
560                                                              The International Arab Journal of Information Technology, Vol. 22, No. 3, May 2025 

GNN-DQL-Based Chronic Kidney Disease 

Classification Using GFR in the Internet of Medical 

Things Environment 

Bhavani Tatiparti  

Department of SENSE, School of Electronics Engineering 

VIT, India 

tatiparti.bprasadreddy2017@vitstudent.ac.in 

Vydeki Dharmar 

Department of SENSE, School of Electronics Engineering 

VIT, India 

vydeki.d@vit.ac.in 

Abstract: Detection of Chronic Kidney (CK) disease is one of complex technique even in this modern technological era. Precise 

identification of CK disease is essential to provide treatment for patients with care. Several techniques were recently developed 

for precisely diagnosing CK diseases. However, certain forms of disadvantages still appear, including an incorrect selection of 

features, the need for large storage space, a requirement for an effective learning model, less accuracy, and high complexity 

related to time and cost. Few limitations and drawbacks are occurred and it provide less performance to detect CK disease. 

Therefore, the Neural Network Graph-based Deep Q-Learning (GNN-DQL) technique is proposed to classify five different states 

such as end, severe, moderate, mild and normal. First, real-time data will be gathered using and Bio-Medical sensors (BMs) and 

Internet of Medical Things (IoMT). Then, pre-process the data to improve the quality using missing value treatment, categorical 

data coding, transformation, and outlier detection to eradicate unwanted biases. The age and Serum Creatinine (SC) level of 

patient will be diagnosed using Glomerular Filtration Rate (GFR). Finally, classify the CK disease based on classes using GNN-

DQL technique which provide better accuracy. The Adaptive Mayfly Optimization (AMO) algorithm is used to optimize the 

parameters. The simulation tools analyze the classification performance based on accuracy, precision, recall, specificity, F1-

score and so on. The obtained accuracy of proposed model is 99.93% to detect the CK disease based on the five different classes 

from the real-time data. 
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1. Introduction 

Chronic Kidney (CK) is a serious disease, mainly in 

developing countries [20]. The timely detection of 

chronic diseases and the tracking of risk factors slow the 

progression of diseases and can rule out dangerous 

events in everyday patient life. An unidentified CK 

disease leads to various problems that put patients in 

high-risk circumstances [6]. A quick creation of renal 

disease in patients with hypertension may cause worse 

events. CK disease is a heterogeneous breakdown that 

mainly affects kidney function and structure. The major 

reasons for CK disease are heart disease, diabetes, and 

High Blood (HB) pressure [10]. Diabetes frequently 

gets referred as HB sugar that may harm human kidney 

blood vessels. The blood arteries in the kidneys are 

additionally damaged by HB pressure [5]. Kidney 

disease, is most serious condition which closely linked 

to heart disease. 

Chest pain, tiredness, loss of hunger, feeling dizzy, 

loss of weight, muscular pain, problems with 

concentration, and sleep issues are symptoms of CK 

disease [13]. The health of a person is significantly 

affected by their body temperature. The patient’s health  

 
can be routinely monitored to reduce the risk of their 

life. Therefore, Bio-Medical sensors (BMs) can able to 

diagnose the disease by detecting it in early stages. It 

identified the CK disease by comparing breath samples 

from patients with analysis of breath samples from 

healthy subjects [12]. A typical BM device consists of a 

small battery-operated board with memory, a 

microprocessor, and a radio frequency transceiver. Data 

Mining (DM) combines information from BM devices, 

stores information, and successfully sends information 

to patients [25].  

Some common features of the DM process are 

flexibility, robustness, trade-off energy efficiency, etc. 

The simple reasoning of health identifying devices in 

BM readings like calculating hours of sleep or the 

number of processes per day at better information 

processing levels to provide correct patient data [11]. To 

enhance the well-being of individuals, medical facilities 

has recently cantered on higher DM activities [22]. 

Model data learning, extraction and identification, and 

information pre-processing form the DM technique 

[23]. Meta-data and specialized understanding belong to 

the features which facilitate tasks like identification, 

prediction, and Decision-Making (DM). Pre-processing 
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techniques help filter unusual input data information to 

remove high-frequency noise [1]. 

The purpose of identify the features by extracting 

some particular feature of data from information which 

categorize the CK disease. There two classified methods 

used in Machine Learning (ML) named unsupervised 

and supervised learning, also known as descriptive and 

predictive, respectively [4, 16]. The training 

information of supervised learning methods, including 

facial recognition via images, medical diagnosis 

systems and spam classifiers of patient emails, can be 

considered from prediction and query data [17]. Several 

supervised methods include Support Vector Machines 

(SVMs), kernel machines, Decision Trees (DTs), 

Logistic Regression (LR), decision forests, Bayesian 

classifiers and Neural Networks (NNs). ML can achieve 

a significant task, but it is still unable to replicate 

Human Intelligence (HI) [7]. These drawbacks can be 

rectified using Deep Learning (DL), a subcategory of 

ML. 

NN in DL is majorly used for clustering, 

classification and predication which trains some amount 

of data to provide efficient outcome [9]. It has its roots 

in NN, consisting of algorithms loosely modelled on the 

human brain and designed primarily to find patterns. 

The main goal of DL models is to bring better 

performance outcomes based on Internet of Medical 

Things (IoMT) data, thereby expediting research in this 

field [3, 24]. BMs are used all over the world, which 

used to measure blood levels and help patients cope with 

diabetes [14, 28]. Such sensors are specifically 

implanted under the skin. It offers continuous 

monitoring and measurement of blood levels in patients. 

As mentioned earlier, this research proposes a new 

deep-learning technique to overcome ML problems. 

The proposed research uses a novel methodology to 

accurately classify the five stages of CK disease. Few 

prominent contributions described the process of 

proposed model briefly as follows.  

1. To generate the CK disease data through BMs on 

several people and gather the data using IoMT. 

2. To pre-processing the data through handling missing 

values, categorical data encoding, data 

transformation, and outlier detection to eliminate 

undesired deviations. 

3. To classify different stages of CK disease, 

Glomerular Filtration Rate (GFR) is used to diagnose 

based on age and Serum Creatinine (SC) level. 

4. To classify the using a Graph Neural Network with a 

Deep Q-Learning Technique (GNN-DQL) classifier 

based on five classes.  

5. The Adaptive Mayfly Optimization (AMO) approach 

optimizes the parameters for precise classification 

outcomes. 

The remaining content of this paper is organized into 

several sections such as: Section 2 contains the survey 

over CK disease with several classification and 

predication techniques using DL. Section 3 includes the 

overall process and descriptions of proposed model with 

equations briefly. The overall performance and obtained 

values of proposed model described with graphs and 

discussion also includes in describe the outperformance 

of proposed mode; in section 4 using the Python 

simulation tool. Finally, overall conclusion of the paper 

is described with future work in section 5.  

2. Related Works 

Based on the classification of CK disease, most 

researchers have used several techniques to get precise 

results. Some related works were analysed and 

described briefly in Table 1 as follows. 

Table 1. Survey over related techniques with its performance and demerits. 

