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Abstract: The existing knowledge graph-based recommendation models often lack a fine-grained consideration of collaborative 

information between users and items and overlook the high-order semantics and structural relationships within the graph paths. 

To address these issues, a dual-end recommendation algorithm integrating User Intent and Knowledge-Aware Graph Attention 

Networks (UIKGAN) is proposed. On the user end, the intent behind user-item interactions to refine the representation of 

collaborative information is modeled. By propagating relationship paths, UIKGAN aggregates deeper semantic and structural 

information from the knowledge graph to more accurately capture the extended representation of user intent and behavior 

patterns. On the item end, UIKGAN embeds and aggregates high-order neighboring triplet information using a knowledge-

aware attention mechanism, enriching the feature representation of items. Additionally, this paper introduces an independence 

modeling module to optimize the loss function, providing better interpretability of user intent. Experiments were conducted on 

three public datasets, including comparative experiments with seven baseline models, ablation studies, hyperparameter 

sensitivity experiments, and sparse data issue analysis. The experimental results demonstrate that the UIKGAN model 

outperforms other baselines in overall performance, improving recommendation accuracy while effectively alleviating the issue 

of dataset sparsity. 
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1. Introduction 

In the era of big data, recommendation systems have 

become an indispensable tool in people’s daily life [29]. 

Recommender systems use the interaction information 

between users and items to capture users’ historical 

interests, calculate the interaction possibilities between 

users and different items, and then recommend their 

preferred content for users to meet personalized needs 

[4]. The data used in recommendation systems includes 

the user’s own attribute information, the user’s 

historical operating behaviour, candidate item 

information, and contextual scenarios, etc., which can 

be divided into structured data, semi-structured data and 

unstructured data [6]. In recent years, recommendation 

algorithms combining knowledge graphs have been 

widely used by the industry, and have achieved 

remarkable results in improving the problems of cold 

start and data sparsity in traditional recommendation 

systems. However, due to the heterogeneous 

information network attributes in the knowledge graph, 

many models still have certain limitations in practical 

scenarios [28]. 

Current recommendation models based on 

embedding methods enrich item attribute descriptions  

 
by constructing auxiliary information graphs for various 

types of items. Knowledge embedding techniques are 

used to represent entities and relationships in the graph 

as low-dimensional vectors, preserving the original 

structural information of the graph. However, the 

drawback of these methods is that they overlook the 

semantic relationships between entities and do not 

thoroughly consider the interaction information 

between users and items [26]. 

Historical user-item interaction data, also known as 

collaboration information, contains complex implicit 

feedback. For example, in the movie recommendation 

context, the target user chose to watch the movie Kung 

Fu, stemming from his preference for the movie’s star, 

Stephen Chow; another user also watched the movie, 

but chose it because the movie genre is action. Although 

the two users’ behaviours were the same, the reasons for 

their choices were different, which suggests that the 

users made the same choices based on different 

intentions. Different intents reflect different behavioural 

patterns of users, and by analyzing such intent 

tendencies, the implicit interaction information between 

users and items can be mined at a finer granularity [27], 

so as to better personalize and accurately recommend 

for users from their perspective. 
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Most recommendation models based on the path 

approach utilize the structural characteristics of network 

links in the knowledge graph to construct paths for the 

relationships between nodes, in order to mine the deep 

underlying semantics between entities, and at the same 

time differentiate and analyze different types of 

association paths [2]. Recommendation models based 

on the path approach have excellent interpretability and 

can effectively address the shortcomings of previous 

graph neural network-based recommendation models 

[22]. This type of model is usually an end-to-end model, 

and the aggregation of important nodes is achieved 

through the iterative accumulation of network 

hierarchies [17]. The flow of processing graph data is 

shown in Figure 1-a), which aggregates a total of three 

jumps of neighbour node information for prediction, but 

ignores the relationship information between entities, 

and only uses the relationship edges as the index of path 

connections. 

Users’ potential preferences are often embedded in 

the relational information on the path, as shown in 

Figure 1-b). Therefore, effectively combining the path 

information and the relationship information on the 

edges between nodes in the knowledge graph with the 

user’s collaborative information in the recommendation 

model plays an important role in improving the accuracy 

of a recommendation system. 

 

a) Domain node aggregation based on 

neutral network recommendation models. 

b) Domain node aggregation based on path 

policy recommendation models. 

Figure 1. Comparison of neighbourhood node aggregation processes 

for two types of recommendation models. 

In order to better address the shortcomings of the 

above models, this paper proposes a User Intent and 

Knowledge-Aware Graph Attention Network 

(UIKGAN) model. This model utilizes a propagation-

based recommendation approach that incorporates the 

advantages of the graph embedding strategy to enhance 

the feature representation of graph entities and 

relationships, and at the same time solves the 

shortcomings of this strategy that ignores the higher-

order connectivity among entities. On the user end, the 

advantages of the path-based approach are combined to 

model the user’s intention tendency and analyze the 

user’s collaboration information in more detail. 

Meanwhile, during the link propagation process, the 

relationship-dependent information on the path is 

combined with the collaboration information to 

effectively explore the users’ potential intent 

preferences and behavioural patterns. On the item end, 

graph attention mechanism is used to aggregate the 

higher-order nearest-neighbour information of the 

items. UIKGAN has good interpretability and 

demonstrates strong recommendation performance on 

sparse datasets by utilizing rich user and item 

representations to assist predictions. 

The organization of this paper is as follows. In 

section 2, existing technical knowledge such as deep 

learning, graph neural networks, knowledge graphs, and 

graph attention mechanisms were described. In section 

3, the structure of the model was introduced, and the role 

of each module of the model was analyzed one by one. 

In the section 4, the results and performance evaluation 

are described of our model UIKGAN. Finally, section 5 

summarized the paper and proposed future research 

directions. 

2. Related Work 

Current mainstream recommendation algorithms are 

mainly content-based recommendation, collaborative 

filtering-based recommendation [1] and deep learning-

based hybrid recommendation. Content-based methods 

and collaborative filtering-based methods are often 

limited to specific recommendation scenarios. For 

example, the content-based recommendation model 

needs enough historical user behaviour information for 

modelling, and the collaborative filtering-based 

recommendation model also needs a huge amount of 

rating data in order to train a good recommendation 

effect. Therefore, the dataset to be processed by the 

model needs to contain rich attribute information and 

interaction data. In addition, modeling of these two 

types of methods is overly simplistic, making it difficult 

to accurately uncover users’ potential needs from large 

datasets. To address the shortcomings of these methods, 

deep learning techniques can be employed to integrate 

the two approaches through a fusion strategy, resulting 

in a hybrid recommendation method based on deep 

learning, which combines their strengths. At the same 

time, the algorithm construction and recommendation 

effect can be improved as a whole. This is also an 

important theoretical basis for the dual-end model in this 

paper. 

2.1. Deep Learning Based Hybrid Technologies 

Deep learning-based recommendation methods 

introduce knowledge graph information into the user-

item relationship in order to effectively alleviate the 

cold-start problem, and at the same time endow the 

model with better interpretability. For example, 

National Infocomm Competency Framework (NICF) 

[30] is a deep learning-based neural interactive filtering 

recommendation algorithm. To capture user interests, 

the model NICF employs multi-channel stacked neural 

networks to represent exploration strategies. It learns 
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directly from feedback data and continuously updates 

the user interest model based on new data to enhance the 

performance of interactive recommendations. Lin et al. 

[9] proposed a deep learning-based social 

recommendation model GNN-DSR with dynamic and 

static representations. GNN-DSR models the immediate 

changes of user interests while considering the static 

features of long-term interactions, and uses multi-

dimensional inference of potential features to make 

reasonable predictions, which is applicable to realistic 

social scenarios. 

2.2. Graph Neural Network Related Techniques 

Graph Convolutional Networks (GCN) [8] is applied to 

graph structure to allow nodes in the graph to be better 

associated with their neighbouring nodes. GCN’s 

characteristic is recursive accumulation, allowing target 

nodes to continuously acquire important neighbor 

information even from distant paths. The drawback of 

GCN lies in its scalability, where with the accumulation 

of iterative layers, the number of neighboring nodes also 

exponentially increases. This heavily challenges the 

computational capacity of the model, hence requiring 

careful control over the depth of iteration when applying 

the algorithm. 

