
The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013 563

Evaluating the Performance of Reverse Encryption

Algorithm (REA) on the Databases

Ayman Mousa1, Osama Faragallah2, Elsayed Rabaie2, and Elsayed Nigm3
1Department of Computer Science, Workers University, Egypt

2Department of Computer Science and Engineering, Menoufia University, Egypt
3Department of Mathematics, Zagazig University, Egypt

Abstract: Database encryption is a well established technology for protecting sensitive data. Unfortunately, the integration of

existing encryption techniques with database systems causes undesirable performance degradation. It is a crucial technique in

the security mechanisms of database. In this paper we propose a new encryption algorithm, which we call Reverse Encryption

Algorithm (REA). Our new encryption algorithm REA is simple and yet leads to a cipher. It has achieved security requirements

and is fast enough for most applications. REA algorithm is limiting the added time cost for encryption and decryption to don't

degrade the performance of a database system. Also, we evaluate the performance of the proposed encryption algorithm REA

and compare with the most common encryption algorithms. The performance measure of encryption schemes will be conducted

in terms of encryption / decryption time. Experiment results show that our new algorithm outperforms other algorithms at

encryption and decryption time.

Keywords: Database security, cryptographic algorithms, database encryption.

Received February 2, 2012; accepted June 2, 2013; published online August 5, 2012

1. Introduction

In most organizations, databases hold a critical
concentration of sensitive information, and as a result,
databases are vulnerable, therefore database system
should be protected from any attacks. Today,
enhancing the security of a database is becoming one
of the most urgent tasks in database research and
industry. Thus, many organizations cannot work
properly if their database is down; they are normally
referred to as mission critical system. Along with the
wide application of database comes the need for its
protection. Universally, huge amount of effort, time
and resources are been spent in trying to make
database systems meet security requirements normally
include [2]: 1). Prevention of unauthorized disclosure
and modification of information. 2). Prevent denial of
service. 3). Prevent system penetration by unauthorized
person. 4). Prevent the abuse of special privileges.

Designing a database that will achieve these security
requirements is very difficult, since a database system
processes large amount of data in complex ways. The
result is that most conventional database systems have
leaks that an attacker can use to penetrate the database.
No matter what degree of security is put in place,
sensitive data in databases are still vulnerable to attack.
A remedy therefore is to turn to cryptographic means
of storing data. Encrypting data stored in a database
can prevent their disclosure to attackers even if they
manage to circumvent the access control mechanism.
Database encryption is widely adopted to ensure data

privacy, which can prevent attacks from both outside
intruders and inside malicious users [16].

We put forward the innovative encryption
algorithm, known as Reverse Encryption Algorithm
(REA). The proposed encryption algorithm REA is
efficient and reliable. It has accomplished security
requirements and is fast enough for most widely used
software. REA algorithm limits the added time cost for
encryption and decryption and at the same time does
not degrade the performance of a database system. We
also, provide a thorough description of the proposed
algorithm and its processes.

This paper observes a method for evaluating
performance of our new encryption algorithm REA
and compares with the most common encryption
algorithms namely: DES, 3DES, RC2, AES and
Blowfish. A comparison has been presented for those
encryption algorithms at encryption and decryption
time. The results show the advantages of the proposed
encryption algorithm REA over other encryption
algorithms with regards to the encryption and
decryption time. The remainder of this paper is
organized as follows: Section 2 discusses related work
about the performance of the encryption algorithms.
Section 3 describes the proposed encryption algorithm
REA. Section 4 shows the simulation results for the
performance evaluation of our new encryption
algorithm REA and compares it with the most common
encryption algorithms. Finally, section 5 presents
conclusions and future work.

564 The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

2. Related Work

To give more prospective about the performance of the
compared algorithms, this section discusses the results
obtained from other resources. It was concluded in [7]
that AES is faster and more efficient than other
encryption algorithms. When the transmission of data
is considered there is an insignificant difference in the
performance of different symmetric key schemes (most
of the resources are consumed for data transmission
rather than computation). Even under the scenario of
data transfer it would be advisable to use AES scheme
in case the encrypted data is stored at the other end and
decrypted multiple times.
 A study in [12], is conducted for different popular
secret key algorithms such as DES, 3DES, AES, and
Blowfish. They were implemented, and their
performance was compared by encrypting input files of
varying contents and sizes. The algorithms were tested
on two different hardware platforms, to compare their
performance. They had conducted it on two different
machines: PII 266MHz and P4 2.4GHz. The results
showed that Blowfish had a very good performance
compared to other algorithms. Also, it showed that
AES had a better performance than 3DES and DES. It
also, shows that 3DES has almost 1/3 throughput of
DES, or in other words it needs 3 times than DES to
process the same amount of data [3].