Author name and reference Techniques used Objective Merits Demerits Performance (%) Dataset used 

Venkatesan et al. [26] DSCNN 
To classify the CK 

and non-CK diseases 
Less computational 

effort 

Limited number of 

data were used for 

testing 

99.18% 

categorization 

accuracy 

CKD dataset 

Jerlin et al. [8] Deep-kidney 

To predict CKD 

possible occurrence 

within 6 or 12 
months 

Efficient 

performance 

Higher time 

consumption 

99.3% and 99.2% 

accuracy for 6 and 

12-month data 
prediction 

CKD dataset 

Rezayi et al. [18] SVM and RF 

To predict the CKD 

by balancing the 

dataset 

Lowest false-
negative rates 

Limited features were 

extracted to train the 

model 

99.33% and 98.6% 
accuracy 

UCI NL 

dataset 

repository 

Parthiban et al. [15] XGBoost 

To predict the CKD 

through prior 

detection 

Achieve best 

classification 

results 

Required to fine-tune 

the model for 

efficient performance 

98.00% accuracy CKD dataset 

Susan and Subashini [21] 

Inductive transfer-

based ensemble 

DNN 

To predict the CKD 

for quality and noisy 

image datasets 

Increase the 

classification 

accuracy 

Lower learning rate 

99.8% and 96.7% 

accuracy for quality 

and noisy image 

KD1, KD2, 

and KD3 

datasets 

 

Venkatesan et al. [26] developed a novel Hybrid DL 

Network model (HDLNet) model for Chronic Kidney 

Disease (CKD) early detection and prediction. Here, the 

Deep Separable Convolutional Neural Network 

(DSCNN) was developed for early CKD detection and 

Capsule Network (CapsNet) was utilized to extract 

more processing attributes of features. The Aquila 

Optimization Algorithm (AO) was used to select 

optimal features to reduce computational effort. Finally, 

the Sooty Tern Optimization Algorithm (STOA) was 
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used to optimize DSCNN technique to detect the key 

illness as CKD or non-CKD. 

Jerlin et al. [8] developed a three-predictive mode to 

predict the Diabetic Kidney Disease (DKD) within 6 or 

12 months. The deep ensemble model fuse 

Convolutional Neural Network (CNN), deep ensemble 

model and Long Short-Term Memory (LSTM) were 

combined these three based DL classifiers using 

majority voting techniques. This technique attains 

99.3% and 99.2% accuracy for 6 and 12-month data 

prediction.  

Rezayi et al. [18] analyzed robust ML models named 

Support Vector Machine (SVM) and Random Forest 

(RF). Here, the Synthetic Minority Over-sampling 

TEchnique (SMOTE) algorithm and scaling of features 

were used to balance the dataset. Then, the least-

required set of adequate and highly correlated features 

were extracted using the statistical technique named chi-

squared test. This technique attains 99.33% and 98.6% 

accuracy for CKD detection of SVM and RF.  

Parthiban et al. [15] analyzed ML techniques such as 

SVM, K-Nearest Neighbors (KNN), RF, Decision Tree 

(DT), LR and eXtreme Gradient Boosting (XGBoost) 

for CKD detection. By comparing to other ML 

techniques, the XGBoost achieves higher accuracy at 

98.00%. 

DL inpainting model on digital and medical images-

a review by Susan and Subashini [21]. An automated 

detection of Computed Tomography (CT) kidney stone 

image. The pre-trained Deep Neural Network (DNN) 

models named InceptionV3, DarkNet19 and ResNet101 

were used to generate three datasets for feature 

extraction. Then, the feature concatenation was 

performed using the ensemble deep feature vector. The 

most informative ensemble deep feature vector was 

selected using the Iterative ReliefF feature selection. 

Finally, the KNN classifier with Bayesian optimizer 

approach to detect kidney stones. This technique 

achieves 99.8% and 96.7% accuracy for quality and 

noisy image.  

When reviewing the existing approaches to CK 

disease classification, certain drawbacks emerge that 

severely impact the overall system’s performance. Due 

to limited available dataset, lower-performance models 

were obtained, require a larger amount of training data 

to promote an effective classification process, and 

quantified variations of vessels and unusual lesions 

degrade the output performance. In addition, high 

computational time and power consumption were 

obtained. In addition, diagnose the disease require high 

time to process and power. An effective deep-learning 

technique is proposed in this research paper to solve 

these issues. 

3. Proposed Methodology 

CK disease is found to be highly threatening as it 

adversely affects the working conditions of the kidney. 

If it is not recognized early, affected people can get into 

severe conditions. Most patients are left at critical stages 

due to improper or wrong prediction of diseases. 

Although many CK disease classification techniques are 

presented in the existing works, precise results cannot 

be attained [19]. Hence in the proposed research work, 

the GNN-DQL model adopted precise classification 

stages of CK disease. The overall architecture for 

accurate classification of CK disease with different 

stages is illustrated in Figure 1. 

 

Figure 1. Overall architecture of CK disease classification. 

Initially, the BMs are used to evaluate different 

factors of CK disease, such as SC, sugar, Red Blood 

Cells (RBC), White Blood Cells (WBC), potassium, etc. 

The data centre collects the data which gathered from 

BM sensor through IoMT. To improve data quality, pre-

processing is the first step to eliminate the unwanted 

alterations present in the data. GFR is evaluated, and the 

GNN-DQL model is utilized to classify and predict 

several stages of CK disease, including normal, mild, 

moderate, severe and end-stage. Parameters of NN are 

then optimized through the AMO approach [22]. The 

steps processed in the proposed research work are given 

as follows: 

3.1. Data Pre-Processing 

In this stage, the evaluation of missing values and 

eradication of noises like outliers is performed. Also, 

validation and normalization of unstable data are 

undertaken. During the patient assessment, some of the 

estimations are incomplete or missing. To compensate 

that, several pre-processing steps are accepted out in 

proposed research work is described as follows: 

3.1.1. SMOTE for Data Augmentation 

Although some dataset categories include much fewer 

samples than others, which is known as class imbalance. 

It leads to inaccurate prediction of CKD. This issue is 

addressed by using the Synthetic Minority Over-

sampling TEchnique (SMOTE) technique. By ensuring 

balanced representation, these techniques improve the 

model’s generalization and classification precision at all 

stages of CKD. The SMOTE is used to reduce the issue 

of imbalanced datasets. This technique is used to 

oversample the minority class in the dataset by 

generating new samples for each minority class and its 
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nearest neighbours. The mathematical expression for 

each synthesized sample is described as follows. 

𝐴𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐴𝑥 + 𝑅(0,1) × |𝐴𝑥 − 𝐴𝑁| 

Here, the given sample from the minority class is 

denoted as Ax, a randomly selected sample from K-

nearest neighbours to the sample Ax is represented as AN. 

The random number between 0 and 1 is denoted as 

Rand(0,1). 

3.1.2. Handling of Missing Values 

The modest method of working with the missing values 

neglects the records, but it is impossible with the smaller 

datasets. During the data generation process, the 

datasets were analysed to confirm that any attributes 

values are missing. The missing values for numerical 

structures are evaluated through the adoption of 

arithmetical method of mean imputation. The mode is 

used for lost value replacement of insignificant features 

[26]. 

