
The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013 587

Software Protection via Hiding Function

using Software Obfuscation

Venus Samawi
1
 and Adeeb Sulaiman

2

1
Department of Computer Science, Al al-Bayt University, Jordan

2
College of Administrative Science, Applied Science University, Kingdome of Bahrain

Abstract: Application Service Provider (ASP) is a business that makes computer-based services (small and medium sized

businesses) available to clients over a network. The usual ASP sells a large application to large enterprises, but also, provides

a pay-as-you-go model for smaller clients. One of the main problems with ASP is the insufficient security to resist attacks and

guarantee pay-as-you-go. Function hiding can be used to achieve protection for algorithms and assure charging clients on

per-usage basis. Encryption functions that can be executed without prior decryption (function hiding protocol) gives good

solution to the problems of software protection. Function hiding protocol faces a problem if the same encryption scheme is

used for encrypting some data about the function and also, the output of the encrypted function. In such case, an attacker could

reveal the encrypted data easily thereby comprising its confidentiality. This paper aims to develop a software protection

system based on function hiding protocol with software obfuscation that overcomes function hiding protocol problems. The

suggested system is a multi-client system that allows charging clients on a per-usage basis (pay-as-you-go) and satisfies both

confidentiality and integrity for the ASP and the client.

Keywords: Software protection, function hiding, software obfuscation, ASP.

Received July 10, 2011; accepted May 22, 2012; published online August 5, 2012

1. Introduction

Application Service Providers (ASPs) have evolved

from the increasing costs of dedicated software of

small to medium sized businesses. With ASPs, the

costs of such software can be lowered. At the same

time, the problem of upgrading has been reduced from

the client by placing the services-upgrade

responsibility on the ASP. There are several forms of

ASP businesses. For instance, functional ASP

distributes a single application, such as credit card

payment processing or time-sheet services. An

enterprise ASP delivers broad spectrum solutions. A

local ASP delivers small business services which

provide a pay-as-you-go mode. To provide an ASP

offering, the vendor must also, provide a secure

product [18]. One of the approaches that could be used

to assure charging clients on per-usage basis and

provide certain level of security is through the usage of

a function hiding protocol. The key point of function

hiding is to encrypt a special class of functions such

that they remain executable and produce encrypted

result to prevent clients from copying and using the

program without paying anything for it.
In a function hiding protocol, the client executes the

protected program with encrypted coefficients. The

client will not get the clear-text results until he sends

the encrypted results to the producer (who charges the

client) to decrypt them and sends clear-text result back

to the client. The encryption technique used is

probabilistic Goldwassr and Micali [11, 15] with two

supporting algorithms Plus and Mixed-mult that are

used to allow encrypted function to be executed

without requiring prior decryption [16].

Function hiding protocol needs to guarantee the

secrecy of its coefficients, especially when the same

key is used for encrypting the coefficients of the

function and the output of the encrypted function. Such

situation allows the attacker to reveal the encrypted

coefficients easily. This problem is called coefficient

attack problem. Instead of sending outputs of the

program to the producer, the client (attacker) sends the

encrypted coefficients that he finds in the program.

The client may even scramble them by multiplication

with some random quadratic residue, such that

producer cannot recognize these values as the hidden

function coefficients (polynomial coefficients).

According to the function hiding protocol, the producer

has to decrypt the encrypted data (in attacking case, the

sent data is the encrypted polynomial coefficients) and

thus would supply the client the main information

(original coefficients values), which must be kept

secret. Coefficient attack problem is general problems

that function hiding schemes have to solve.

In this paper, we tackle the problem of coefficient

attacking (mentioned above) by:

1. Using obfuscation technique in this research, the

resistance to the reverse engineering process is

enhanced by adding session termination property in

case of time expiration, and/or rule violation.

2. Making use of hash-table and Greatest Common

588 The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

Devisor (GCD) to assure that the decrypted data

does not contains >70% of the polynomial

coefficients.

To provide security to the clear-text results generated

by the producer before transmitting them to the client,

authentication process is provided. To prove the

authenticity of the service provider (producer), the

clear text results are encrypted using public key (its

private key known only to the client), then encrypted

with private key of the producer.

Furthermore, a detailed description of the

implementation of the function hiding process is given.

Nine algorithms are written to build the developed

protection system in addition to the used obfuscation

technique. This system is tested with three different

applications and proved secure. The tests are carried on

stations of a LAN. We comprehensively survey,

analyze ASP security and pay-as-you-go problems and

how hiding function within software could provide

certain level of software security.