3. The Proposed Encryption Algorithm

REA

We recommend the new encryption algorithm, REA
because of its simplicity and efficiency. It can
outperform competing algorithms. REA algorithm is
limiting the added time cost for encryption and
decryption to so as to not degrade the performance of a
database system. In this section we provide a
comprehensive yet concise algorithm. We also, give a
general analysis of the functioning of these structures.

Our new algorithm REA is a symmetric stream
cipher that can be effectively used for encryption and
safeguarding of data. It takes a variable-length key,
making it ideal for securing data. The REA algorithm
encipherment and decipherment consists of the same
operations, only the two operations are different:

1. Added the keys to the text in the encipherment and
removed the keys from the text in the decipherment.

2. Executed divide operation on the text by 4 in the
encipherment and executed multiple operations on
the text by 4 in the decipherment.

We execute divide operation by 4 on the text to narrow
the range domain of the ASCII code table at converting
the text. The details and working of the proposed
algorithm REA are given below.

3.1. Encryption Algorithm of the REA

We will be presenting the steps of the encryption
algorithm of the REA Algorithm 1. The following
steps are as shown in Figure 1:

• Step 1: Input the text and the key.

• Step 2: Add the key to the text.

• Step 3: Convert the previous text to ASCII code.

• Step 4: Convert the previous ASCII code to
binarydata.

• Step 5: Reverse the previous binary data.

• Step 6: Gather each 8 bits from the previous binary
data and obtain the ascii code from it.

• Step 7: Divide the previous ascii code by 4.

• Step 8: Obtain the ascii code of the previous result
divide and put it as one character.

• Step 9: Obtain the remainder of the previous divide
and put it as a second character.

• Step 10: Return encrypted text.

Figure 1. Steps of the REA encryption algorithm.

Algorithm 1. REA-encryption algorithm

Input: Plaintext (StrValue), Key (StrKey).

Output: Ciphertext (EncryptedData).

1. Add the key to Text (StrKey + StrValue)---> full string

(StrFullVlaue).

2. Convert the Previous Text(StrFullVlaue) to ASCII code

(hexdata).

3. Foreach (byte b in hexdata).

3.1. Convert the Previous ascii code (hexdata) to binary

data (StrChar).

3.2. Switch (StrChar.Length).

 Case 7 ---> StrChar = "0" + StrChar.

 Case 6 ---> StrChar = "00" + StrChar.

 Case 5 ---> StrChar = "000" + StrChar.

 Case 4 ---> StrChar = "0000" + StrChar.

 Case 3 ---> StrChar = "00000" + StrChar.

 Case 2 ---> StrChar = "000000" + StrChar.

 Case 1 ---> StrChar = "0000000" + StrChar.

 Case 0 ---> StrChar = "00000000" + StrChar.

3.3. StrEncrypt += StrChar. (where, StrEncrypt= ””)

4. Reverse the Previous Binary Data(StrEncrypt).

5. For i from 0 to StrValue.Length do the following:

5.1. if (binarybyte.Length == 8).

Integer

++++

C
o
n
v
ert

Divide by

 4

Text

1st Character

Encrypted Text

ASCII
Binary

ASCII

Text

Convert Convert Reverse

ASCII

2nd

Character Remainder

Convert

Binary Key

Evaluating the Performance of Reverse Encryption Algorithm (REA) on the Databases 565

5.1.1. Convert the binary data (StrEncrypt) to

ascii code and,

5.1.2. Divide the ascii by 4 � the result(first

character) and,

5.1.3. The remainder of the previous � second

character.

6. Return (EncryptedData).

3.2. Decryption Algorithm of the REA

We will be presenting the steps of the decryption
algorithm of the REA Algorithm 2. The following
steps are as shows in Figure 2:

• Step 1: Input the encrypted text and the key.

