
756 The International Arab Journal of Information Technology, Vol. 22, No. 4, July 2025

HECOCP: Hybrid Edge-Cloud Optimistic

Concurrency Protocol for Sensor Data

Transactional Services

Abdelraouf Ishtaiwi

Faculty of Information Technology

University of Petra, Jordan

aishtaiwi@uop.edu.jo

Ahmad Nabot

Department of Software Engineering

Al-Zaytoonah University, Jordan

a.nabot@zuj.edu.Jo

Omar Alzubi

Computer Engineering Department Umm

Al-Qura University, Saudi Arabia

orzubi@uqu.edu.sa

Awad Ramadan

College of Computing in AlQunfudah

Umm Al-Qura University

Saudi Arabia

amabker@uqu.edu.sa

Abdulbasit Darem

Center for Scientific Research and

Entrepreneurship, Northern Border

University, Saudi Arabia

Basit.darem@nbu.edu.sa

Asma Alhashmi

Computer Science Department Northern

Border University, Saudi Arabia

asma.alhashmi@nbu.edu.sa

Mohammad Alauthman

Faculty of Information Technology

 University of Petra, Jordan

mohammad.alauthman@uop.edu.jo

Amjad Aldweesh

College of Computing and Information Technology

Shaqra University, Saudi Arabia

a.aldweesh@su.edu.sa

corresponding author

Abstract: This paper proposes the Hybrid Edge-Cloud Optimistic Concurrency Protocol (HECOCP), a novel approach for

efficiently managing distributed transactions on sensor data across both edge and cloud environments. By maintaining ACID

properties and emphasizing local validation at edge nodes-with global validation triggered only when needed-HECOCP

minimizes contention, lowers latency, and reduces transaction abort rates. Unlike established methods like Two-Phase Locking

(2PL), prone to lock contention, or Multi-Version Concurrency Control (MVCC), which suffers version maintenance overhead,

HECOCP achieves higher throughput and superior scalability under demanding transaction loads. Extensive simulation results

confirm that HECOCP surpasses 2PL and MVCC in commit rate, abort rate, latency, and throughput scalability. This

performance advantage makes HECOCP particularly suited to real-time applications in large-scale sensor networks, such as

smart cities, healthcare, and industrial IoT, where rapid and reliable transactional processing is critical.

Keywords: Hybrid concurrency control, local validation, global validation, edge-cloud.

Received February 5, 2025; accepted April 21, 2025

https://doi.org/10.34028/iajit/22/4/10

1. Introduction

In an era of rapid digital transformation, the

proliferation of sensor-enabled devices has resulted in

an unprecedented volume of data generation. From

smart city infrastructures and healthcare monitoring

systems to industrial IoT installations, sensors

continuously collect, transmit, and process information

to drive near real-time decision-making [2, 6, 31].

Managing this massive, geographically distributed, and

often time-sensitive data while ensuring scalability and

strong transactional guarantees has become a critical

challenge. Traditional cloud-centric solutions often

struggle to support real-time responsiveness due to

communication overhead and network latency between

edge devices and centralized data centers, which can

lead to significant delays in processing and decision

making [26, 28].

The role of edge computing, therefore, has become

increasingly prominent in addressing these bottlenecks,

as it places computation and storage resources closer to

the data source [14, 18, 23]. By processing data locally

at the edge layer, the network load can be substantially

reduced, and response times can be improved for

latency-sensitive tasks. However, ensuring that updates

to data and concurrent transactions remain consistent

across dispersed edge nodes and the cloud layer is far

from trivial. Different application domains, such as

healthcare monitoring [14], industrial IoT [7], and

mission-critical environments [15], impose stringent

requirements on both latency and consistency.

Transaction failures or data inconsistencies in these

domains can lead to adverse outcomes, including safety

hazards and resource mismanagement [20].

A promising solution to the challenges of managing

massive volumes of sensor data in real-time is the hybrid

edge-cloud architecture [27], as depicted in Figure 1.

This architecture strategically distributes computational

mailto:aishtaiwi@uop.edu.jo
mailto:a.nabot@zuj.edu.Jo
mailto:orzubi@uqu.edu.sa
mailto:asma.alhashmi@nbu.edu.sa
mailto:mohammad.alauthman@uop.edu.jo
mailto:a.aldweesh@su.edu.sa
https://doi.org/10.34028/iajit/22/4/10

HECOCP: Hybrid Edge-Cloud Optimistic Concurrency Protocol for Sensor Data … 757

and storage resources across two distinct levels: an edge

layer, located in close proximity to the data sources, and

a cloud layer, which offers substantial processing power

along with global coordination capabilities [13, 22, 29].

By offloading real-time computational tasks and

preliminary data processing to the edge nodes, the hybrid

model effectively mitigates latency and reduces network

congestion. Meanwhile, the cloud layer aggregates and

further analyzes the processed data for advanced

analytics and long-term storage, as demonstrated.

Figure 1. Conceptual framework.

While the hybrid edge-cloud model significantly

reduces latency and enhances responsiveness, it also

introduces new complexities in managing distributed

transactions. Traditional concurrency control

mechanisms such as Two-Phase Locking (2PL),

Timestamp Ordering (TO), and Multi-Version

Concurrency Control (MVCC) were originally designed

for centralized databases and often underperform when

applied directly to such distributed systems [8, 11, 17].

These methods tend to incur increased coordination

overhead and fail to fully exploit the benefits of the

hierarchical architecture, as noted by [8, 17]. The figure

thus not only illustrates the structural benefits of the

hybrid approach but also underscores the need for

advanced, adaptive protocols like our proposed Hybrid

Edge-Cloud Optimistic Concurrency Protocol

(HECOCP) to efficiently manage real-time sensor

transactions in such environments.

To address these issues, we propose the HECOCP, a

novel mechanism specifically designed for managing

real-time transactional services in sensor-based edge-

cloud environments. HECOCP integrates local

validation at each edge node to rapidly detect conflicts

and reduce synchronization overhead, and global

validation at the cloud layer to enforce cross-node

consistency. This two-tiered approach balances speed

and correctness, accommodating the high data ingestion

rates, bursty arrivals, and localized hotspots typical in

sensor networks. For instance, in environments where

sensors continuously stream data for traffic management

or patient monitoring, HECOCP can quickly validate

transactions locally while ensuring that any critical

cross-node conflicts are resolved at the cloud level [4, 5].