The rest of this paper is arranged as follows:

section 2 concerned with how function hiding aid the

software protection system. The aspects of the function

hiding design are discussed. Some key approaches and

techniques that are useful in the construction of

function hiding in addition to the necessary

mathematical concepts are presented in detail. The

developed software protection system is illustrated in

section 3. The realistic threat model, which indicates

what a cracker is able to do, is discussed in section 4.

Section 5 discusses software obfuscation, its

importance and techniques. Evaluation and testing of

the developed software protection system are presented

in section 6. Section 7 illustrates how multi-clients are

handled in the suggested system. Finally, we conclude

in section 8.

2. Software Protection via Function Hiding

Main applications for code privacy are found in the

software industry and with service providers that seek

for methods to make copying or learning proprietary

algorithms technically impossible. For instance, for

ASP and mobile software agents (designed to be

executed on different hosts with different

environmental security conditions). It is important to

provide protection against various attacks such as

unauthorized access to private data, malicious

modification of its code etc. Function hiding can be

used to accomplish software protection against

disclosure and ensures that only licensed users are able

to acquire the clear-text output of the protected

software [12, 18]. The basic steps of function hiding

protocol are illustrated in Figure 1 [15].

Let E be a mechanism to encrypt a function f

implemented in a program P where Alice (producer)

and Bob is (client):

1. The producer encrypts f, and creates a program P(E

(f))

2. Producer sends software P(E(f)) to the client.

3. Client executes P(E(f)) with input x and sends the

result (E[R]) back to the producer

4. Producer decrypts (E[R]), obtains R and sends the

result (R) back to the client.

Figure 1. A basic protocol for executing encrypted functions [19].

Based on the above protocol, software producer can

charge clients on a per-usage basis. To implement such

a technique, additive homomorphism scheme could be

used to enable hiding of a polynomial function in a

program. Before illustrating the suggested model of

software protection, the public-key and probabilistic

public-key are discussed. Since function hiding

protocol is based on Goldwasser-Micali scheme, it is

important to illustrate some needed mathematical

principles.

2.1. Public Key and Probabilistic Public-Key

Systems

Public-Key crypto system is introduced by Diffie and

Hellman in 1976. In such system, user A has a public

encryption transformation EA with a public key (PA)

saved in a public key directory to be used by others to

encrypt messages before sends them to A; and a private

decryption transformation DA used to decipher the

received messages, known only to user A, secrecy and

authenticity are provided by separate transformations.

The public key crypto systems RSA and Knapsack

schemes are deterministic in the sense that under a

fixed public key, a certain plain text m is always has

some or one of the following [4, 14]:

1. The scheme is not secure for all probability

distributions of the message space.

2. It is sometimes easy to compute partial information

about the plaintext m from the cipher text c.

3. It is easy to detect when the message sent twice.

Public-key encryption scheme is said to be polynomial

secure if no passive adversary can, in expected

polynomial time, select two plaintext messages m1 and

m2 with probability significantly >0.5 [4, 11, 14].

 Key

 [E
-1
]

 Producer

x

Client

P(E[F])

Mxed-Mult

Plus

E[R]

E[f(x)]

R

F

R E[R]

P(E[F]))

N
et

w
o
rk

Software Protection via Hiding Function using Software Obfuscation 589

Public key encryption scheme is said to be

significantly secure if, for all probability distributions

over the message space, whatever a passive adversary

can compute in expected polynomial time about the

plaintext given the cipher text, it can also, compute in

expected polynomial time without the cipher text [4,

11, 14].

The probabilistic public-key encryption [11, 14] has

some differences from the public key cryptosystems,

these are, the encryption decryption operations are

performed on binary numbers, quadratic residue

principle and Jacobi symbols are used to get the public

key, and does not produce the same encrypted result

when repeating the encryption operation more than

once, so it is none deterministic.

2.2. Mathematical Background

In this section, mathematical principles needed in the

implementation of the proposed system are illustrated.

These include quadratic residue, rings, relatively prime

numbers, Jacobi symbol, additively homomorphic

encryption, and polynomial rings.

• Quadratic Residue [14]: Let a∈Z*n, a is said to be

a quadratic residue modulo n, or a square modulo n,

if there exists an x∈Z*n such that x
2
≡a(mod n). If no

such x exists, then a is called a quadratic non-

residue modulo n. The set of all quadratic residues

modulo n is denoted by Qn, and the set of all

quadratic non-residues is denoted by
n

Q .