• Step 2: Loop on the encrypted text to obtain ASCII
code of characters and add the next character.

• Step 3: Multiply ascii code of the first character by
4.

• Step 4: Add the next digit (remainder) to the result
multiplying operation.

• Step 5: Convert the previous ascii code to binary
data.

• Step 6: Reverse the previous binary data.

• Step 7: Gather each 8bits from the previous binary
data and obtain the ascii code from it.

• Step 8: Convert the previous ascii code to text.

• Step 9: Remove the key from the text.

• Step 10: Return decrypted data.

Figure 2. Steps of the REA decryption algorithm.

Algorithm 2. REA-decryption algorithm

Input: Ciphertext (EncryptedData), the Key (StrKey).

Output: Plaintext (DecryptedData),

1. For (i = 0; i < EncryptedData.Length; i += 2)

1.1. Get the ascii code of the encrypted text

1.2. newascii=(EncryptedData[i]*4)+the next

digit(remainder)[i+1].

2. Foreach (byte b in newascii).

1.1. Convert the Previous ascii code (newascii) to

binary data (StrChar).

1.2. Switch (StrChar.Length).

 Case 7 ---> StrChar = "0" + StrChar.

 Case 6 ---> StrChar = "00" + StrChar.

 Case 5 ---> StrChar = "000" + StrChar.

 Case 4 ---> StrChar = "0000" + StrChar.

 Case 3 ---> StrChar = "00000" + StrChar.

 Case 2 ---> StrChar = "000000" + StrChar.

 Case 1 ---> StrChar = "0000000" + StrChar.

 Case 0 ---> StrChar = "00000000" + StrChar.

1.3. StrDecrypt += StrChar.

3. Reverse the Previous Binary Data(StrDecrypt).

4. For i from 0 to StrDecrypt.Length do the following:

4.1. if (binarybyte.Length == 8).

4.1.1. Convert the binary data (StrChar) to ascii

code (hexdata) and,

4.1.2. Convert the previous ascii code (hexdata) to

the text (StrFullVlaue).

5. Remove the key from the text (StrFullVlaue-StrKey�

(StrValue).

6. Return (DecryptedData).

3.3. REA: An Examples Cipher

We have two examples on which we have applied our
new encryption algorithm REA on the text and
database.

3.3.1. Text

The first example on which we applied our new
encryption algorithm REA is on the text, the
explanation has been provided below:

 The text is: “Welcome! Mousa1976”
 The key is: “123” (It takes a variable-length key)

3.3.1.1. Encipherment

1. Add the key to the text: 123Welcome! Mousa1976.
2. Convert the previous text to ASCII code:

1 -->49, 2 -->50, 3 -->51, W-->87, e -->101 ….
3. Convert the previous ascii code to binary data:

00110001 00110010 00110011 01010111 01100101 ….

4. Reverse the previous binary data:
11001110 11001101 11001100 10101000 10011010 ….

5. Gather each 8 bits from the previous binary data and
obtain the ASCII code of it: 206 205 204 168 154....

6. Divide the previous ASCII code by 4 and obtain the
ASCII of the result(put it as one ascii character) and
obtain the remainder (put it as second character).

• 206/4=51--->3 and the remainder (next digit)=2
(put its as 32).

• 205/4=51--->3 and the remainder (next digit)=1
(put its as 31).

• 204/4=51---> and the remainder (next digit)=0
(put its as 30).

• 168/4=42--->* and the remainder (next digit)=0
(put its as *0).

• 154/4=38 -->& and the remainder (nextdigit)=2
(put its as &2).

• Etc.

7. Encrypted text is as shows Figure 3:

323130*0&2$3'0$0$2&27273,2$0"2#0'232122021

-

Get 1st Character

Reverse

Get 2st Character
Next Digital

Multiple

By 4

C
o
n
v
ert

Decrypted Text

Remove the
key from
the text

ASCII

Text

Key

Convert
ASCII

ASCII
+

Convert

Binary

Encrypted

Text

Binary

566 The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

Figure 3. Running the program of the proposed encryption
algorithm REA.