Our contributions are fourfold. First, we introduce

HECOCP, an adaptive hybrid concurrency control

protocol that minimizes cross-edge conflicts and

controls global abort rates while ensuring ACID

properties. Second, we formalize a mathematical sensor

transaction model that rigorously defines how sensor

data is collected, processed, and updated at both the edge

and cloud layers. Third, we propose a scalable hybrid

edge-cloud architecture that incorporates design

elements such as local buffering, partial aggregation, and

global synchronization, supported by thorough

performance analysis. Finally, extensive simulation

experiments demonstrate that HECOCP outperforms

traditional concurrency control protocols in terms of

commit rates, abort rates, and end-to-end transaction

latency, making it particularly suitable for real-time

applications in smart cities, healthcare, industrial

automation, and vehicular networks [3, 12].

By fusing theoretical insights with practical

implementation strategies, this work provides a robust

solution for managing concurrent sensor data

transactions in distributed environments. The remainder

of this paper is organized into several sections that cover

a detailed review of related work, the mathematical

foundation of the sensor transaction model, a

comprehensive description of the HECOCP protocol and

hybrid architecture, simulation-based performance

evaluations, and finally, conclusions with a discussion

on limitations and future research directions.

2. Related Works

Recent research in sensor data management and real-

time transactional services has explored various aspects

of concurrency control, data processing frameworks,

and application-specific requirements within edge–

cloud architectures. Traditional databases rely on

concurrency control mechanisms such as 2PL, TO, and

MVCC [8, 17], and these strategies have been

foundational in distributed database theory for decades.

However, while these methods work effectively in

centralized systems, their performance often degrades in

distributed, geo-replicated environments because of

increased coordination overhead [4, 11].

Although 2PL ensures serializability, its strict lock

management leads to deadlocks and reduced

concurrency in multi-edge systems, especially under

high conflict scenarios [8]. Studies such as in [19]

introduce priority-based locking to mitigate some of

these issues, but the overhead remains significant in

edge-cloud contexts.

758 The International Arab Journal of Information Technology, Vol. 22, No. 4, July 2025

TO-based systems like the ones discussed in [17] rely

on synchronized clocks to determine the serialization

order of transactions. However, maintaining consistent

timestamps across geographically dispersed edge nodes

is challenging [1]; any clock drifts can disrupt the

correctness of the ordering, making pure TO approaches

less suitable for dynamic IoT environments.

MVCC minimizes read-write conflicts by allowing

concurrent reads of older snapshots [4]. Systems like

FaRM [13] and Calvin [24] demonstrate the potential of

MVCC-based or hybrid concurrency approaches in

distributed settings. While these systems handle

partitioned workloads efficiently, they still rely on global

ordering steps that introduce additional latency in edge-

cloud scenarios [11].

Hybrid approaches such as the concurrency control

protocol proposed by Al-Qerem et al. [5] explored

cooperative OCC variants within fog-cloud

environments, reducing the dependency on a centralized

cloud for all validations. Additionally, frameworks like

EdgeDB [22] and IoTCloud [28] have been developed to

offload computations to the edge, improving response

times. However, these systems often do not guarantee

strong ACID transactions and rely on simplified

concurrency approaches, such as eventual consistency

[16], which might be insufficient in applications like

healthcare or financial services [12].

Fog-based replication and consistency management.

Al-Qerem et al. [3] presented a fog-based approach to

replication that aims to reduce latency by bringing

replicas closer to data sources. While effective in certain

scenarios, it often requires complex replica management

and can still suffer from incomplete global consistency

checks, especially when dealing with update-heavy

workloads.

Real-time sensor databases typically adopt soft real-

time constraints with immediate or deferred update

strategies, whereas stream processing engines focus on

continuous queries without enforcing full ACID

properties [7, 30]. Hybrid Transaction/Analytical

systems (HTAP) attempt to unify OLTP and OLAP

functionalities but often overlook the physical

distribution of sensors and edge nodes. A key research

gap lies in the need for protocols that can manage high

ingestion rates, geographical dispersal, and real-time

partial commits required by sensor-based edge–cloud

systems [15, 22, 25]. Our proposed HECOCP addresses

this gap by employing local validation at edge nodes and

global validation at the cloud to balance performance

with strong consistency.

Table 1. Summary of related works on concurrency control in edge/fog/cloud systems.

Study (Year) Concurrency method Edge involvement Key insights/limitations

(1997) [19] 2PL with priority Low Reduces priority inversion, but still suffers under heavy conflict

(2017) [12] 2PL, TO, MVCC Minimal Comprehensive evaluation in in-memory contexts; not sensor specific

(2023) [5] Augmented OCCin fog-cloud High Lowers communication overhead; primarily read-heavy evaluations

(2014) [16] Eventual Consistency Moderate Bounded update propagation, but lacks full ACID guarantees

(2022) [3] Fog-based replication and consistency High Reduces latency via local replicas, overhead grows with large updates

(2025) [26] Edge computing architecture High Discussion of future challenges; less emphasis on concurrency details

(2021) [11] Distributed CC protocol for edge-cloud High Addresses concurrency in partitioned data, but global ordering still a challenge

Table 1 provides a concise overview of several

foundational and recent works relevant to this research.

Collectively, these works demonstrate the trade-offs

inherent in managing sensor transactions in distributed

environments, highlighting the challenges of achieving

both low latency and strong consistency. Our approach

builds on these insights by introducing HECOCP, a

protocol that employs a two-tier validation mechanism

to efficiently manage concurrent transactions while

preserving ACID properties.

Real-world applications further illustrate the

importance of robust sensor data management [32].

In smart cities, for example, thousands of sensors-

such as traffic sensors, surveillance cameras, and smart

meters-generate continuous data streams that must be

processed in real time to manage urban services

effectively [2, 31]. City transportation systems rely on

this data to adjust traffic signals dynamically and

respond to incidents promptly, ensuring that decisions

such as altering traffic light patterns are executed in sub-

millisecond timeframes [33].

