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Abstract: This research presents an innovative methodological framework for software development that integrates Artificial 

Intelligence (AI) techniques, Software Product Lines (SPL), and Lehman’s [24] aging factors. The main objective is to improve 

the efficiency and adaptability of design processes for residential spaces through intelligent automation. This framework covers 

the entire software development life cycle, utilizing AI algorithms to optimize design and respond to the evolving needs of users 

while maximizing resource usage. A case study on a connected home concretely illustrates the application of this framework, 

demonstrating its effectiveness in creating dynamic and personalized designs. Furthermore, it addresses the issue of software 

sustainability by incorporating aging laws throughout their life cycle, an aspect often overlooked in existing solutions. By 

combining product line engineering and AI techniques, this framework offers a structured approach that promotes both 

sustainability and personalization. It has the potential to transform practices across various sectors, such as healthcare, finance, 

and education, while fostering a culture of sustainable innovation. However, its effectiveness also depends on the skills and 

experience of development teams, highlighting the importance of considering human factors in its application. 

Keywords: Sustainability, evolution, quality of service, SPL, AI, IoT, connected homes. 

Received April 17, 2024; accepted January 03, 2025 

https://doi.org/10.34028/iajit/22/2/4 
 

1. Introduction 

The software industry, characterized by intense 

competition [19] and an evolving nature, must meet user 

expectations while optimizing production resources in 

various contexts [8]. The main production challenges in 

this sector include reducing maintenance costs, 

improving productivity, and effectively managing 

competition [19]. An obvious solution to address these 

challenges is software durability. Indeed, effective 

control of software obsolescence ensures prolonged 

viability, which reduces production costs and enhances 

productivity [39]. According to Lehman [24], software 

durability is defined by its ability to endure over time 

and adapt to changes. This allows for reduced 

maintenance costs through proactive updates, thereby 

decreasing the time and resources required for upkeep 

[8]. Furthermore, improvements in productivity 

manifest through optimized performance and reduced 

downtime due to major failures, enabling users to 

remain productive. Moreover, paradigms such as 

Software Product Lines (SPL) facilitate the 

management of durability through concepts like  

 
component reuse, which reduces redundancy and 

development costs. They also allow for the application 

of updates across multiple products, thereby extending 

their lifespan [8], while offering flexibility and 

adaptability as well as efficient maintenance [39]. 

However, a crucial aspect of software is its intrinsic 

need to evolve, even without the requisite skills [6]. 

Maintaining existing systems proves significantly more 

costly, potentially reaching 2 to 100 times the cost of 

developing new systems [37]. This cost disparity often 

results from inadequate initial design. It is also 

important to remember that software is not produced 

merely for the sake of producing it, even if the 

production cost is low. The primary reason for the 

existence of software is user satisfaction. Moreover, the 

use of SPL requires an understanding of the software 

domain. Designing a domain is challenging, given the 

inability to fully grasp a domain thoroughly [30], 

especially in constantly evolving fields like the Internet 

of Things (IoT). 

Even with a realistic domain design, software 

domains undergo continuous changes [1, 6, 9]. The 

complexities of a dynamic and evolving domain pose 

https://doi.org/10.34028/iajit/22/2/4


Adaptive Software Development: A Comprehensive Framework Integrating Artificial ...                                                          249 

 

challenges to achieving a sustainable and adaptable 

software design in this context. Therefore, designing a 

realistic software domain requires considering all 

current and future change factors. 

In the field of software development methodologies, 

the incremental approaches proposed through the SPL 

paradigm aim to facilitate flexible evolution. However, 

these approaches often fail to explicitly address the 

factors of continuous change and their complex 

relationships [8]. The combination of the SPL paradigm 

with Artificial Intelligence (AI) promises to create 

customized software, improve coherence, and optimize 

SPL performance. Unfortunately, the vast field of AI 

lacks a guiding framework to effectively assist 

designers in its use. Existing literature primarily focuses 

on AI tools rather than techniques. Furthermore, the use 

of these tools is limited by mastery prerequisites and 

cost. Additionally, the effectiveness of AI tools depends 

on the initial quality of the product line construction. 

This raises the question of how AI can be effectively 

used to achieve a realistic design of a dynamically 

coherent product line evolution, approaching the ideals 

of software eco-responsibility. To address this, we 

propose a methodological framework for the 

development of SPL [1] that integrates continuous 

change factors, as described by Lehman’s [24] laws. 

The overarching goal is to create software capable of 

adapting seamlessly to continuous changes throughout 

its lifecycle while navigating the perpetual dilemma of 

user satisfaction versus production constraints. The aim, 

therefore, is ultimately to create software that is resilient 

over time while reducing production costs, but also 

ensuring customization according to the evolving 

preferences, skills, and needs of users. 

The following section provides an overview of the 

considered context, highlighting its specificities as well 

as the complexity of the decision frameworks associated 

with it. A review of existing methods and approaches 

follows, leading to the presentation of the main 

objective of this article. A methodological framework is 

then proposed, accompanied by an illustrative example 

of the design of a connected home management system. 

Finally, a critical discussion addresses the capacity of 

this framework to account for other characteristics, 

particularly those specific to the design team in a 

software context, thereby leading to the conclusion and 

future perspectives of this study. 

2. State of the Art 

Several approaches exist to address the challenge of 

sustainability in software development by leveraging 

the similarities between software entities to generate 

new ones [37]. This contemporary manifestation of the 

copy-paste paradigm is embodied in methodologies 

such as SPL. 

 

2.1. Software Product Line 

In a given domain of activity, most software has 

similarities. Software Product Line Engineering (SPLE) 

accentuates this reuse of similarities [25]. A SPL is a 

paradigm advocating a modeling and development 

vision where the objective is not simply to obtain an 

individual software system but a set of software systems 

sharing common characteristics. This concept stems 

from the recognition that applications in various 

domains are not isolated systems but rather share 

common needs, functionalities and properties [32]. It is 

up to the development team to leverage these 

commonalities to define a fundamental architecture, 

simplifying the construction of new applications with 

increased efficiency and quality [38]. Indeed, SPL play 

several roles in software sustainability through code 

reuse, adaptability and scalability [8], contribution to 

sustainable development through reduction of software 

development costs, improvement of software quality as 

well as support for software sustainability [32]. This 

paradigm, which aims to systematize planned reuse 

throughout the software development process [34], is 

delimited into two main phases: domain engineering 

and application engineering, as illustrated in Figure 1. 