3.1.3. Categorical Encoding of Data 

As most DL procedures takes only input such as 

numeric values and category values were encoded into 

arithmetical values. Characteristics of categories, 

including yes and no, are represented by the binary 

values 0 and 1. 

3.1.4. Transformation of Data 

The process of converting numbers over a small scale so 

that the domination of one variable over the others does 

not happen is called data transformation. Or else, the 

learning approaches observe bigger and smaller values 

were considered as advanced and lesser based on unit of 

weights. The data alterations modify the values in a 

dataset so they can be treated further. This research 

undergoes a data normalization method to enhance the 

accuracy of DL approaches. The data is converted 

between the ranges of -1 and +1, where the standard 

deviation of transformed data as 1 and mean as 0. 

The standardization of data can be stated as,  

𝑠 =
𝑣 − �̅�

𝜎
 

The above equation s denotes the standardized score, the 

observed value is represented as v, mean value is �̅� and 

𝜎 signifies the standard deviation. 

3.1.5. Outlier Detection 

Outliers exist to be the observation facts inaccessible 

from rest of data. An outlier can be created in the 

experiment by variability estimation or signal error. The 

DL algorithm is analysed, distorted and misled by 

outliers. The presence of outliers leads to longer training 

time, poorer result generation and less model accuracy. 

Before the data transferring to the learning algorithm, 

this research utilizes the Inter-Quartile Range (IQR) 

based method to eliminate the outliers [2]. 

Based on division of a dataset, IQR is evaluation of 

inconsistency into quartiles. Values dividing each part 

are termed to be first, second and third quartiles which 

are denoted as V1, V2, and V3. The formula to calculate 

IQR is given as follows:  

𝐼𝑄𝑅 = 𝑉3 − 𝑉1 

Where V1 denotes the middle value in the first half of 

the ordered data set, whereas V3 denotes the second half. 

V2 denotes the median value in the dataset. 

3.2. Estimation of Glomerular Filtration Rate 

The GFR is crucial to most characteristics, including 

public health, medical care and research. Clinical 

laboratories are essential for GFR assessment and 

diagnosis of CK disease. In the GFR evaluation, the 

recommended first step is measuring SC and the 

estimated GFR. From the gathered data, GFR is 

estimated to classify the five stages of CK disease. Here, 

the filtration rate is estimated based on age and SC level. 

The equation for estimating GFR for 18 and older can 

be expressed mathematically as:  

𝐺𝐹𝑅 = 

142 ×min⁡(𝑆𝐶/𝑘, 1)𝑏 ×max⁡(𝑆𝐶/𝑘, 1)−1.200 × 0.9938𝑎𝑔𝑒 × 1.012 

From the above equation, k=0.7 for women and 0.9 for 

men, b=-0.241 in the case of females and -0.302 for 

males. SC denotes the SC level in mg/dL and Age is 

represented in years. Table 2 shows that equation to be 

estimated GFR from the SC level. 

Table 2. GFR estimation values. 

Age Gender SC mg/dL GFR 

≥18 Woman 
0.70 or <0.71 =142×(SC/0.7)-0.241×0.9938age×1.012 

> 0.70 =142×(SC/0.7)-1.200×0.9938age×1.012 

≥18 Man 
0.90 or <0.91 =142×(SC/0.9)-0.302 

> 0.90 =142×(SC/0.9)-1.200 

3.3. Graph Neural Network with Deep Q-

Learning Technique 

GNSs are the framework for collecting node 

dependencies into graphs by passing messages between 

nodes. The GNN performs on the graph to describe the 

data from its neighborhood with random stages. It made 

GNN an appropriate tool for wireless networks with 

compound features that can’t get closed form. In the 

proposed model, the GNN-based method is used to 

measure both relationships of cells and entities between 

the nodes. 

The GNN and Deep Q-Learning (DQL) are 

combined in the GNN-DQL architecture to improve the 

classification accuracy of CKD by using reinforcement 

learning and structured data representations. To analyze 

relational data, GNNs define patient records as graph 

structures. Each patient is expressed as a node, and 

edges highlight medical commonalities based on 

demographics, test results, or the progress of a disease. 

The GNN component enhances the learning of 

(1) 

(2) 

(3) 

(4) 
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underlying patterns by extracting essential feature 

representation from this graph. CKD is classified into 

five phases named End, Severe, Moderate, Mild, and 

Normal using the DQL module, which uses these 

extracted features as input and a reinforcement learning-

based decision-making method. To improve 

classification accuracy, the Q-network updates its policy 

to reward input. In order to achieve highly accurate, 

generalizable, and accessible CKD detection, this 

integration ensures adaptive learning, enhanced feature 

correlation comprehension, and effective handling of 

complex CKD patterns. 

Two adjacent matrices are defined for the given 

network comprising a set of P cells and Q entities. The 

graph between cells is represented as Rcl∈{0,1}P×P, and 

the graph between entities and cells is denoted as 

Re∈{0,1}P×Q. The mathematical expression can be given 

as, 

𝑅𝑐𝑙(𝑢, 𝑣) = {
1⁡⁡𝑖𝑓⁡𝑒𝑓𝑢𝑐𝑙 , 𝑒𝑓𝑣𝑐𝑙 ∈ 𝜀𝑐𝑙

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑅𝑒(𝑢, 𝑣) = {
1⁡⁡⁡⁡𝑖𝑓⁡𝑒𝑓𝑢𝑐𝑙 , 𝑒𝑓𝑣𝑐𝑙 ∈ 𝜀𝑒

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Consider an L-layer GNN computed on the graph, 

which are the basic node properties of the cells and the 

entities are defined as 𝑌𝑐𝑙,1
(0)

, 𝑌𝑐𝑙,2
(0)

 and 𝑌𝑒
(0)

 

correspondingly. 

The initial nodal characteristics are the functions of 

cell data rates and reported network capacities and 

entities. The channel capacity matrix C∈ZP×Q is defined 

with the elements c(𝑓𝑢
𝑐𝑙 , 𝑓𝑣

𝑒), and the user rate matrix 

Z∈ZP×Q with elements 
𝑐(𝑓𝑢

𝑐𝑙,𝑓𝑣
𝑒)

𝐶(𝑓𝑢
𝑐𝑙)

 for an assumed cell-entity 

connectivity graph. The input features can be calculated 

as, 

𝑌𝑐𝑙,1
(0)

= [𝑅𝑐𝑙𝑍1𝑃 ∥ 𝑍1𝑃] ∈ 𝑍𝑄×2 

𝑌𝑐𝑙,2
(0)

= [𝑅𝑒𝑍
𝑇1𝑄 ∥ 𝐶1𝑃] ∈ 𝑍𝑄×2 

𝑌𝑒
(0)

= [𝐶𝑇1𝑄 ∥ 𝑍𝑇1𝑄] ∈ 𝑍𝑃×2 

From the above equation, the vector concatenation 

operator is denoted as [∥]. Vector size of all nodes 1P and 

1Q is denoted as P, Q. Every latent feature attains either 

the sum of nearby cells or capacity of node or channel 

in case of entities. Then the feature form these chosen 

gather relevant data to make better decisions. 

At each layer, GNN evaluates d for every node 

dimensional latent feature vector 𝑓𝑢
𝑐𝑙, 𝑓𝑣

𝑒 ∈V in graph G. 

