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Abstract: This paper proposes the Hybrid Edge-Cloud Optimistic Concurrency Protocol (HECOCP), a novel approach for 

efficiently managing distributed transactions on sensor data across both edge and cloud environments. By maintaining ACID 

properties and emphasizing local validation at edge nodes-with global validation triggered only when needed-HECOCP 

minimizes contention, lowers latency, and reduces transaction abort rates. Unlike established methods like Two-Phase Locking 

(2PL), prone to lock contention, or Multi-Version Concurrency Control (MVCC), which suffers version maintenance overhead, 

HECOCP achieves higher throughput and superior scalability under demanding transaction loads. Extensive simulation results 

confirm that HECOCP surpasses 2PL and MVCC in commit rate, abort rate, latency, and throughput scalability. This 

performance advantage makes HECOCP particularly suited to real-time applications in large-scale sensor networks, such as 

smart cities, healthcare, and industrial IoT, where rapid and reliable transactional processing is critical. 
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1. Introduction 

In an era of rapid digital transformation, the 

proliferation of sensor-enabled devices has resulted in 

an unprecedented volume of data generation. From 

smart city infrastructures and healthcare monitoring 

systems to industrial IoT installations, sensors 

continuously collect, transmit, and process information 

to drive near real-time decision-making [2, 6, 31]. 

Managing this massive, geographically distributed, and 

often time-sensitive data while ensuring scalability and 

strong transactional guarantees has become a critical 

challenge. Traditional cloud-centric solutions often 

struggle to support real-time responsiveness due to 

communication overhead and network latency between 

edge devices and centralized data centers, which can 

lead to significant delays in processing and decision 

making [26, 28]. 

The role of edge computing, therefore, has become  

 
increasingly prominent in addressing these bottlenecks, 

as it places computation and storage resources closer to 

the data source [14, 18, 23]. By processing data locally 

at the edge layer, the network load can be substantially 

reduced, and response times can be improved for 

latency-sensitive tasks. However, ensuring that updates 

to data and concurrent transactions remain consistent 

across dispersed edge nodes and the cloud layer is far 

from trivial. Different application domains, such as 

healthcare monitoring [14], industrial IoT [7], and 

mission-critical environments [15], impose stringent 

requirements on both latency and consistency. 

Transaction failures or data inconsistencies in these 

domains can lead to adverse outcomes, including safety 

hazards and resource mismanagement [20]. 

A promising solution to the challenges of managing 

massive volumes of sensor data in real-time is the hybrid 

edge-cloud architecture [27], as depicted in Figure 1. 

This architecture strategically distributes computational 
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and storage resources across two distinct levels: an edge 

layer, located in close proximity to the data sources, and 

a cloud layer, which offers substantial processing power 

along with global coordination capabilities [13, 22, 29]. 

By offloading real-time computational tasks and 

preliminary data processing to the edge nodes, the hybrid 

model effectively mitigates latency and reduces network 

congestion. Meanwhile, the cloud layer aggregates and 

further analyzes the processed data for advanced 

analytics and long-term storage, as demonstrated. 

 

Figure 1. Conceptual framework. 

While the hybrid edge-cloud model significantly 

reduces latency and enhances responsiveness, it also 

introduces new complexities in managing distributed 

transactions. Traditional concurrency control 

mechanisms such as Two-Phase Locking (2PL), 

Timestamp Ordering (TO), and Multi-Version 

Concurrency Control (MVCC) were originally designed 

for centralized databases and often underperform when 

applied directly to such distributed systems [8, 11, 17]. 

These methods tend to incur increased coordination 

overhead and fail to fully exploit the benefits of the 

hierarchical architecture, as noted by [8, 17]. The figure 

thus not only illustrates the structural benefits of the 

hybrid approach but also underscores the need for 

advanced, adaptive protocols like our proposed Hybrid 

Edge-Cloud Optimistic Concurrency Protocol 

(HECOCP) to efficiently manage real-time sensor 

transactions in such environments. 

To address these issues, we propose the HECOCP, a 

novel mechanism specifically designed for managing 

real-time transactional services in sensor-based edge-

cloud environments. HECOCP integrates local 

validation at each edge node to rapidly detect conflicts 

and reduce synchronization overhead, and global 

validation at the cloud layer to enforce cross-node 

consistency. This two-tiered approach balances speed 

and correctness, accommodating the high data ingestion 

rates, bursty arrivals, and localized hotspots typical in 

sensor networks. For instance, in environments where 

sensors continuously stream data for traffic management 

or patient monitoring, HECOCP can quickly validate 

transactions locally while ensuring that any critical 

cross-node conflicts are resolved at the cloud level [4, 5]. 

Our contributions are fourfold. First, we introduce 

HECOCP, an adaptive hybrid concurrency control 

protocol that minimizes cross-edge conflicts and 

controls global abort rates while ensuring ACID 

properties. Second, we formalize a mathematical sensor 

transaction model that rigorously defines how sensor 

data is collected, processed, and updated at both the edge 

and cloud layers. Third, we propose a scalable hybrid 

edge-cloud architecture that incorporates design 

elements such as local buffering, partial aggregation, and 

global synchronization, supported by thorough 

performance analysis. Finally, extensive simulation 

experiments demonstrate that HECOCP outperforms 

traditional concurrency control protocols in terms of 

commit rates, abort rates, and end-to-end transaction 

latency, making it particularly suitable for real-time 

applications in smart cities, healthcare, industrial 

automation, and vehicular networks [3, 12]. 