• Rings[10]: A ring <R, +, .> is a set R together with

two operations + and ., which is called addition and

multiplication respectively, defined on R such that

the following axioms are satisfied:

R1: <R, +> is an Abelian group,

R2: multiplication is associative,

R3: for all a, b, c∈R,

left distribution law: a(b+c)=(ab)+(ac), and right

distributive law: (a+b)c=(ac)+(bc), holds.

• Relatively Prime Numbers [14]: Two integers a

and b are said to be relatively prime or coprime if

GCD (a, b)=1, where GCD is the greatest common

divisor.

• Legendre Symbol and Jacobi Symbol [14]: The

Legendre symbol is a useful tool for keeping track

of whether or not an integer a is a quadratic residue

modulo a prime number p:

Let p be an odd prime and a is an integer.The Legendre

symbol
a

p

is defined for a≥0 and p odd prime where:

p

p

0 if p |a
a

1 if a Q
p

1 if a Q

= ∈

− ∈

• Jacobi Symbol [14]: Let n≥3 be odd with prime

factorization 1 2 ke e e

1 2 kn p p p= ⋯ . The Jacobi

symbol

n

a is defined to be:

1 2 ke e e

1 2 k

a a a a

n p p p

=

⋯

Observe that if n is prime number, then the Jacobi

symbol is just the Legendre symbol.

• Additively Homomorphic Encryption [13, 15]: Let

R and S be ring function E:R→S is called additively

homomorphic if there is an efficient algorithm Plus

to compute E(x+y) from E(x) and E(y) that does not

reveal x and y.

• Polynomial Rings [1]: If R is a commutative ring,

then a polynomial in the indeterminate x over the

ring R is an expression in the form:

 f(x) = a0 + a1x
1
 + a2x

2
 + a3x

3
 + …+ anx

n

where each ai∈R and n≥0. The element ai is called

the coefficient of xi in f(x). The largest integer m for

which am≠0 is called the leading coefficient of f(x).

If f(x)=a0 (a constant polynomial) and a0≠0, then

f(x) has degree 0. If all the coefficients of f(x) are 0,

then f(x) is called the zero polynomial and its

degree, for mathematical convenience, is defined to

be -∞. The polynomial f(x) is said to be monic if its

leading coefficient is equal to one. Each polynomial

is composed of a number of monomials. A

monomial in x is an expression of the form: ax
n
.

Where a and x are integer numbers. The number a is

called the coefficient of the monomial. If a≠0, the

degree of the monomial is n.

3. The Developed Function Hiding System

Using function hiding protocol for software protection

can be defeated by coefficient attack (the elements

send to the producer is in fact the encrypted

coefficients). In this case, the producer will decrypt

the polynomials coefficient and handed them to the

client (attacker). Sander and Tschudin [15] suggested

to solve this problem by making sure that the producer

is able to detect if an element send to the producer was

in fact produced as an output of the encrypted program

(E[R]). The key idea is to hide additional polynomials

(besides the function f) which simultaneously executed

when P is run. The additional polynomials serve as

checksums used by producer. By careful construction,

it is unfeasible for a software pirate to construct

numbers that pass the producer's checksum test for

elements that are not outputs of the producer encrypted

program. But this solution suffers from the problem of

the need for additional polynomials and checksum test

which takes additional time. In addition, the

checksums should be easy to evaluate for producer. In

particular, they should be much faster to evaluate than

the original polynomial f itself.

(1)

(2)

(3)

590 The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

We developed the system model shown in Figure 1 to

overcome the coefficient attack problem and prove

authenticity. The suggested system based on software

obfuscation. The details of our system are illustrated in

Figure 2.

Figure 2. The proposed protocol for executing encrypted functions.

In Figure 2, E is the encryption function, F is the

function to be protected, E
-1

 is the decryption function,

and R is the result. The two functions Mixed-Mult, and

Plus are the functions that are used to support the

operation of function hiding. Let E be a mechanism to

encrypt a function f implemented in a program P:

1. The producer encrypts f and creates a program

P(E(f)).

2. Producer performs obfuscation on program P and

produce Obfuscated Program (OP) (to complicate

reverse software engineering process that could be

used to reveal the hidden polynomial coefficients).