At L layer, the later feature estimation can be expressed 

as follows:  

𝐻𝑐𝑙
(𝐿)

= 𝜎 (𝑌𝑐𝑙,1
(𝐿)
𝑤1
(𝐿)
) + 𝜎 (𝑌𝑐𝑙,2

(𝐿)
𝑤2
(𝐿)
) ϵ𝑍𝑃×𝑑 

𝐻𝑒
(𝐿)

= 𝜎 (𝑌𝑒
(𝐿)
𝑤3
(𝐿)
) ϵ𝑍𝑄×𝑑 

𝑌𝑐𝑙,1
(𝐿+1)

= 𝑅𝑐𝑙𝐻𝑐𝑙
(𝐿)
ϵ𝑍𝑃×𝑑 

𝑌𝑒
(𝐿+1)

= 𝑅𝑒
𝑇𝐻𝑐𝑙

(𝐿)
ϵ𝑍𝑄×𝑑 

𝑌𝑐𝑙,2
(𝐿+1)

= 𝑅𝑒𝐻𝑒
(𝐿)
ϵ𝑍𝑃×𝑑 

From the above equations, the NN weights are 

represented as 𝑤𝑘
(0)
ϵ𝑍2×𝑑 and 𝑤𝑘

(𝐿)
ϵ𝑍𝑑×𝑑 for L>0, k=1, 

2, 3, etc., and GNNs layer index is L and 𝜎(.) denotes 

the non-linear activation function. The hidden features 

sum values over one cell to another and one cell to one 

entity graph connectivity is represented by auxiliary 

matrices 𝐻𝑐𝑙
(𝐿)

 and 𝐻𝑒
(𝐿)

. The L layer in GNN effectively 

replicates the above estimation for L=0, 1, 2, …. l-1. 

Based on this value, the nodal features are directed to 

other nodes then, it gets combined at distant nodes. 

Every feature comprises of data regarding l hop 

neighbours, whereas the embedding is undertaken L at 

times. 

In the last layer of GNN, the feature vectors are 

integrated to attain a scalar-valued score for G. The 

GNNs output layer is combined over cells, and the score 

estimation 𝐻𝑐𝑙
(𝑙−1)

 invariant to nodes before 

transforming to the single entirely connected NN layer. 

The network score of graph G is expressed in below 

equation: 

𝑆(𝐺) = 𝜎 (1𝑃
𝑇𝐻𝑐𝑙

(𝑙−1)
𝑤4)𝑤5 

All-ones vector of size P is denoted as 1𝑃
𝑇, the weight 

matrix of the fully connected NN is represented as 

w4∈Zd×d, and the vector to combine the output of a NN 

is represented as w5∈Zd×1. Once the evaluations of GNN 

are over, the scores of G, S(G) is adopted to pick best 

connection graph. The DQL algorithm learns the 

optimal weights of GNN. 

The Q-function is learned through a DQL approach 

from the cell and entity placement instances. The major 

merit of the Q-function is establishing GNN accessible 

over various scopes could gather limited network 

features with a different number of cells and entities. 

The right Q-function has to be learned to generate the 

optimal selection. When Q-function is gathered renders 

to absorb the GNN parameters from GNN is done by 

sequential accumulation of new cell entity connections 

over a partly connected graph. The state, action and 

reward in DQL approach are provided as follows: 

The ST state is well-defined as present GT graph that 

holds cell and linked entities at several iterations. Also, 

the input features of corresponding nodes 𝑌𝑐𝑙
(0)

 and 𝑌𝑒
(0)

 

are held. The beginning phase is assumed as a partly 

linked network with both linked and unlinked entities. 

The ending phase is attained when entire network 

entities are associated. The action 𝐴𝑇 = 𝐺𝑇 ∪ 𝑒𝑓𝑢𝑐𝑙,𝑓𝑣𝑒 in 

step T is to link a separate entity to one of cells. The 

reward R(ST, AT) at state after choosing the action as AT 

can be expressed in below equation, 

𝑅(𝑆𝑇 , 𝐴𝑇) = 𝑈(𝐺𝑇) − 𝑈(𝐺𝑇−1) 

Reward is described as variation in network utility 

function when linking a new entity. The deterministic 

greedy policy can be expressed as 𝛿(AT∖ST)=ArgmaxAT 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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Q(ST, AT) with 𝜀 greedy examination during training 

process. Here Q(ST, AT) is denoted in Equation (15) with 

𝐺𝑇 = 𝑆𝑇 ∪ 𝑒𝑓𝑢𝑐𝑙,𝑓𝑣𝑒 

At first, the parameters are initialized in a DQL 

approach defined for every deployment. At every T step, 

one entity AT=𝑒𝑓𝑢𝑐𝑙,𝑓𝑣𝑒 is linked by pursuing the greedy 

policy 𝛿(AT∖ST) where the exploration rate is denoted as 

𝜀. Number of stages T is provided by end phase ST. The 

graph GT is updated, and so the following step ST+1 is 

attained. Every time when graph is efficient, new input 

features are called 𝑌𝑐𝑙
(0)

 and 𝑌𝑒
(0)

 are estimated. For 

every chosen action, the reward R(ST, AT) is evaluated, 

and the l layer GNN evaluation renders the score for 

every action and state pair. The GNN with DQL 

parameters is optimized to enhance the classification 

accuracy by adopting the AMO approach.  

The mayflies separated into males and females, 

which would randomly update the velocities. The 

individual velocities are updates from weighted present 

rates with few other weighted distance among them and 

global finest individuals. The weighted distance of 

either part can be found through the following 

expression, 

𝐽𝑜 = 𝐾𝑚𝑒
−𝜆𝑟𝑛

2
(𝑈𝑛 − 𝑈𝑚) 

When Un is far away from Um, the velocities are updated 

with a lower amplitude. When they are near, the 

velocities are updated with a higher amplitude. But 

these situations probably cannot be acceptable because 

when the individuals are distant away, the velocities 

should be reorganized with larger rates and should attain 

lower rates when they are nearby. Hence Equation (17) 

can be updated to optimize the parameters of GNN-

DQL as, 

𝐽𝑜 = 𝐾𝑚𝑒
−
𝜆
𝑟𝑛
2
(𝑈𝑛 − 𝑈𝑚) 

Where Jo denotes the composited velocity, Km and 𝜆 are 

constants, Un denotes the male fly, Um represents the 

female fly and rn describes the Cartesian distance. The 

classification accuracy can be greatly improved by 

implementing the proposed research. The evaluation 

time for conducting this research is low, and overall 

performance of proposed model is enhanced. The 

parameters of AMO algorithm are described in Table 3. 

Table 3. Parameter details of AMO algorithm. 