By fusing theoretical insights with practical 

implementation strategies, this work provides a robust 

solution for managing concurrent sensor data 

transactions in distributed environments. The remainder 

of this paper is organized into several sections that cover 

a detailed review of related work, the mathematical 

foundation of the sensor transaction model, a 

comprehensive description of the HECOCP protocol and 

hybrid architecture, simulation-based performance 

evaluations, and finally, conclusions with a discussion 

on limitations and future research directions. 

2. Related Works 

Recent research in sensor data management and real-

time transactional services has explored various aspects 

of concurrency control, data processing frameworks, 

and application-specific requirements within edge–

cloud architectures. Traditional databases rely on 

concurrency control mechanisms such as 2PL, TO, and 

MVCC [8, 17], and these strategies have been 

foundational in distributed database theory for decades. 

However, while these methods work effectively in 

centralized systems, their performance often degrades in 

distributed, geo-replicated environments because of 

increased coordination overhead [4, 11]. 

Although 2PL ensures serializability, its strict lock 

management leads to deadlocks and reduced 

concurrency in multi-edge systems, especially under 

high conflict scenarios [8]. Studies such as in [19] 

introduce priority-based locking to mitigate some of 

these issues, but the overhead remains significant in 

edge-cloud contexts. 
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TO-based systems like the ones discussed in [17] rely 

on synchronized clocks to determine the serialization 

order of transactions. However, maintaining consistent 

timestamps across geographically dispersed edge nodes 

is challenging [1]; any clock drifts can disrupt the 

correctness of the ordering, making pure TO approaches 

less suitable for dynamic IoT environments. 

MVCC minimizes read-write conflicts by allowing 

concurrent reads of older snapshots [4]. Systems like 

FaRM [13] and Calvin [24] demonstrate the potential of 

MVCC-based or hybrid concurrency approaches in 

distributed settings. While these systems handle 

partitioned workloads efficiently, they still rely on global 

ordering steps that introduce additional latency in edge-

cloud scenarios [11]. 

Hybrid approaches such as the concurrency control 

protocol proposed by Al-Qerem et al. [5] explored 

cooperative OCC variants within fog-cloud 

environments, reducing the dependency on a centralized 

cloud for all validations. Additionally, frameworks like 

EdgeDB [22] and IoTCloud [28] have been developed to 

offload computations to the edge, improving response 

times. However, these systems often do not guarantee 

strong ACID transactions and rely on simplified 

concurrency approaches, such as eventual consistency 

[16], which might be insufficient in applications like 

healthcare or financial services [12]. 

Fog-based replication and consistency management. 

Al-Qerem et al. [3] presented a fog-based approach to 

replication that aims to reduce latency by bringing 

replicas closer to data sources. While effective in certain 

scenarios, it often requires complex replica management 

and can still suffer from incomplete global consistency 

checks, especially when dealing with update-heavy 

workloads. 

Real-time sensor databases typically adopt soft real-

time constraints with immediate or deferred update 

strategies, whereas stream processing engines focus on 

continuous queries without enforcing full ACID 

properties [7, 30]. Hybrid Transaction/Analytical 

systems (HTAP) attempt to unify OLTP and OLAP 

functionalities but often overlook the physical 

distribution of sensors and edge nodes. A key research 

gap lies in the need for protocols that can manage high 

ingestion rates, geographical dispersal, and real-time 

partial commits required by sensor-based edge–cloud 

systems [15, 22, 25]. Our proposed HECOCP addresses 

this gap by employing local validation at edge nodes and 

global validation at the cloud to balance performance 

with strong consistency. 

Table 1. Summary of related works on concurrency control in edge/fog/cloud systems. 

Study (Year) Concurrency method Edge involvement Key insights/limitations 

(1997) [19] 2PL with priority Low Reduces priority inversion, but still suffers under heavy conflict 

(2017) [12] 2PL, TO, MVCC Minimal Comprehensive evaluation in in-memory contexts; not sensor specific 

(2023) [5] Augmented OCCin fog-cloud High Lowers communication overhead; primarily read-heavy evaluations 

(2014) [16] Eventual Consistency Moderate Bounded update propagation, but lacks full ACID guarantees 

(2022) [3] Fog-based replication and consistency High Reduces latency via local replicas, overhead grows with large updates 

(2025) [26] Edge computing architecture High Discussion of future challenges; less emphasis on concurrency details 

(2021) [11] Distributed CC protocol for edge-cloud High Addresses concurrency in partitioned data, but global ordering still a challenge 

 

Table 1 provides a concise overview of several 

foundational and recent works relevant to this research. 

Collectively, these works demonstrate the trade-offs 

inherent in managing sensor transactions in distributed 

environments, highlighting the challenges of achieving 

both low latency and strong consistency. Our approach 

builds on these insights by introducing HECOCP, a 

protocol that employs a two-tier validation mechanism 

to efficiently manage concurrent transactions while 

preserving ACID properties. 

Real-world applications further illustrate the 

importance of robust sensor data management [32]. 

In smart cities, for example, thousands of sensors-

such as traffic sensors, surveillance cameras, and smart 

meters-generate continuous data streams that must be 

processed in real time to manage urban services 

effectively [2, 31]. City transportation systems rely on 

this data to adjust traffic signals dynamically and 

respond to incidents promptly, ensuring that decisions 

such as altering traffic light patterns are executed in sub-

millisecond timeframes [33]. 