To perform reasonable sampling on graph structured 

data, GraphSage [5] proposed an efficient algorithm 

based on nearest neighbor sampling. By sampling, only 

a subset of its neighbors for message passing on each 

node, GraphSage not only significantly reduces the 

storage and computational complexity of graph 

structured data during computation, but also avoids the 

memory bottleneck problem of traditional full graph 

training methods. 

RippleNet [18] is a ripple network model used to 

propagate user preferences in graphs, and to propagate 

and mine user preference information in knowledge 

graphs. This model starts from the user’s initial points 

of interest, propagates interest signals layer by layer in 

the graph, and constructs a recursive propagation 

network of user preferences along the path of the graph. 

The propagation mechanism of RippleNet can not only 

capture direct associations between users and items, but 

also explore deeper indirect relationships and potential 

semantic associations through multi-level transmission 

processes. 

Knowledge Graph Convolutional Networks (KGCN) 

[20] utilized the message passing mechanism of GCN 

and combined it with classical recommendation models 

to design an efficient recommendation method. Through 

GCN, KGCN can aggregate information from 

neighboring nodes to achieve deeper modeling of user 

interests and project features, thus performing well in 

recommendation tasks.  

Knowledge-aware Graph Neural Networks with 

Label Smoothness regularization (KGNN-LS) [19] has 

made improvements to KGCN, particularly in 

addressing cold start issues. The KGNN-LS model 

introduces a label smoothing regularization mechanism, 

which constrains the edge weight matrix of the graph to 

ensure the smoothness and consistency of label 

information propagation in the graph, thereby more 

effectively expanding entity labels and feature 

information. 

2.3. Knowledge Graph Based Recommendation 

Algorithms 

Knowledge graphs, as a kind of auxiliary information, 

possess rich information resources and excellent 

semantic structure representation. In the graph, the 

information consists of multi-relational graphs 

composed of various types of entities (nodes) and 

different edges (relations), which implies a rich ternary 

structure, and can be efficiently displayed for structured 

data. To improve the knowledge graph operation 

efficiency. researchers use Knowledge Graph 

Embedding (KGE), which describes the specifics of 

entities and relationships in the graph in terms of 

vectors, and obtains their respective vector 

representations through computational training between 

ternaries. 

Traditional recommendation models are often limited 

to the correlation information between user-items, 

ignoring the intrinsic correlation between the user’s own 

information and the item’s own attributes. A dataset 

incorporating knowledge graphs can introduce rich 

entity semantic extensions in modelling user-item 

interactions. Knowledge Graph Attention neTwork 

model (KGAT) [21] combines user-item interactions 

and the corresponding graph information into a 

Collaborative Knowledge Graph (CKG), and through 

the attention mechanism recursively dissemination of 

information. However, the defects of this model are that 

if a new interacting user enters, it is necessary to rebuild 

the CKG and retrain the whole model, which results in 

computational redundancy; and CKG module treats the 

item entities from user historical interactions and the 

related entities in the graph as isomorphic nodes, but in 

reality, they are in different latent spaces, which can 

easily cause ambiguity. KGAT-based Collaborative 

Knowledge Awareness model (CKAN) [23] constructed 

a heterogeneous propagation module, entities in the 

user’s historical interactions and entities in the graph are 

regarded as information in different spaces, and share 

different weight information through natural 

combination. In addition, CKAN introduces an attention 

mechanism and a multi-layer co-propagation module to 

effectively fuse the collaborative signals and knowledge 

associations in order to improve the performance of the 

model recommendation. Knowledge-Aware User 

Preference Model (AKUPM) [13] takes into account the 

differences in the characteristics of the entities in 

different relationships, and projects the entities to the 

space of the relationships that they are connected to, in 
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order to reflect the independence of the characteristics 

of the different relationships. Hierarchical Knowledge 

Graph embedding model for personalized 

recommendation (HAKG) [12] encodes subgraphs 

through hierarchical attention and thus generates 

effective subgraph embeddings to enhance the 

prediction of user preferences. A model Knowledge 

enhanced Graph Neural Network (KeGNN) [10] for 

interpretable recommendations combines neural 

networks and symbolic reasoning, while introducing a 

knowledge enhancement layer in KeGNN to adjust the 

model’s predictions by learning clause weights, which 

in turn improves the accuracy of predictions. 

2.4. Graph Attention Mechanisms 

The traditional GCN model has many limiting 

problems, such as the inability to deal with dynamic 

graph problems as well as the fact that GCN can only 

deal with homogeneous graphs and cannot deal with 

multimodal or heterogeneous graphs. In order to solve 

such problems, Graph Attention Network (GAT) 

proposes a weighted summation of neighbouring node 

features with an attention mechanism, where the 

weights of the neighbouring node features are 

completely dependent on the node features and 

independent of the graph structure. 

The core difference between GAT and GCN is how 

to collect and sum the feature representations of 

neighbour nodes with distance 1. The graph attention 

model GAT replaces the fixed normalization operation 

in GCN with an attention mechanism. Essentially, GAT 

simply replaces the original GCN normalization 

function with a neighbour node feature aggregation 

function using attention weights. 

In GAT, each node in the graph can be assigned 

different weights based on the features of its 

neighbouring nodes. With the introduction of attention 

mechanism, it is only relevant to the neighbouring 

nodes, i.e., nodes sharing edges, without the need to get 

information about the whole graph. 

GAT improves GCN by introducing an attention 

mechanism that allows nodes to assign weights based on 

the importance of their neighbouring nodes. However, 

GAT also has its limitations. First, GAT has a high 

computational complexity because it needs to compute 

the attention scores between each pair of nodes. In 

addition, GAT likewise does not handle dynamic and 

heterogeneous graphs well. Moreover, although GAT 

enhances the expressive power of the model through the 

attention mechanism, this also increases the complexity 

and instability of the model. 

In summary, the goal of this paper is to propose a 

dual-ended recommendation algorithm that integrates 

UIKGAN, in response to the problem that existing 

knowledge graph-based recommendation models lack 

careful consideration of collaborative information about 

the history of user-item interactions, and ignore the 

higher-order semantic and structural relationships in the 

paths of the graphs. On the user end, user intent is 

modelled by a propagation-based approach and 

propagated along the graph path, effectively combining 

the relationship-dependent information on the path with 

the collaborative information, in order to better mine the 

user’s potential intent preferences and behavioural 

patterns. On the item end, knowledge-aware graph 

attention is applied to enhance the feature representation 

of entities and relationships, which solves the problem 

of traditional recommendation models ignoring the 

higher-order connectivity between entities and enriches 

the attribute features of items. Finally, the vectors of 

both user-end and item-end are fed into the prediction 

stage, and the independence modelling loss is 

introduced in the loss function module to obtain good 

prediction recommendation results. 

3. UIKGAN Model 

This model adopts a dual-end structure, addressing 

recommendation tasks from both the user and item 

perspectives to capture finer-grained collaborative 

information and rich high-order semantics. The user 

side models user intentions and extracts preference 

features underlying interactions, while the item side 

leverages a knowledge-aware attention mechanism to 

aggregate high-order neighbor information, thereby 

enhancing item representation. 

3.1. Notation and Definition of UIKGAN Model 

The data used in the model UIKGAN is structured data, 

including the collaboration information of the user and 

the item and the corresponding knowledge graph data of 

the item entity, as well as the knowledge graph of the 

collaboration information. 

1. Information on user-item collaboration. 

In the specific recommendation scenario, define the 

relevant notation as follows: Let the set of users as 

U={u1, u2, ..., um}, the collection of items is set to V={v1, 

v2, ..., vn}, User-Item Interaction data, also known as 

collaboration information, is represented as User-Item 

bipartite graph G1={(u, yuv, v) u∈U, v∈V}, where yuv=1 

indicates that there is an interactive operation between 

user u and item v, such as clicking, browsing, etc.; 

otherwise yuv=0.G1 is referred to as collaboration 

information later in this paper. 

2. Knowledge graph data. 

A knowledge graph corresponding to collaborative 

information in a dataset contains attribute information 

associated with an item, such as information about the 

attributes of the item or information about related 

general knowledge. Define the graph data as G2={(h, r, 

t) h, t∈E, r∈R}, where E and R are the sets of entities 

and relationships in the knowledge graph, respectively. 

