Let G be a dag and let ρ=(A1, ..., Ap) be the 

topological sort of V(G). Then G is an MSP-SS dag if 

and only if the following conditions are verified: 

a) For every (x, y) ∈ E(G) there is 1 ≤ i ≤  p-1 such that 

x ∈ Ai and y ∈ Ai+); 

b) For every 2 ≤  i ≤ p, G[Ai-1 ∪ Ai] is a bipartite F1-free 

graph; 

c) Let C = (Ci-1, Ci) be a connected component of G[Ai-

1 ∪ Ai], 3 ≤ I ≤ p then for every x, y ∈Ci-1, N-(x)=N-(y). 

Proof: Let (x, y) ∈ E(G) where x ∈Ai and y ∈Aj. We can 

remark that j > i + 1 if and only if G contains a transitive 

arc or G contains the configuration F2. Conditions a and 

b assure that G is a F1-free, and conditions a and c assure 

that G is a F2-free.  

The following Lemma provides a simple method for 

verifying the condition b in Lemma 1. 

Lemma 2: Let G =(B ∪ W, E) be a bipartite dag of depth 

one. G is F1-free if and only if for every x, y ∈ W, N-(x 

)⊆ N-(y) or N-(x) ∩ N-(y)=∅. 

Proof: Obviously if G is F1-free then the only if 

conditions of this Lemma must be verified. On the 

contrary, if one of these conditions is verified then every 

connected component of G contains a universal vertex. 

Therefore, we can reduce G to its vertex set by a parallel 

and a series decomposition, so G is an MSP-SS dag, 

hence G is F1-free. 

We need a tool that characterizes the transitive arcs in 

an SP-SS dag in linear time since it's improbable that a 

linear time transitive reduction algorithm exists for all 

dags [1]. By Lemma 1, the transitive arcs in an SP-SS 

dag G are only those arcs that are not located between 

two consecutive levels of the topological sort of G. This 

condition is necessary but is not sufficient, since it is 

possible after removing the arcs of this type from some 

dag G then, the resulting graph may be an MSP-SS dag 

even though G is not an SP-SS dag. Lemma 3 presents 

a sufficient condition to be an arc of this type transitive. 

Lemma 3: Let G be a dag such that the graph G’, 

obtained by removing every arc of G that is not located 

between two consecutive levels of the topological sort ρ 

of G, is an MSP-SS dag. If for every arc (x, y) ∈ E(G) - 

E(G’) there is a common descendant sink in G’ to both 

x and y then G is an SP-SS dag. 

Proof: Let (x, y) ∈ E(G) - E(G'), and let t be a descendant 

sink in G’ to both x and y. To prove the Lemma it is 

sufficient to prove that (x, y) is a transitive arc. Suppose 

the contrary. Let ρ= (A1, ..., Ap) be the topological sort 

of G. Since (x, y) ∈ E(G) - E(G’) then by supposition, 

there are 1 ≤ i < j ≤ p and j ≥ i +2 such that x ∈ Ai and y 

∈ Aj. Since t is a common descendant sink in G’ to both 

x and y, there is j ≤ r ≤ p such that t ∈ Ar (in case j = r 

then, y = t). Since y ∈ Aj and j ≥ i + 2 then, there is a path 

in G’ from some vertex yi ∈ Ai to y say yi, y(i+1), …, yj 

where yj = y. Since t is a descendant sink of y then, there 

is a path from y to t in G’ say yj, y(j+1), …, t. Let P1 = yi, 

yi+1, …, yj, yj+1,…, t. Similarly, since t is a descendant 

sink of x, there is a path in G’ from x to t say P2=xi, xi+1, 

…, t where xi=x. Since t is a common descendant sink 

in G’ to both x and y, we can suppose that starting of 

some i ≤ k ≤ r, the sub-path yk, yk+1,…, t of P1 is exactly 

the sub-path xk, xk+1,…, t of P2. If i ≤ k ≤ j then, (x, y) is 

a transitive arc, a contradiction, so k > j. Since k > j ≥ 

i+2, the vertices xk-1, xk-2, yk-1 are existed. Without loss of 

generality, we can suppose that yk-1 = yj = y. Since, by the 

construction of ρ, every Ai, 1 ≤ i ≤ p is a stable set, and 

xk-1, yk-1 ∈ Ak-1, we have (xk-1, yk-1), (yk-1, xk-1) ∉ E(G’). 