3. Producer sends software OP(E(f)) to the client.

4. Client executes OP(E(f)) at the input x, then use

mixed multiplicative (Mixed-Mult) and an additive

(Plus) encryption function to hide polynomials in a

program

5. Client sends the encrypted result (E[R]) to the

producer.

6. Producer decrypts (E[R]), obtaining R.

7. To provide security for client results, encrypt R with

public key of the client and produce R`.

8. To prove authenticity of the producer, encrypt R` by

private key of producer and generate R``, then sends

the result back to the client.

Next, let us develop the steps illustrated above. The

main steps that are used to construct the function

hiding system are illustrated in Algorithm 1 shown

below. Other functions are called within this algorithm

in order to accomplish the function hiding process

which will be illustrated in the subsequent sections.

Algorithm 1: Function Hiding Model

Let F: be the polynomial illustrated in equation 3.

In order to hide this polynomial, the following steps are

performed:

Step 1: Encrypt each coefficient (a1, a2, a3, …, an) using

Algorithm 6 (Goldwasser-Micali probabilistic

public-key encryption) to get E(a1), E(a2), …, E(an),

where each element E(ai) represents a set of

numbers resulting from encrypting each binary

digit of the coefficient ai.

Step 2: Compute x
1
, x

2
, x

3
, …, x

n
.

Step 3: Compute the result of each monomial i.e. E(an) x
n

using algorithm 8 (Mixed-Mult) and store the

results in an array M; where each monomial is

stored in a single cell of M.

Step4: Add-Up the elements of array M (Algorithm 9).

3.1. Encryption- Decryption Modules

Step 1 in Algorithm 1 encrypts the coefficient of the

polynomial F. In this section, we describe the

algorithms that implement in total the Goldwasser-

Micali encryption method.

Algorithm 2: Z
*
n calculation

Input: n; such that n is an integer.

Output: Set of integers such that integer a∈[0,…, n-1]

where GCD(a,n)=1.
Step 1: Specify Zn=[0,…, n-1]

Step 2: For each a∈Zn, Do

 If GCD(a,n)=, then add a to the set of Z
*
n

Algorithm 3: Jacobi and legendre symbol computations

JACOBI (a, n)

Input: An odd integer n ≥ 3, and an integer a, 0≤ a ≥ n.

Output: The Jacobi symbol
a

n

 (and hence the Legendre

symbol when n is prime)

Step 1: If a=0 then return (0).

Step 2: If a=1 then return (1)

Step 3: Write a=2
e
 a1, where a1 is odd.

Step 4: If e is even then set s � 1.

Otherwise

set s�1 if n≡1 or 7(mod 8),

set s�-1 if n≡3 or 5(mod 8)

Step 5: If n≡3(mod 4) and a1≡3(mod 4) then set s�-s.

Step 6: Set n1 � n mod a1

Step 7: If a1 = 1 then return (s);

Otherwise return (s×JACOBI(n1, a1))

Algorithm 4: Quadratic residue modulo n test

Input: n, an integer

Output: Set of Quadratic residue Module n numbers.

Step 1: Find Z
*
n using Algorithm 3.

Step 2: For each a ∈ Zn do;

Step 3: If (x
2
–a) mod n=0� add a to the quadratic residues

modulo n set; where x is any other integer such that

a∈Zn.

Algorithm 5: Key generation for Goldwasser-Micali

Probabilistic public key encryption

Step 1: Select two large prime numbers p and q randomly,

where they should be roughly the same size (number

of digits)

Step 2: Compute n=pq

Step 3: Select an integer y∈Zn such that y is a quadratic

non-residue modulo n and the Jacobi symbol
y

1 ,
n

=

 usingalgorithms 3 and 4.

N
et

w
o
rk

 Key obfuscation

 P OP

 [E-1

]

Public Key

 Private key

 Producer

 x

OP

Client

F
E[F] E[F]

R E[R]

R' R``

R`'

E[F]

Mixed-Mult

Plus

E[R]

E[F(x)]

Software Protection via Hiding Function using Software Obfuscation 591

Step 4: The public key of user A is (n,y); and the privet key is

the pair (p,q).

Algorithm 6: Goldwassr-Micali Probabilistic Public-Key

Encryption

This algorithm encrypts an integer m into t-tuple, where t is

the number of binary digits of the integer m.

User A encrypts an integer m for user B, and then B will

decrypt this integer.