G2 consists of the set of entity-relationship-entity triples 
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S(h, r, t), where h, t∈E, and r∈R. G2 is referred to as the 

original knowledge graph in this paper. 

3. Collaborative information knowledge graph. 

Alignment operation is performed between the set V of 

items in the user-item bipartite graph and the set E of 

entities in the knowledge graph to realize the natural 

connection between the user collaboration information 

and the original graph information, and the association 

relationship between them is defined as the set 

D={(v,e)|v∈V,e∈E)}, and define collaborative 

information knowledge mapping as G={(h, r, t)|h, t∈E’, 

r∈R’}, where E’=E∪V, R’=R∪yuv. G is referred to as 

interaction knowledge graph in this paper. 

The model algorithmically predicts the probability 

ŷ
uv

 of a user u interacting with an item v that did not 

occur. 

Table 1 is a symbolic introduction of the model 

UIKGAN. 

Table 1. Notations of UIKGAN model. 

Notation Meaning 

U set of users 

u user 

V collection of items 

v item 

G1 User-Item bipartite graph (collaboration information) 

yuv Indicator of interactive operation 

G2 graph data 

E set of entities 

R sets of relationships 

S(h,r,t) set of entity-relationship-entity triples 

D association relationship 

G 
collaborative information knowledge mapping (interaction 

knowledge graph) 

3.2. Model Frame of UIKGAN 

Figure 2 shows the overall framework diagram of our 

proposed model UIKGAN. Data processing starts from 

both ends, as follows: handling collaborative knowledge 

graph data and conducting deep exploration through 

paths on the user end; processing original graph data and 

aggregating essential item attribute information on the 

item end. 

 

Figure 2. The overall framework of UIKGAN model. 

The overall framework of the UIKGAN model is as 

follows: on the user end, it contains the user intention 

tendency module and the relational path attention 

aggregation module; on the item end, it contains the 

knowledge-aware attention embedding module; and the 

final Multi-Layer Perception (MLP) prediction module. 

The main contribution of this paper is as follows: 

1. On the user end, the items that users have interacted 

with historically are divided into I sets, and the user 

intent tendency module is constructed to describe 

user collaboration information at a fine-grained level, 

and differentiate the potential preference information 

of users on different propagation paths through 

different intents; By leveraging attention aggregation 

on relational paths, deeper layers of user intent 

expansion can be mined in the interaction graph. 

2. On the item end, use the knowledge-aware graph 

attention network to aggregate higher-order item 

neighbourhood attribute triplet entities, thus 

enriching the aggregation vector of the item; at the 

same time, pass the item vector back to the user end, 

and aggregate it with the intention tendency factor 

vector through the attention mechanism to obtain the 

final user aggregation vector. 

3. Independence modelling is introduced into the loss 

function to emphasize the independence between 

different user intentions and give the model better 

interpretability. Finally, the aggregated vectors of 

users and items obtained from both ends are used for 

recommendation prediction by MLP. 

3.3. User Intention Tendency Module 

When dealing with user-item collaboration information, 

classical recommendation methods tend to simply 

regard the user’s interaction behaviour as a relational 

connection with the item, without digging deeper into 

the hidden motives behind the interaction behaviour. 

These motives can be understood as the differences 

caused by the user’s focus on the items, i.e., the different 

intentions based on their own preferences (e.g., in the 

movie recommendation scenario, the same user will 

prefer a certain movie star to watch a different movie 

starred by the actor, and similarly, will choose to watch 

another movie filmed by a certain director because of 

his preference). From this, it can be inferred that among 

users with similar preference tendencies, the probability 

of their underlying interests is also similar. Based on this 

idea, combined with the idea of path-based 

recommendation methods, the user intent preference 

factor is introduced to simulate the user’s preference 

intention to make choices in real scenarios, thus refining 

the motivation behind user preferences to enrich user-

end modelling. 

Figure 3 shows the modelling of the user’s 

intentional tendency. The set of items that have 

interacted with the target user is evenly divided into 

subsets of I, referred to as interaction subsets (Vsubseti), 
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i=1, 2, …, I. The edges of these subsets of links to the 

user contain information about the user’s historical 

interaction behaviour, and each subset of linking 

relationships corresponds to an intentional tendency, 

then each of the subsets corresponds to intention 

tendency factors, and these factors are defined as f1, f2, 

..., fi, i=1, 2, …, I. Assign intent attributes to the 

interaction relationships between users and items, where 

the intention tendency factor can be described as the 

degree of attention given to different interaction 

relationships. 

User-item collaboration information (u, v)∈G1 can be 

extended as user Intention Orientation Graph (GIO), 

where GIO={(u, fi, v)|i=1, 2 , ..., I}，GIO∈G, which can 

be considered as the set of behavioural intentions that 

user u generates for the item entities in the interaction 

graph under the action of tendency f. 

 

Figure 3. User intention tendency module. 

In previous graph-based embedding strategies, intent 

information can be expressed through potential vectors, 

but it is difficult to explicitly identify the semantics of 

each intent. A simple solution is to associate each 

intention with a relation in the knowledge graph, such 

as the embedding model KTUP [3]. However, this 

model only considers a single relationship pattern and 

ignores the complex interactions and combinations in 

the relationship, thus failing to refine the implicit 

information of user intentions. This paper attempts to 

propagate user interest features through paths in 

interaction graph, considering the close connection 

between items in the user’s collaborative information 

and the entities and relationships in the original graph. 

As path u→v1→j1→j2 shown in Figure 3, u reaches v1 

through f1，entities j1 and j2 can be reached sequentially 

along relations r1 and r5. It is evident that the user’s 

intent inherently determines the direction of the path. 

Therefore, mining the potential interest entities and 

inter-entity relationships on each path in the interaction 

graph can accurately model the user’s intention 

preference factor. Define the first-order vector 

representation of the factor as: 

𝑒𝑓𝑖
(1)

=
1

|𝑁_𝑣|
∑(𝑗,𝑟)∈𝑁𝑣

𝑒𝑗 ⊙ 𝑒𝑟 , 𝑖 = 1,2, . . . , 𝐼 

where ej and er correspond to the vector representations 

of entities and relations in the interaction graph, and 

interact with each other through dot product operations. 

By using the triplet Sv(v, r, j), different user intent 

tendency factors influence the retrieval of item entities 

and the associated paths between entities. For example, 

the triplet corresponding to the factor f1 in Figure 3 is 

(v1, r1, j1), which indicates that the user, under the 

influence of the tendency f1, selects the item v1 while at 

the same time generates an intention for j1 in the 

interaction graph through the relation r1. 

In Equation (1), Nv denotes the set of triples of all 

first-order relational paths ending in v in the propagation 

path of the interaction graph, defined as: 

𝑁𝑣 = {(𝑗, 𝑟)|(𝑣, 𝑟, 𝑗) ∈ 𝐺, 𝑣 ∈ 𝑉𝑠𝑢𝑏𝑠𝑒𝑡𝑖 , 𝑖 = 1,2, . . . , 𝐼} 

The potential preference of users for items is 

reflected in the modelling of the intention preference 

factor. If similar recommendation results come from 

different combinations of relationships, it suggests that 

the target user’s intention can be inferred from another 

user’s tendency. However, if an intent can be inferred 

from other intents, it may be redundant and no longer 

has the ability to characterize user behaviour. 

Therefore, intent independence modelling is 

introduced, which uses the distance correlation 

coefficient as a regularizer to minimize the distance 

correlation of a user’s tendency by measuring the linear 

relationship between any two intent vectors, thus 

reducing the dependency between different intents. This 

independence modelling can effectively reduce the 

redundancy of data and improve the training efficiency 

of the model with the following equation: 

𝐿𝑇𝐸𝑁 = ∑𝑓,𝑓′∈𝐺𝐼𝑂 ,𝑓≠𝑓′) 𝐷𝐼𝑆(𝑒𝑓 , 𝑒𝑓′) 

where DIS(·) is the correlation between the distances 

between the two intentional tendency factors ef and ef’. 