Similarly, in healthcare, wearable sensors 

continuously monitor patient vitals, and edge based 

processing enables rapid alert generation for abnormal 

conditions, thereby ensuring timely medical 

interventions [14, 18]. Industrial environments, 

including factories and power grids, leverage sensor data 

to monitor machine performance and trigger 

maintenance actions in real time, while vehicular 

networks and autonomous systems use edge processing 

to fuse sensor data quickly for critical decision-making. 

Despite the diverse requirements across these domains, 

a common need exists for transactional systems that 

offer both low-latency local processing and robust global 

consistency [20]. 

The underlying data management techniques-such as 

advanced concurrency control, edge–cloud distribution, 

and latency optimizations—serve as the backbone for 

these applications, ensuring that data remains consistent 

and actionable even under heavy loads and rapid update 

scenarios. Whether coordinating citywide traffic flows 

or ensuring patient safety in hospitals, the ability to 

process and manage sensor transactions in real time is 

essential [9]. 

3. Transactional Services 

Transactional services play a crucial role in ensuring 

data consistency, reliability, and integrity within 

distributed systems. In the context of edge-cloud 
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environments, transactional services manage data 

operations across multiple nodes, ensuring that updates 

adhere to ACID (Atomicity, Consistency, Isolation, 

Durability) properties. These services help coordinate 

concurrent access to shared data, prevent conflicts, and 

ensure that transactions either fully complete or roll back 

in case of failures. Effective transaction management is 

particularly essential in sensor networks, where data 

must be continuously processed, stored, and 

synchronized across edge nodes and cloud servers. By 

leveraging hybrid edge-cloud transactional services, 

organizations can achieve real-time data processing 

while maintaining strong consistency across distributed 

systems. 

Figure 1 visually represents this sensor transaction 

model within the hybrid edge–cloud framework. In the 

figure, sensors (s1, s2,..., s5) are positioned at the highest 

layer, where they generate real-time data. These data 

streams are then processed through intermediary 

transactions (T1,T2,...,T5) that interact with edge nodes 

(e1, e2), which are responsible for the initial aggregation 

and processing of the sensor inputs. Subsequently, the 

data undergoes edge-level aggregation (A1, A2), serving 

as an intermediate processing step prior to transmission 

to the cloud. At the cloud level, a central cloud node (c1) 

handles advanced data analytics and long-term storage, 

culminating in a final Cloud Aggregation (CA) where 

the processed data is fully integrated. 

3.1. Sensor Transaction Model 

This section presents a mathematical definition of the 

sensor transaction model, which forms the core 

foundation for concurrency control in hybrid edge–

cloud architectures. Sensor transactions arise from 

operations such as data collection, aggregation, and 

updates performed over geographically dispersed 

sensors that feed into both edge and cloud layers. 

Let S={s1, s2, … , sn} be a set of n sensors, each 

capable of producing a continuous stream of data 

readings. The output of sensor 𝑆𝑖 at time t is denoted by 

di(t), representing any form of measurement such as 

temperature, pressure, or motion. The data generation 

rate of each sensor, denoted by Ri (measured in samples 

per second), varies depending on application 

requirements, environmental conditions, or device 

capabilities. Each sensor 𝑠𝑖 independently produces data 

points {di(t1), di(t2),…} These data points are 

accumulated or partially processed at a corresponding 

edge node, or they are aggregated with readings from 

other sensors for advanced processing. 

A transaction Tk is defined as a logical unit of work 

on sensor data, encapsulating a set of read and write 

operations that must be executed atomically to preserve 

semantic correctness. 

Formally, a transaction Tk is represented by the tuple: 

𝑇𝑘 =  (𝑅𝑘, 𝑊𝑘, 𝑡𝑘𝑠𝑡𝑎𝑟𝑡, 𝑡𝑘𝑐𝑜𝑚𝑚𝑖𝑡) 

Where RK={rk1, rk2, …} is the read set, identifying the 

data elements (sensor readings or derived information) 

that the transaction accesses, and  

𝑊𝑘 =  {𝑤𝑘1, 𝑤𝑘2, … } 

is the write set, specifying the data items or states that Tk 

modifies. The timestamps tkstart and tkkcommit indicate the 

start and commit times of the transaction, with the 

condition that tkkcommit>tkstart. If the transaction completes 

successfully while respecting concurrency constraints, it 

commits; otherwise, it is aborted and rolled back to the 

pre-transaction state. 

Sensor transactions in this model adhere to the 

classical ACID properties. Atomicity ensures that each 

transaction commits all its operations or none at all. 

Consistency requires that transactions transition the 

system from one valid state to another, according to 

predetermined domain rules such as sensor calibration 

constraints. Isolation guarantees that no transaction can 

see partial effects of other concurrent transactions; in a 

distributed environment, partial or local commits are 

hidden until global validation. Durability means that 

once a transaction is globally committed, its effects 

persist even in the event of subsequent failures. 

Because sensors are geographically scattered, 

transactions often span multiple edge nodes. Let E={e1, 

e2, …, em} be a set of m edge nodes. Each transaction 

Tk may involve local operations performed at different 

edge nodes, along with additional global operations 

carried out at a central cloud resource C. In this context,  

𝑇𝑘=(𝑇𝑒1
𝑘 ,𝑇𝑒2

𝑘 ,…,𝑇𝑒𝑚
𝑘 ,𝑇𝐶

𝑘  ) 

Where 𝑇𝑒𝑖
𝑘  represents the local operations executed at 

edge node ei and 𝑇𝑐
𝑘 represents the global or cloud-level 

operations. The total transaction latency Lk for Tk is the 

sum of several components validation:  

𝐿
𝑘=(𝐿𝑘

𝑒𝑑𝑔𝑒
+ 𝐿𝑘

𝑐𝑙𝑜𝑢𝑑+𝐿𝑘)
 

where, 𝑇𝑘
𝑒𝑑𝑔𝑒

 denotes the time spent executing or 

validating the transaction locally at the edge, 𝐿𝑘
cloud is 

the time required for data transfer and additional 

processing or validation in the cloud, and 𝐿𝑘
validation is 

the time consumed by concurrency control checks such 

as conflict resolution or rollback. The overall goal of the 

model is to minimize both local and global validation 

overheads, which is central to the design of the 

HECOCP. 