3.3.1.2. Decipherment

1. Loop on the encrypted text to get ASCII code of
characters and add next character.

2. Multiply ascii code of the first character by 4 and
add the next digit (remainder):

• The first character=3---> ASCII code is: 51 and
the next digit(remainder)= 2 then new ASCII
code is: 206=51*4+2

• The first character=3---> ASCII code is: 51 and
the next digit(remainder)= 1 then new ASCII
code is: 205=51*4+1

• The first character=3---> ASCII code is: 51 and
the next digit(remainder)= 0 then new ASCII
code is: 204=51*4+0

• The first character=*---> ASCII code is: 42 and
the next digit(remainder)= 0 then new ASCII
code is: 168=42*4+0

• The first character=&---> ASCII code is: 38 and
the next digit(remainder)= 2 then new ASCII
code is: 154=38*4+2

• Etc.

3. Convert final ascii code to binary data:
11001110 11001101 11001100 10101000 10011010 .…

4. Reverse the previous binary data:
00110001 00110010 00110011 01010111 01100101 .…

5. Convert binary data to ascii code and text:
49 50 51 87 101 ….

6. Remove the key from text:123Welcome!
Mousa1976

7. Decrypted text is: “Welcome! Mousa1976” as
shows in Figure 4.

Figure 4. Running the program of the proposed decryption
algorithm REA.

3.3.2. Database

The second example on which we applied our new
encryption algorithm REA is on database Microsoft
SQL Server 2005 is called “Northwind_Plaintext”, the
programming tasks were built by Microsoft Visual
Studio 2005.net.
 We encrypted some fields from the database
“Northwind_Plaintext” by the most common
encryption algorithms namely: DES, 3DES, RC2,
AES, Blowfish and our new algorithm REA. These
encryption and decryption achieved by our simulation
is there exist in the section 4.
 The keys are used in the encryption kept safe in the
table encrypted by our new algorithm REA as shown
in Figure 5. Only the administrator user will get these
keys by entering the password as shown in Figure 6.
After the administrator enters the password and selects
the database “Northwind_Plaintext” only then, will the
administrator be able to see the table of the keys
encrypted in the database “Northwind_Plaintext” from
Microsoft SQL Server as shown in Figure 7.

Please Enter the Text: Welcome! Mousa1976
Please Enter the Key: 123
===
===================== Begin Encryption ====================
===
Add the Key to Text: 123Welcome! Mousa1976
Convert the Previous Text to ASCII
===========================
 1 ------> 49
 2 ------> 50
 3 ------> 51
 W ------> 87
 e ------> 101
 l ------> 108
 c ------> 99
 o ------> 111
 m ------> 109
 e ------> 101
 ! ------> 33
 ------> 32
 M ------> 77
 o ------> 111
 u ------> 117
 s ------> 115
 a ------> 97
 1 ------> 49
 9 ------> 57
 7 ------> 55
 6 ------> 54
Convert the Previous ASCII to Binary Data
================================
0011000100110010001100110101011101100101011011000110001101101111011011010110
0101001000010010000001001101011011110111010101110011011000010011000100111001
0011011100110110
Reverse the Previous Binary Data
==========================
1100111011001101110011001010100010011010100100111001110010010000100100101001
1010110111101101111110110010100100001000101010001100100111101100111011000110
1100100011001001
Gather each 8 bits and get the ascii of it and divide ascii by 4
and get the ascii of the result(one character)and
get the reminder of the previous and put it as second character
First Ascii: 206 ----- After Divide:51 ----- New Ascii: 3 ----- Reminder: 2
First Ascii: 205 ----- After Divide:51 ----- New Ascii: 3 ----- Reminder: 1
First Ascii: 204 ----- After Divide:51 ----- New Ascii: 3 ----- Reminder: 0
First Ascii: 168 ----- After Divide:42 ----- New Ascii: * ----- Reminder: 0
First Ascii: 154 ----- After Divide:38 ----- New Ascii: & ----- Reminder: 2
First Ascii: 147 ----- After Divide:36 ----- New Ascii: $ ----- Reminder: 3
First Ascii: 156 ----- After Divide:39 ----- New Ascii: ' ----- Reminder: 0
First Ascii: 144 ----- After Divide:36 ----- New Ascii: $ ----- Reminder: 0
First Ascii: 146 ----- After Divide:36 ----- New Ascii: $ ----- Reminder: 2
First Ascii: 154 ----- After Divide:38 ----- New Ascii: & ----- Reminder: 2
First Ascii: 222 ----- After Divide:55 ----- New Ascii: 7 ----- Reminder: 2
First Ascii: 223 ----- After Divide:55 ----- New Ascii: 7 ----- Reminder: 3
First Ascii: 178 ----- After Divide:44 ----- New Ascii: , ----- Reminder: 2
First Ascii: 144 ----- After Divide:36 ----- New Ascii: $ ----- Reminder: 0
First Ascii: 138 ----- After Divide:34 ----- New Ascii: " ----- Reminder: 2
First Ascii: 140 ----- After Divide:35 ----- New Ascii: # ----- Reminder: 0
First Ascii: 158 ----- After Divide:39 ----- New Ascii: ' ----- Reminder: 2
First Ascii: 206 ----- After Divide:51 ----- New Ascii: 3 ----- Reminder: 2
First Ascii: 198 ----- After Divide:49 ----- New Ascii: 1 ----- Reminder: 2
First Ascii: 200 ----- After Divide:50 ----- New Ascii: 2 ----- Reminder: 0
First Ascii: 201 ----- After Divide:50 ----- New Ascii: 2 ----- Reminder: 1
Encrypted Text is: 323130*0&2$3'0$0$2&27273,2$0"2#0'232122021