𝐷𝐼𝑆(e𝑓, e𝑓′) =
𝑑𝐶𝑜𝑣(e𝑓, e𝑓′  )

√𝑑𝑉𝑎𝑟(e𝑓) ⋅ 𝑑𝑉𝑎𝑟(e𝑓′)
  

where dCov(·) denotes the distance covariance between 

the two intentional representations, and dVar(·) is used 

to measure the distance variance of each intentional 

representation. By integrating this module into the loss 

function, the models in this paper can be optimized. 

While encouraging divergence on different intentions, 

giving intentions clear boundaries grants better 

interpretability on the user end for modelling user 

intentions. 

3.4. Relational Path Attention Aggregation 

Module 

The classical collaborative filtering-based approach 

provides a better description of user preferences. If 

multiple users have interaction behaviours for the same 

(1) 

(2) 

(3) 

(4) 
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item, these users constitute user collaborative 

neighbours; if multiple items are interacted by the same 

user, these items constitute collaborative neighbours of 

the items. The potential preference of users or the 

attribute characteristics of items can be directly 

reflected by the information of interacting collaborative 

neighbours, i.e., the history of user-item interactions can 

reflect the preference of users, and users who make 

similar behaviours have similar tendency to choose 

items. 

The modelling of relational paths in the interaction 

graph refers to this setting by considering a user’s 

historical interest as a pre-existing characteristic of the 

user, using historical interaction information 

(intentional collaboration information) that combines 

the user's intentional tendency factor to capture the user 

feature representation at a finer granularity level, and 

aggregating intentional correlation information on the 

paths through the attentional mechanism, to construct a 

vector of first-order representations of the user’s u as: 

𝑒𝑢
(1)

= 𝑔𝐼𝑂({(𝑒𝑢
(0)

), 𝑒𝑓𝑖
(1)

), 𝑒𝑣  )|(𝑓𝑖 , 𝑣) ∈ 𝑁𝑢, 𝑣 ∈ 𝑉𝑠𝑏𝑠𝑒𝑡𝑖 , 𝑖 = 1,2, . . . , 𝐼}) 

where the aggregation function gIO(·) is the node 

neighbourhood information under the aggregation 

intention tendency, and Nu={(fi, v)|(u, fi, v)∈GIO, i=1, 2, 

..., I} is the set of collaboration information with the 

target user u intention. The aggregation function gIO(·) 

is formally expanded as by the following equation: 

𝑒𝑢
(1)

=
1

|𝑁𝑢|
∑(𝑓𝑖,𝑣)∈𝑁𝑢)𝛽(𝑢, 𝑓)𝑒𝑓𝑖

(1)
⊙ 𝑒𝑣 

where ev is the final aggregated vector at the item end, 

which can be used as the influence factor of the user 

vector; efi

  and ev are computed through the dot product 

operation, which emphasizes the user’s intention to 

interact with the potentially preferred item under the 

tendency fi; through the aggregation operation, the 

semantic information of the user under different 

intention tendency factors and the information of the 

item features of the user’s historical interactions are 

integrated, which in turn enriches the user’s preference 

vector representation; β(u, f) is the attention score, 

different intention tendencies influence different 

behavioural patterns of the user, so this attention 

mechanism β(u,f) is introduced to differentiate the 

influence of the intention, this attention score is defined 

as follows: 

𝛽(𝑢, 𝑓) =
𝑒𝑥𝑝 (𝑒𝑓′

𝑇 𝑒𝑢
(0)

)

∑(𝑓,𝑓′∈𝐺𝐼𝑂
𝑒𝑥𝑝 (𝑒𝑓′

𝑇  𝑒𝑢
(0)

 

where eu
(0)

 is the user’s ID embedding, the higher the 

attention score, the stronger the degree of influence of 

the factor on the user. 

The path can originate from items preferred by the 

user and extend to entities where interest diffusion is 

observed. 

Propagation along the relational paths can better 

aggregate important nearest-neighbour information in 

the interaction graph and capture the higher-order 

semantic information of entity-relationship interactions. 

If the depth of the relational path of the item-entity link 

in the interaction graph is L, the related directed path 

can be embodied as 𝑗𝐿 →
𝑟𝐿

⋯ →
 

𝑗2 →
𝑟2

𝑗1 →
𝑟1 

 𝑣  (𝑣 ∈
𝑉𝑠𝑢𝑏𝑠𝑒𝑡𝑖). Based on Figure 3, it can be seen that the 

path connection between the item and the entity in the 

interaction graph is bi-directional, and the path can be 

initiated by the user’s preferred item to reach the 

endpoint of the entity where the interest is spreading; 

similarly, it can be propagated in reverse direction, 

starting from the entity endpoints. The same can be done 

from the endpoint of the entity for backward 

propagation. According to the definition of Equation 

(1), the formula of L-order user intention tendency 

factor is calculated as follows: 

𝑒𝑓𝑖

(𝐿) =
1

|𝑁𝑖
𝐿| 

∑ 𝑒
𝑗1 ⊙ 𝑒𝑟1 + 𝑒

𝑗2 ⊙ 𝑒𝑟2 + ⋯ + 𝑒
𝑗𝐿 ⊙ 𝑒𝑟𝐿 

where Ni
L is the set of L-order directed propagation 

paths. By performing dot product operations between 

entities and relations in the interactive knowledge graph 

and conducting cumulative aggregation, implicit 

relationships between entities are effectively mined. 

This approach preserves the deep semantic information 

along the propagation paths, facilitating the modeling of 

higher-order user intent preference factors. 

After passing the generation result of Equation (8) 

into the operation of Equation (6), the L-order vector 

representation of user u is obtained by aggregating the 

higher-order item vectors generated at the item end as: 

𝑒𝑢
(𝐿)

= 𝑔𝐼𝑂 ({(𝑒𝑢
(𝐿−1)

, 𝑒𝑓𝑖

(𝐿)
, 𝑒𝑣) |(𝑓𝑖 , 𝑣) ∈ 𝑁𝑢, 𝑣 ∈ 𝑉𝑠𝑢𝑏𝑠𝑒𝑡𝑖 , 𝑖 = 1,2, . . . , 𝐼}) 

Thus, the final aggregated vector of user u is obtained, 

embedding the intentional tendency information in the 

path with the higher-order semantic interaction 

information in the interaction graph: 

𝑒𝑢 = 𝑒𝑢
(0)

+ ⋯ + 𝑒𝑢
(𝐿)

 

3.5. Attention Embedding Module Based on 

Knowledge Perception 

On the item end, the entity information in the original 

knowledge graph that aligns with the user’s historical 

interest items is analyzed. These entities and their 

relations provide supplementary information for the 

user’s historical interests. By integrating the idea of 

propagation-based recommendation methods [25], user 

preferences are propagated along the link paths in the 

graph. During the traversal process, graph attention is 

utilized to aggregate important neighborhood 

information at different levels. Applying this modelling 

to the item side enriches the item attribute descriptions, 

which in turn generates vector representations of items 

at a finer granularity. The following shows the specific 

item-side aggregation process: 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 



512                                                              The International Arab Journal of Information Technology, Vol. 22, No. 3, May 2025 

1. Definition of propagation in the original graph. 

The gradual propagation of knowledge associations 

along the links in the original graph allows for the 

acquisition of extended entities and their corresponding 

sets of triples that are more distant from the initial item 

entity. The set of extended entities is defined as follows: 

ℰ 
𝑘 = {𝑡|(ℎ, 𝑟, 𝑡) ∈ 𝐺2, ℎ ∈ ℰ 

𝑘−1}, 𝑘 = 1,2, ⋯ , 𝐻 

where the parameter k is the maximum number of hops 

along the association path. 

Define the set of triples passing through k hops as: 

𝑆 
𝑘 = {(ℎ, 𝑟, 𝑡)|(ℎ, 𝑟, 𝑡) ∈ 𝐺2, ℎ ∈ ℰ 

𝑘−1}, 𝑘 = 1,2, ⋯ , 𝐻 

2. Knowledge-aware attention embedding. 

The target user’s potential items of interest correspond 

to rich entities in the original graph, and the exploration 

of the user-end relational paths in the interaction graph 

alone is not sufficient to mine higher-order item 

attribute structures. To satisfy the derivation intent of 

Equation (6) to enrich the representation at the user end, 

the representation at the item end needs to enrich. 