Epochs  100 

Population size 50 

Beta 1 0.85 

Beta 2 0.999 

c1, c2, w_min and w_max 1.2, 1.2, 0.4 and 0.9 

4. Results and Discussions 

The performance of proposed method is conferred in 

this section based on several metrics. The experiments 

are analysed by implementing with Python simulation 

tool. Overall performance of proposed technique is 

obtained. Then, compare both analysed performance of 

proposed and existing techniques. The performance 

metrics, including accuracy, F1-score, recall and 

precision of proposed method are analysed and 

compared with existing approaches like Linear 

Regression (LR), KNN, SVM, DT and NB. The metrics 

like specificity, Mathew’s Correlation Coefficient 

(MCC), Kappa, Balanced Score (BS) and Area Under 

Curve (AUC) are compared with existing techniques 

like LR, KNN, SVM, NB, Adaboost (ADB), Stochastic 

Gradient Descent (SGD), Multi-Layer Perceptron 

(MLP) and Gaussian Naive Bayes (GNB). According to 

some methods such as SVM, Multi-Kernel SVM 

(MKSVM), Hybrid Kernel SVM (HKSVM), and Fuzzy 

Min-Max GSO NN (FMMGNN) are also adopted for 

comparing Positive Predictive Value (PPV), Negative 

Predictive Value (NPV), False Positive Rate (FPR) and 

False Negative Rate (FNR). The Mean Absolute Error 

(MAE) performance is compared with the techniques 

like RF, NB, SVM, NN, DL, KNN, DT and Auto-MLP. 

The Error Rate (ER) performance is compared with NB, 

SVM, Artificial Neural Network (ANN), NB-Hybrid 

Filter Wrapper Embedded-Feature Selection (NB-

HFWE-FS), Artificial Neural Network-Hybrid Filter 

Wrapper Embedded-Feature Selection (ANN-HFWE-

FS) and Support Vector Machine-Hybrid Filter Wrapper 

Embedded-Feature Selection (SVM-HFWE-FS). 

The proposed technique is performed in python 

platform which includes some libraries for prediction 

such as Natural Language ToolKit (NLTK), Numerical 

Python (NumPy), TensorFlow, Keras, SciKit-learn 

(Sklearn), Tweepy, etc. The system configuration and 

hyperparameter details of the proposed method are 

described in Tables 4 and 5.  

Table 4. Analysis of the proposed technique’s system configuration. 

Processor Intel (R) Core (TM) i5-6500 COU @ 3.20 GHz 3.19 GHz 

Installed RAM 16.0 GB (15.9 GB usable) 

System type 64-bit operating system, x64-based processor 

Edition  Windows 10 pro 

Version 22H2 

Table 5. Analysis of the proposed technique’s system configuration. 

Parameter Value 

Activation “SoftMax” 

Learning rate 0.0002 

Batch size 32 

Epoch 300 

Optimizer  AMO 

4.1. Dataset Description 

In this section, the gathered data for this CK disease 

detection technique from this CK disease dataset. This 

dataset comprises four hundred instances, seventy-six 

parameters and twenty-five attributes. But data may be 

subjected as noisy data and missing numerical values 

that have been recovered analytically through pre-

processing. The dataset was categorized into training 

and testing sets to analyse the results as 80% and 20%. 

The download link for the gathered dataset is 

(17) 

(18) 
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https://www.kaggle.com/mansoordaku/ckdisease/activi

ty. Age, anemia, germs, albumin, hunger, blood urea, 

heart rate, glucose levels, diabetes mellitus, heart 

disease, hypertension, hemoglobin, pus cell clumbs, pus 

cell, packed cell volume, potassium, RBC, pedal edema, 

SC, WBC count, specific gravity, sodium, sugar, and 

RBC count are additional features that are present in the 

dataset. The performance of proposed technique is 

evaluated based on various performance metrics to 

determine its efficiency. Here, the dataset is balanced 

and increased into larger dataset using the SMOTE 

technique. The data augmentation is performed using 

the SMOTE which is used to generate the synthetic 

samples for CKD prediction. The Synthetic samples of 

proposed model using SMOTE are described in Table 6. 

Table 6. Synthetic samples of proposed using SMOTE. 

Class of dataset  Technique without 

using SMOTE 

Technique with 

using SMOTE 

Normal  74 200 

Mild 76 200 

Moderate  98 200 

Severe  102 200 

End  50 200 

4.2. Performance Metrics 

Description of overall performance of every metric were 

measured individually for proposed method and its 

mathematical expression are explained as follows: 

 Accuracy 

The overall count of precise estimates from whole 

number of predictions is known as accuracy. The 

accuracy can be mathematically denoted as, 

𝐴𝑐𝑐𝑢 =
𝐷 + 𝐸

𝐷 + 𝐸 + 𝐹 + 𝐺
 

Where D signifies True Positive Rate (TPR), E denotes 

true negative rate, F defines FPR and G signifies FNR. 

 F1-Score 

Harmonic means of PPV and recall or TPR is used to 

evaluate F1-score and it mathematically represented as, 

𝐹1𝑆 = 2
𝑃𝑃𝑉 × 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
 

 Recall 

Recall is a term used for the percentage of samples with 

favourable outcomes against every sample w. The 

equation used for recall is described in below equation. 

𝑅 =
𝐷

𝐷 + 𝐺
 

 Precision 

Precision is represented as the availability of obtained 

positive outcomes form overall positive sample. The 

mathematical expression of precision can be denoted as, 

𝑃 =
𝐷

𝐷 + 𝐸
 

 Specificity 

Number of negative outcomes over entire number of 

truly negative samples is measure as specificity which 

is evaluated using the below equation, 

𝑆 =
𝐸

𝐸 + 𝐹
 

 MCC 

MCC is evaluated as combination of exact and 

predictable decisions by undertaking correlation 

coefficient evaluation formula, which can be expressed 

as in below equation, 

𝑀𝐶𝐶 =
(𝐷∗𝐸) − (𝐹∗𝐺)

√(𝐸 + 𝐺)(𝐸 + 𝐹)(𝐷 + 𝐺)(𝐷 + 𝐹)
 

 Kappa 

The steadiness of prediction and employment of 

probabilistic evaluations between predictable scores in 

disagreement and agreement is determined in Cohen’s 

Kappa Score (CKS). It can be expressed as, 

𝐾 =
𝛽0 − 𝛽𝑓

1 − 𝛽𝑓
 

Here, 𝛽0 represents score agreement between predicted 

and actual values. Then, 𝛽f describes the variance 

between actual and predicted ones. 

 Balanced Score 

The balanced score that can be explained numerically as 

is the mathematical average of sensitivity and the actual 

negative rate. 

𝐵𝑆 =
1

2
(

𝐷

𝐷 + 𝐸
+

𝐸

𝐸 + 𝐹
) 

 AUC 

The capability of the technique to differentiate between 

aimed classes is signified by AUC. It termed to be area 

below receiver operating curve. Overall performance of 

AUC is evaluated by mapping TPR over FPR value as 

graph.  