Similarly, in healthcare, wearable sensors

continuously monitor patient vitals, and edge based

processing enables rapid alert generation for abnormal

conditions, thereby ensuring timely medical

interventions [14, 18]. Industrial environments,

including factories and power grids, leverage sensor data

to monitor machine performance and trigger

maintenance actions in real time, while vehicular

networks and autonomous systems use edge processing

to fuse sensor data quickly for critical decision-making.

Despite the diverse requirements across these domains,

a common need exists for transactional systems that

offer both low-latency local processing and robust global

consistency [20].

The underlying data management techniques-such as

advanced concurrency control, edge–cloud distribution,

and latency optimizations—serve as the backbone for

these applications, ensuring that data remains consistent

and actionable even under heavy loads and rapid update

scenarios. Whether coordinating citywide traffic flows

or ensuring patient safety in hospitals, the ability to

process and manage sensor transactions in real time is

essential [9].

3. Transactional Services

Transactional services play a crucial role in ensuring

data consistency, reliability, and integrity within

distributed systems. In the context of edge-cloud

HECOCP: Hybrid Edge-Cloud Optimistic Concurrency Protocol for Sensor Data … 759

environments, transactional services manage data

operations across multiple nodes, ensuring that updates

adhere to ACID (Atomicity, Consistency, Isolation,

Durability) properties. These services help coordinate

concurrent access to shared data, prevent conflicts, and

ensure that transactions either fully complete or roll back

in case of failures. Effective transaction management is

particularly essential in sensor networks, where data

must be continuously processed, stored, and

synchronized across edge nodes and cloud servers. By

leveraging hybrid edge-cloud transactional services,

organizations can achieve real-time data processing

while maintaining strong consistency across distributed

systems.

Figure 1 visually represents this sensor transaction

model within the hybrid edge–cloud framework. In the

figure, sensors (s1, s2,..., s5) are positioned at the highest

layer, where they generate real-time data. These data

streams are then processed through intermediary

transactions (T1,T2,...,T5) that interact with edge nodes

(e1, e2), which are responsible for the initial aggregation

and processing of the sensor inputs. Subsequently, the

data undergoes edge-level aggregation (A1, A2), serving

as an intermediate processing step prior to transmission

to the cloud. At the cloud level, a central cloud node (c1)

handles advanced data analytics and long-term storage,

culminating in a final Cloud Aggregation (CA) where

the processed data is fully integrated.

3.1. Sensor Transaction Model

This section presents a mathematical definition of the

sensor transaction model, which forms the core

foundation for concurrency control in hybrid edge–

cloud architectures. Sensor transactions arise from

operations such as data collection, aggregation, and

updates performed over geographically dispersed

sensors that feed into both edge and cloud layers.

Let S={s1, s2, … , sn} be a set of n sensors, each

capable of producing a continuous stream of data

readings. The output of sensor 𝑆𝑖 at time t is denoted by

di(t), representing any form of measurement such as

temperature, pressure, or motion. The data generation

rate of each sensor, denoted by Ri (measured in samples

per second), varies depending on application

requirements, environmental conditions, or device

capabilities. Each sensor 𝑠𝑖 independently produces data

points {di(t1), di(t2),…} These data points are

accumulated or partially processed at a corresponding

edge node, or they are aggregated with readings from

other sensors for advanced processing.

A transaction Tk is defined as a logical unit of work

on sensor data, encapsulating a set of read and write

operations that must be executed atomically to preserve

semantic correctness.

Formally, a transaction Tk is represented by the tuple:

𝑇𝑘 = (𝑅𝑘, 𝑊𝑘, 𝑡𝑘𝑠𝑡𝑎𝑟𝑡, 𝑡𝑘𝑐𝑜𝑚𝑚𝑖𝑡)

Where RK={rk1, rk2, …} is the read set, identifying the

data elements (sensor readings or derived information)

that the transaction accesses, and

𝑊𝑘 = {𝑤𝑘1, 𝑤𝑘2, … }

is the write set, specifying the data items or states that Tk

modifies. The timestamps tkstart and tkkcommit indicate the

start and commit times of the transaction, with the

condition that tkkcommit>tkstart. If the transaction completes

successfully while respecting concurrency constraints, it

commits; otherwise, it is aborted and rolled back to the

pre-transaction state.

Sensor transactions in this model adhere to the

classical ACID properties. Atomicity ensures that each

transaction commits all its operations or none at all.

Consistency requires that transactions transition the

system from one valid state to another, according to

predetermined domain rules such as sensor calibration

constraints. Isolation guarantees that no transaction can

see partial effects of other concurrent transactions; in a

distributed environment, partial or local commits are

hidden until global validation. Durability means that

once a transaction is globally committed, its effects

persist even in the event of subsequent failures.

Because sensors are geographically scattered,

transactions often span multiple edge nodes. Let E={e1,

e2, …, em} be a set of m edge nodes. Each transaction

Tk may involve local operations performed at different

edge nodes, along with additional global operations

carried out at a central cloud resource C. In this context,

𝑇𝑘=(𝑇𝑒1
𝑘 ,𝑇𝑒2

𝑘 ,…,𝑇𝑒𝑚
𝑘 ,𝑇𝐶

𝑘)

Where 𝑇𝑒𝑖
𝑘 represents the local operations executed at

edge node ei and 𝑇𝑐
𝑘 represents the global or cloud-level

operations. The total transaction latency Lk for Tk is the

sum of several components validation:

𝐿
𝑘=(𝐿𝑘

𝑒𝑑𝑔𝑒
+ 𝐿𝑘

𝑐𝑙𝑜𝑢𝑑+𝐿𝑘)

where, 𝑇𝑘
𝑒𝑑𝑔𝑒

 denotes the time spent executing or

validating the transaction locally at the edge, 𝐿𝑘
cloud is

the time required for data transfer and additional

processing or validation in the cloud, and 𝐿𝑘
validation is

the time consumed by concurrency control checks such

as conflict resolution or rollback. The overall goal of the

model is to minimize both local and global validation

overheads, which is central to the design of the

HECOCP.