Therefore, a knowledge-aware attention mechanism is 

introduced to aggregate the higher-order semantic and 

structural information of the user’s potential item 

neighbourhood triples to provide a comprehensive 

description of the item through rich feature attributes. 

In a knowledge graph, the triple structure indicates 

that multiple nodes may be connected to a significant 

node through multiple relationships. This means that 

these entities may be associated with a significant 

remote interest entity through a relational path. 

Considering these multiple entities as the starting point 

of the path as head entities and digging deeper along the 

association path, potential remote interest entities at the 

end of the path can be explored, and the potential 

interest entities at the end of the path are regarded as tail 

entities. Based on the above approach, modeling on the 

item side represents the tail entity as the remote similar 

attribute features of the item. The specific knowledge-

aware attention embedding module is shown in Figure 

4: 

 

Figure 4. Knowledge perception attention embedding module. 

Obtain multiple neighbouring head entities in the 

extended entity set that are oriented to a certain potential 

interest tail entity to form the set of neighbouring 

entities, defined as: 

𝑁(𝑡𝑣) = {ℎ𝑣
𝑚 ∣ ℎ𝑣

𝑚 ∈ ℰ𝑣
𝑘−1and(ℎ𝑣

𝑚, 𝑟𝑣
𝑚, 𝑡𝑣) ∈ 𝑆𝑣

𝑘}, 𝑚 = 1,2, … , 𝑀 

Let there be m neighbouring head entities in the set of 

triples Sv
k at the kth level that are directed to the tail 

entities in the triples through the knowledge-aware 

graph attention, and these m head entities form the set 

of neighbourhood entities denoted as N(tv), with 

hyperparameters M=|N(tv)|, and through the N(tv) to 

mine the neighbourhood representation of the tail entity. 

The process of aggregating the set of triples at the kth 

layer is shown in Figure 4, where the embedding of the 

m neighbouring head entity hv
m∈N(tv) is denoted as ehv

m, 

and the current m triples (hv
m

,rv
m,tv)∈Sv

k are used to learn 

the fractional πm in the graph-attentive network with the 

following equation: 

𝜋𝑚 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊2
⊤[𝑊1𝑒ℎ𝑣

𝑚||𝑊1𝑟𝑣
𝑚||𝑊1𝑒𝑡𝑣

]) 

where LeakyReLU is used as the activation function, 

which enables the model to have a stronger nonlinear 

representation and better fit complex data distributions 

compared to the traditional ReLU. W1 and W2 are the 

weight matrix and the weight vector, respectively, which 

can be determined by parameter learning. In the 

propagation iteration ehv
m, rv

m, etv
 denote the d-

dimensional embeddings vector representations of the 

head entity hv
m

, the relation rv
m, and the tail entity tv, 

respectively, and the symbol || refers to the connection 

operation between them. 

The learning score πm is normalized to obtain the 

corresponding weights π̃m. The embedding ehv
m of the 

neighbouring head entities are weighted by πm and 

integrated to construct the neighbourhood feature 

representation eN(tv) of the specified entity. The formula 

of the above process is represented as follows: 

�̃�𝑚 =
𝑒𝑥𝑝(𝜋𝑚)

∑  
ℎ𝑣

𝑚′
∈𝑁(𝑡𝑣)

𝑒𝑥𝑝 (𝜋𝑚′
)
 

𝑒𝑁(𝑡𝑣) = ∑  

𝑀

𝑚=1

�̃�𝑚𝑒ℎ𝑣
𝑚 

The obtained neighbourhood representation eN(tv) is 

combined with the embedded representation eN(tv) of the 

potential interest-tailed entity tv through knowledge 

perception to generate a higher-order representation etv
'  

of tv, defined as follows: 

𝑒𝑡𝑣

′ = 𝜎(𝑊1(𝑒𝑡𝑣
+ 𝑒𝑁(𝑡𝑣))) 

where σ represents the sigmoid activation function and 

W1 is the weight matrix. 

3. Information dissemination aggregation 

The above step is the processing flow for the 

neighbourhood triples of the kth layer, where the higher-

order embedded representations of the tail entity etv
'  of 

different layers are accumulated to obtain the 

(11) 

(12) 

(14) 

(15) 

(16) 

(17) 

(13) 
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representation vector of the item v at the Hth layer by 

performing the same knowledge-aware operation on the 

triples Sv
k of the extended entity set εv

k in different 

propagation layers: 

𝑒𝑣
(𝑘)

= ∑  

|𝑆𝑣
𝑘|

𝑡𝑣∈𝜀𝑣
𝑘

𝑒𝑡𝑣

′ , 𝑘 = 1,2, … , 𝐻 

where |Sv
k| is the number of triples in the set Sv

k. 

The aggregated vectors of the final items are obtained 

by aggregating the representation vectors at each 

propagation level: 

𝑒𝑣 = 𝑒𝑣
(0)

+ ⋯ + 𝑒𝑣
(𝐻) 

3.6. UIKGAN Model Predictions 

The aggregation vector of the user is obtained through 

Equation (10), and the aggregation vector of the item is 

obtained through Equation (19), and the aggregation 

vector of both ends is used as an input to predict the 

likelihood of the user u clicking on the un-interacted 

item v to interact with it through the MLP, with the 

following formula: 

�̂�𝑢𝑣 = 𝜎(𝐹(𝑒𝑢
𝑇𝑒𝑣)) 

where σ is a nonlinear sigmoid activation function and 

the prediction function F is expressed as an MLP. 

The BPR loss function is utilized for training in the 

loss function： 

ℒ𝐵𝑃𝑅 = ∑  

(𝑢,𝑝,𝑞)∈𝑂

− 𝑙𝑛𝜎(�̂�(𝑢, 𝑝) − �̂�(𝑢, 𝑞)) 

where a negative sampling strategy O={(u, p, q))|(u, 

p)∈R+,(u, q)∈R-} is used, R+ denotes the traversed 

observed user-item interactions, which are considered 

as positive case samples, and R- denotes the pairs of 

interacting items that are not traversed and observed, 

which are considered as negative case samples. By 

combining the above module of independence loss 

modelling in Equation (3), the model loss function in 

this paper is defined as follows: 

ℒ = ℒ𝐵𝑃𝑅 + 𝜆1ℒ𝑇𝐸𝑁 + 𝜆2∥𝛩∥2
2 

where ∥Θ∥2
2 is the L2 regularization term, Θ is the set of 

parameters of the model, and λ1 and λ2 are the 

equilibrium hyperparameters. 

4. Experiments and Analysis of Results 

4.1. Experimental Dataset 

In order to better evaluate the performance of the model 

UIKGAN in this paper, 3 datasets are utilized: the book 

dataset (Book-Crossing) [14], the movie dataset 

(MovieLens-10M) [16], and the music dataset 

(Last.FM) [15], to ensure the consistency of the datasets 

in the comparison experiments. Each dataset was pre-

processed before the experiment. 

Table 2 shows the data details of the 3 experimental 

datasets: 

Table 2. Dataset of the UIKGAN model experiment. 

Dataset Book-crossing Movielens-10m Last.Fm 

Number of users 19,676 69,879 1,872 

Number of items 20,003 10,601 3,846 

Number of interactions 172,576 9,992,830 42,346 

Number of entities 25,787 181,869 9,366 

Number of relationships 18 51 60 

Number of triads 60,787 95,580 15,518 

4.2. Experimental Comparison Model and 

Parameter Settings 

1. Comparison of baseline models. 

In order to verify the effectiveness and performance of 

the proposed model UIKGAN in this paper, 6 other 

mainstream and representative recommendation models 

and the DNGAKG model in our previous work [7] (in 

press) are selected to carry out experimental 

comparisons. These 7 recommendation models all 

utilize a hybrid propagation strategy, which integrate the 

advantages of the graph embedding strategy and the 

path-based approach. The hyperparameters in the 

comparison baseline are set according to the optimal 

experimental parameters in the respective original 

papers: 

 KNI [11]: this is an end-to-end neighbourhood 

interaction model for knowledge-enhanced 

recommendation. The algorithm proposes a 

Neighbourhood Interaction Model (NI), thus 

uniquely capturing the neighbour relationship 

between the user end and the item end. In NI, 

additional Knowledge Graphs (KGs) are added and 

combined with Graph Neural Networks (GNN) for 

accurate recommendation through a module of 

knowledge-enhanced neighbourhood interaction. 