 

Figure 1. Product line development process [20]. 

The domain engineering phase, generally carried out 

by domain experts, consists of defining the basic 

elements that characterize the scope, their requirements, 

similarities and specificities as well as their 

relationships to define a basic architecture of the 

domain. 

The application engineering phase consists of 

deriving an application from the basic architecture 

according to a defined context.  

This paradigm, which appears as an ideal solution for 

software sustainability, nevertheless faces various 

challenges in fulfilling its mission, including the 

complexity of managing variability within product 

lines, maintaining the quality of variants, and managing 

reuse that can introduce complex dependencies and 

cause integration problems [8, 27]. Although challenges 
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exist in SPL, it is essential to mainly highlight their 

advantages in terms of software sustainability that can 

contribute to other areas. Indeed, by centralizing the 

management of variants from a common core, SPL 

enable efficient reuse of components, thus reducing 

development and maintenance efforts [8]. This approach 

also facilitates updates and patches, thus extending the 

software lifespan. By optimizing resources and 

minimizing maintenance efforts, SPL contribute to a 

reduction in the ecological footprint of software, thus 

promoting increased overall sustainability [5]. These 

advantages can be highlighted in the case of connected 

objects that evolve exponentially and where systematic 

and transversal reuse is emphasized [8]. Indeed, facing 

specific challenges such as rapid technological 

evolution, device obsolescence [6], frequent software 

updates, integration of new technologies [35], and 

changing user requirements, sustainability management 

becomes a key factor in reducing the maintenance costs 

of connected objects. 

In addition to specific research on SPL, there are 

design methods that can be used. The Feature-Oriented 

Domain Analysis method (FODA) [30] employs 

techniques such as feature modeling, domain analysis, 

feature-oriented design, and variability modeling. Its 

main objective is to identify commonalities throughout 

the SPLE lifecycle and to effectively model variability 

and commonalities. However, FODA has several 

limitations. First, it lacks clear guidelines for managing 

dynamic complexity in evolving product line systems, 

making the models less useful in rapidly changing 

environments. Furthermore, as the number of features 

and their interactions increase, managing complexity 

becomes difficult, especially in product lines with many 

variants and dependencies [9]. 

Scalability is another issue; FODA can face 

challenges when it comes to large product lines, making 

the management of features and variants more complex, 

which can affect performance and documentation 

management. Furthermore, integrating the features 

defined by FODA with actual development tools can 

prove complex, requiring additional effort for validation 

and verification. Additionally, managing dependencies 

between features can lead to unforeseen effects on the 

system. Finally, FODA primarily focuses on variability 

at the initial design stage and may not effectively handle 

dynamic changes during the system’s execution. As a 

result, it may not quickly adapt to rapid changes in 

requirements, necessitating significant manual 

adjustments to maintain feature consistency [8]. 

In this context, the Feature-Oriented Requirements 

Modeling method (FORM) [21] uses similar techniques, 

such as feature modeling, feature-oriented 

programming, domain analysis, and product line 

architecture. Although it is primarily designed for 

modeling variability during the requirements definition, 

design, and implementation phases, FORM has certain 

limitations. First, it does not comprehensively address 

all phases of the product lifecycle, which may require 

complementary approaches for complete management 

[21]. Additionally, modeling with FORM can become 

complex, especially for systems with many variations, 

leading to an increased need for time and specialized 

tools [11]. Regarding integration with other phases of 

software development, FORM may struggle to provide 

the detailed information needed, forcing teams to adopt 

additional approaches, complicating the process. 

Finally, like FODA, FORM does not provide clear 

guidelines for managing dynamic complexity in 

evolving systems, making the models less useful in 

rapidly changing environments. 

On the other hand, the Function Analysis System 

Technique method (FAST) [4] focuses on feature 

modeling, domain analysis, configuration management, 

feature interaction analysis, and requirements analysis, 

playing a crucial role in product line testing. However, 

it also has certain limitations. First, the complexity of 

feature analysis can increase when managing a large 

number of features, complicating the analysis and 

design of products [4]. Additionally, while FAST is 

effective for managing features, it may lack the 

flexibility to quickly adapt to changes in market or 

customer requirements [4]. Finally, modeling 

dependencies between features can be challenging, 

especially when interactions become complex [4]. 

Continuing this exploration, the Software Product 

Line Integration and Testing method (SPLIT) [11] 

focuses on analyzing interactions between features, 

product configuration, constraint management, and 

variability management, thereby supporting variability 

management. However, it also presents some 

limitations. First, integrating different product variants 

can be complex, especially when interactions between 

components are complicated [11]. Furthermore, the 

testing process can become difficult to manage due to 

the diversity of possible configurations, which can lead 

to gaps in testing and undetected errors [11]. Finally, the 

resources required to manage integration and testing can 

be considerable [11]. 

As for the requiline method, it relies on a feature 

model based on FODA and aims to provide tools for 

modeling variability during the requirements definition 

phase. However, this method also has limitations. First, 

it heavily depends on requirements management and 

analysis, meaning that errors or inaccuracies in these 

can affect the quality of the product line [14]. 

Additionally, managing variants and specific 

configurations can become complex, especially in the 

presence of a large variety of products [14]. Finally, 

Requiline may struggle to adapt to environments where 

requirements frequently evolve [14]. 

Finally, to conclude, the Guendouz and Bennouar 

method [18] focuses on component modeling and 

variability during the architecture definition and product 

derivation phases. However, this method also has 

several limitations. First, the complexity of the models 
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used can create challenges when specifying different 

variants [18]. Additionally, implementing Guendouz 

and Bennouar [18] may require significant resources for 

training and process management. Lastly, the processes 

defined by Guendouz and Bennouar [18] may not be 

easily adaptable to the rapid changes in market 

requirements. 