 Positive Predictive Value 

The possibility that proposes with a positive selection 

test showing occurrence of actual disease which 

analysed in PPV is described in below equation, 

𝑃𝑃𝑉 =
𝐷

𝐷 + 𝐸
 

 Negative Predictive Value 

Number of cases with negative test outcomes that truly 

positive is analysed in the NPV, which described in 

below equation: 

𝑁𝑃𝑉 =
𝐸

𝐸 + 𝐺
 

 False Positive Rate 

Analysing the ratio between numbers of negative 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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outcomes incorrectly considered as positive is FPR, 

which can be represented as, 

𝐹𝑃𝑅 =
𝐹

𝐹 + 𝐸
 

 False Negative Rate 

FNR denotes to quantity of essential tests that failed to 

eliminate null hypothesis while incorrect. It can be 

mathematically expressed as, 

𝐹𝑁𝑅 =
𝐺

𝐷 + 𝐺
 

 Mean Absolute Error 

The prediction error between predicted and actual 

values is termed MAE. High values of error tend to 

minimize the CK disease classification accuracy. The 

formulation of MAE can be expressed as,  

𝑀𝐴𝐸 =
∑ |𝑥𝑣 − 𝑦𝑣|
𝑚
𝑣=1

𝑚
 

The above equation x indicates predicted value, y 

signifies actual value and m denotes the total amount of 

data samples. 

 Error Rate 

The proportion of the number of erroneous data units 

over the entire amount of data units transmitted in a 

process is termed the ER. It can be expressed as, 

𝐸𝑟𝑟 = |
𝑉𝑎 − 𝑉𝑒
𝑉𝑒

| 

Where Ve denotes the expected value, Va represents the 

attained actual value and Err denotes the error percent. 

4.3. Performance Analysis and Comparison 

Significant performance metrics adopted to estimated 

and compare both proposed and remaining methods, 

including accuracy, F1-score, recall, precision, MCC, 

Kappa, BS, AUC, PPV, NPV, FPR and FNR are 

analysed with their explanation and graphical symbol 

that is explained as follows. Table 7 describes proposed 

outcomes in terms of several metrics. 

Table 8 describes overall performance of proposed 

and existing methods [27] based on accuracy, F1-score, 

recall and precision. 

Table 9 signifies overall performance results of both 

proposed and existing techniques [26] based on 

specificity, MCC, Kappa, BS and AUC. 

Table 7. Performance analysis of proposed work. 

Technique Performance metrics Performance outcomes 

Proposed  

GNN-DQL 

Accuracy 99.93 

Precision 99.861 

Sensitivity 99.86 

F-measure 99.869 

MCC 99.901 

Specificity 99.911 

BS 99.88 

AUC 99.89 

Kappa 99.72 

FPR 0.011 

FNR 0.013 

NPV 99.3 

PPV 99.20 

ER 0.115 

MAE 0.86 

Table 8. Performance results of proposed and surviving techniques. 

Techniques 
Performance outcomes (%) 

Accuracy  F1-score  Recall  Precision  

LR 99 99 100 98 

KNN 92 92 88 98 

NB 95 95 92 100 

SVM 92 92 87 96 

DT 97 97 95 100 

Proposed 99.93 99.86 99.86 99.86 

Table 9. Result analysis of both proposed and existing techniques. 

Techniques 
Performance analysis (%) 

Specificity MCC kappa BS AUC 

DT 93 88 87 94 94 

SVM 95 91 91 97 96 

ADB 95 93 93 97 97 

KNN 85 76 76 89 89 

GNB 91 88 87 95 95 

SGD 84 81 79 92 92 

MLP 98 95 94 97 97 

LR 99 96 96 98 98 

Proposed  99.91 99.90 99.72 99.88 99.89 

Table 10 demonstrates overall performance 

comparison of suggested and surviving techniques [8] 

based on PPV, NPV, FPR and FNR  

Table 10. Performance comparison of PPV, NPV, FPR and FNR. 

Techniques  
Performance outcomes 

PPV NPV FPR FNR 

HKSVM 98.49 95.99 0.029 0.030 

SVM 96.70 82.37 0.050 0.160 

FMMGNN 89.94 85.49 0.062 0.040 

MKSVM 99.00 96.30 - 0.032 

Proposed 0.992 99.3 0.011 0.013 

The performance comparison of MAE and ER is 

described in Table 11. 

Table 11. Comparison of MAE and ER. 

Performance  
Techniques used 

RF NB SVM NN DL KNN DT Auto-MLP Proposed 

MAE 0.91 3.8 6.31 3.48 1.96 28.44 4.58 3.78 0.86 

Performance  
Techniques used 

ANN-HFWE-FS NB-HFWE-FS SVM-HFWE-FS NB ANN SVM Proposed 

ER 13.33 14.77 6.67 33.33 30.00 26.67 0.115 

 

4.4. Confusion Matrix 

The proposed CK disease model’s significance in 

classifying the five stages includes normal, mild, 

moderate, severe and end. Figure 2 describes the 

confusion matrix using training data for the proposed 

model of CK disease classification. 

(29) 

(30) 

(31) 

(32) 
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Figure 2. Confusion matrix. 

Figure 2 shows proposed model accurately classifies 

stages of CK disease with improved accuracy, which is 

represented in the diagonal format. The remaining 

values represent the number of wrong predictions made 

concerning each stage. For example, 1 normal person is 

wrongly predicted as a mild stage. The mild, moderate, 

severe and end stages are precisely classified with no 

error, and hence overall accuracy of proposed model is 

widely enhanced. 

 

Figure 3. Accuracy comparison. 

Figure 3 provides the graphical representation of the 

performance measures in terms of accuracy. The figure 

describes that proposed model’s accuracy is highly 

accurate compared to existing models like LR, KNN, 

NB, SVM and DT. The overall accuracy of proposed 

model is attained be 99.93%. The existing models 

obtained lower accuracy based on larger increase of 

datasets, degraded system performance and increased 

complexities. A higher accuracy rate insists that the 

technique achieves better classification performance. 

 

Figure 4. Performance comparison of F1-score. 

Figure 4 illustrates the graphical representation of 

F1-score in terms of proposed and existing techniques. 

It is made clear that proposed method achieves more 

ability to categorise CK disease depending on input 

parameters compared to existing techniques. Value of 

F1 measure is attained to be 99.86% in suggested 

method, whereas the remaining approaches like LR 

obtained 99% of F1-score, KNN as 92%, NB as 95%, 

SVM as 92% and DT as 97% in classification 

performance. In proposed method, F1 measure shows 

better results in classifying the different stages. 

 

Figure 5. Performance comparison of recall. 

The graphical representation of recall based on 

proposed and existing approaches is presented in Figure 

5. 99.86% of recall is obtained while assessing the 

performance of proposed technique in contrast to 

remaining approaches. The existing learning algorithms 

have accomplished 100%, 88%, 92%, 87%, and 95% 

concerning LR, KNN, NB, SVM and DT. Due to the 

high complexities of time and storage, the existing 

approaches tends to offer lower performance other than 

the LR approach compared to the proposed method.  

 

Figure 6. Precision performance. 

The graphical representation of precision in terms of 

proposed and existing approaches is shown in Figure 6. 

Precision is one of prominent metrics to be measured for 

gathering effectiveness of outcomes. The proposed 

GNN-DQL method has attained 98% of precision and 

showed a better outcome in reducing false detection 

rate. While existing learning methodologies other than 

NB and DT have achieved lower results when compared 
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to the proposed approaches. Finally, the precision 

estimated that proposed technique outperforms existing 

methods due to its higher ability in the data handling 

process. 

 

Figure 7. Specificity performance. 