This sensor transaction model establishes the formal

basis for concurrency management in our system. It

clarifies how sensor data is logically grouped into

transactions, how these transactions are distributed

across edge and cloud nodes, and what constraints must

be met to maintain data integrity in a hybrid edge–cloud

environment. When dealing with sensor transactions,

unique challenges emerge, particularly regarding real-

time data availability, partial failures, and fluctuations in

network conditions. For example, a transaction in an

(3)

(4)

(2)

(1)

760 The International Arab Journal of Information Technology, Vol. 22, No. 4, July 2025

industrial IoT environment might involve sensor s1

measuring machine vibration levels, sensor s2 tracking

temperature, and sensor s3 providing real-time location

data for parts on an assembly line. These multiple data

points need to be read, processed, and updated

atomically to trigger timely operational decisions, such

as adjusting machine parameters. If any of these updates

are delayed or fail, the system could lose

synchronization, resulting in inaccurate decisions or

even safety hazards.

Moreover, certain edge nodes may have intermittent

connectivity due to environmental conditions or

bandwidth constraints, which can disrupt the flow of

sensor transactions. In such cases, the concurrency

control mechanism must account for partial updates and

potential rollbacks while still ensuring data consistency

across the broader edge-cloud system. HECOCP

addresses these issues by integrating local and global

validations, reducing the complexity associated with

partial connectivity while still providing low-latency

local commits.

3.2. Proposed Concurrency Control Protocol:

HECOCP

Managing concurrent sensor transactions in a distributed

edge-cloud environment presents unique challenges due

to the high-volume, real-time nature of sensor data.

Traditional concurrency control methods, such as 2PL

and TO, often suffer from high coordination overhead

and latency when applied to such distributed systems [8].

In response, we propose the HECOCP, which leverages

optimistic concurrency control to minimize locking

overhead by deferring conflict detection until commit

time. This protocol is specifically designed for sensor-

driven applications where transactions must complete

quickly while still ensuring global consistency [13].

In HECOCP, transactions are initiated at the edge,

where they first execute a read phase without acquiring

any locks. During this phase, each transaction retrieves

the current values of the required sensor data items and

performs local computations optimistically.

The transaction then moves to a write phase, buffering

its intended updates locally. Next, a local validation

phase is executed at the edge node; here, the protocol

checks for conflicts between concurrently committing

transactions by comparing the transaction’s read and

write sets with those of other active transactions. If a

conflict is detected based on a predefined ordering rule,

the transaction is aborted immediately to avoid

inconsistencies. If no conflict is found, the transaction is

tentatively committed at the edge.

After local validation, a global trigger check

determines whether the transaction requires further

consistency verification at the cloud level. For

transactions that only involve local data, a final commit

can be performed immediately at the edge. However, if

a transaction spans multiple edge nodes or affects data

that is shared globally, it is forwarded to the cloud for

global validation. At the cloud layer, the protocol

collects comprehensive validation information-

specifically, the read and write sets-from all the involved

edge nodes. A global conflict check is then performed

against all global transactions that have not yet

committed. Based on this evaluation, the cloud sends

either a commit signal (if no conflicts are detected) or an

abort signal (if conflicts are found) to all the edge nodes

involved in the transaction. Once the commit signal is

received, the transaction is finalized globally, thereby

ensuring that the overall system state remains consistent.

Algorithm 1: Edge_Execute_Phases (T).

Require: Input:

• Transaction T with read set T.R and write set T.W

• Current sensor data values available at the edge

Ensure: Output:

• Partially updated transaction state (after read and write

phases)

1.1. READ PHASE:

2. For each data item d in T.R do

3. T.local.reads[d] ← current_value_of(d)

4. End for

5. Execute local computations based on T.local.reads without

acquiring locks.

1.2. WRITE PHASE:

7. Buffer all intended updates into T.W.

In the Algorithm (1) called Edge_Execute_Phases, the

transaction T arrives at an edge node that manages a

specific subset of sensor data. This sub-algorithm

consists of two primary phases:

When  T is initiated, it fetches the current values of

each data item in its read set. During this step, no locks

are acquired-a deliberate decision reflecting HECOCP’s

optimistic approach. By allowing reads to occur

concurrently, the system takes advantage of the typically

short-lived nature of sensor transactions, which often

read more data than they modify. This design is

especially effective in sensor-intensive environments,

such as large-scale IoT deployments, where continuous

streams of updates and queries must be handled quickly.

After collecting and processing the requisite data,  T

buffers its intended updates locally. These changes are

not immediately applied to shared storage, preventing

incomplete or conflicting modifications from becoming

visible to other transactions prematurely. By deferring

write visibility, HECOCP sidesteps the need for early

locking or synchronization overhead, thereby increasing

transaction throughput while still ensuring that potential

conflicts are resolved later.

The transaction T holds both its original read set and

any new updates in its write set. No permanent

alterations to the system state have been made yet;  T

remain isolated until validation confirms that its changes

do not conflict with other concurrent transactions. This

isolation forms the basis for HECOCP’s next steps,

where local and possibly global validations will

determine whether  T commits or aborts.

HECOCP: Hybrid Edge-Cloud Optimistic Concurrency Protocol for Sensor Data … 761

Algorithm 2: Local_Validation_and_Trigger(T, ActiveTxns).