A should perform the following steps

Step 1:Obtain B's authentic public key (n,y), using

algorithm 5.

Step 2: Represent the message m as binary string m=m1, m2,

…, mt of length t.

Step 3: For i=1 to t Do

a. Evaluate Z
*
n using algorithm 2

b. Pick an x∈Zn at random

c. If mi=1 then set ci � yx
2
 mod n;

 Otherwise set ci � x
2
 mod n

Step 4: Send t-tuple c=(c1, c2, …, ct) to B.

Algorithm 7: Goldwasser-Micali Probabilistic Public-Key

Decryption
This algorithm takes t-tuple and transforms it back to an

integer m; where m is the clear text. To recover the plaintext

message m (of length t bits) from c, user A should do the

following:

 Step 1: For i=1 to t Do

a. Find the Legendre symbol ei=

p

ci (algorithm 3).

b. If ei=1 then set mi�0; otherwise set mi�1.

Step 2: The decrypted message is m=m1, m2, …, mt.

Algorithm 8: Mixed-mult computation
Input: integer variable x (having b binary digits, such that

x=x1...xb) and encryption of coefficients a; E(a).

Output: list (M) of encrypted integers.

Step 1: For i = 1 to b D

a. If xi=1, then compute E(a2
i
), using algorithm 2

b. Put the result in list M

Step 2: Add-up elements of list M using the plus algorithm

(Algorithm 9).

Algorithm 9: Plus computation.

This algorithm adds up the monomials of the encrypted

polynomial:∑
=

n

i

ip
1

where each Pi is a list (M) obtained by algorithm 8.

Step 1: Pick a random number x from Z
*
n, let c = x

2
 mod n.

Step 2: For j=1 to b, Do steps 3-5; where b is the number of

binary digits of each number a.

Step 3: Sum[j]=P1[j]. P2[j] mod n.

Step 4: Sum[j]=Sum[j]. c mod n.

Step 5: If P1[j] and P2[j]≠x
2
 mod n, then c= y.x

2
 mod n.

Step 6: For i=3 to m, Do steps 7; where m is the number of

monomials in the polynomial.

Step 7: For j=1 to b, Do steps 8-10.

Step 8: Sum[j]=Sum[j]. Pi[j] mod n.

Step 9: Sum[j]=Sum[j] c mod n.

Step 10: if Sum[j] and Pi[j]≠x
2
mod n,

 then c=y. x
2
mod n.

4. The Realistic Threat Model

When a security mechanism is required to achieve a

security goal, it is important to illustrate the realistic

threat model, which points up what a cracker is able to

do. Crackers knowledge and resources could be

discriminated based on [20, 21]:

• Algorithm understanding level of the used

protection mechanism: The cracker knows the

cipher algorithm, but not the secret information such

as the secret key.

• Level of system observation skill: The cracker owns

a binary file, disassembled code, decompiled code

of P, as well as a computer system M in which P is

executed. The cracker has a debugger with

breakpoint functionality that can watch internal

states of M, e.g., memory snapshot of M, audio-

visual outputs of M and the input and output value

of P. The cracker also, monitors the execution trace

of P (history of executed opcodes).

• System control skill level: When program P is

executed on computer system M, the cracker

controls the mouse and keyboard inputs of M and

run P with an arbitrary input values. The cracker

can change the instructions and the operand values

in P, in addition to the memory image of M, before

and/or during running P on M.

In this work, the expected threat model is based on

reverse engineering (level of system observation skill)

specifically once a cracker has the binary program

(executable program), he can understand the principles

of the used algorithm. Also, assume that the cracker

has a static analyzer such as a dis-assembler and a de-

compiler, as well as a debugger (dynamic analyzer). In

other words, the expected cracker has both algorithm

understanding and observation skills that allow him to

extract the encrypted coefficients of the hidden

function.

In order to hide secrets in an implemented software

and hinder reverse engineering process, a number of

obfuscation techniques have been proposed based on

the expected threat model [9, 21] as will discussed in

the next section.

5. Software Obfuscation

Software obfuscation has become a vital mean to hide

secret information that exists in software systems.

Obfuscations transform a program P to obfuscation

program OP as shown in Figure 2. OP is functionally

equivalent to the original program but it is more

complex and difficult to be understood [9, 21]. The

most popular obfuscation techniques [7, 8, 21]:

• Lexical obfuscations: (e.g., comment removal,

identifier renaming and debugging info removal,

etc.,).