Also (xk-2, yk-1) ∉ E(G’), otherwise (x, y) is a transitive 

arc. But now the set {xk, xk-1, xk-2, yk-1} induces the 

configuration F2, a contradiction. 

We can now translate the results of Lemma 1, Lemma 

2, and Lemma 3 into the algorithm “Recognition of SP-

SS dags.” Algorithm (1) contains the necessary 

procedures for detecting if an arbitrary dag is an SP-SS 

dag or not based on the above Lemmas. The input of this 

algorithm is the topological sort ρ = (A1, ..., Ap) of a dag 

G = (V, E). 

• Step 1: Computes the transitive reduction G’ of G, 

according to Lemma 1 (if G is an SP-SS dag), by 

striping every arc of E not located between two 

consecutive levels of ρ. The dag G becomes the dag 

G’ in the rest of the steps, so we referred to the set of 

successors or the set of predecessors in G’ for some 

vertex x to be simply N+(x) and N-(x) respectively. 

• Step 2: Tests whether G’ contains the configuration 

F1 or not according to Lemma 2. 

• Step 3: Tests whether G’ contains between two 

consecutive levels of ρ the configuration F2 or not 

according to condition c in Lemma 1. The success of 

step 2 and step3, means that G’ is an MSP-SS dag. 

• Step 4: Computes the descendants sinks δ(y) in G’ for 

every vertex y ∈ V(G). 

•  Step 5: The input of this step is the set of arcs D 

resulting from step 1. This final step checks whether 
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every arc in D is transitive according to the output of 

step 4 and based on Lemma 3. 

Algorithm 1: Recognition of SP-SS Dag. 

Input: The topological sort ρ = (A1,..., Ap) of a dag G = (V,  E). 

Output: The message “Success” if G is an SP-SS dag, otherwise 

“’Failure message” 

Step 1 

D = ∅ 

For every (x, y) ∈ E(G) do 

 If x ∈ Ai and y ∈ Aj with j > i+1 then D = D ∪ {(x, y)} ,E = E-

{(x, y)} 

 End If 

End For 

Step 2 

Let G1 = G[A1 ∪ A2 ],…,Gp-1 = G[Ap-1 ∪ Ap] 

For i = p-1 down to 1 

   Let Ai+1 = {y1,…,yr} such that d-(y1) ≥ ⋯ ≥ d-(yr) 

   Let C1 = ⋯ = Cr = ∅ 

   For 1 ≤ j ≤ r 

     If there is a vertex x ∈ N-(yj) that is marked by  

     k ≠ j then 

        If there is a vertex x ∈ N-(yj) that is not marked  

        by k then 

         Exit with a failure message  

        End If 

     Else Mark every vertex in N-(yj) by j; Cj = Cj ∪  N (yj) 

     End If 

   End For 

Step 3 

Let C1 ,… Ck be the non-empty sets produced in step 2 

For 1 ≤ i ≤ k 

    Let C i= {x1, …, xs} 

    For 2 ≤ j ≤ s 

         If N- (xj) ≠ N- (x1) then Exit with a failure 

          message 

End For 

End For 

Step 4 

For every sink t let δ(t) = {t} 

For i=p-1 down to 1 

   Let Ai = {y1 ,…, yr} 

       For i=1 to r 

           δ(yi )= ⋃ 𝛿 𝑥 𝑥∈𝑁+ 𝑦𝑖 
 

      End for 

End for 

Step 5 

For every (x, y) ∈ D 

    If δ(x) ∩ δ(y) = ∅ then exit with a failure message  

Return success message 

4.2. Complexity 

Let’s show that the time complexity of this algorithm is 

O(n + m). The computation of G’ according to step 1 

runs in O(m) time, since this step considers only the set 

of arcs E. The output of step 1 is the input of step 2. 

According to step 1, the sets of arcs E(Gi), i=1, ..., p-1, 

constitute a partition of E(G). Therefore, testing the 

inclusion relation, according to Lemma 2, of the vertices 

of N-(yj),  j=1, …, r for every Ai+1 = {y1,…,yr }, i=1, ..., 

p-1, using the marking procedure described in step 2, 

can be executed in time O(|V(Gi)| + |E(Gi )|). The non-

empty sets C1, …, Ck produced in step 2 for every Gi, 

i=1, ..., p-1 are the input of step 3. Indeed Ci ∪ {N+(x): x 

∈ Ci}, 1≤ i ≤ k, are the connected components of Gi, i = 

1, ..., p-1. To test the condition c of Lemma 1, it is 

enough to compare for every x ∈ Ci, the set N-(x) with 

N-(x1) where x1 is an arbitrary vertex of Ci. This can be 

done in O(|V(Gi )| + |E(Gi)|) time. So, the total time 

complexity of step 2 and step 3 requires O(n + m) time. 