 KGAT [21]: this model fuses historical user 

interaction information with the knowledge graph to 

construct a CKG, builds an attention-aware 

representation propagation layer, and employs a 

knowledge graph attention network to explicitly 

model the higher-order structural information in the 

graph in an end-to-end manner. 

 KGNN-LS [19]: this is a more advanced 

recommendation model based on the propagation 

method, which converts heterogeneous graph 

information into the form of user-weighted graphs, 

and employs label smoothing to propagate the user’s 

labelling information in GNN. This model effectively 

improves the recommendation performance while 

making the model with good generalization ability. 

 KGIN [22]: this model makes recommendation more 

personalized by revealing user tendencies behind 

knowledge graph interaction information. Under the 

GNN framework, it refines the user’s preference 

division and captures deeper user collaboration 

information in the graph using relational paths, thus 

enriching the description of user behavioural 

(18) 

(19) 

(20) 

(21) 

(22) 
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patterns. 

 CKGAT [25]: this is an improved upgrade of the 

collaborative knowledge-aware attention network 

model CKAN [23], which improves the original 

model’s defect of not distinguishing important 

relationships among different entities in the path 

ripple set, extracts the topological nearest neighbour 

structure in the multi-hop ripple set through 

knowledge-aware techniques, and finally embeds the 

more refined ripple set into the aggregation through 

an attention aggregator. 

 MI-KGNN [24]: this model characterizes the 

similarity between users and items through 

information propagation and aggregation in the 

knowledge graph, fully explores the 

multidimensional interactions between nodes during 

information propagation, optimizes the update 

direction of node representations, and optimizes the 

weights of information propagation by using the dual 

attention mechanism. 

 DNGAKG [7] (in press): this model traverses the 

knowledge graph of user-item interactions from both 

the user end and the item end, fully mines the feature 

information of users and items in the graph, and 

effectively improves the recommendation 

performance and interpretability. 

2. Hyperparameters setting 

In the UIKGAN model, for different datasets, the data 

is randomly split into training, validation, and test sets 

in a 6:2:2 ratio. Negative examples are randomly 

sampled as the control, while the remaining data serves 

as positive examples. The final hyperparameter values 

are set by optimizing the AUC value on the validation 

set. The initialization of parameters is set by Xavier 

initializer, the training of the model is optimized by 

Adamax optimizer, and the model is accelerated by local 

GPU. 

The hyperparameters on the user end and item end 

are set as follows: 

1. At the user end: the number of user intention 

tendency factors I is selected in the set {2, 4, 8, 16, 

32}; meanwhile, in the relational path attention 

aggregation module, the path propagation depth L is 

selected in the set {1, 2, 3, 4, 5}. 

2. At the item end: the number of propagation 

aggregation layers H in the knowledge-aware 

attention-based embedding module is selected in the 

set {1, 2, 3, 4, 5}, and for the aggregation process the 

number of neighbourhood triplet samples |Sv
k| is 

selected in the set {4, 8, 16, 32, 64, 128}. The 

embedding dimension d is adjusted between {8, 16, 

32, 64, 128, 256}; the intention-independent 

modelling parameter λ1 and the L2 regularization 

parameter λ2 are adjusted between {10-5, 10-4, 10-3, 

10-2}, and the learning rate ρ is adjusted between 

{10-4, 10-3, 10-2, 10-1}. 

The batch size in model training is uniformly set to 

1024. 

The optimal hyperparameter settings for the 

UIKGAN model are shown in Table 3: 

Table 3. Details of hyperparameter settings for the UIKGAN model. 

Hyperparamete settings Book-crossing MovieLens-10M Last.FM 

I 16 16 32 

L 4 4 3 

H 3 3 4 

|Sv
k
| 64 64 64 

d 64 64 64 

λ1 10-5 10-5 10-4 

λ2 10-5 10-5 10-5 

ρ 10-4 10-4 10-4 

Batch size 1024 1024 1024 

4.3. Experimental Evaluation Metrics 

When evaluating the performance of recommendation 

algorithms, two recommendation scenarios are 

considered: Click Through Rate (CTR) prediction and 

Top-K (performance evaluation of the prediction 

samples ranked in the top-K) recommendation. In the 

prediction experiments under the CTR scenario, Area 

Under the Curve (AUC) and F1 (F1-Score) are used as 

the evaluation metrics; Recall as the evaluation metric 

in the Top-K recommendation scenario. 

The AUC is used to measure the performance of a 

model by calculating the area under the Receiver 

Operating Characteristic (ROC) curve. The ROC curve 

plots the true positive rate against the false positive rate, 

with the horizontal axis ranging from 0 to 1. 

Consequently, the AUC value also falls within the range 

of 0 to 1, where a higher value indicates better model 

performance. The AUC can be expressed in terms of the 

integral of the ROC curve as follows: 

𝐴𝑈𝐶 = ∫  
1

0

𝑓(𝑅𝑂𝐶)𝑑𝑥 

Where f(ROC) is a function of the ROC curve. 

F1 is an evaluation metric that combines precision 

and recall, with the following equation: 

𝐴𝑈𝐶 = ∫  
1

0

𝑓(𝑅𝑂𝐶)𝑑𝑥 

where P is the precision rate, R is the recall rate, and F1 

is the reconciled average of the precision rate and the 

recall rate, which is used to comprehensively assess the 

performance of the model in classifying positive and 

negative samples, where both P and R are numbers with 

values ranging from 0 to 1, and F1 reflects the 

comprehensive expectation information. 

To discriminate whether the predicted and true values 

of a sample are the same, the following types exist: 

1. True Positive (TP): the number of positive examples 

predicted as positive. 

2. False Negative (FN): the number of positive 

examples predicted as negative. 

3. False Positive (FP): the number of negative examples 

predicted as positive examples. 

(23) 

(24) 
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4. True Negative (TN): the number of negative 

examples predicted as negative. 

Recall reflects the proportion of true positive results 

among all actual positive instances, the formula is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Classifying positive examples as negative will reduce 

the recall rate. Recall measures a model’s ability to 

identify all true positive instances. This metric reflects 

the model’s effectiveness in uncovering genuine 

positive cases and indicates how well the 

recommendation model can identify the user’s potential 

interests. 

4.4. Experimental Results and Analysis 

1. Comparative analysis of experiments in CTR 

scenarios. 

The experimental results for the CTR prediction, 

comparing the UIKGAN model with 7 other baseline 

models, are shown in Table 4. As can be seen from Table 

4, the evaluation metrics of the UIKGAN model on all 

3 datasets are better than the baseline of the comparison, 

which effectively improves the prediction performance 

in CTR scenario. Compared with the experimentally 

obtained optimal metrics of the comparison model, 

AUC and F1 are improved by 1.99% and 0.59% on the 

Book-Crossing dataset, 0.20% and 0.53% on the 

MovieLens-10M dataset, and 0.71% and 1.03% on the 

Last.FM dataset, respectively. It can be found that the 

performance improvement of our model UIKGAN is 

better on the Book-Crossing dataset and the Last.FM 

dataset than on the MovieLens-10M dataset. The reason 

for this is that the MovieLens-10M dataset is the densest 

compared to the other two datasets with huge interaction 

data information. However this denseness may instead 

affect the propagation effect of the model in the graph, 

and a small performance gain is realized in this scenario 

compared to the DNGAKG model that has the best 

performance. 

Table 4. Experimental results of UIKGAN in CTR scenario. 