592 The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

• Data obfuscations: Data obfuscations thoroughly

change the data structure of a program and encrypt

literals including modifying inheritance relations,

restructuring arrays, etc. They make the obfuscated

codes so, complicated, which makes it is very

difficult to recreate the original source code.

• Control-flow obfuscation: Obfuscates the layout and

control flow of binary code. Many obfuscation

techniques use opaque predicates to forged

infeasible control flow, and then insert fake code

that obfuscates the control and data flow.

To overcome the expected threat model (illustrated in

the previous section), two obfuscation techniques are

used: lexical obfuscator, and changing data type

obfuscator for a chosen variables. The chosen variables

are the encrypted hidden function coefficients. The

data type will be changed from long-term to short-term

to make the data obfuscation complicated. The used

approach is as follows:

1. Parse the source program (un-obfuscated program)

to remove comments and find all tokens of the

program.

2. Find and keep all program variables through

analyzing the tokens, perform variable renaming,

then

3. Choose the variables that are important to obfuscate.

To obfuscate variables, choose splitting, or

extending method and convert them into array of

short term variables [6, 7, 8]. In this work, variable

splitting is used since the obfuscation metrics

(potency and resilience) of variable splitting all

grow with the number of variables into which the

original variable is split [3].

The resulting program is the OP. For further security,

white-box cryptography [9] could also, be used.

6. System Evaluation

The proposed protocol making use of function hiding

protocol based on Goldwasser-Micali scheme. Hiding

a polynomial f in a program P according to the method

described by Sander and Tschudin [15] exhibit secured

against known cipher text attack as “P guarantees that

no information is leaked about the coefficients of the

polynomial f” [15]. On the other hand, there is

coefficient attack problem which is (in this work)

handled by obfuscating program P and generates OP.

But does the OP highly resists reverse engineering

process (i.e., prevent specifying the coefficients) and

solves the coefficient attack problem.

As well known, secure obfuscation algorithms have

been proven to be impossible [5]. Program obfuscation

does not prevent software engineering attack, it will

only decelerate it. So, it is a matter of time before

attacker could recognize the coefficients of the

polynomial. But how could we evaluate the used

obfuscation scheme?

To assess the reverse engineering complexity of

obfuscated code, most researchers use potency and

resilience metrics. Potency is the amount of obscurity

added to the code, i.e., strength of OP against a human

de-obfuscator. Resilience measures strength of OP

against automated de-obfuscator [5]. Others works use

different approach and assess obfuscation technique

through controlled experiments involving human

subjects [2, 5] as will be used in this work.

• Experimental Planning

In this work, the attacker has complete control over the

execution platform (e.g., the Java Virtual-Machine,

system calls). This implies that the attacker can trace

and profile the execution of OP, and can run a

debugger on OP. We choose 10 high ability subjects

who have experience in reverse engineering. Four

experiments were carried out according to the

following procedure: Each subject receives OP and

data file and asked to specify the polynomial

coefficients of each task. For each of the four tasks to

be performed, mark the start time; write the answer;

mark the stop time.

Table 1. Evolution results of 40 experiments.

#Coefficients Correctness

Time Needed

(Hours)

Poly1 5 90% 6

Poly2 10 70% 9

Poly3 15 58% 10

Poly4 20 47% 12

The tested hypotheses related to differences in time

(max time given was 12 hours/ experiment) needed to

perform the tasks, and the accuracy of the task result.

Table 1 shows the average results of the 40 experiment

from curacy and estimated time needed to get the

results. From the experiment results, the time needed to

perform the tasks significantly increases and the

accuracy decreases when number of coefficients

increased. Upon the results, to grantee preventing the

client from revealing the polynomial coefficients we

decided to terminate the session in two cases:

• The Time Stamp (Expiration Time): The client is

requested to send the data he wants to decrypt

within less than 12 hours after he made the request

for the service.

• Rule-Violation: The polynomial coefficients are

saved in a hash table. After decrypting the received

data, check the decrypted data with the hash table

content. If it contains more than 80% of the

polynomial coefficients, the session will be

terminated without sending the decrypted data to the

client. Using hash table needs O(1) as time

complexity. The hash table size will depends on

number of polynomial coefficients.

Software Protection via Hiding Function using Software Obfuscation 593

• To overcome the problem of scrambling the

previously sent coefficients by multiplying them

with some random quadratic residue so, that the

server cannot recognize them as previously sent

coefficient, GCDs of the received coefficients and

the recently stored in the hash table are calculated.