Require: Input:

• Transaction T (already containing read/write sets and local

updates)

• List of concurrently committing transactions at the edge,

ActiveTxns

Ensure: Output:

• Either a local commit, an immediate abort, or a request for

global validation

1.3. LOCAL VALIDATION:

2. For each active transaction T’ in ActiveTxns do

3. if (T.W ∩ T’.R ≠ ∅) OR (T.W ∩ T’.W ≠ ∅) then

4. if ordering_rule(T, T’) indicates a conflict then

5. T.abort ← True

6. return // Abort immediately

7. end if

8. end if

9. End for

10. If no conflicts detected, set T.local_commit ← True

(indicating a tentative commit at the edge)

1.4. GLOBAL TRIGGER CHECK:

11. if T requires global consistency (e.g., spans multiple edge

nodes) then

12. SEND T to CLOUD_VALIDATE

13. return // Proceed to global validation

14. else

15. finalize_local_commit(T)

16. return // No global check needed

17. end if

After a transaction T has completed its execution phases

at an edge node, it enters the

Local_Validation_and_Trigger step. Algorithm (2)

addresses two critical objectives: first, it checks whether

T conflicts with other locally active transactions; second,

it determines if  T must undergo a broader, cloud-based

validation. The Algorithm (2) inspects both the read and

write sets of  T against the read/write sets of transactions

currently in the commit queue. If overlapping data items

are found-especially in situations where multiple

transactions wish to update the same item-an ordering

rule decides which transaction may continue. Should  T

lose this ordering, it aborts immediately, rolling back any

changes it tentatively staged. This ensures that

conflicting updates are resolved at the edge level without

burdening the rest of the system. If  T survives local

validation, the next question is whether the transaction

affects data beyond a single node or whether local policy

requires a cloud-based check. If it does,  T ascends to the

cloud for Algorithm (3). Otherwise,  T completes its

commit right at the edge, instantly making its updates

visible. This selective escalation is a defining feature of

HECOCP, allowing purely local transactions to finalize

swiftly while ensuring system-wide consistency for

transactions with a broader scope. That is the transaction

T is either aborted, fully committed locally, or directed

to the cloud for a comprehensive global validation.

When a transaction T requires cross-node

consistency, it proceeds to the cloud layer, where the

Cloud_Validate Algorithm (3) centralizes conflict

detection and final decision-making across all edge

nodes involved. Upon arrival in the cloud,  T undergoes

an information-gathering process. The protocol compiles

partial commits, as well as  Ts complete read and write

sets, from each edge node that participated in the

transaction. This consolidated perspective is critical for

multi-edge transactions, ensuring that no conflicts

remain hidden within isolated nodes. Next, the cloud

compares  T against all other globally pending

transactions. If the comparison reveals overlapping

writes or any other form of contention, T is marked for

abort. Otherwise, the cloud deems  T safe to finalize

without risking lost updates or inconsistent states. In the

event of a conflict, the cloud broadcasts an abort

command to every edge node that holds tentative updates

for  T. These nodes then roll back any partially applied

writes, maintaining a conflict-free system. If no conflicts

surface, a commit} signal prompts each node to make

 T’s updates permanent, ensuring that they are fully

visible and consistent throughout the distributed

environment. By coordinating these final steps,

Cloud_Validate guarantees that transactions demanding

global consistency are safely integrated, thereby closing

any logical gaps between nodes and preserving ACID

properties for data that crosses node boundaries.

Algorithm 3: Cloud_Validate(T).

Require: Input:

• Transaction T (forwarded from edge, with read/write sets)

Ensure: Output:

• Final commit or abort status of T, propagated back to all

involved edge nodes

2.1. COLLECT VALIDATION INFORMATION:

2. Gather T’s read/write sets from all involved edge nodes.

2.2. GLOBAL CONFLICT CHECK:

3. Compare T against all other global transactions not yet

committed.

4. If any conflict detected then

5. T.global_abort ← True

6. Else

7. T.global_abort ← False

2.3. RESOLUTION:

8. If T.global_abort = True then

9. SEND ABORT signal to all involved edge nodes

10. rollback(T)

11. Else

12. SEND COMMIT signal to all involved edge nodes

13. finalize_global_commit(T)

14. End if

2.4. Return Final Status:

15. The transaction T is finalized based on the resolution step.

This algorithmic framework for HECOCP provides a

clear and detailed description of how sensor transactions

are processed and validated in a hybrid edge–cloud

environment. The protocol begins with an optimistic

execution at the edge, where transactions read sensor

data and perform local computations without locking

[19]. Local validation then checks for conflicts, and if

necessary, transactions are forwarded to the cloud for a

global conflict check and final resolution. This dual-

layer approach ensures that most transactions are

handled quickly at the edge, while global consistency is

762 The International Arab Journal of Information Technology, Vol. 22, No. 4, July 2025

maintained via cloud validation for those that require it.

The representative Figure 2 visually encapsulates this

process by illustrating the two main phases-edge

processing and cloud processing-and showing how

transactions traverse from local data acquisition to global

validation and final commitment. Together, the narrative

and pseudocode demonstrate how HECOCP effectively

synchronizes concurrent sensor transactions, balancing

low-latency local processing with rigorous global

consistency checks.

The HECOCP protocol addresses conflict detection

and resolution through a two-tier approach, integrating

both local and global mechanisms to maintain

transactional integrity while minimizing overhead. At

the edge, each node performs local conflict detection by

conducting intersection checks between the read and

write sets of concurrently executing transactions.

Because an individual edge node only manages a subset

of the overall data, these local conflict checks are

performed at relatively low cost and with high speed.

When a transaction is flagged for further scrutiny, the

cloud takes on the role of orchestrating global conflict

detection [11]. Here, the cloud gathers validation

information from all involved edge nodes and employs a

centralized or hierarchical TO scheme to finalize the

relative order of global transactions. This ensures that

transactions spanning multiple nodes maintain

consistency. In situations where conflicts arise,

transactions that are in progress may be aborted and

rolled back at the edge level [4]. However, if a

transaction does not require global consistency, it can

commit locally without waiting for the cloud, thereby

reducing overall latency.

The design of HECOCP offers several advantages. Its

optimistic approach, which defers conflict checking until

the commit phase, maximizes concurrency and is

particularly effective under workloads with low to

moderate conflict rates. Although higher conflict rates

may result in increased local aborts, the system is

designed to allow partial commits at the edge when

global validation is not necessary. This selective

escalation ensures that the main communication

overhead is only incurred for a small subset of

transactions, preserving both efficiency and scalability

[21, 23].

HECOCP significantly reduces communication

overhead by resolving most conflicts at the edge without

engaging global resources. Additionally, the protocol’s

reliance on independent local concurrency checks

enables the system to scale horizontally with the addition

of more edge nodes. Its inherent flexibility allows it to

be adapted to various edge–cloud topologies and

replication strategies, making it a robust solution for

real-time transactional sensor data management [9, 29].