Model 
Book-crossing MovieLens-10M Last.FM 

AUC F1 AUC F1 AUC F1 

KNI  0.690 0.627 0.971 0.919 0.807 0.711 

KGAT 0.733 0.655 0.975 0.929 0.829 0.747 

KGNN-LS 0.689 0.636 0.978 0.926 0.811 0.726 

KGIN 0.755 0.675 0.977 0.934 0.842 0.761 

CKGAT 0.753 0.680 0.979 0.928 0.851 0.768 

MI-KGNN 0.745 0.671 0.980 0.939 0.848 0.770 

DNGAKG 0.751 0.679 0.983 0.942 0.818 0.736 

UIKGAN 0.770 0.684 0.985 0.947 0.857 0.778 

From the experimental results in Table 4, it can be 

seen that the performance of each baseline on 

MovieLens-10M dataset is good, and the gap between 

the evaluation scores on the other two datasets is 

relatively small, thanks to the fact that the baseline 

models in this paper’s experiments all use mainstream 

propagation-based recommendation methods, and the 

original models namely have good recommendation 

performance and prediction accuracy. 

The KGIN model focuses on building association 

paths in the graph. Our model refers to the modelling 

concept of this model on the user end, and models the 

user-item history interactions at a fine-grained level. 

Compared with the KGIN model, the AUC are 

improved by 1.99%, 0.82% and 1.78%, and the F1 

evaluation metrics are improved by 1.33%, 1.39% and 

2.23% in the experimental scenarios of the above 3 

datasets, respectively. The reason is that, although the 

KGIN model reveals the intention behind user-item 

interactions through the user’s perspective, and 

improves the interpretability of the model by coupling 

the intention relation with the knowledge graph relation 

in the data, it does not explore the complex attention 

module in the module of integrating remote semantics 

by using the relational paths, and lacks the knowledge 

perception employed by the UIKGAN model attention 

module. As a result, even with the construction of multi-

hop relational paths, the KGIN model still loses 

potential semantic information during the information 

dissemination process, resulting in a slightly inferior 

performance to the model in this paper. 

Comparing with the CKGAT model referenced on the 

item end, AUC are improved by 2.26%, 0.61% and 

0.71%, and the F1 are improved by 0.59%, 2.05%, and 

1.30%, respectively, in the experimental scenarios of the 

3 datasets mentioned above. Comprehensively 

analyzing the experimental results, the model’s 

performance in the experimental scenario is slightly 

better than KGIN, and the performance metric of 

UIKGAN has a smaller improvement compared with it. 

A comprehensive analysis of the experimental results 

shows that the UIKGAN model performs slightly better 

than KGIN in the experimental scenario, with only a 

marginal improvement in performance metrics. The 

reason for this can be attributed to the CKGAT model, 

which takes into account the complex relationships 

between entities in multiple-hop propagation layers. By 

utilizing attention networks to aggregate higher-order 

neighborhood information associated with the entities in 

the multi-hop ripple concentration graph, CKGAT 

effectively captures users’ historical interest features on 

a broader scale. Incorporating this idea into the item end 

of the model in this paper, the knowledge-aware module 

is applied to capture similar attribute features of items 

remotely in the original graph, and the potential features 

of items in different layers are aggregated in the 

propagation, which enriches the descriptions of the 

user’s potential items of interest, and thus makes the 

final prediction more accurate. 

Comparing with our previously proposed DNGAKG 

model under the same experimental scenarios, the AUC 

are improved by 2.53%, 0.20% and 4.77%, and the F1 

are improved by 0.74%, 0.53% and 5.71%, respectively. 

Comprehensive analysis reveals that the UIKGAN 

(25) 
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model outperforms the DNGAKG model, with a 

significant performance improvement on the sparse 

Last.FM dataset. The Last.FM dataset contains fewer 

interaction data and triples compared to the other 2 

datasets, indicating the effectiveness of the proposed 

model in associative path modeling. UIKGAN is 

capable of effectively mining structural information 

from sparse datasets. 

2. Comparative analysis of experiments in Top-K 

recommendation scenarios. 

In Top-K recommendation scenario, for each user in the 

test set, the top K items in terms of predicted CTR are 

selected. The value of K is set to {5, 10, 20, 50, 100}. 

The experimental results are shown in Figures 5, 6, and 

7, where the horizontal coordinate indicates the value of 

K and the vertical coordinate indicates the performance 

score of Recall. 

 

Figure 5. UIKGAN model recall results on book-crossing dataset. 

 

Figure 6. UIKGAN model recall results on MovieLens-10M dataset. 

 

Figure 7. UIKGAN model recall results on Last.FM dataset. 

From Figures 5, 6, and 7, it can be seen that on the 3 

datasets, the Recall values of UIKGAN model and the 

compared baselines rise to varying degrees as the value 

of K increases, and the overall Recall of UIKGAN is 

better than that of the other models in this scenario; in 

the MovieLens-10M dataset, when the value of K is 

from 20 to 50, the Recall value improves the most. In 

the MovieLens-10M dataset, the Recall value improves 

most when the K value is from 20 to 50. When the K 

value is 20, the Recall of UIKGAN is 12.64% and 

11.48% higher than the latest models MI-KGNN and 

DNGAKG, and 6.21% and 13.34% higher than the 

reference models KGIN and CKGAT, respectively, 

which is a significant performance enhancement. The 

Recall results of CKGAT are only second to that of our 

model UIKGAN, which again verifies that the 

Knowledge Awareness Attention Module has better 

overall recall than other models in this scenario. MI-

KGNN model has an average performance, which 

indicates that the overuse of attention mechanism is not 

necessarily applicable to the actual recommendation 

scenarios. KNI model has a good design concept, i.e., to 

improve the recommendation performance through 

neighbourhood interaction and knowledge 

enhancement, but the recommendation performance in 

this scenario is poor, which indicates that KNI has poor 

interpretability and is not suitable for dealing with graph 

data with complex interaction information. 

3. Ablation experiment. 

The purpose of this experiment is to investigate whether 

UIKGAN model can improve the accuracy of prediction 

and the comprehensive model performance by 

modelling the independence of user’s intention on the 

user’s end and by incorporating the MLP into the 

prediction framework to calculate the potential 

interaction probability. The performance comparison 

results of the ablation experiments on the 3 datasets are 

shown in Table 5. 

Table 5. Ablation experiments of UIKGAN model. 

Model 
Book-crossing MovieLens-10M Last.FM 

AUC F1 AUC F1 AUC F1 

UIKGAN 0.770 0.684 0.985 0.947 0.857 0.778 

UIKGAN-d 0.749 0.672 0.974 0.940 0.847 0.761 

UIKGAN-m 0.766 0.676 0.979 0.939 0.859 0.777 

UIKGAN-d indicates that user independence 

modelling is not introduced on the user end. The 

experimental comparison in Table 5 shows that on the 3 

datasets, the AUC and F1 values of UIKGAN are better 

than UIKGAN-d, therefore, the intent independence 

modelling is an integral part of the user intent preference 

module, which optimizes the loss function and 

effectively improves the performance of the 

recommendation at the same time. 

UIKGAN-m indicates that an MLP is not used in the 

prediction module. UIKGAN model compares with the 

UIKGAN model in terms of AUC and F1 values by 



A Dual-End Recommendation Algorithm Integrating User Intent and Knowledge-Aware ...                                                     517 

0.52% and 1.18% on the Book-Crossing dataset, 0.61% 

and 0.85% on the MovieLens-10M dataset, and 0.61% 

and 0.85% on the Last.FM dataset. An anomaly occurs 

on the Last.FM dataset, where removing the MLP 

instead performs better. It indicates that overuse of 

neural networks for aggregation on sparse datasets may 

have side effects. 

4. Hyperparametric sensitivity analysis. 

The hyperparameters of the UIKGAN model are 

adjusted in the experiment, including the embedding 

dimension d, the number of user intent preference 

factors I, the propagation depth of the relationship path 

L, the number of propagation aggregation layers H, and 

the number of neighbourhood ternary samples |Sv
k|, in 

order to study the impact of the values of each parameter 

on the recommendation performance of the model 

UIKGAN in this chapter, and the specific experimental 

results are as follows: 

Figures 8 and 9 show the effect of the embedding 

dimension d of entities and relations on the model 

performance, with the range of d in 

{8,16,32,64,128,256}. 

 

Figure 8. AUC results of UIKGAN model on MovieLens-10M with 

different embedding dimensions. 

 

Figure 9. AUC results of UIKGAN model on book-crossing with 

different embedding dimensions. 