In general, these methods for analyzing and 

managing variability in SPL highlight the diversity of 

techniques used, such as FODA, FORM, and 

COVAMOF. While each method offers advantages, they 

share common limitations, including modeling 

complexity, high development costs, and insufficient 

adaptability to rapid requirement changes. Moreover, 

some methods primarily focus on static variability, 

which limits their effectiveness in the face of dynamic 

variations. Therefore, it is crucial to enhance the 

flexibility and integration of these approaches to better 

address the current challenges in software development. 

In the context of connected objects, where 

requirements constantly evolve and variability can be 

particularly complex, it is essential to address these 

shortcomings to ensure effective management. Existing 

methods must be adapted and supported to meet the 

specific needs of this field. This ensures that the design 

and implementation of connected object systems are 

both agile and responsive to market fluctuations and 

user expectations. 

2.2. Internet of Things (IoT) 

The IoT, often regarded as the engine of sustainable 

development, is defined by Mohan and Ramesh [28] as 

a dynamic network infrastructure characterized by self-

configuration, self-healing, and self-adaptation. 

This infrastructure profoundly influences various 

sectors of human activity and represents a rapidly 

expanding industry facing challenges stemming from 

technological and material complexity [7, 19]. These 

challenges hinder comprehensive mastery [34] and 

contribute to the ongoing quest for cost reduction in 

production, deployment, and maintenance. Comprising 

data, algorithms, and an intelligent ecosystem, IoT has 

garnered significant research attention. 

Garcia et al. [16] suggest viewing IoT as the internet 

of services, defining a service as a set of functions 

provided by software, typically accessible via an 

application or programming interface. Building upon 

this notion, Garcia et al. [16] propose a software 

development approach consisting of three stages: 

system operation description through graphical 

representation or source code, structural description, 

and code generation. However, this proposed approach 

fails to leverage similarities among connected software 

families and neglects factors such as obsolescence in 

design, as well as the essential properties of self-healing 

and self-adaptation inherent in intelligent systems. 

Authors such as Krasner [23] endeavor to emphasize 

the significance of properties like self-healing and self-

adaptation by introducing an approach that delineates 

variability through feature modeling. This approach 

defines, for each system condition, a resolution R to 

represent the set of triggered changes in terms of 

activation/deactivation of functionality, facilitating the 

deduction of product line architecture. However, the 

authors overlook factors related to domain evolution, 

and the definition of resolutions for any change remains 

limited due to the inability to anticipate all potential 

changes, given the incomplete control of the domain or 

user and potential future alterations. Consequently, there 

is no guarantee that the system will maintain 

consistency in the event of unforeseen changes. 

In contrast, Tzeremes and Gomaa [37] leverage the 

similarities within software. Their work introduces an 

approach modeled on the SPL paradigm. Although they 

adopt the product line approach, the authors fail to 

consider factors that may influence the bank of product 

line elements and the parameters for customizing the 

application for individual users. Furthermore, there is no 

provision for ensuring self-healing, self-adaptation, or 

the efficacy of an intelligent system within their 

modeling framework. 

However, AI can contribute to the key features that 

connected objects should have. Notably, self-repair, 

which is the ability of a system to detect and 

automatically correct errors or failures without human 

intervention. Self-adaptation, which is the capability of 

a system to modify its behaviors or parameters in 

response to changes in its environment without human 

intervention. The efficiency of intelligent systems, or 

the ability of a system to perform its tasks optimally in 

terms of resources and time. Indeed, AI systems can use 

machine learning techniques to continuously monitor 

systems and detect anomalies or abnormal behaviors 

that could indicate a failure, and apply automatic fixes 

or reconfiguration strategies to resolve the issue. They 

can also use learning algorithms to adjust their 

behaviors based on new data or environmental changes 

[6] and employ optimization techniques to manage 

resources more effectively, reducing costs and 

improving performance. 

2.3. Artificial Intelligence and Software 

Product Line 

The use of AI in SPL is generating increasing interest. 

Indeed, AI offers various essential functionalities, such 

as optimization, personalization based on the analysis of 

consumer behaviors and trends [38], as well as 

variability management. 

For example, optimization helps improve the 

efficiency of development processes [34], while 

personalization assists in adapting products to the 

specific needs of users. Additionally, AI plays a crucial 

role in identifying inconsistencies within SPL. Through 
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predictive analysis, it can detect inconsistencies in 

models [5], study the system internally via its adaptation 

rules, and facilitate the derivation of new products. 

Even better, we can combine the capabilities of AI 

with the benefits of SPL to optimize software design in 

the field of connected objects. The domain engineering 

phase, which involves understanding and modeling the 

requirements and characteristics of a specific domain, is 

divided into several key steps. First, requirements 

analysis can leverage Natural Language Processing 

(NLP) to examine specification documents, user 

feedback, and other sources to extract relevant 

requirements. The major challenge lies in the precise 

extraction of requirements from unstructured 

documents [34]. For example, for a connected home, an 

NLP model can analyze user reviews on various devices 

to identify the most requested features, such as energy 

management or security. Next, domain modeling using 

AI involves creating detailed and comprehensive 

ontologies that reflect the complexity of the domain 

[17]. In the context of a connected home system, this 

involves developing an ontology that includes concepts 

such as temperature control devices, motion sensors, 

and their interactions. Finally, process optimization via 

AI helps identify gaps between existing practices and 

best practices, while proposing process improvements 

without disrupting ongoing operations. For instance, 

using AI algorithms to analyze historical usage data 

from a connected home system can lead to suggestions 

for improvements in energy management and associated 

costs. 

The application engineering phase focuses on the 

design, development, and deployment of software 

applications based on domain models. In design and 

architecture, AI is used to simulate different 

architectural configurations and optimize design 

choices in terms of performance and scalability [15]. 