===
=================== Begin Decryption ======================
===
Loop on the encrypted text to get ascii of characters and add next character
multiple Ascii of the first number by 4 and add the next digit(reminder)
First Character Ascii: 51 ----- The Digit(Reminder): 2 ----- New Ascii: 206
First Character Ascii: 51 ----- The Digit(Reminder): 1 ----- New Ascii: 205
First Character Ascii: 51 ----- The Digit(Reminder): 0 ----- New Ascii: 204
First Character Ascii: 42 ----- The Digit(Reminder): 0 ----- New Ascii: 168
First Character Ascii: 38 ----- The Digit(Reminder): 2 ----- New Ascii: 154
First Character Ascii: 36 ----- The Digit(Reminder): 3 ----- New Ascii: 147
First Character Ascii: 39 ----- The Digit(Reminder): 0 ----- New Ascii: 156
First Character Ascii: 36 ----- The Digit(Reminder): 0 ----- New Ascii: 144
First Character Ascii: 36 ----- The Digit(Reminder): 2 ----- New Ascii: 146
First Character Ascii: 38 ----- The Digit(Reminder): 2 ----- New Ascii: 154
First Character Ascii: 55 ----- The Digit(Reminder): 2 ----- New Ascii: 222
First Character Ascii: 55 ----- The Digit(Reminder): 3 ----- New Ascii: 223
First Character Ascii: 44 ----- The Digit(Reminder): 2 ----- New Ascii: 178
First Character Ascii: 36 ----- The Digit(Reminder): 0 ----- New Ascii: 144
First Character Ascii: 34 ----- The Digit(Reminder): 2 ----- New Ascii: 138
First Character Ascii: 35 ----- The Digit(Reminder): 0 ----- New Ascii: 140
First Character Ascii: 39 ----- The Digit(Reminder): 2 ----- New Ascii: 158
First Character Ascii: 51 ----- The Digit(Reminder): 2 ----- New Ascii: 206
First Character Ascii: 49 ----- The Digit(Reminder): 2 ----- New Ascii: 198
First Character Ascii: 50 ----- The Digit(Reminder): 0 ----- New Ascii: 200
First Character Ascii: 50 ----- The Digit(Reminder): 1 ----- New Ascii: 201
Convert Final Ascii to Binary Data
==========================
11001110110011011100110010101000100110101001001110011100100100001001001010
01101011011110110111111011001010010000100010101000110010011110110011101100
01101100100011001001
Reverse the Previous Binary Data (Correct Binary Data)
===
00110001001100100011001101010111011001010110110001100011011011110110110101
10010100100001001000000100110101101111011101010111001101100001001100010011
10010011011100110110
Convert Binary Data to Text
======================
123Welcome! Mousa1976
Remove the Key from Text: 123Welcome! Mousa1976
Decrypted Text is: Welcome! Mousa1976

Evaluating the Performance of Reverse Encryption Algorithm (REA) on the Databases 567

Figure 5. Encrypted fields in the keys table with the proposed
algorithm REA.

Figure 6. Login of the administrator to get the keys.