This sensor transaction model establishes the formal 

basis for concurrency management in our system. It 

clarifies how sensor data is logically grouped into 

transactions, how these transactions are distributed 

across edge and cloud nodes, and what constraints must 

be met to maintain data integrity in a hybrid edge–cloud 

environment. When dealing with sensor transactions, 

unique challenges emerge, particularly regarding real-

time data availability, partial failures, and fluctuations in 

network conditions. For example, a transaction in an 

(3) 

(4) 

(2) 

(1) 
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industrial IoT environment might involve sensor s1 

measuring machine vibration levels, sensor s2 tracking 

temperature, and sensor s3 providing real-time location 

data for parts on an assembly line. These multiple data 

points need to be read, processed, and updated 

atomically to trigger timely operational decisions, such 

as adjusting machine parameters. If any of these updates 

are delayed or fail, the system could lose 

synchronization, resulting in inaccurate decisions or 

even safety hazards. 

Moreover, certain edge nodes may have intermittent 

connectivity due to environmental conditions or 

bandwidth constraints, which can disrupt the flow of 

sensor transactions. In such cases, the concurrency 

control mechanism must account for partial updates and 

potential rollbacks while still ensuring data consistency 

across the broader edge-cloud system. HECOCP 

addresses these issues by integrating local and global 

validations, reducing the complexity associated with 

partial connectivity while still providing low-latency 

local commits. 

3.2. Proposed Concurrency Control Protocol: 

HECOCP 

Managing concurrent sensor transactions in a distributed 

edge-cloud environment presents unique challenges due 

to the high-volume, real-time nature of sensor data. 

Traditional concurrency control methods, such as 2PL 

and TO, often suffer from high coordination overhead 

and latency when applied to such distributed systems [8]. 

In response, we propose the HECOCP, which leverages 

optimistic concurrency control to minimize locking 

overhead by deferring conflict detection until commit 

time. This protocol is specifically designed for sensor-

driven applications where transactions must complete 

quickly while still ensuring global consistency [13]. 

In HECOCP, transactions are initiated at the edge, 

where they first execute a read phase without acquiring 

any locks. During this phase, each transaction retrieves 

the current values of the required sensor data items and 

performs local computations optimistically. 

The transaction then moves to a write phase, buffering 

its intended updates locally. Next, a local validation 

phase is executed at the edge node; here, the protocol 

checks for conflicts between concurrently committing 

transactions by comparing the transaction’s read and 

write sets with those of other active transactions. If a 

conflict is detected based on a predefined ordering rule, 

the transaction is aborted immediately to avoid 

inconsistencies. If no conflict is found, the transaction is 

tentatively committed at the edge. 

After local validation, a global trigger check 

determines whether the transaction requires further 

consistency verification at the cloud level. For 

transactions that only involve local data, a final commit 

can be performed immediately at the edge. However, if 

a transaction spans multiple edge nodes or affects data 

that is shared globally, it is forwarded to the cloud for 

global validation. At the cloud layer, the protocol 

collects comprehensive validation information-

specifically, the read and write sets-from all the involved 

edge nodes. A global conflict check is then performed 

against all global transactions that have not yet 

committed. Based on this evaluation, the cloud sends 

either a commit signal (if no conflicts are detected) or an 

abort signal (if conflicts are found) to all the edge nodes 

involved in the transaction. Once the commit signal is 

received, the transaction is finalized globally, thereby 

ensuring that the overall system state remains consistent. 

Algorithm 1: Edge_Execute_Phases (T). 

Require: Input: 

• Transaction T with read set T.R and write set T.W 

• Current sensor data values available at the edge 

Ensure: Output: 

• Partially updated transaction state (after read and write 

phases) 

1.1. READ PHASE: 

2. For each data item d in T.R do 

3.  T.local.reads[d] ← current_value_of(d) 

4. End for 

5. Execute local computations based on T.local.reads without 

acquiring locks. 

1.2. WRITE PHASE: 

7. Buffer all intended updates into T.W. 

In the Algorithm (1) called Edge_Execute_Phases, the 

transaction T arrives at an edge node that manages a 

specific subset of sensor data. This sub-algorithm 

consists of two primary phases: 

When  T is initiated, it fetches the current values of 

each data item in its read set. During this step, no locks 

are acquired-a deliberate decision reflecting HECOCP’s 

optimistic approach. By allowing reads to occur 

concurrently, the system takes advantage of the typically 

short-lived nature of sensor transactions, which often 

read more data than they modify. This design is 

especially effective in sensor-intensive environments, 

such as large-scale IoT deployments, where continuous 

streams of updates and queries must be handled quickly. 

After collecting and processing the requisite data,  T 

buffers its intended updates locally. These changes are 

not immediately applied to shared storage, preventing 

incomplete or conflicting modifications from becoming 

visible to other transactions prematurely. By deferring 

write visibility, HECOCP sidesteps the need for early 

locking or synchronization overhead, thereby increasing 

transaction throughput while still ensuring that potential 

conflicts are resolved later. 