The goal is to design a flexible architecture capable of 

seamlessly integrating various components. For 

example, in a connected home system, this involves 

developing a modular architecture where modules for 

lighting control, heating, and security are designed 

independently but integrated coherently. During 

development, AI tools enhance code quality through 

review processes [2], by validating code suggestions to 

ensure they are contextually appropriate and free of 

errors. AI-assisted code completion tools can, for 

instance, be used to develop scripts that automate 

temperature adjustments and lighting management in a 

connected home. Regarding testing and validation, AI is 

employed to create diverse and exhaustive test cases, 

with the objective of covering all potential usage 

scenarios. For a connected home system, this includes 

simulating events such as power outages or intrusions to 

verify the system’s response. Finally, for deployment 

and maintenance, AI analyzes usage data to predict 

when updates or maintenance interventions will be 

needed, thereby reducing downtime and improving user 

satisfaction. For example, predictive maintenance can 

be implemented for connected home devices using AI to 

analyze usage patterns and schedule interventions 

before failures occur [6]. 

SPL play a crucial role in sustainable development by 

promoting reuse and standardization [16, 29]. AI can 

enhance the implementation of various phases in the 

SPL lifecycle. However, despite the benefits of 

combining AI with SPL, software aging remains 

inevitable. This means that while AI offers tools for 

managing and improving SPL, it must also be used to 

address the challenges posed by software aging, as 

outlined by Lehman’s laws [24]. 

For instance, with laws like the Law of continuing 

change, which states that software must evolve to 

remain relevant, AI can assist by forecasting future 

needs and automating updates to handle this growing 

complexity. The Law of conservation of familiarity, 

which asserts that software retains its structure even 

when modified, can benefit from AI tools that 

recommend improvements to maintain code quality 

[13]. The Law of increasing complexity, which indicates 

that software becomes more complex over time, can be 

managed by AI through simplifying code structures and 

identifying redundancies. Additionally, for laws like the 

Adaptation to requirements, AI can facilitate this 

adaptation by automating the integration of new 

requirements and ensuring ongoing compliance [4]. 

Although AI offers promising solutions, there are still 

limitations in terms of a methodological framework for 

its use in SPL, particularly concerning the integration of 

aging laws. There is no unified methodological 

framework that systematically incorporates AI 

techniques into the management of SPL while 

considering the laws of aging. This limits designers’ 

ability to apply these techniques consistently and 

effectively. Therefore, it is necessary to develop 

methodological frameworks that integrate AI practices 

with software aging management principles to provide 

clear guidelines and approaches tailored to the specific 

challenges encountered. 

One of the challenges that remains in the design of 

software a line of product is the management of 

variability. Indeed, the identification, the representation 

of the variability and instantiation based on a specific 

product depending on the evolving context influenced 

among other things by user needs, market 

competitiveness, environmental constraints, user 

preferences and skills remain problematic. 

These challenges can be addressed through AI, as 

shown in the literature, in the various phases of SPL. 

The domain engineering phase. Can be broken down 

as follows: 

In the need’s identification stage, the goal is to define 

the domain and delineate its scope by collecting and 

analyzing information on customer expectations, 

functionalities, design, quality of service, as well as 

market trends, competitors, political constraints, user 
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skills, and preferences [7, 32]. At this stage, AI can play 

a key role by helping to extract and analyze 

requirements from various sources to ensure they align 

with user needs. Furthermore, the validation of 

requirements can also be facilitated by AI, which 

compares these requirements to user feedback and 

historical data to ensure they meet expectations [22]. 

Next, during the product family identification stage, 

AI’s analysis of existing data allows for the 

identification of product line elements and their 

relationships, thus providing insights into 

commonalities and variations [30]. Additionally, AI 

algorithms can automate the identification of features by 

classifying them as common, variable, or optional based 

on user data and market analysis. Moreover, AI assists 

in modeling and visualizing relationships between 

product elements, thereby highlighting dependencies 

and constraints. 

In the domain architecture generation stage, AI can 

also assist in modeling the elements of the product line 

by providing design recommendations based on existing 

patterns and best practices [22, 37]. Concurrently, it 

enables the identification of new product ideas and the 

evaluation of their potential in terms of demand, 

production costs, and profitability through the analysis 

of historical usage data [10]. 

Finally, for the domain compliance verification stage, 

AI can automate consistency testing by executing 

simulations and validations against established 

constraints, thereby ensuring compliance [23]. 

Moreover, AI supports ongoing compliance testing by 

monitoring changes in requirements and constraints, 

alerting teams to inconsistencies [25]. 

The application engineering phase: 

In this context, the product derivation phase is 

divided into several key steps. First, during product 

specification, AI plays a crucial role by helping to 

generate and refine specifications based on user 

requirements [22]. Next, in product configuration, AI 

contributes by facilitating the selection of appropriate 

features from the product line. Furthermore, product 

customization is also enhanced by AI, which enables 

personalized adaptation based on user preferences and 

usage habits [17]. 

Regarding product consistency testing, AI can 

automate consistency checks, thus identifying 

discrepancies between product specifications and 

domain constraints [23]. Additionally, AI verifies that 

derived products conform to established rules and 

constraints within the domain. Finally, for product 

requirements validation, AI analyzes these requirements 

to ensure that derived products meet all specified criteria 

[7]. Thus, the integration of AI throughout these steps 

allows for the optimization of product design and 

derivation. 

In the context of SPL, market engineering or market 

study is an essential phase that must be conducted 

separately [32], even though it is often integrated into 

domain engineering. This phase allows for the 

identification of specific user needs, evaluation of 

competition, and effective market segmentation. 

According to the literature, it provides crucial data to 

guide the design of software products, thereby ensuring 

their relevance and commercial success [7]. The 

integration of AI into this process facilitates market 

trend analysis and demand forecasting, making product 

development more agile and responsive [22]. 

The Market engineering phase: It consists of several 

essential phases that greatly benefit from the 

contributions of AI. First, in market analysis, identifying 

market needs is crucial; AI analyzes market data and 

trends to pinpoint user needs and preferences [7]. 

Concurrently, competitive analysis enables AI to 

evaluate competitors’ offerings by examining their 

strengths and weaknesses [22, 32]. 

Next, during market segmentation, AI plays a 

decisive role by segmenting the market based on user 

demographics, behaviors, and preferences [26]. 

Additionally, it creates detailed buyer personas by 

analyzing user data and interactions, which helps refine 

marketing strategies [10]. 