Figure 7 presents the performance values obtained 

over the experiments in terms of specificity for proposed 

and remaining approaches. The results illustrate that 

proposed model performed better in classifying the 

various stages of CK disease effectively than the other 

compared models. Overall specificity performance of 

proposed method is found to be 99.91%. The proposed 

method has improved the classification performance has 

high specificity. The selection of optimal features 

helped in optimally predicting the outcomes based on 

the input attributes. The performance attained in 

existing methods like DT, SVM, ADB, KNN, GNB, 

SGD, MLP and LR is 93%, 95%, 95%, 85%, 91%, 84%, 

98% and 99%, respectively. 

 

Figure 8. MCC performance. 

The performance of MCC for proposed technique is 

analyzed with remaining methods, and achieved 

outcomes are showed in Figure 8. This figure shows that 

proposed technique has gained an improved correlation 

between true and predicted decisions than existing 

methods. This obviously exposed that suggested method 

has established a minimum false rate and superior to CK 

disease classification stages. MCC accomplished by 

suggested method is 99.90%, whereas existing methods 

like DT, SVM, ADB, KNN, GNB, SGD, MLP and LR 

are 88%, 91%, 93%, 76%, 88%, 81%, 95% and 96% 

respectively.  

 

Figure 9. Kappa performance. 

Figure 9 represents the graphical illustration of kappa 

performance in CK disease classification. High kappa 

values are obtained in suggested approach at 99.72%, 

showing better outcomes than the existing approaches. 

Compared to the existing DT, SVM, ADB, KNN, GNB, 

SGD, MLP and LR, the kappa performance of the 

proposed method tends to be highly superior in 

classifying the CK disease. Efficient performance can 

be attained in testing the data reliability gathered for CK 

disease classification. The performance of kappa among 

the existing method is low because of the larger 

accumulation of information from the datasets. 

 

Figure 10. Performance of BS. 

Figure 10 signifies the BS performance of a 

suggested and remaining methods. The suggested model 

has conquered 99.88% because of limited redundant 

features and false rates. Result of BS is analyzed with 

other standing methods like DT, SVM, ADB, KNN, 

GNB, SGD, MLP and LR, which have obtained 94%, 

97%, 97%, 89%, 95%, 92%, 97% and 98% respectively. 

This performance evaluation of proposed model 

provides better score in CK disease classification. 

 

Figure 11. AUC analysis. 
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Figure 11 represents the AUC comparison in terms of 

proposed and existing methods. Proposed model retains 

a better capacity to separate between the objective 

classes. Graph has been plotted between FPR and TPR 

to establish AUC value. The suggested model has 

accomplished AUC value of 99.89%, which is greater 

than other state-of-art techniques since its better-quality 

capability in CK disease classification based on input 

parameters.  

 

Figure 12. PPV performance. 

Figure 12 compares PPV with multiple 

methodologies, such as SVM, MKSVM, HKSVM, and 

FMMGNN. The graph indicates that, in comparison to 

previous approaches, the prediction strategy generated 

better results. The suggested approach has an extremely 

low incorrect detection rate and an optimal PPV of 

0.992. The MKSVM has a better score of 0.99, which is 

superior to the suggested technique, while FMMGNN 

has a relatively low PPV of 0.89 when compared to 

other techniques. Overall, it is obvious the proposed 

approach outperforms alternative methods expressively. 

 

Figure 13. NPV performance. 

Figure 13 illustrates how the suggested and 

remaining techniques compare with regard to of NPV 

performance evaluation. The approved techniques, 

including MKSVM, HKSVM, SVM, and FMMGNN, 

are used to evaluate NPV performance in comparison to 

the proposed model for classifying CK illness. Figure 

demonstrates that the proposed strategy has a higher 

NPV than more recent existing approaches. The 

proposed model’s NPV value is 99.3, compared with 

other approaches’ substantially greater values of 95.99, 

82.37, 85.49, and 96.30 for HKSVM, SVM, FMMGNN, 

and MKSVM. 

 

Figure 14. FPR performance. 

The proposed method’s FPR contrasts to the current 

methods, and Figure 14 illustrates the results that were 

obtained. The graph shows that the suggested method 

has achieved fewer FPR than the techniques already in 

use. This demonstrates that the proposed strategy is 

more effective at classifying all of the CK disease 

phases. The suggested method’s FPR value is 0.011, 

whereas the FPR values of the presently employed 

methods, such as HKSVM, SVM, and FMMGNN, are 

0.029, 0.050, and 0.062, respectively. 

 

Figure 15. FNR performance. 

FNR of suggested model is compared to existing 

methodologies, and obtained outcomes are presented in 

Figure 15. The FNR performance value has to be 

comparatively low for an efficient system. The 

suggested method yielded lower FNR than existing 

techniques, as can be seen from the graph. It indicates 

that the suggested approach accomplished a lower false 

rate and is appropriate for accurate categorization. The 

suggested method’s FNR value is 0.013, but the 

corresponding FNR values of the compared methods 

HKSVM, SVM, FMMGNN, and MKSVM are 0.030, 

0.160, 0.040, and 0.032. 

The MAE accuracy of the proposed model evaluated 

in the classification of CK disease is displayed in Figure 

16. Fewer wrong predictions enhance classification 

performance with low ERs. Comparatively to methods 

such as RF, NB, SVM, NN, DL, KNN, DT, and Auto-

MLP, the suggested model’s MAE performance is low 

[18]. As a result, the present techniques are insufficient 

for the process of classifying CK diseases. The efficient 
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learning technique yields an MAE of 0.86, a value lower 

than the current methods. 

 

Figure 16. MAE performance. 

The results of suggested and existing models’ rate of 

error estimated during the detection of CK disease are 

presented in Figure 17. The figure demonstrates that the 

suggested model’s error performance is better to that all 

other approaches currently in practice. A hybrid model 

demonstrates an C of 0.115, while existing techniques 

such as NB-HFWE-FS, ANN-HFWE-FS, SVM-

HFWE-FS, NB, ANN, and SVM [15] have been 

discovered to have ERs of 14.77, 13.33, 6.67, 33.33, 

30.00, and 26.67, respectively. The suggested approach 

is considered as yielding better outcomes than the 

competing methods. 

 

Figure 17. Performance of ER. 

4.4.1. Training, Testing and Validation Measures for 

Model Accuracy and Loss  

Employing training and testing data, the proposed 

approach’s accuracy and loss are evaluated. In the 

proposed research, 70% of a data is adopted to train the 

model, 20% is adopted to test the model, and 10% of 

data used for validation process. The model accuracy, 

loss of training, testing and validation are represented in 

Figures 18-a) and (b). 

By changing the time period size, all the indicated 

model’s gains and losses are evaluated. For the two 

scenarios, the precision is similar. Only minor changes 

are accurately captured when matching training and 

testing accuracy. The wider period size could be a result 

of improved accuracy. The suggested model obtains 

accuracy in training and testing in a range of 80 to 85% 

while the epoch size is 40. The accuracy of model is 

between 85 and 90% if the epoch size is 60, and between 

90 and 100% when its epoch size is raised to 80. 

Furthermore, it is obvious from Figure 18-a) that the 

recommended approach obtains maximum accuracy, 

almost identical to training and testing data samples.  

 

a) Model accuracy. 

 

b) Model loss. 

Figure 18. Performance measures. 