The transaction T holds both its original read set and 

any new updates in its write set. No permanent 

alterations to the system state have been made yet;  T 

remain isolated until validation confirms that its changes 

do not conflict with other concurrent transactions. This 

isolation forms the basis for HECOCP’s next steps, 

where local and possibly global validations will 

determine whether  T commits or aborts. 
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Algorithm 2: Local_Validation_and_Trigger(T, ActiveTxns). 

Require: Input: 

• Transaction T (already containing read/write sets and local 

updates) 

• List of concurrently committing transactions at the edge, 

ActiveTxns 

Ensure: Output: 

• Either a local commit, an immediate abort, or a request for 

global validation 

1.3. LOCAL VALIDATION: 

2. For each active transaction T’ in ActiveTxns do 

3.  if (T.W ∩ T’.R ≠ ∅) OR (T.W ∩ T’.W ≠ ∅) then 

4.    if ordering_rule(T, T’) indicates a conflict then 

5.      T.abort ← True 

6.      return // Abort immediately 

7.    end if 

8.  end if 

9. End for 

10. If no conflicts detected, set T.local_commit ← True 

(indicating a tentative commit at the edge) 

1.4. GLOBAL TRIGGER CHECK: 

11. if T requires global consistency (e.g., spans multiple edge 

nodes) then 

12.  SEND T to CLOUD_VALIDATE 

13.  return // Proceed to global validation 

14. else 

15.  finalize_local_commit(T) 

16.  return // No global check needed 

17. end if 

After a transaction T has completed its execution phases 

at an edge node, it enters the 

Local_Validation_and_Trigger step. Algorithm (2) 

addresses two critical objectives: first, it checks whether 

T conflicts with other locally active transactions; second, 

it determines if  T must undergo a broader, cloud-based 

validation. The Algorithm (2) inspects both the read and 

write sets of  T against the read/write sets of transactions 

currently in the commit queue. If overlapping data items 

are found-especially in situations where multiple 

transactions wish to update the same item-an ordering 

rule decides which transaction may continue. Should  T 

lose this ordering, it aborts immediately, rolling back any 

changes it tentatively staged. This ensures that 

conflicting updates are resolved at the edge level without 

burdening the rest of the system. If  T survives local 

validation, the next question is whether the transaction 

affects data beyond a single node or whether local policy 

requires a cloud-based check. If it does,  T ascends to the 

cloud for Algorithm (3). Otherwise,  T completes its 

commit right at the edge, instantly making its updates 

visible. This selective escalation is a defining feature of 

HECOCP, allowing purely local transactions to finalize 

swiftly while ensuring system-wide consistency for 

transactions with a broader scope. That is the transaction 

T is either aborted, fully committed locally, or directed 

to the cloud for a comprehensive global validation.  

When a transaction T requires cross-node 

consistency, it proceeds to the cloud layer, where the 

Cloud_Validate Algorithm (3) centralizes conflict 

detection and final decision-making across all edge 

nodes involved. Upon arrival in the cloud,  T undergoes 

an information-gathering process. The protocol compiles 

partial commits, as well as  Ts complete read and write 

sets, from each edge node that participated in the 

transaction. This consolidated perspective is critical for 

multi-edge transactions, ensuring that no conflicts 

remain hidden within isolated nodes. Next, the cloud 

compares  T against all other globally pending 

transactions. If the comparison reveals overlapping 

writes or any other form of contention, T is marked for 

abort. Otherwise, the cloud deems  T safe to finalize 

without risking lost updates or inconsistent states. In the 

event of a conflict, the cloud broadcasts an abort 

command to every edge node that holds tentative updates 

for  T. These nodes then roll back any partially applied 

writes, maintaining a conflict-free system. If no conflicts 

surface, a commit} signal prompts each node to make 

 T’s updates permanent, ensuring that they are fully 

visible and consistent throughout the distributed 

environment. By coordinating these final steps, 

Cloud_Validate guarantees that transactions demanding 

global consistency are safely integrated, thereby closing 

any logical gaps between nodes and preserving ACID 

properties for data that crosses node boundaries. 

Algorithm 3: Cloud_Validate(T). 

Require: Input: 

• Transaction T (forwarded from edge, with read/write sets) 

Ensure: Output: 

• Final commit or abort status of T, propagated back to all 

involved edge nodes 

2.1. COLLECT VALIDATION INFORMATION: 

2. Gather T’s read/write sets from all involved edge nodes. 

2.2. GLOBAL CONFLICT CHECK: 

3. Compare T against all other global transactions not yet 

committed. 

4. If any conflict detected then 

5.  T.global_abort ← True 

6. Else 

7.  T.global_abort ← False 

2.3. RESOLUTION: 

8. If T.global_abort = True then 

9.  SEND ABORT signal to all involved edge nodes 

10.  rollback(T) 

11. Else 

12.  SEND COMMIT signal to all involved edge nodes 

13.  finalize_global_commit(T) 

14. End if 

2.4. Return Final Status: 

15. The transaction T is finalized based on the resolution step. 

This algorithmic framework for HECOCP provides a 

clear and detailed description of how sensor transactions 

are processed and validated in a hybrid edge–cloud 

environment. The protocol begins with an optimistic 

execution at the edge, where transactions read sensor 

data and perform local computations without locking 

[19]. Local validation then checks for conflicts, and if 

necessary, transactions are forwarded to the cloud for a 

global conflict check and final resolution. This dual-

layer approach ensures that most transactions are 

handled quickly at the edge, while global consistency is 
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maintained via cloud validation for those that require it. 