Experiments are conducted on the dense MovieLens-

10M dataset and Book-Crossing dataset. As can be seen 

from Figures 8 and 9, within a certain range, the model 

performance keeps improving as the value of d 

increases, which is due to the fact that higher 

dimensional embeddings can better encode the semantic 

information between entities and relations. However, 

when the embedding dimension d exceeds a specific 

value, the model performance tends to decrease, which 

may be due to the fact that higher dimensions cause 

overlearning of the model, and the model overfits to the 

noise or sample-specific information in the training 

data, which subsequently triggers a decline in the 

performance on the test set. To avoid this, suitable 

regularization techniques or increasing the diversity of 

the training dataset are required to improve the 

generalization ability of the model. 

Table 6. Effect of the number of user intention tendency factor I on 

AUC value in UIKGAN. 

I Book-Crossing MovieLens-10M Last.FM 

2 0.737 0.941 0.814 

4 0.756 0.967 0.832 

8 0.764 0.975 0.851 

16 0.770 0.985 0.854 

32 0.767 0.980 0.857 

Table 6 shows the effect of the number of user intent 

tendency factor I on the model performance. When I=2, 

the model performs poorly on all three datasets, 

indicating that effective modelling of user intent is 

decisive for the quality of recommendation results in 

UIKGAN. On Book-Crossing and MovieLens-10M 

datasets, the best AUC value is obtained when I=16, and 

the performance decreases instead when it is increased 

to 32. The reason is that the huge MovieLens-10M 

dataset is too rich in interaction information and 

corresponding graph relationships, and the excessive 

segmentation of the I module introduces noise 

interference instead. Comparison of the experimental 

results shows that adjusting the number of user intention 

tendency factors in a suitable range can increase the 

granularity of modelling user collaboration information 

to the intention level, describe the user’s behavioural 

patterns at a finer granularity, and improve the accuracy 

of model prediction. 

Table 7. Impact of relational path propagation depth L on AUC 
values in UIKGAN. 

L Book-crossing MovieLens-10M Last.FM 

1 0.742 0.970 0.839 

2 0.754 0.973 0.848 

3 0.771 0.979 0.858 

4 0.768 0.985 0.855 

5 0.757 0.983 0.850 

Table 7 shows the effect of relationship path 

propagation depth L on model performance. Relational 

paths are modelled on the user end, following the 

construction idea of the UIKGAN model, even if the 

user’s potentially preferred entities and their semantic 

information are far away, they can be mined through the 

links of the relational propagation paths. In the actual 

experimental scenario, the propagation distance of the 

path needs to be specifically analyzed. The experimental 

results show that the optimal propagation depth L is 3 

on both Book-Crossing and Last.FM datasets, which 
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shows that in specific applications, the propagation 

depth is not as large as better. On the MovieLens-10M 

dataset, the best performance is achieved when the value 

of L is taken as 4. This stems from the fact that the 

number of triples in this dataset is more than that in the 

other two datasets, and thus deeper relational path 

extensions are able to traverse the semantic and 

structural information of the triples well. 

Table 8. Effect of the number of propagation aggregation layers H 
on AUC values in UIKGAN. 

H Book-Crossing MovieLens-10M Last.FM 

1 0.759 0.976 0.843 

2 0.763 0.983 0.851 

3 0.770 0.986 0.848 

4 0.768 0.981 0.857 

5 0.754 0.979 0.853 

Table 8 shows the effect of the number of 

propagation aggregation layers H on the model 

performance. The propagation aggregation layer is 

modelled on the item end and is used to process the 

triplet data in the item knowledge graph, thus enriching 

the vector representation of the items. The best 

performance is achieved when H is 3 for the first two 

datasets, and the values of H between {2, 3, 4} have 

good results. Compared with the other parameters, the 

values of the number of aggregation layers have a 

slightly smaller impact on the model. Therefore, when 

dealing with large datasets, choosing the appropriate 

number of aggregation layers can maximize the effect 

of the knowledge-aware network. 

Table 9. Influence of neighbourhood triplet sampling number |𝑆𝑣
𝑘| 

on AUC values in UIKGAN. 

|𝑺𝒗
𝒌| Book-Crossing MovieLens-10M Last.FM 

4 0.757 0.963 0.836 

8 0.761 0.971 0.847 

16 0.765 0.977 0.852 

32 0.768 0.982 0.854 

64 0.770 0.985 0.858 

128 0.753 0.979 0.850 

Table 9 shows the effect of the neighbourhood triplet 

sampling number on the model performance. The 

number of triplet samples here corresponds to the 

number of triplet entities in each layer of aggregation in 

the experiments in Table 8. The value of AUC increases 

gradually as the number of neighbouring triplet 

increases. A sampling number of 128 is an overly large 

and unreasonable choice, as it may introduce noise. In 

contrast, a sampling number of 64 is a more appropriate 

option. In knowledge graphs, triplet exhibit excellent 

relational representation and structuring properties. 

When used as auxiliary information, they can enrich the 

description of item attributes, thus effectively 

improving the recommendation effect. 

5. Experiments in analyzing sparsity problems. 

Knowledge graph as auxiliary information plays a 

significant role in alleviating the sparsity problem of 

recommendation models. In order to deeply study the 

model performance in sparsity scenarios, the 

MovieLens-10M dataset is selected as the experimental 

object. During the comparison experiments, the sizes of 

validation and test sets are kept unchanged, and the size 

of the training set is gradually adjusted, which is set to 

100%, 80%, 60%, 40% and 20% of the original training 

set, respectively. Figure 10 demonstrate the 

performance of AUC evaluation of each baseline model 

under different training set ratios.  

As seen in Figure 10, the KGNN-LS model has the 

largest decrease in AUC performance and the UIKGAN 

model has the most moderate decrease in AUC metrics. 

Equivalent to the training metrics on the initial 100% 

training set, the AUC metrics of the KNI, KGAT, 

KGNN-LS, KGIN, CKGAT, MIKGNN, DNGAKG, and 

UIKGAN models decreased by 5.36%, 4.21%, 6.24%, 

3.89%, 3.87%, 3.92%, 5.09%, and 4.06% respectively. 

In general, the UIKGAN model in this paper maintains 

good performance with CKGAT and MIKGNN models 

on sparse datasets. The enhancement of 

recommendation performance by the propagation-based 

approach is again verified. 

 

Figure 10. AUC values under different ratio training sets for the 

baseline model. 

5. Conclusions and Future Work 

This paper proposes UIKGAN, a dual-end 

recommendation model that integrates user intent 

modeling and knowledge-aware graph attention. On the 

user side, a user intent preference module captures fine-

grained collaborative information by modeling 

historical interactions along different propagation paths. 

On the item side, knowledge-aware graph attention 

aggregates higher-order triples into item vectors, which 

are fused with user intent representations to predict 

preferences. 

Comprehensive experiments, including comparisons 

with 7 benchmarks, ablation studies, and 

hyperparameter analysis, demonstrate that UIKGAN 

exceeds in CTR prediction and Top-K recommendation. 

The model outperforms baselines in both performance 

and interpretability, which demonstrates its 

effectiveness for sparse datasets and practical value in 

recommendation systems. 

The model UIKGAN proposed in this paper shows 

certain advantages in practical application scenarios. 

Combined with the latest research trends in the field of 
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recommendation systems, there is still a potential for 

improvement to be explored. Future research can further 

deepen the following aspects: 

1. In the modeling of user intention tendency, more 

research is needed to optimize and improve the 

division of intention and the selection of quantity; 

and the algorithm may have certain challenges when 

dealing with large-scale datasets, and the 

applicability of the model needs to be further verified 

by datasets from other domains. 

2. Most of the contemporary models are based on static 

modeling with fixed temporal data, given that the 

user’s preference in real-world scenarios may change 

over time or social relationships, resulting in 

different interaction behaviors. Therefore, 

knowledge graph information can be combined with 

temporal information to dynamically model the given 

model. 

3. The dataset processed in this study is based on the 

construction of a knowledge graph based on the 

encyclopedia class, and future research can consider 

integrating additional information sources such as 

social networks to further enhance the modelling 

representation of users and items. The way in which 

path information and relational dependencies are 

combined in the model can be further investigated in 

the future to better utilize this information for 

recommendation purposes. Integration of knowledge 

graphs from more domains can be considered as 

auxiliary information to provide in-depth semantic 

understanding and knowledge contextual support for 

the model. 
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