If all the results 1's, this means that the received

coefficients are not multiple of the original

coefficients. Otherwise, indicates a multiplication

has been done. The session also, terminates without

sending decrypted data to the client. The time

complexity of Euclid's GCD algorithm of two

integers u, v, where u>v is of O(log2|v|).

7. Multi-Client System

The suggested approach is used to serve one client. To

make the system able to serve many clients, the

coefficients of the same service can be encrypted with

different encryption functions (different modulus for

each user) and coefficients obfuscated (split or

merged) in different way. To prevent the same client

from trying to reveal the coefficients by different

sessions, for each request (session), the client will

receive different copy of the application. This will

prevent him from making use of multiple sessions to

perform reverse engineering and overcome the

Timestamp restriction.

When a client makes a request, the application is

split into two sites (parts), part1 (at server site) that

register client, specify Time-stamp, built a hash table

for the used coefficients. Encrypt the hidden function

with new modules and client special encryption key K.

Obfuscate the application Program (OP). Finally, sends

OP to the client (part 2). The client will run the

application program and gets the encrypted result. The

encrypted result will be sent to the server. The server

(part 1) will check the Time-stamp, if it is expired then

end the session with the client. In case no time

expiration, the server will decrypt the data sent by the

client, check them with the coefficient stored in the

hash table. If 70% of the coefficients match, then the

client request will be refused and session will be

terminated. Else, part-1 will ask for the fee of the

application. When money is received, the decrypted

results will be authenticated (as explained before) and

sent to the client, then terminate the session.

8. Conclusions

Software piracy is a major financial problem for ASPs

where small enterprises can sell software on a per-

usage basis. This paper is concerned with the security

of ASP. We suggest a multi-client approach that makes

use of the function hiding technique to achieve

protection of algorithms against revelation. To prevent

the same client from trying to reveal the coefficients by

different sessions, the coefficients of the same service

are encrypted using different encryption functions

(different modulus for each user). Coefficients

obfuscated (split) in different way.

The suggested approach guarantees charging clients

on a per-usage basis. Moreover, we describe a protocol

that ensures, under certain conditions, that only

licensed users are able to gain the clear-text output of

the program, thereby providing confidentiality and

integrity for both ASP and client.

The proposed approach is applied to a special class

of functions for which secure and computationally

feasible solutions are to be obtained. The key point of

this work is to encrypt functions such that they remain

executable. We further improve the confidentiality of

the system by making reverse engineering a difficult

task. This was accomplished by: 1). using both lexical

obfuscation and changing data type obfuscation

method to hide any confidential data in a program, 2).

Terminate session with client in case of time expiration

or rule violation. The testing of the suggested approach

is encouraging and it meets the intended objective. As

future work, improve obfuscations using obfuscation

method suggested by Wei and Ohzeki [19], and

evaluation of the proposed framework with other

programs.

References

[1] Auvil D., Algebra for College Students,

McGraw-Hill, USA, 1996.

[2] Badger L., Kilpatrick D., Matt B., Reisse A., and

Vleck T., “Self-Protecting Mobile Agents

Obfuscation Techniques Evaluation Report,”

Technical Report, NAI Labs, 2002.

[3] Balakrishnan A. and Schulze C., “Code

Obfuscation Literature Survey,” available at:

http://pages.cs.wisc.edu/~arinib/writeup.pdf, last

visited 2005.

[4] Buchmann A., Introduction to Cryptography,

Springer, Johannes, 2004.

[5] Ceccato M., Penta M., Nagra J., Falcarin P.,

Ricca F., Torchiano M., and Tonella P.,

“Towards Experimental Evaluation of Code

Obfuscation Techniques,” in Proceedings of the

4
th
 ACM Workshop on Quality of Protection,

USA, pp. 39-46, 2008.

[6] Chen H. and Hou T., “Changing Data Type

Method of Data Obfuscation on Java Software,”

in Proceedings of International Computer

Symposium, Taiwan, pp. 439-442, 2004.

[7] Chen H., Yuan L., Xi W., Zang B., Huang B.,

and Yew P., “Control Flow Obfuscation with

Information Flow Tracking,” in Proceedings of

the 42
nd

 Annual IEEE/ACM International

Symposium on Micro-Architecture, USA, pp.

391-400, 2009.