The representative Figure 2 visually encapsulates this 

process by illustrating the two main phases-edge 

processing and cloud processing-and showing how 

transactions traverse from local data acquisition to global 

validation and final commitment. Together, the narrative 

and pseudocode demonstrate how HECOCP effectively 

synchronizes concurrent sensor transactions, balancing 

low-latency local processing with rigorous global 

consistency checks. 

The HECOCP protocol addresses conflict detection 

and resolution through a two-tier approach, integrating 

both local and global mechanisms to maintain 

transactional integrity while minimizing overhead. At 

the edge, each node performs local conflict detection by 

conducting intersection checks between the read and 

write sets of concurrently executing transactions. 

Because an individual edge node only manages a subset 

of the overall data, these local conflict checks are 

performed at relatively low cost and with high speed. 

When a transaction is flagged for further scrutiny, the 

cloud takes on the role of orchestrating global conflict 

detection [11]. Here, the cloud gathers validation 

information from all involved edge nodes and employs a 

centralized or hierarchical TO scheme to finalize the 

relative order of global transactions. This ensures that 

transactions spanning multiple nodes maintain 

consistency. In situations where conflicts arise, 

transactions that are in progress may be aborted and 

rolled back at the edge level [4]. However, if a 

transaction does not require global consistency, it can 

commit locally without waiting for the cloud, thereby 

reducing overall latency. 

The design of HECOCP offers several advantages. Its 

optimistic approach, which defers conflict checking until 

the commit phase, maximizes concurrency and is 

particularly effective under workloads with low to 

moderate conflict rates. Although higher conflict rates 

may result in increased local aborts, the system is 

designed to allow partial commits at the edge when 

global validation is not necessary. This selective 

escalation ensures that the main communication 

overhead is only incurred for a small subset of 

transactions, preserving both efficiency and scalability 

[21, 23]. 

HECOCP significantly reduces communication 

overhead by resolving most conflicts at the edge without 

engaging global resources. Additionally, the protocol’s 

reliance on independent local concurrency checks 

enables the system to scale horizontally with the addition 

of more edge nodes. Its inherent flexibility allows it to 

be adapted to various edge–cloud topologies and 

replication strategies, making it a robust solution for 

real-time transactional sensor data management [9, 29]. 

4. Edge-Cloud Architecture 

The hybrid edge–cloud architecture is designed to 

underpin our concurrency protocol by integrating edge 

nodes, cloud services, and network interconnects. This 

integration enables scalable, low-latency transaction 

processing over sensor data [7, 28]. In this architecture, 

a set of sensors S={s1, s2, ..., sn} continuously generates 

data, with each sensor si producing measurements 

denoted by di(t) at time t. These sensors are connected to 

edge nodes, E={e1, e2, ...,em}, where each edge node ej 

is responsible for handling a subset of sensors Sj ⊆ S. 

The edge nodes perform local processing and initial 

aggregation of the sensor data, which is then forwarded 

to a central cloud layer [10]. At the cloud layer, a single 

logical entity C aggregates data from all the edge nodes. 

This global aggregation can be formalized by a function 

FC that combines the data Dj processed at each edge 

node ej into a coherent global dataset: 

𝐹𝐶(⋃ 𝐷𝑗
𝑚
𝑗=1 )=Global Aggregation of Edge Data. 

Transactional consistency is maintained through a 

two-tier validation process [11]. Each transaction Tk is 

first validated locally at an edge node, where the local 

validation function Local Validation(Tk, ej) returns true 

or false based on whether the transaction satisfies local 

consistency requirements. For transactions requiring 

broader consistency, a global validation is performed in 

the cloud via the function Global Validation(Tk, C).  

Minimizing The total transaction latency 𝐿𝑘 for 𝑇𝑘 is 

the sum of several components validation while 

upholding ACID properties represents the core challenge 

of our system design. This architecture, by localizing 

most transaction processing and offloading only critical 

global consistency checks to the cloud, aims to achieve 

a balance between low latency and strong data 

consistency across a distributed sensor network. 

 

Figure 2. A schematic overview of hybrid edge-cloud architecture. 

In Figure 2, the Sensors subgraph represents a set of 

sensor devices (S1, S2,...) that continuously generate 

data. This data is transmitted to nearby Edge Nodes 

(Edge Node e1 and e2), where local processing occurs, 

including local validation, conflict detection, and 

buffering of transactions. These edge nodes execute 

local transactions optimistically, ensuring quick 

response times. The locally processed data is then 

aggregated and sent to the Cloud Layer, represented by 

Cloud Node C, where global validation and aggregation 

ensure overall system consistency. This hierarchical 

approach minimizes latency by processing data as close 

to the source as possible while still ensuring global 

integrity through cloud-level coordination [5, 11]. 
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Within this architecture, HECOCP is employed to 

handle transactions. When a transaction is initiated at the 

edge node, the system first checks whether the data 

resources required by the transaction are localized or 

shared globally. If the data resources are local, the 

transaction undergoes local validation and commits 

immediately, thereby reducing round-trip latency to the 

cloud [31]. In cases where global consistency is 

necessary, the edge node packages the transaction’s read 

and write sets and forwards it to the cloud for conflict 

checking. This design ensures that the overhead of global 

validation is only incurred when strictly required, 

aligning with the optimistic approach at the core of 

HECOCP. 