The set of descendant sinks δ(y) in G’ for a vertex y is 

equal to the union of all the sets of descendant sinks δ(x) 

in G’ where x ∈ N+(y). By step 1, if y ∈Ai, p-1 ≤ i ≤ 1 

then, N+(y) ⊆ Ai+1. So the computation of the 

descendants sinks for all the vertices y ∈ Ai, p-1≤ i ≤ 1 

can be executed in time O(|V(Gi)| + |E(Gi)|). Therefore, 

the total time complexity of step 4 is O(n + m) time. The 

input of step 4 is the set D produced by step 1, so this 

step can be executed in O(|D|). Hence, the total time 

complexity of the whole algorithm is O(n + m). 

5. Series-Parallel Sinks Sinks Dags 

We define the class of series-parallel sinks sinks (SP-

TT) dags in terms of minimal series-parallel sinks sinks 

(MSP-TT) dags as follows: 

Definition 8: (Minimal series-parallel sinks sinks) 

c) A dag having a single vertex is an MSP-TT dag. 

d) If G1=(V1, E1) and G2=(V2, E2) are two MSP-SS dags 

then the dag constructed by each of the following 

operations is also an MSP-SS dag: 

• Parallel composition: G=G1PG2=(V1 ∪ V2, E1 ∪ E2). 

• Series composition: G=G1SG2=(V1 ∪ V2, E1∪ E2 ∪ 
T1×T2) where Ti is the set of sinks of Gi, i=1, 2. 

Definition 9: A dag is an SP-TT dag if and only if its 

transitive reduction is an MSP-TT dag. 

Definition 10: Let G=(V, E) be a dag. The opposite dag 

of G is the dag Gop=(V, Eop) where Eop={(x, y): (y, x) ∈ 
E}. 

It is clear that a dag G is an SP-TT if and only if Gop is 

an SP-SS. So, to recognize whether a dag G is an SP-TT 

or not, it is sufficient to recognize whether Gop is a SP-

SS or not. 

Corollary 3: Let G be a connected dag without 

transitive arcs. G is an MSP-TT dag if and only G is {H1, 

H2}-free, as shown in Figure 6. 

 

Figure 6. The forbidden configurations of an MSP-TT dag. 
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6. Conclusions 

We think there are some significant algorithmic and 

combinatorial implications for the symmetric classes of 

series-parallel digraphs proposed in this study. In this 

final section, we talk about a few potential uses. 

• Oriented chromatic number. Courcelle in [5] 

established the concept of oriented colorings on 

oriented graphs as follows: An oriented r-coloring for 

oriented graph G=(V, E) is a partition of the vertex 

set V into r independent sets, such that all arcs 

connecting two of these subsets have the same 

direction. The oriented chromatic number of a graph 

G is the smallest integer r for which G has an oriented 

r-coloring. Oriented colorings are useful in 

scheduling models where incompatibilities are 

oriented [9]. Computing the oriented chromatic 

number of an oriented graph is generally NP-

complete [9]. It was proved by Gurski et al. [12] that 

this number is at most 7 for the class of MSP dags, 

and a linear time algorithm for computing the 

oriented chromatic number of an MSP dag is 

proposed. We conjecture that the computation of the 

oriented chromatic number of an MSP-ST dag, MSP-

SS dag, or MSP-TT dag can be done in efficient time. 

• Clique-width number. Courcelle et al. in [6] 

introduce the notion of clique-width of a graph G to 

be the smallest number of labels required to construct 

G using the four operations listed below: 

• The operation i(v) to create a new vertex v has the 

label i. 

• The operation G ⨁ H to make a union of two 

disjoint labeled graphs G and H. 

• The operation ηi, j(G) to add the labeled graph G 

an edge (or an arc in case of digraphs) from each 

vertex with label i to each vertex with label j (i ≠ 

j). 

• The operation ρi→j(G) to change in the labeled 

graph G every label i to label j. 

If the clique-width of a given graph or digraph is 

bounded then many problems that are NP-hard in 

general admit polynomial-time solutions when 

restricted to this graph (see for example [7, 8, 13, 14]. 

We conjecture that the computation of the clique-width 

of an MSP-ST dag, MSP-SS dag, or MSP-TT dag can 

be done in efficient time. 
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