4. Edge-Cloud Architecture

The hybrid edge–cloud architecture is designed to

underpin our concurrency protocol by integrating edge

nodes, cloud services, and network interconnects. This

integration enables scalable, low-latency transaction

processing over sensor data [7, 28]. In this architecture,

a set of sensors S={s1, s2, ..., sn} continuously generates

data, with each sensor si producing measurements

denoted by di(t) at time t. These sensors are connected to

edge nodes, E={e1, e2, ...,em}, where each edge node ej

is responsible for handling a subset of sensors Sj ⊆ S.

The edge nodes perform local processing and initial

aggregation of the sensor data, which is then forwarded

to a central cloud layer [10]. At the cloud layer, a single

logical entity C aggregates data from all the edge nodes.

This global aggregation can be formalized by a function

FC that combines the data Dj processed at each edge

node ej into a coherent global dataset:

𝐹𝐶(⋃ 𝐷𝑗
𝑚
𝑗=1)=Global Aggregation of Edge Data.

Transactional consistency is maintained through a

two-tier validation process [11]. Each transaction Tk is

first validated locally at an edge node, where the local

validation function Local Validation(Tk, ej) returns true

or false based on whether the transaction satisfies local

consistency requirements. For transactions requiring

broader consistency, a global validation is performed in

the cloud via the function Global Validation(Tk, C).

Minimizing The total transaction latency 𝐿𝑘 for 𝑇𝑘 is

the sum of several components validation while

upholding ACID properties represents the core challenge

of our system design. This architecture, by localizing

most transaction processing and offloading only critical

global consistency checks to the cloud, aims to achieve

a balance between low latency and strong data

consistency across a distributed sensor network.

Figure 2. A schematic overview of hybrid edge-cloud architecture.

In Figure 2, the Sensors subgraph represents a set of

sensor devices (S1, S2,...) that continuously generate

data. This data is transmitted to nearby Edge Nodes

(Edge Node e1 and e2), where local processing occurs,

including local validation, conflict detection, and

buffering of transactions. These edge nodes execute

local transactions optimistically, ensuring quick

response times. The locally processed data is then

aggregated and sent to the Cloud Layer, represented by

Cloud Node C, where global validation and aggregation

ensure overall system consistency. This hierarchical

approach minimizes latency by processing data as close

to the source as possible while still ensuring global

integrity through cloud-level coordination [5, 11].

HECOCP: Hybrid Edge-Cloud Optimistic Concurrency Protocol for Sensor Data … 763

Within this architecture, HECOCP is employed to

handle transactions. When a transaction is initiated at the

edge node, the system first checks whether the data

resources required by the transaction are localized or

shared globally. If the data resources are local, the

transaction undergoes local validation and commits

immediately, thereby reducing round-trip latency to the

cloud [31]. In cases where global consistency is

necessary, the edge node packages the transaction’s read

and write sets and forwards it to the cloud for conflict

checking. This design ensures that the overhead of global

validation is only incurred when strictly required,

aligning with the optimistic approach at the core of

HECOCP.

In many sensor-based applications, fault tolerance

and high availability are critical [9]. The proposed

architecture supports the deployment of multiple edge

nodes in a fault-tolerant configuration, where each

sensor can route data to one or more alternative edge

nodes in case of local node failures [1]. HECOCP

integrates gracefully with such redundancy by allowing

partial commits at the remaining operational edge nodes,

while the cloud layer can rerun global validation for

pending transactions. This ensures that the entire system

remains robust, even if some nodes become temporarily

unavailable.

5. Performance Evaluation

To evaluate the performance of the proposed HECOCP,

we conducted extensive simulations designed to assess

its efficiency in managing concurrent sensor

transactions. The simulations were structured to measure

key performance indicators-namely, commit rate, abort

rate, transaction latency, and system throughput-with the

goal of comparing HECOCP against traditional

concurrency control mechanisms such as 2PL and

MVCC under varying transaction workloads and

network conditions [12].

 Simulation Environment

The simulation environment was implemented using a

custom-built discrete event simulator developed in

Python, leveraging the SimPy library to model

concurrent transactions realistically within a hybrid

edge-cloud setup. In this architecture, multiple edge

nodes are connected to a set of sensors that continuously

generate data streams. A central cloud node aggregates

and validates global transactions that span multiple edge

nodes [6]. Transactions are generated at the edge nodes

to simulate real-world sensor data updates and query

operations. These transactions encompass both local

operations-restricted to a single edge node-and

distributed transactions that require multi-node

coordination and subsequent cloud validation [3].

 Baseline Experiment Setup

The baseline experiment setup was designed to simulate

moderate-to-high concurrency scenarios without

overwhelming the system. The number of sensors and

edge nodes was configured to represent realistic scales

typical of applications such as smart cities, healthcare

monitoring, and industrial IoT. Network latencies

between edge and cloud nodes were set based on real-

world measurements, ensuring that the simulation

environment reflected practical deployment conditions.

The key parameters used in the simulation are

summarized in Table 2.

Table 2. Baseline parameters for simulation experiments.

Parameter Value Description

Number of

Sensors (N)
1,000

Total number of sensors generating

continuous data streams.

Number of Edge
Nodes (M)

5
Number of edge nodes deployed to

process sensor data locally.

Cloud Latency 50 ms (one-way)

Average network latency for

communication between an edge

node and the cloud.

Edge Processing
Latency

10 ms per operation

Average time taken by an edge

node to process a transaction (e.g.,

read/write operations).

Average Sensor

Data Rate
10 samples/sensor/sec

Rate at which each sensor

generates data samples.

Conflict

Probability
10%

Estimated probability of
transaction conflicts due to

overlapping data accesses.

Transaction

Arrival Rate
100 transactions/sec

Average rate at which transactions

are generated at the edge nodes.

Average
Transaction Size

5 items

Typical number of data items

(reads/writes) involved in a single

transaction.

Simulation

Duration
300 seconds

Total time period for each

simulation run.

We evaluated the protocols (HECOCP, 2PL, and

MVCC) under various load conditions and measured the

following metrics:

 Commit rate: the percentage of transactions that

successfully commit. i.e., the ratio of the number of

committed transactions to the total number of started

transactions within the simulation time frame.