By changing the time period size, all the indicated 

model’s gains and losses are evaluated. For the two 

scenarios, the precision is similar. Only minor changes 

are accurately captured when matching training and 

testing accuracy. The wider period size could be a result 

of improved accuracy. The suggested model obtains 

accuracy in training and testing in a range of 80 to 85% 

while the epoch size is 40. The accuracy of model is 

between 85 and 90% if the epoch size is 60, and between 

90 and 100% when its epoch size is raised to 80. 

Furthermore, it is obvious from Figure 18-a) that the 

recommended approach obtains maximum accuracy, 

almost identical to training and testing data samples.  

The NN has been trained with a 100epoch size, and 

the testing and training loss is obtained for the proposed 

model. The loss is reduced by boosting the epoch size. 

The model achieves a testing and training loss in a range 

of 0.15 to 0.20 if the epoch size is 40. The model 

receives a loss of 0.10 to 0.15 if the period size is 60. 

The value lies in the 0.10 to 0.5 range for epoch size 80. 

Due to perfect training and the MAO technique for 

efficiency, the model had a low error value. 

4.5. Ablation Study 

The ablation study is conducted for the proposed 

technique with accuracy, precision and recall, which is 

described in Table 12. Here, module 1 determines the 

proposed technique is performed with only the GNN-

DQL model. Module 2 performed the proposed GNN-
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DQL model with SMOTE technique. Module 3 

performed the proposed technique GNN-DQL with 

AMO algorithm and the module 4 is performed with 

every technique used in the proposed methodology.  

Table 12. Ablation study analysis of proposed technique. 

Modules Accuracy Precision F1-score 

Module 1 (GNN-DQL) 92.68 93.01 92.58 

Module 2 (SMOTE+GNN-DQL)  96.67 96.20 96.92 

Module 3 (GNN-DQL+AMO) 97.35 97.39 97.12 

Module 4 (pre-processing technique 

+SMOTE+GNN-DQL+AMO) 
98.36 97.45 98.01 

The performance of proposed technique is evaluated 

by using each of the techniques to determine its 

efficiency. 

4.6. Statistical Analysis 

The statistical analysis is conducted to determine the 

efficiency of proposed GNN-DQL model for CKD 

detection.  

4.6.1. P-value 

The P-values are evaluated using suitable statistical tests 

for ANOVA test to determine when the accuracy 

increases are statistically significant. While the 

alternative hypothesis implies a substantial variance 

between the accuracy of the proposed method and 

existing methods. The null hypothesis indicates that 

there is no significant difference. A low p-value (usually 

less than 0.05) indicates the accuracy gains are 

statistically significant since the improvements are 

considered to be an outcome of randomness. The 

proposed technique achieves 0.0236 p-value which 

clearly determines its efficiency. 

The efficacy of the GNN-DQL model in CKD 

classification is statistically verified using the ANOVA 

test in comparison with standard models like RF, SVM, 

CNN, and LSTM. The ANOVA test evaluates when 

there are significant differences in the mean 

classification performance across these models. The 

mathematical expression for one-way ANOVA formula 

is described as follows. 

𝑆 =
𝐹𝑏𝑒𝑡𝑤𝑒𝑒𝑛
𝐹𝑤𝑖𝑡ℎ𝑖𝑛

 

Here, the variance between model performances and the 

variance within multiple iterations of each model are 

represented as Fbetween and Fwithin. The null hypothesis N0 

is rejected if the obtained F-statistic provides a P-value 

less than 0.05, indicating that GNN-DQL performs 

better than other models in the classification of CKD. 

4.7. Discussions 

DQL updates, the AMO algorithm for parameter 

adjustments, and GNN calculation all modify the GNN-

DQL model’s computational complexity and training 

time. The GNN component has complexity of E(P+D), 

number of nodes and number of edges are represented 

as P and D which provide efficient performance for 

structured data processing. The Q-network updated 

through experience replay of DQL component which 

has a complexity of E(ab), where number of training 

samples and number of network parameters are 

represented as a and b. Although the AMO approach 

improves convergence, it includes optimization 

overhead. Iterative reinforcement learning makes 

training computationally intensive, but once trained, the 

model achieves rapid prediction. GNN-DQL achieves a 

balance between performance and computational 

efficiency as compared to standard ML models, 

ensuring accurate CKD classification with lower 

training times and improved scalability. 

4.7.1. Limitation and Future Scope 

One significant drawback of the model is the lack of 

methods like SHapley Additive exPlanations (SHAP) or 

Local Interpretable Model-agnostic Explanations 

(LIME), particularly when it comes to healthcare 

applications. Understanding the model’s decision-

making process is essential for establishing confidence 

and transparency in clinical settings, and these 

interpretability techniques are essential to performing 

the same. Being able to explain the reasoning behind 

forecasts is crucial in the healthcare industry since 

choices have an enormous impact on patient outcomes. 

Implementing SHAP or LIME would ensure safer and 

more dependable application in actual medical scenarios 

by providing physicians valuable insights into the 

model’s decision-making process as well as aiding in 

learning and validation of the predictions. 

Interpretability approaches like SHAP and LIME, which 

are essential for comprehending model predictions in 

healthcare, are not included in this research. The 

constraint affects how transparent and reliable the 

proposed method’s decisions. Hence, the proposed 

technique focusses on implementing interpretability 

measures in future. 

The approach eliminates interpretability tools that are 

essential for healthcare which describe the decision-

making process. Concerns over the model’s 

generalizability and performance in comparison to other 

optimization strategies are caused by its excessive 

reliance on AMO. Applicability in resource-constrained 

contexts can be enhanced by assessing the model’s 

performance on a range of IoT devices and examining 

runtime, resource usage, and energy efficiency. The 

performance of AMO can be verified and potentially 

improved by experimenting with other optimization 

techniques or hybrid approaches. 

5. Conclusions 

In recent years, CK disease has become one of harmful 

diseases, and exact diagnosis is the most challenging. In 

this paper, an advanced model is introduced to provide 

(33) 
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precise classification of five stages of CK disease such 

as normal, mild, moderate, severe and end, which is 

attained through GNN-DQL approach. The annoying 

distortions are eliminated through data pre-processing. 

GFR rate is evaluated to age and SC level for obtaining 

the enhanced result. Then, the GNN-DQL technique is 

carried out to progress the accuracy. Optimize the 

parameters using AMO method, and stages of CK 

disease are classified precisely. The classification 

performance is analyzed for accuracy, precision, recall 

and so on. The suggested method is employed, and the 

performances are analyzed using Python simulation 

tool. Overall accuracy of 99.93% is observed in CK 

disease by classifying it based on five stages. MAE and 

ER are attained to be 0.86 and 0.115, which are 

comparatively less than the other existing approaches. 

Compared to the first work based on Ebola deep wavelet 

extreme learning machine, the proposed GNN-DQL has 

improved classification accuracy due to the 

consideration of best features and effective parameter 

optimization using the proposed model. Compared to 

the first work, a higher convergence rate and less time 

consumption are attained. Suggested model is verified 

through smaller datasets, and to enhance the system 

performance, significant volumes of data will be 

gathered in the future for better results. In addition, 

valuable features will be implemented to attain a wider 

perception of the enlightening parameters regarding CK 

disease. 
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