Regarding market forecasting, AI utilizes historical 

data to predict future market demands, assisting in the 

effective allocation of resources [40]. Furthermore, 

trend analysis is facilitated by AI, which provides 

valuable insights into future market directions by 

examining current trends [26, 30]. Finally, in market 

strategy development, AI assists in formulating 

marketing strategies based on data-driven insights and 

forecasts, thereby optimizing strategic decisions [22, 

32]. Thus, the integration of AI throughout these phases 

enhances the efficiency and relevance of market actions. 

In summary, AI plays a key role in the different 

phases of engineering: it helps analyze and model 

requirements in domain engineering, facilitates the 

derivation of products tailored to market needs in 

application engineering, and enables trend analysis and 

demand forecasting in market engineering. However, 

domain, application, and market engineering in SPL 

represent complex processes where the literature often 

focuses on a specific Lehman’s [24] law without 

providing a clear methodological framework that 

integrates all phases of software development. There is 

no systematic guide that highlights the Lehman’s [24] 

laws, their relationships, and their placement in the 

process, nor does it specify how and where they 

manifest. 

Although AI can be used to optimize these processes, 

its effectiveness would be significantly enhanced by a 

methodological framework that presents these laws. 

Indeed, this framework would serve as a guide to 

navigate through the various phases of software 

development, ensuring that all relevant Lehman’s [24] 

laws are systematically and harmoniously integrated. 

This would help ensure the sustainability of the desired 

software as well as customer satisfaction. 



254                                                           The International Arab Journal of Information Technology, Vol. 22, No. 2, March 2025 

 

The various AI techniques that can be used in the 

context of developing SPL to fulfill the previously 

mentioned roles are highlighted in Table 1. This table 

illustrates how these techniques contribute to the 

different phases of the development process. 

Table 1. AI techniques used in product lines. 

Product line phase Challenges/Step AI techniques How AI addresses these challenges 

Domain engineering 

Identification 
of product line elements 

Logic of description, ontological 
reasoning [8] 

AI helps automate the analysis and modeling of requirements, making it 
easier to identify relevant elements 

Identifying 

inconsistencies 

Description logic, knowledge-

based reasoning [32] 

AI algorithms can quickly identify and flag inconsistencies in 

requirements or models 

Managing variability 
First-order logic, ontological 

reasoning [12] 

AI assists in managing variability by providing reasoning capabilities to 

understand relationships between product features. 

Application 

engineering 

Product derivation Ontological reasoning [7] 
AI enhances the product derivation process by using ontologies to ensure 

that derived products meet specified requirements 

Product optimization Optimization [22] 
AI employs optimization techniques to improve product design based on 

user needs and market demands 

Test 
Knowledge-based reasoning, 

genetic algorithms [32] 
AI facilitates automated testing processes and uses genetic algorithms to 

explore potential solutions efficiently 

 

The table summarizes the phases of SPL, 

highlighting the challenges, the AI techniques used, and 

their contributions. 

In domain engineering, AI facilitates the 

identification of product line elements, detects 

inconsistencies, and helps manage variability. In 

application engineering, it enhances product derivation 

and optimizes design based on user needs and market 

requirements. Finally, AI automates testing through 

methods such as knowledge-based reasoning and 

genetic algorithms. 

2.4. Main Goal and Positioning  

In general, designers are consistently confronted with 

the dilemma of balancing user satisfaction against 

production constraints. Addressing this challenge 

necessitates prioritizing the resolution of production 

constraints before addressing user satisfaction. 

Enhancing production constraints entails achieving 

mastery over software durability, a task contingent upon 

a realistic understanding of the chosen domain. 

However, it is unrealistic to expect complete mastery 

over a professional field, regardless of one’s expertise 

in the domain. Fields such as that of connected objects, 

for instance, are in a state of constant evolution, with 

technologies and needs inevitably evolving over time. 

Consequently, mastery over a domain remains elusive; 

even if a semblance of mastery is attained at a certain 

point, the laws of software obsolescence ensure that 

designs will eventually become outdated. 

Existing approaches often treat software as isolated 

entities, neglecting the internal and external factors that 

have a significant impact on software sustainability. In 

addition, proposals generally focus on techniques rather 

than on the use of AI tools for the development process, 

which offer greater flexibility. Thus, the aim of this 

paper is to propose a methodological framework for the 

design of product lines considering the continuous 

integration of internal and external change factors, as 

dictated by software obsolescence laws, and the 

judicious use of AI techniques to improve service 

quality and efficiency. 

3. Methodological Framework Proposed 

Designing within a range remains a preferable option 

[18]. However, this design approach presents 

challenges, notably in managing the variability inherent 

in product ranges and adapting to internal and external 

factors that may alter the initial design. Consequently, 

the product line must evolve gradually over time to 

maintain control over variability while also ensuring 

adherence to Lehmann’s [24] law of familiarity, which 

stipulates the necessity of maintaining familiarity over 

time for ease of user adoption [1]. We envision a process 

that maximizes consideration of factors influencing the 

product line to derive personalized and environmentally 

responsible applications, with the overarching goal of 

mastering software durability. 

Achieving mastery over software durability entails a 

realistic understanding of the domain and adept 

management of changes. As evidenced by Lehman [24], 

software undergoes continuous internal and external 

aging processes, characterized by ongoing change, 

increasing complexity, preservation of familiarity, 

sustained growth, declining quality, and feedback from 

the system [1]. From these observations, several 

conclusions emerge: the inevitable decline in user 

satisfaction with software over time, the escalating 

complexity of software, the necessity for gradual 

evolution or change to facilitate user adoption, and the 

influence of market competitiveness and user demand 

for novelty, alongside changes in the software operating 

environment. Additionally, political constraints such as 

state requirements and societal shifts also impact 

software evolution. Thus, by defining evolution as a 

series of changes and transformations throughout the 

software lifecycle [6], we establish the context of a 

product line system at any given time as a combination 

of previously captured contexts, integrated with the 

current internal and external contexts. 