𝐶𝑜𝑚𝑚𝑖𝑡 𝑅𝑎𝑡𝑒 =
∑ 1(𝑇𝑘.𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑=𝑡𝑢𝑟𝑒)𝑘

∑ 1(𝑇𝑘.𝑠𝑡𝑎𝑟𝑡𝑒𝑑=𝑡𝑢𝑟𝑒)𝑘

where 1{・} is the indicator function.

A high commit rate indicates that the concurrency

protocol effectively manages conflicts without aborting

too many transactions. Aborts are costly in sensor

applications with real-time requirements.

 Abort rate: the percentage of transactions that fail to

commit, either due to conflicts or protocol-specific

constraints.

𝐴𝑏𝑜𝑟𝑡𝑅𝑎𝑡𝑒 =
∑ 1{𝑇𝑘.𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑=𝑓𝑎𝑙𝑠}𝑘

∑ 1{𝑇𝑘.𝑠𝑡𝑎𝑟𝑡𝑒𝑑=𝑡𝑢𝑟𝑒}𝑘

 Transaction latency: the time interval from a

transaction’s start to its commit or abort.

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑇𝑘) = 𝑡𝑒𝑛𝑑
𝑘 − 𝑡𝑠𝑡𝑎𝑟𝑡

𝑘

 Throughput scaling: the rate at which the system can

process transactions as the number of edge nodes and

(5)

(7)

(6)

764 The International Arab Journal of Information Technology, Vol. 22, No. 4, July 2025

transaction load increase.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
∑ 1{𝑇𝑘.𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑=𝑡𝑟𝑢𝑒}𝑘

𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 Commit Rate Comparison

Figure 3 compares the commit rates of HECOCP, 2PL,

and MVCC across varying transaction arrival rates. Our

results showed that HECOCP consistently outperforms

both 2PL and MVCC. Specifically, HECOCP

maintained a commit rate of approximately 96.2% at

lower loads and remained above 88% even at higher

loads, demonstrating its capability to handle increasing

workloads with minimal transaction failures.

Figure 3. commit rates of HECOCP, 2PL, and MVCC.

 Abort Rate Comparison

Figure 4 shows that HECOCP achieves the lowest abort

rate among the three protocols, staying below 10% even

under high transaction loads. This efficiency arises from

the dual-layer validation (local at the edge, global only

when needed), which reduces conflicts and defers

expensive coordination until strictly necessary.

Figure 4. Abort rates of HECOCP, 2PL, and MVCC.

2PL, in contrast, suffers from an increasing abort rate

as locks become a bottleneck, especially in scenarios

with frequent updates and shared data access. MVCC

shows a better abort rate profile than 2PL but still lags

behind HECOCP because of delayed conflict detection

and the overhead of maintaining multiple versions.

 Latency Distribution

Figure 5 presents the Cumulative Distribution Function

(CDF) of transaction latency for each concurrency

protocol. HECOCP demonstrated the lowest latency,

with a majority of transactions completing within a

shorter time window than those managed by 2PL and

MVCC.

Figure 5. cumulative distribution function (CDF) of transaction

latency.

The optimism of HECOCP, combined with local

validation, enables most transactions to finalize quickly

without waiting for global checks, unless they span

multiple edge nodes. By contrast, 2PL experiences

prolonged latencies due to lock contention, and MVCC

incurs overhead in fetching and managing older data

snapshots as concurrency levels rise.

 Throughput Scaling

Figure 6 illustrates how the throughput of each protocol

scales with an increasing number of edge nodes.

HECOCP shows near-linear scalability, indicating that

adding more edge nodes can proportionally improve

overall throughput. This is primarily because conflict

checks and partial commits remain localized at each

edge node, minimizing the need for global coordination.

On the other hand, 2PL reveals sub-linear scaling due

to the significant overhead introduced by lock-based

coordination across nodes. Although MVCC scales

better than 2PL, it does not reach the near-linear

performance of HECOCP, partly owing to the growing

complexity of version maintenance across multiple

nodes.

Figure 6. throughput of each protocol scales with an increasing

number of edge nodes.

(8)

HECOCP: Hybrid Edge-Cloud Optimistic Concurrency Protocol for Sensor Data … 765

As the number of edge nodes increases from 5 to 15

in our extended simulations, HECOCP’s throughput rose

by a factor of 2.8x, closely approximating ideal linear

scaling. In contrast, 2PL’s throughput rose by only 1.9x

and MVCC’s by 2x, demonstrating that neither approach

can fully leverage the added resources. This analysis

supports our hypothesis that local validation-an essential

feature of HECOCP-is well-suited to distributed sensor

networks with localized data hotspots.

While HECOCP performs well under moderate to

high concurrency levels, extremely high conflict

scenarios may lead to an increased number of local

aborts, which in turn could degrade performance.

However, our experiments indicate that the overhead

remains manageable when the conflict probability is kept

near realistic levels (e.g., 10-15%). In specialized

applications such as financial trading platforms, where

conflict rates can spike significantly, additional

optimizations or hybrid locking strategies might be

required. Additionally, the system’s performance may

also be influenced by hardware heterogeneity across

edge nodes, which was not extensively explored in this

simulation-based evaluation.

Figure 7 presents a projected scalability analysis that

illustrates how HECOCP, MVCC, and 2PL are expected

to perform when subjected to significantly larger system

scales-specifically, up to 500 edge nodes and thousands

of transactions per second. On the left Y-axis, Figure 7

plots system throughput, revealing that HECOCP scales

almost linearly, reaching over 7,000 transactions per

second with 500 edge nodes. In contrast, MVCC and

2PL demonstrate diminishing throughput returns as the

system scales, with performance bottlenecks becoming

evident beyond 300 nodes. On the right Y-axis, Figure 7

captures average transaction latency.

Figure 7. Dual‐axis scalability analysis.

HECOCP continues to outperform the baseline

protocols by maintaining lower and more stable latency,

even under high concurrency and node density. This

dual-axis representation highlights HECOCP’s ability to

deliver both high throughput and responsive

performance, underscoring its architectural advantage in

managing large-scale, distributed transaction workloads

typical of future IoT and edge-cloud deployments.