In many sensor-based applications, fault tolerance 

and high availability are critical [9]. The proposed 

architecture supports the deployment of multiple edge 

nodes in a fault-tolerant configuration, where each 

sensor can route data to one or more alternative edge 

nodes in case of local node failures [1]. HECOCP 

integrates gracefully with such redundancy by allowing 

partial commits at the remaining operational edge nodes, 

while the cloud layer can rerun global validation for 

pending transactions. This ensures that the entire system 

remains robust, even if some nodes become temporarily 

unavailable. 

5. Performance Evaluation 

To evaluate the performance of the proposed HECOCP, 

we conducted extensive simulations designed to assess 

its efficiency in managing concurrent sensor 

transactions. The simulations were structured to measure 

key performance indicators-namely, commit rate, abort 

rate, transaction latency, and system throughput-with the 

goal of comparing HECOCP against traditional 

concurrency control mechanisms such as 2PL and 

MVCC under varying transaction workloads and 

network conditions [12]. 

 Simulation Environment 

The simulation environment was implemented using a 

custom-built discrete event simulator developed in 

Python, leveraging the SimPy library to model 

concurrent transactions realistically within a hybrid 

edge-cloud setup. In this architecture, multiple edge 

nodes are connected to a set of sensors that continuously 

generate data streams. A central cloud node aggregates 

and validates global transactions that span multiple edge 

nodes [6]. Transactions are generated at the edge nodes 

to simulate real-world sensor data updates and query 

operations. These transactions encompass both local 

operations-restricted to a single edge node-and 

distributed transactions that require multi-node 

coordination and subsequent cloud validation [3]. 

 Baseline Experiment Setup 

The baseline experiment setup was designed to simulate 

moderate-to-high concurrency scenarios without 

overwhelming the system. The number of sensors and 

edge nodes was configured to represent realistic scales 

typical of applications such as smart cities, healthcare 

monitoring, and industrial IoT. Network latencies 

between edge and cloud nodes were set based on real-

world measurements, ensuring that the simulation 

environment reflected practical deployment conditions. 

The key parameters used in the simulation are 

summarized in Table 2. 

Table 2. Baseline parameters for simulation experiments. 

Parameter Value Description 

Number of 

Sensors (N) 
1,000 

Total number of sensors generating 

continuous data streams. 

Number of Edge 
Nodes (M) 

5 
Number of edge nodes deployed to 

process sensor data locally. 

Cloud Latency 50 ms (one-way) 

Average network latency for 

communication between an edge 

node and the cloud. 

Edge Processing 
Latency 

10 ms per operation 

Average time taken by an edge 

node to process a transaction (e.g., 

read/write operations). 

Average Sensor 

Data Rate 
10 samples/sensor/sec 

Rate at which each sensor 

generates data samples. 

Conflict 

Probability 
10% 

Estimated probability of 
transaction conflicts due to 

overlapping data accesses. 

Transaction 

Arrival Rate 
100 transactions/sec 

Average rate at which transactions 

are generated at the edge nodes. 

Average 
Transaction Size 

5 items 

Typical number of data items 

(reads/writes) involved in a single 

transaction. 

Simulation 

Duration 
300 seconds 

Total time period for each 

simulation run. 

We evaluated the protocols (HECOCP, 2PL, and 

MVCC) under various load conditions and measured the 

following metrics: 

 Commit rate: the percentage of transactions that 

successfully commit. i.e., the ratio of the number of 

committed transactions to the total number of started 

transactions within the simulation time frame.  

𝐶𝑜𝑚𝑚𝑖𝑡 𝑅𝑎𝑡𝑒 =
∑ 1(𝑇𝑘.𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑=𝑡𝑢𝑟𝑒)𝑘

∑ 1(𝑇𝑘.𝑠𝑡𝑎𝑟𝑡𝑒𝑑=𝑡𝑢𝑟𝑒)𝑘
 

where 1{・} is the indicator function. 

A high commit rate indicates that the concurrency 

protocol effectively manages conflicts without aborting 

too many transactions. Aborts are costly in sensor 

applications with real-time requirements. 

 Abort rate: the percentage of transactions that fail to 

commit, either due to conflicts or protocol-specific 

constraints.  

𝐴𝑏𝑜𝑟𝑡𝑅𝑎𝑡𝑒 =
∑ 1{𝑇𝑘.𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑=𝑓𝑎𝑙𝑠}𝑘

∑ 1{𝑇𝑘.𝑠𝑡𝑎𝑟𝑡𝑒𝑑=𝑡𝑢𝑟𝑒}𝑘
 

 Transaction latency: the time interval from a 

transaction’s start to its commit or abort.  

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑇𝑘) = 𝑡𝑒𝑛𝑑
𝑘 − 𝑡𝑠𝑡𝑎𝑟𝑡

𝑘  

 Throughput scaling: the rate at which the system can 

process transactions as the number of edge nodes and 

(5) 

(7) 

(6) 
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transaction load increase.  

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
∑ 1{𝑇𝑘.𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑=𝑡𝑟𝑢𝑒}𝑘

𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

 Commit Rate Comparison 

Figure 3 compares the commit rates of HECOCP, 2PL, 

and MVCC across varying transaction arrival rates. Our 

results showed that HECOCP consistently outperforms 

both 2PL and MVCC. Specifically, HECOCP 

maintained a commit rate of approximately 96.2% at 

lower loads and remained above 88% even at higher 

loads, demonstrating its capability to handle increasing 

workloads with minimal transaction failures. 