Figure 7. Keys table is decrypted with the proposed algorithm
REA.

4. Simulation Results

A typical case study is studied in this section, to give
the performance evaluation of a new algorithm REA
and to compare it with the most common encryption
algorithms namely: DES, 3DES, RC2, AES and
Blowfish.

A comparison has been conducted for those
encryption algorithms at encryption and decryption
time. The encryption time is considered the time that
an encryption algorithm takes to produce a ciphertext
from plaintext. It indicates the speed of encryption.
The decryption time is considered the time that
decryption algorithm takes to produce a plaintext from
ciphertext. Also, it indicates the speed of decryption.

All our experiments were done on laptop IV 2.0GHz
Intel processor with 1MB cache memory, 1GB of
memory, and one Disk drive 120GB. The Operating
System which was used is Microsoft Windows 7
professional. The simulation results were executed
based on the database Microsoft SQL Server 2005 is
“Northwind_Plaintext”, which contains seven tables.
The programming tasks were built by Microsoft Visual
Studio 2005.net. In the experiments, the laptop
encrypts a different field size ranges from 77 rows to
2155 rows from different tables in the database
“Northwind_Plaintext” see in Table 1. The

performance metrics of the encryption time and
decryption time have been collected below.

We encrypted ten different fields shown in Table 1
with the proposed encryption algorithm REA and
calculated elapsed time for each one. Then, we
calculated the averages of the elapsed times shown in
Table 2. We repeated this step on other encryption
algorithms namely: DES, 3DES, RC2, AES and
Blowfish. The Figure 8 has shown one step from ten of
our new encryption algorithm REA.

Table 1. The names fields for encrypted and decrypted.

 Table Name Field Name

1 Suppliers ContactName

2 Orders Freight

3 Orders ShipName

4 Products UnitPrice

5 Products QuantityPerUnit

6 Order Details UnitPrice

7 Order Details Quantity

8 LargeText Text

9 Customers ContactName

10 Customers ContactTitle

Figure 8. Encrypted the field with the proposed encryption
algorithm REA.

We decrypted the same ten different fields shown in
Table 1 with our new decryption algorithm REA and
calculated elapsed time for each one. Then, we
calculated the averages of the elapsed times shown in
Table 3. We repeated this step on other decryption
algorithms namely: DES, 3DES, RC2, AES and
Blowfish. The Figure 9 has shown one step from ten of
our new decryption algorithm REA.

Figure 9. Decrypted the field with the proposed decryption
algorithm REA.

568 The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

The results for this comparison are shown on Table
2 and Figure 10 at the encryption time and Table 3 and
Figure 11 at the decryption time. A first point; the
results show the superiority of REA algorithm over
other algorithms in terms of the encryption and
decryption time. A second point; that Blowfish
requires less encryption and decryption time than all
algorithms except REA. A third point; that AES has an
advantage over other 3DES, DES and RC2. A fourth
point; that 3DES has low performance in terms of
encryption and decryption time when compared with
DES. It requires always more time than DES because
of its triple phase encryption characteristics. A final
point; it is found that RC2 has low performance in
terms of encryption and decryption time when
compared with other five algorithms.

Table 2. Comparative elapsed times (milliseconds) of encryption
algorithms.

 DES 3DES RC2 AES BF REA

1 0.141 0.263 0.342 0.109 0.116 0.104

2 4.063 4.469 4.513 3.297 2.544 1.720

3 3.609 4.484 4.594 3.047 2.671 2.521

4 0.359 0.419 0.395 0.329 0.296 0.266

5 0.344 0.453 0.449 0.331 0.274 0.265

6 14.194 14.968 15.234 14.000 11.304 11.297

7 15.906 17.547 17.328 15.484 12.452 12.360

8 2.960 3.203 3.531 2.688 2.051 2.005

9 0.422 0.463 0.487 0.403 0.376 0.335

10 0.421 0.438 0.442 0.386 0.346 0.334

Avg.

Time
4.2419 4.6707 4.7315 4.0074 3.2430 3.1207

4.2419

4.6707 4.7315

4.0074

3.243 3.1207

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

DES 3DES RC2 AES Blow fish REA

Cryptographic Algorithms

Figure 10. Averages elapsed times of each encryption algorithm.