A product line is subject to forces that can be broadly 

categorized into two major categories: internal forces 

and external forces. 
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Internal forces encompass everything that can 

influence the derivation of the application instance. This 

includes, among other things, the execution 

environment of the application, the specific needs of the 

user at a given moment, their skills, and their 

preferences. 

External forces, on the other hand, represent 

everything that is not internal but can influence the final 

product. This includes user needs based on 

technological developments in the market, market 

competitiveness, and existing constraints. 

In summary, internal forces are related to the 

characteristics and needs specific to the user and the 

application environment, while external forces concern 

the influences arising from market evolution and 

external conditions, as illustrated in Figure 2. 

 

Figure 2. Product lines in an environment. 

Laws and observations made, the dimensions 

according to which software is designed and evaluated 

are therefore, the needs users, user skills, quality of 

service (security, performance, ergonomics, addition of 

functionality, evolution of the market) sought after, 

technological and political developments.  

The modeling of development processes is essential 

in the software domain, and several methods stand out 

for their effectiveness. First, Business Process Model 

and Notation (BPMN) allows for the creation of clear 

and understandable diagrams that illustrate the various 

processes involved in software development. 

Furthermore, BPMN plays a crucial role in managing 

variability by helping to model the processes that 

support these variations, enabling effective management 

of configurations and options. Its clear visual notation 

provides a detailed graphical representation of 

processes, thereby facilitating understanding and 

communication. Moreover, its international recognition 

promotes collaboration among international teams [33]. 

In addition, Unified Modeling Language (UML) 

focuses on technical modeling. It is used to create 

technical diagrams such as class diagrams, activity 

diagrams, and sequence diagrams in the context of SPL 

design [33]. Additionally, UML helps define the 

structure and interactions between software components 

[33]. However, this method can become complex, 

especially for large product lines with many 

components, and it is less suited for detailed business 

process modeling compared to BPMN. 

Finally, Event-driven Process Chain (EPC) is well-

suited for representing business processes in ERP 

systems, which is relevant for managing software 

development processes [18]. Nevertheless, EPC 

diagrams can be less visual and intuitive compared to 

those of BPMN, which can make them difficult to read, 

particularly for highly complex processes. Thus, 

although each method has its strengths and limitations, 

their appropriate use can greatly enhance the clarity and 

efficiency of software development processes. 

In the context of managing SPL, BPMN stands out as 

the superior methodology compared to UML, and EPC. 

BPMN offers a clear and intuitive graphical 

representation of complex processes, making it easier to 

understand and manage the workflows and interactions 

involved. Its international standardization facilitates 

effective collaboration across diverse teams, while its 

comprehensive modeling capabilities support both high-

level and detailed process documentation. Unlike UML, 

which is less focused on business process modeling, or 

EPC, which can be less visually intuitive and complex, 

BPMN provides a user-friendly approach that excels in 

optimizing process management and handling the 

variability within SPL. 

For the reasons mentioned in the previous table, we 

will use the BPMN 2.0 method. The meanings of the 

different symbols are explained in Table 2: 

Table 2. The different symbols used in BPMN. 

Symbol Signification 

 

Objects or entities 

 

Several documents 

 

and 

 

Activity or operation 

 

Data base 

 
Direction of flow 

Taking into account the evolving factors over time, 

such as user needs, market competitiveness, constraints 

of the software domain, technology, user skills and 

preferences, as well as the environment in which the 

software is used, he proposed methodological 

framework is presented in Figure 3. 
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Figure 3. The proposed methodological framework for managing a product line. 

It appears from Figure 3 that the design of the line of 

product and the derivation of the resulting products 

proceeds as follows: 

 Phase 1 or domain engineering. 

 Step 1: Define the characteristics of the domain at a 

given time t, by taking into consideration factors such 

as user needs, market competitiveness, existing 

constraints and technological developments at that 

time (1). 

 Step 2: Define the context of the domain (3) in other 

words define the needs of the domain, the elements 

which constitute the SPL as well as their relationship 

(4) by taking into consideration the characteristics of 

the domain defined in step 1 plus the characteristics 

of the domain at time t-1 formerly known stored in 

database (2). 

 Step 3: Derive from the domain context previously 

defined the architecture of the domain (5) and the real 

needs of the domain at time t (6). 

 Step 4: Enrichment of the database of the context 

relating to characteristics for future use (7). 

 Phase 2 or application engineering: 

 Step 5: Define the real context of the user at time t 

(12) by taking into consideration the past knowledge 

that we have in the database on the user (9), plus the 

specific needs expressed by the user at time t (10) 

plus the environmental context of the user (11). 

 Step 6: Derive the application corresponding (13) to 

the user context by considering the architecture of the 

domain obtained at the engineering phase of the 

domain (5) plus the real context of the user defined 

previously (12). 

 Step 7: Study the user’s data by analyzing the data 

from the application they use (14). 

 Step 8: Determine the preferences of the user (15) at 

time t as well as his skills at time t (16) thanks to the 

study previously carried out (14). 

 Step 9: Enrich the domain context database at the 

domain engineering phase (2) with data on user skills 

(18) and data on user preferences (17) for future 

derivation. 

 Step 10: Enrich the database on the knowledge we 

have about the user (9) with the data obtained on 

skills (20) and those obtained on user preferences 

(19) for future derivation. 

The previous framework takes into account that the 

environment defining the software domain and that of 

the user evolves over time. Thus, through an infinite 

loop system, where the system at time t is the system at 

the previous instant plus the additions at time t, the 

software derived from this methodological framework 

is virtually immune to aging over time. 

4. Case Study 

The choice of the type of use case can be justified by 

several factors. On one hand, connected objects appear 

as a promising solution for sustainable development in 

Africa, notably improving resource efficiency [31], 

facilitating access to services, and fostering innovation. 

On the other hand, their rapid scalability, increasing 

complexity in response to user needs, variability among 
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objects, and market competitiveness can be easily 

managed using the SPL paradigm [8]. 

Concerning the second question, to ensure robust and 

relevant results, comprehensive data collection is 

essential. In this case study, we aimed to fully 

understand user interactions and behaviors while 

ensuring that the design of the SPL aligns with real-

world needs. Empirical data were collected, including 

direct observations and user feedback, which enabled us 

to gain insights into how users engage with the system. 