 

Figure 3. commit rates of HECOCP, 2PL, and MVCC. 

 Abort Rate Comparison 

Figure 4 shows that HECOCP achieves the lowest abort 

rate among the three protocols, staying below 10% even 

under high transaction loads. This efficiency arises from 

the dual-layer validation (local at the edge, global only 

when needed), which reduces conflicts and defers 

expensive coordination until strictly necessary. 

 

Figure 4. Abort rates of HECOCP, 2PL, and MVCC. 

2PL, in contrast, suffers from an increasing abort rate 

as locks become a bottleneck, especially in scenarios 

with frequent updates and shared data access. MVCC 

shows a better abort rate profile than 2PL but still lags 

behind HECOCP because of delayed conflict detection 

and the overhead of maintaining multiple versions. 

 Latency Distribution 

Figure 5 presents the Cumulative Distribution Function 

(CDF) of transaction latency for each concurrency 

protocol. HECOCP demonstrated the lowest latency, 

with a majority of transactions completing within a 

shorter time window than those managed by 2PL and 

MVCC. 

 

Figure 5. cumulative distribution function (CDF) of transaction 

latency. 

The optimism of HECOCP, combined with local 

validation, enables most transactions to finalize quickly 

without waiting for global checks, unless they span 

multiple edge nodes. By contrast, 2PL experiences 

prolonged latencies due to lock contention, and MVCC 

incurs overhead in fetching and managing older data 

snapshots as concurrency levels rise. 

 Throughput Scaling 

Figure 6 illustrates how the throughput of each protocol 

scales with an increasing number of edge nodes. 

HECOCP shows near-linear scalability, indicating that 

adding more edge nodes can proportionally improve 

overall throughput. This is primarily because conflict 

checks and partial commits remain localized at each 

edge node, minimizing the need for global coordination. 

On the other hand, 2PL reveals sub-linear scaling due 

to the significant overhead introduced by lock-based 

coordination across nodes. Although MVCC scales 

better than 2PL, it does not reach the near-linear 

performance of HECOCP, partly owing to the growing 

complexity of version maintenance across multiple 

nodes. 

 

Figure 6. throughput of each protocol scales with an increasing 

number of edge nodes. 

(8) 
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As the number of edge nodes increases from 5 to 15 

in our extended simulations, HECOCP’s throughput rose 

by a factor of 2.8x, closely approximating ideal linear 

scaling. In contrast, 2PL’s throughput rose by only 1.9x 

and MVCC’s by 2x, demonstrating that neither approach 

can fully leverage the added resources. This analysis 

supports our hypothesis that local validation-an essential 

feature of HECOCP-is well-suited to distributed sensor 

networks with localized data hotspots. 

While HECOCP performs well under moderate to 

high concurrency levels, extremely high conflict 

scenarios may lead to an increased number of local 

aborts, which in turn could degrade performance. 

However, our experiments indicate that the overhead 

remains manageable when the conflict probability is kept 

near realistic levels (e.g., 10-15%). In specialized 

applications such as financial trading platforms, where 

conflict rates can spike significantly, additional 

optimizations or hybrid locking strategies might be 

required. Additionally, the system’s performance may 

also be influenced by hardware heterogeneity across 

edge nodes, which was not extensively explored in this 

simulation-based evaluation. 

Figure 7 presents a projected scalability analysis that 

illustrates how HECOCP, MVCC, and 2PL are expected 

to perform when subjected to significantly larger system 

scales-specifically, up to 500 edge nodes and thousands 

of transactions per second. On the left Y-axis, Figure 7 

plots system throughput, revealing that HECOCP scales 

almost linearly, reaching over 7,000 transactions per 

second with 500 edge nodes. In contrast, MVCC and 

2PL demonstrate diminishing throughput returns as the 

system scales, with performance bottlenecks becoming 

evident beyond 300 nodes. On the right Y-axis, Figure 7 

captures average transaction latency.  

 

Figure 7. Dual‐axis scalability analysis. 

HECOCP continues to outperform the baseline 

protocols by maintaining lower and more stable latency, 

even under high concurrency and node density. This 

dual-axis representation highlights HECOCP’s ability to 

deliver both high throughput and responsive 

performance, underscoring its architectural advantage in 

managing large-scale, distributed transaction workloads 

typical of future IoT and edge-cloud deployments. 

6. Conclusions 

This paper introduced HECOCP, a hybrid concurrency 

control protocol specifically designed for managing 

sensor transactions in edge-cloud environments. By 

prioritizing local validation at edge nodes and engaging 

global validation selectively, HECOCP significantly 

reduces contention, abort rates, and transaction latency, 

leading to higher throughput and better scalability 

compared to traditional protocols such as 2PL and 

MVCC. Our performance evaluation demonstrates that 

HECOCP consistently outperforms 2PL and MVCC 

across key metrics, making it an optimal solution for 

high-throughput, real-time applications in domains such 

as smart cities, healthcare, and industrial IoT. 

While 2PL struggles with lock contention, leading to 

increased abort rates and scalability limitations, and 

MVCC incurs high version maintenance overhead, 

restricting its performance at scale, HECOCP 

successfully balances high concurrency, low latency, 

and minimal abort rates. These advantages position 

HECOCP as a scalable, ACID-compliant solution for 

distributed sensor data management. 

Several avenues exist for future research. One 

compelling direction involves extending HECOCP to 

operate seamlessly in multi-cloud or cross-regional 

environments, where different cloud providers may have 

varying latency and resource constraints, represents an 

important step toward global-scale sensor data 

management. 
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