Overall, the results showed that REA has a very
good performance compared to other algorithms. Also,
it showed that Blowfish and AES have a better
performance than DES, 3DES, and RC2.

Table 3. Comparative elapsed times (milliseconds) of decryption
algorithms.

 DES 3DES RC2 AES BF REA

1 0.125 0.141 0.156 0.135 0.137 0.121

2 4.313 4.625 4.516 4.103 3.417 1.845

3 4.672 4.992 5.172 4.212 3.816 3.445

4 0.343 0.359 0.384 0.344 0.322 0.271

5 0.359 0.404 0.426 0.359 0.318 0.281

6 16.687 19.156 20.281 14.266 12.963 12.687

7 17.797 20.313 21.406 15.125 13.761 11.030

8 3.312 3.891 3.906 3.319 2.175 2.743

9 0.443 0.478 0.499 0.421 0.381 0.318

10 0.438 0.447 0.456 0.398 0.315 0.308

Avg.

Time
4.8489 5.4806 5.7202 4.2682 3.7605 3.3049

4.8489

5.4806
5.7202

4.2682

3.7605

3.3049

0

1

2

3

4

5

6

DES 3DES RC2 AES Blow fish REA

 Cryptographic Algorithms

Figure 11. Averages elapsed times of each decryption algorithm.

5. Conclusions and Future Work

It is necessary to consider the evident discrimination
between the cryptograph for database security and the
traditional cryptograph security. Encrypting sensitive
data in the database becomes more and more crucial
for protecting from being misused by intruders who
bypass conventional access control mechanisms and
have direct access to the database files. For this, we
propose, in this paper to address this issue and
contribute the following.

First, we will introduce a new encryption algorithm,
which we call REA, restating its benefits and functions
over other similar encryption algorithms. REA
algorithm is limiting the added time cost for encryption
and decryption so as to not degrade the performance of
a database system.

Second, it examines a method for evaluating the
performance of our new encryption algorithm REA
and compares it with the most common encryption
algorithms namely: DES, 3DES, RC2, AES and
Blowfish. A comparison has been conducted for those
encryption algorithms at encryption and decryption
time. The encryption time is considered the time that
an encryption algorithm takes to produce a ciphertext
from plaintext. It indicates the speed of encryption.
The decryption time is considered the time that
decryption algorithm takes to produce a plaintext from
ciphertext. Also, it indicates the speed of decryption.
The results show the superiority of REA algorithm
over other algorithms in terms of the encryption and
decryption time.

In the future work, we are interested in extending
our new encryption algorithm REA to support query
processing performance on encrypted database. In
addition, we would like to extend and apply our new
encryption algorithm REA in other kind of databases
such as distributed DBMSs and object oriented
DBMSs.

References

[1] Bouganim L. and Pucheral P., “Chip-Secured
Data Access: Confidential Data on Untrusted
Servers,” in Proceedings of the 28th International
Conference on Very Large Data Bases, China,
pp. 131-142, 2002.

E
la

p
se

d
 T

im
e

E
la

p
se

d
 T

im
e

Evaluating the Performance of Reverse Encryption Algorithm (REA) on the Databases 569

[2] Castano S., Fugini M., Martella G., and Samarati
P., Database Security, Addison-Wesley, USA,
1995.

[3] Chen G., Chen K., and Dong J., “A Database
Encryption Scheme for Enhanced Security and
Easy Sharing,” in Proceedings of the 10th
International Conference on Computer

Supported Cooperative Work in Design, Nanjing
pp. 1-6, 2006.

[4] Coppersmith D., “The Data Encryption Standard
and Its Strength Against Attacks,” IBM Journal
of Research and Development, vol. 38, no. 3, pp.
243-250, 1994.

[5] Daemen J. and Rijmen V., “Rijndael: The
Advanced Encryption Standard,” Dr. Dobb's
Journal, pp.137-139, 2001.

[6] Damiani E., Vimercati S., and Foresti S., “Key
Management for Multi-User Encrypted
Databases,” in Proceedings of ACM Storage,

Italy, pp. 74-83, 2005.

[7] El-Fishawy N., “Quality of Encryption
Measurement of Bitmap Images with RC6,
MRC6, and Rijndael Block Cipher Algorithms,”
International Journal of Network Security, vol. 5,
no. 3 pp. 241-251, 2007.