This understanding is crucial for fine-tuning features 

and functionality. 

Such extensive data collection supports the 

application of Lehman [24] and AI laws, facilitating the 

system’s evolution in response to user needs and 

technological changes.  

Leveraging connected objects, this exhaustive data 

collection allows us to develop robust products that are 

relevant and adaptable to the changing demands of the 

market. 

Regarding the proposed framework, the connected 

home will allow us to explore the design steps of a SPL. 

The aim will be to highlight the different instances of 

the home entities, which can be defined according to the 

environmental context. 

Initially, in this article, we will explore the design 

steps of SPL from the proposed framework without 

considering Lehman’s [24] vectors and without using AI 

techniques. Additionally, we consider that we are at the 

first iteration, meaning there is no previous iteration at 

t-1, which excludes later knowledge about the domain 

or the user. 

In our case, we will design a functioning connected 

home for illustration purposes. 

 Phase 1 or domain engineering phase. This phase 

consists of identifying the elements of the product 

line, their relationships, and the existing constraints. 

According to the framework, we have: 

 Steps 1 and 2: Definition of the domain. 

Our domain or connected system consists of five 

entities: the multimedia entity that integrates the 

capabilities of multimedia devices; the presence 

simulation entity that gives the impression that there is 

at least one person; the presence detection entity that 

determines the presence of at least one person; the alarm 

entity that emits based on a given context; and the 

lighting entity that allows the light to turn on in the 

presence of someone. All these entities are 

interconnected. The consideration that we are at our first 

iteration allows us to proceed to Step 3. 

 Step 3: Definition of the domain architecture and 

elements of the SPL. 

For use case modeling, the featuring modeling method 

was used to enable clear graphical representation and 

facilitate comprehension. This method includes the 

following relationships: “Optional” means it can be 

selected or not, represented by a white circle; 

“Mandatory” is represented by a black circle and is 

called when the parent function is invoked; 

“Alternative” indicates several possibilities, represented 

by a black triangle; “Requires” represents a dependency 

relationship between two elements, associated with the 

keyword “Required.” 

 

Figure 4. Connected home. 

By applying this method to our project, the 

architecture of our connected home is outlined in Figure 

4. 

Table 3. Connected home truth table. 

N0 M S D L A 

1. 0 0 0 0 0 

2. 0 0 0 0 1 

3. 0 0 0 1 0 

4. 0 0 0 1 1 

5. 0 0 1 0 0 

6. 0 0 1 0 1 

7. 0 0 1 1 0 

8. 0 0 1 1 1 

9. 0 1 0 0 0 

10. 0 1 0 0 1 

11. 0 1 0 1 0 

12. 0 1 0 1 1 

13. 0 1 1 0 0 

14. 0 1 1 0 1 

15. 0 1 1 1 0 

16. 0 1 1 1 1 

17. 1 0 0 0 0 

18. 1 0 0 0 1 

19. 1 0 0 1 0 

20. 1 0 0 1 1 

21. 1 0 1 0 0 

22. 1 0 1 0 1 

23. 1 0 1 1 0 

24. 1 0 1 1 1 

25. 1 1 0 0 0 

26. 1 1 0 0 1 

27. 1 1 0 1 0 

28. 1 1 0 1 1 

29. 1 1 1 0 0 

30. 1 1 1 0 1 

31. 1 1 1 1 0 

32. 1 1 1 1 1 

We can also identify the following operational 

constraints that govern the functioning of our system: 

1. If at least one simulator is activated, then all presence 

detectors are deactivated. 

2. If at least one detector is activated, then all presence 

simulators are deactivated. 

3. Multimedia can be activated or not, independently of 

other entities. 

4. No alarm is activated if the house is not empty. 
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5. If at least one alarm is activated, then at least one 

simulator is activated. 

6. If the simulator is activated, then the alarm can be 

activated. 

7. If the alarm and the simulator are activated at the 

same time, the system’s operation is slowed down. 

To better visualize the functioning of our system, let us 

note the states of the multimedia entities (M), the 

simulation (S), the detection (D), the lighting (L), and 

the alarm (A). If we denote M=1, this means that the 

entity M is activated, while M=0 indicates that the entity 

is not activated. The different cases representing the 

entities of the product lines of our connected home 

system can be deduced from the Table 3. 

The different instances of the connected system, or 

actual elements of the product line that emerge while 

respecting the constraints, are lines 7, 10, 12, 23, 26, and 

28. In other words:  

• Multimedia is deactivated, simulator is disabled, 

detector presence is activated, the light is activated 

and the alarm is disabled. 

• Multimedia is deactivated, the presence simulator is 

activated, the detector is deactivated, the light is 

deactivated and the alarm is activated. 

• Multimedia is disabled, the simulator is disabled, the 

detector is deactivated, the light and the alarm are 

activated 

• Multimedia is activated, the simulator is deactivated, 

the detector and light are activated and the alarm is 

deactivated.  

• The multimedia is activated, the simulator is 

activated, the detector and the light are deactivated 

and the alarm is activated. 

• Multimedia is activated, simulator is activated, 

detector is disabled, and the light and alarm are 

activated. 

By using a standard notation such as modeling in 

descriptive language, the previous situation is 

represented as follows: 

A concept corresponds to a class of elements and is 

interpreted as a set in a data universe:  

Either 

CON={C1, C2, C3, C4, C5} a finite set of concepts. 

• C1: is the multimedia set. 

• C2: is the simulator set. 

• C3: is the set of detectors. 

• C4: is the lamp set. 

• C5: is the alarms set. 

Either 

ROL={R1, R2} a finite set of roles where: 

• R1=0: is the non-activated state. 

• R2=1: is the activated state. 

We define the interpretation ∆kij:<Cki, Rj> where ∆k
i is 

the k-th element of the i th concept. 

For ∆k
ij ∈<∆k

i, Rj>, j∈{1, 2}, ∆k
ij is the k-th element 

of the I th concept activated or not. It means ∆k
i1 the k-

th element of the i-th concept not activated and ∆k
i2 the 

k-th element of the i-th concept activated. 