594 The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

[8] Cho S., Chang H., and Cho Y., “Implementation

of an Obfuscation Tool for C/C++ Source Code

Protection on the XScale Architecture,” in

Proceedings of Software Technologies for

Embedded and Ubiquitous Systems, Berlin, vol.

5287, pp. 406-416, 2008.

[9] Chow S., Eisen P., Johnson H., and Oorschot P.,

“A White-Box DES Implementation for DRM

Applications,” in Proceedings of the ACM

Workshop on Security and Privacy in Digital

Rights Management, Berlin, vol. 2696, pp. 1-15,

2002.

[10] Farleigh J., A First Course in Abstract Algebra,

Addison-Wesley, USA, 2002.

[11] Goldwasser S. and Micali S., “Probabilistic

Encryption,” Journal of Computer and System

Sciences, vol. 28, no. 2, pp. 270-299, 1984.

[12] Hacini S., Guessoum Z., and Boufaïda Z., “Using

a Trust-Based Environment Key for Mobile

Agent Code Protection,” in Proceedings of World

Academy of Science, Engineering and

Technology, pp. 854-859, 2008.

[13] Melchor A., Gaborit P., and Herranz J.,

“Additively Homomorphic Encryption with T-

Operand Multiplications,” in Proceedings of the

International Association for Cryptologic

Research, pp. 138-154, 2008.

[14] Menezes A., Oorchot P., and Vanstone S.,

Handbook of Applied Cryptography, CRC Press,

USA, 1996.

[15] Sander T. and Tschudin C., “On Software

Protection via Function Hiding,” in Proceedings

of the 2
nd

 International Workshop IH’98

Portland Oregon, USA, vol. 1525, pp. 111-123,

1998.

[16] Sander T. and Tschudin C., “Toward Mobile

Cryptography,” in Proceedings of Security &

Privacy, California, pp. 215-224, 1998.

[17] Seroul R., Programming for Mathematicians,

Springer, Paris, 2000.

[18] Smith B., Campbell L., Cheah J., Lachmann A.,

Milstein S., Morgan D., Nartovich A., and

Roelofs J., Application Service Provider Business

Model: Implementation on the iSeries Server,

International Business Machines Corporation,

US, 2001.

[19] Wei Y., and Ohzeki K., “Obfuscation Methods

with Controlled Calculation Amounts and Table

Function,” in Proceedings of the International

Multi-Conference on Computer Science and

Information Technology, Wisla, vol. 5, pp. 775-

780, 2010.

[20] Yamauchi H., Kanzaki Y., Monden A.,

Nakamura M., and Matsumoto K., “Software

Obfuscation From Crackers’ View Point,” in

Proceedings of the International Conference,

Advances In Computer Science and Technology,

Mexico, pp. 1-6, 2006.

[21] Yamauchi H., Monden A., Nakamura M.,

Tamada H., Kanzaki Y., and Matsumoto K., “A

Goal-Oriented Approach to Software

Obfuscation,” International Journal of Computer

Science and Network Security, vol. 8, no. 9, pp.

59-71, 2008.

Venus Samawi is an associative

professor in Al al-Bayt University,

at the Department of Computer

Science. She received her BSc from

University of Technology at 1987,

the MSc and PhD degrees from

Computer Science Department in

Al-Nahrain University (Saddam University previously)

at 1992 and 1999 respectively. She supervises three

PhD students in system programming, pattern

recognition, and network security. She also, leads and

teaches modules at both BSc and MSc Levels in

computer science. She is a reviewer in four IEEE

conferences (ICIEA 2009, 2011, 2012, and ICFCN'12).

Her special area of research is AI, neural networks,

genetic algorithms, and image processing.

Adeeb Sulaiman is an associate

professor at the College of

Administrative Science, Applied

Science University. He holds a PhD

degree in computer science

University of Newcastle Upon Tyne,

UK, in 1984, MSc degree in

computer science, University of Glasgow, UK, 1981,

and BSc degree in electrical and electronic

engineering, University of Technology, Iraq in 1977.

He published 12 papers in the fields of cryptography,

information hiding, digital watermarking, and

algorithms design. Worked at Universities in different

Arab countries (Iraq, Jordan, Oman, Sudan and

Bahrain). He was a head of the Departments of

Computer Science, Information Systems, and

Computer Communication, and as faculty member.

Now, he is an assistant dean of College of

Administrative Science, Applied Science University,

Kingdome of Bahrain.