[8] Ferraiolo D. and Kuhn R., “Role-Based Access
Controls,” in Proceedings of NIST-NCSC,
Baltim, pp. 554-563, 2002.

[9] Jingmin H. and Wang M., “Cryptography and
Relational Database Management Systems,” in
Proceedings of IEEE Symposium on the

International Database Engineering and

Applications, USA, pp. 273-284, 2001.
[10] Kim Y. and Hong E., “A Study of UniSQL

Encryption System: Case Study of Developing
SAMS,” in Proceedings of the 9th International
Conference on Advanced Communication

Technology, Gangwon, vol. 1, pp. 577-582, 2007.
[11] Mattsson U., “A Database Encryption Solution

that is Protecting Against External and Internal
Threats, and Meeting Regulatory Requirements:
A Practical Implementation of Field Level
Privacy,” in Proceedings of the 7th IEEE
International Conference on E-Commerce

Technology, USA, pp. 559–565, 2005.
[12] Salama D., Abdual-Kader H., and Hadhoud M.,

“Studying the Effects of Most Common
Encryption Algorithms,” International Arab
Journal of e-Technology, vol. 2, no. 1, pp. 1-10
2011.

[13] Salama D., Abdual-Kader H., and Hadhoud M.,
“Wireless Network Security Still Has no
Clothes,” International Arab Journal of e-
Technology, vol. 2, no. 2, pp. 112-123, 2011.

[14] Schneier B., Applied Cryptography Second
Edition: Protocols, Algorithms, and Source,
China Machine Press, Beijing, 2000.

[15] Schneier B., “The Blowfish Encryption
Algorithm,” available at: http://pocketbrief.net
/related/BlowfishEncryption.pdf, last visited:
2008.

[16] Stallings W., Cryptography and Network

Security Principles and Practice, Prentice-Hill,
2005.

Ayman Mousa obtained his BS in
math and computer science from
Faculty of Science, Menoufia
University, Egypt in 1998. He
obtained his MSc degree in
computer science also, from Faculty
of Science, Menoufia University,

Egypt in 2008 and submitted for PhD from November
2009 in Faculty of Science, Zagazig University. He is
currently a lecturer of computer science in Workers
University since 2001. His research interests in
database security and cryptography.

Osama Faragallah received his BSc
in 1997, MSc in 2002, and PhD in
2007, all in computer science and
engineering, from Menoufia
University, Faculty of Electronic
Engineering, Egypt. He was a
demonstrator at the Department of

Computer Science and Engineering, at Menoufia
University, from 1997 to 2002, became an assistant
lecturer in 2002, and was promoted to a lecturer in
2007. His research interests include computer
networks, network security, cryptography, internet
security, multimedia security, image encryption,
watermarking, steganography, data hiding, and chaos
theory.

Elsayed Rabaie is involved now in
different research areas including
CAD of nonlinear microwave
circuits, nanotechnology, digital
communication systems, and digital
image processing. He has authored
and co-authored of more than 140

papers and seventeen books. He was awarded several
awards (Salah Amer Award of Electronics in 1993,
The Best Researcher on (CAD) from Menoufia
University in 1995). He acts as a reviewer and member
of the editorial board for several scientific journals. He
has shared in translating the first part of the Arabic
encyclopedia. He was the Head of the Electronic and
Communication Engineering Department, Faculty of
Electronic Engineering, Menoufia University, then the
vice dean of postgraduate studies and research in the
same faculty. Now he is a member of the electronic
and communication Eng. promotion committee and
reviewer of Quality Assurance and Accreditation of
Egyptian Higher Education.

570 The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

Elsayed Nigm is a professor of
mathematics, Department of
Mathematics, Zagazig University,
Egypt. He obtained his BSc in
mathematics, statistics and computer
sciences, Zagazig University,
Faculty of Science, Egypt. He

obtained his MSc degree in mathematics (functional
analysis), Zagazig University, Faculty of Science,
Egypt. He obtained his PhD degree mathematical
statistics also, from Zagazig University, Faculty of
Science, Egypt in 1990. He honors awards prize of the
National Committee of Mathematics, by Egyptian
Academy of Sciences and Technologies, Egypt in
2000. He has published more than 51 papers in
international journals, international conferences, local
journals and local conferences.