• N: set of natural numbers 

Thus, we define the following operating constraints: 

a) ϶ k ∈ N/∆k22=>∀ k’∈ N, ∆k’31 

b) ϶ k ∈ N/∆k32, ∀ k’ ∈ N we have ∆k’21 

c) ϶ k ∈ N/∆k1j=>∀ k’ ∈ N we have ∆k’ij with i≠1, j ∈ 

{1, 2} 

d) ϶ k ∈ N/∆k32=>∀ k’ ∈ N, ∆k’51 

e) ϶ k ∈ N/∆k42=>϶ k’ ∈ N, ∆k’22 

• Step 4: In this step, the backup of the learned data 

about the domain at time t is automatic. 

• Phase 2 or application engineering. 

In our case, we consider that the user context is limited 

to the needs expressed at time t, without considering 

other influencing factors. For example, the need to 

activate a specific service. 

• Steps 5 and 6: Definition of the context and 

derivation. 

In the case of a smart home like ours, we assume that 

the multimedia and lighting functionalities are manual, 

while the functionalities of the simulator, presence 

detector, and alarm are automatic, as the system can 

determine whether there is a person in the house or not. 

For example, we can say that the user wants to activate 

the multimedia functions and that the light should turn 

on if there is no one in the room. 

In the scenario where a user is absent from their home 

and has left the multimedia and lights on, the instance 

that most closely matches this situation is the sixth: the 

multimedia is activated, the simulator is activated, the 

detector is disabled, and both the light and alarm are also 

activated. 

5. Discussion 

This case study provides valuable insights into the 

application of the proposed methodological framework 

for designing a line of software products that integrate 

Lehman’s laws [24]. Indeed, this framework establishes 

a solid foundation for structured software development, 

combining sustainability and customization. It 

addresses the challenge of reconciling these two aspects 

by ensuring that the developed software is not only 

sustainable but also tailored to the specific needs of 

users. 

Moreover, the continuous approach to software 

development, which incorporates feedback at each 

iteration, is essential for maintaining the relevance and 

effectiveness of solutions over time. Due to its intuitive 

and easy-to-follow nature, this framework is ideal for 

designing software that requires adaptability, scalability, 
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facilitation of innovation, and continuous improvement, 

while also serving as a starting point for deeper analyses 

in real-world contexts. 

The software developed according to this framework 

demonstrates resistance to obsolescence, thanks to a 

system that continuously considers factors influencing 

its evolution. However, we argue that this framework 

alone does not guarantee the expected success, namely, 

near-infinite sustainability coupled with effective 

customization. It is essential to identify and apply 

appropriate engineering methodologies for the 

recognition, interpretation, modeling, and 

implementation of software design elements. 

Furthermore, even with the use of innovative AI 

tools, it is crucial to carefully select the data to be 

integrated from the outset, as this choice significantly 

influences the smooth progression of the entire design 

process. Thus, the skills and experience of the team are 

paramount in determining the inputs to be provided to 

the relevant engineering departments. The 

characteristics of the team, the type of project, and other 

factors should not be overlooked in the pursuit of the 

desired research objective, as illustrated in Table 4. 

Table 4. Factors that can influence the success of software 
development [36]. 

Influence factors frequency 

Team capabilities and experience 64 

Programming language experience 16 

Application experience and familiarity 16 

Project manager experience and skills 15 

Software complexity 42 

Database size and complexity 9 

Architecture complexity 9 

Complexity of interface to other systems 8 

Project constraints  41 

Schedule pressure 43 

Decentralized/multisite development 9 

Tool usage and quality/effectiveness 41 

Case tools 12 

Testing tools 5 

Programming language 29 

Domain 14 

Development type 11 

Indeed, the experience of the team can represent an 

influence ranging from 42% to 60.5%, while the choice 

of approach can potentially have an influence of up to 

80%. This underscores the importance of a well-

established methodological framework developed with 

the support of a competent and experienced team to 

ensure the success of a software design project. The 

elements influencing the dimensions of constraints and 

competitiveness depend on the specific objectives of the 

project as well as the perceptions of these dimensions. 

However, identifying the appropriate elements for these 

dimensions remains a delicate and complex task. 

6. Conclusions and Future Directions 

The objective of this research was to propose a solution 

to the problem of software sustainability by establishing 

a methodological framework that considers the aging 

laws of software throughout its life cycle, in conjunction 

with product line engineering and AI techniques. The 

literature review revealed that existing solutions did not 

comprehensively consider Lehman’s [24] aging factors, 

nor did they do so continuously. In response, we 

developed a framework that provides a solid foundation 

for structured software development, combining 

sustainability and customization. The case study on the 

design of a smart home demonstrated that the developed 

software can be both sustainable and tailored to the 

specific needs of users. 

However, the application of this framework must be 

approached with caution, as subjective factors, such as 

the experience and skills of the development team, can 

influence its effectiveness. We emphasize the 

importance of not neglecting human skills and 

recommend integrating appropriate AI techniques while 

considering Lehman’s [24] factors, such as market 

competitiveness and user skills. 

To evaluate the effectiveness of our framework once 

implemented, we propose using several metrics, 

including software lifespan, user satisfaction, and 

maintenance costs. Moreover, the adoption of feedback 

loops will ensure continuous improvement in response 

to user needs. 

In the future, software sustainability will become a 

crucial issue considering the rise of digital technologies 

and growing environmental concerns. Our 

methodological framework can play a key role by 

integrating sustainable development practices from the 

earliest stages. By facilitating the creation of adaptable 

and environmentally friendly solutions, it can help 

companies reduce their carbon footprint and meet the 

increasing expectations for sustainability. 

In conclusion, this methodological framework has 

the potential to transform practices in the software 

industry and could bring significant benefits to various 

sectors such as information technology, healthcare, 

finance, manufacturing, and education. It represents a 

unique opportunity to rethink software development to 

ensure both efficiency and sustainability while fostering 

a culture of sustainable innovation. 

As part of our ongoing research, we will focus on 

intelligent forecasting systems using the dynamic 

systems design approach we have proposed, and we will 

strive to address the challenges related to [3]. 
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