6. Conclusions

This paper introduced HECOCP, a hybrid concurrency

control protocol specifically designed for managing

sensor transactions in edge-cloud environments. By

prioritizing local validation at edge nodes and engaging

global validation selectively, HECOCP significantly

reduces contention, abort rates, and transaction latency,

leading to higher throughput and better scalability

compared to traditional protocols such as 2PL and

MVCC. Our performance evaluation demonstrates that

HECOCP consistently outperforms 2PL and MVCC

across key metrics, making it an optimal solution for

high-throughput, real-time applications in domains such

as smart cities, healthcare, and industrial IoT.

While 2PL struggles with lock contention, leading to

increased abort rates and scalability limitations, and

MVCC incurs high version maintenance overhead,

restricting its performance at scale, HECOCP

successfully balances high concurrency, low latency,

and minimal abort rates. These advantages position

HECOCP as a scalable, ACID-compliant solution for

distributed sensor data management.

Several avenues exist for future research. One

compelling direction involves extending HECOCP to

operate seamlessly in multi-cloud or cross-regional

environments, where different cloud providers may have

varying latency and resource constraints, represents an

important step toward global-scale sensor data

management.

Acknowledgements

The authors extend their appreciation to Northern Border

University, Saudi Arabia, for supporting this work

through project number (NBU-CRP-2025-2903). The

authors would like to thank the Deanship of Scientific

Research at Shaqra University (KSA).

References

[1] Achour F., Bouazizi E., and Jaziri W., “A

Semantics-Based Validation Approach for

Enhancing QoS in Distributed Real-Time

DBMS,” International Journal of Intelligent

Information and Database Systems, vol. 17, no. 1,

pp. 124-142, 2025.

https://doi.org/10.1504/ijiids.2025.143489

[2] Ali O. and Mahmood A., “Edge Computing

Towards Smart Applications: A Survey,” Recent

Advances in Computer Science and

Communications, vol. 16, no. 1, pp. 55-72, 2023,

DOI:10.2174/2666255815666220225102615

[3] Al-Qerem A., Alauthman M., Almomani A., and

et al., “IoT Transaction Processing Through

Cooperative Concurrency Control on Fog-Cloud

Computing Environment,” Soft Computing, vol.

https://doi.org/10.1504/ijiids.2025.143489

766 The International Arab Journal of Information Technology, Vol. 22, No. 4, July 2025

24, pp. 5695-5711, 2020.

https://doi.org/10.1007/s00500-019-04220-y

[4] Al-Qerem A., Ali A., Nabot A., Jebreen I.,

Alauthman M., Almomani A., Chamola V., and

Aldweesh A., “Balancing Consistency and

Performance in Edge-Cloud Transaction

Management,” Computers in Human Behavior,

vol. 167, pp. 108601, 2025.

https://doi.org/10.1016/j.chb.2025.108601

[5] Al-Qerem A., Ali A., Nashwan S., Alauthman M.,

Hamarsheh A., Nabot A., and Jibreen I.,

“Transactional Services for Concurrent Mobile

Agents over Edge/Cloud Computing-Assisted

Social Internet of Things,” ACM Journal of Data

and Information Quality, vol. 15, no. 3, pp. 1-20,

2023. https://doi.org/10.1145/3603714

[6] Alsurdeh R., Calheiros R., Matawie K., and Javadi

B., “Hybrid Workflow Scheduling on Edge Cloud

Computing Systems,” IEEE Access, vol. 9, pp.

134783-134799, 2021.

DOI:10.1109/ACCESS.2021.3116716

[7] Al-Talafheh K., Aplop F., Al-Yousef A., Obiedat

M., and Khazaaleh M., “Predictive Big Data

Analytics Capability Model to Enhancing

Healthcare Organization Performance,”

International Journal of Advances in Soft

Computing and its Applications, vol. 16, no. 3,

2024. DOI: 10.15849/IJASCA.241130.09

[8] Barnaghi P., Tonjes R., Holler J., Hauswirth M.,

Sheth A., and Anantharam P., “Real Time IoT

Stream Processing and Large-Scale Data

Analytics for Smart City Applications,” in

Proceedings of the European Conference on

Networks and Communications, Bologna, pp. 1-5,

2014.

[9] Bernstein P. and Goodman N., “Concurrency

Control in Distributed Database Systems,” ACM

Computing Surveys, vol. 13, no. 2, pp. 185-221,

1981. https://doi.org/10.1145/356842.356846

[10] Boiko O., Komin A., Malekian R., and Davidsson

P., “Edge-Cloud Architectures for Hybrid Energy

Management Systems: A Comprehensive

Review,” IEEE Sensors Journal, vol. 24, no. 10,

pp. 15748-15772, 2024.

DOI:10.1109/JSEN.2024.3382390

[11] Celesti A., Fazio M., Galletta A., Carnevale L.,

Wan J., and Villari M., “An Approach for the

Secure Management of Hybrid Cloud-Edge

Environments,” Future Generation Computer

Systems, vol. 90, pp. 1-19, 2019.

https://doi.org/10.1016/j.future.2018.06.043

[12] Chaudhry N. and Yousaf M., “Concurrency

Control for Real-Time and Mobile Transactions:

Historical View, Challenges, and Evolution of

Practices,” Concurrency and Computation:

Practice and Experience, vol. 34, no. 3, pp. e6549,

2020.

https://onlinelibrary.wiley.com/doi/10.1002/cpe.654

9

[13] Dragojevic A., Narayanan D., Hodson O., and

Castro M., “FaRM: Fast Remote Memory,” in

Proceedings of the 11th USENIX Conference on

Networked Systems Design and Implementation,

Seattle, pp. 401-414, 2014.

https://dl.acm.org/doi/10.5555/2616448.2616486

[14] Duan Q., Wang S., and Ansari N., “Convergence

of Networking and Cloud/Edge Computing:

Status, Challenges, and Opportunities,” IEEE

Network, vol. 34, no. 6, pp. 148-155, 2020.

DOI:10.1109/MNET.011.2000089

[15] Ferreira L., Coelho F., and Pereira J., “Databases

in Edge and Fog Environments: A Survey,” ACM

Computing Surveys, vol. 56, no. 11, pp. 1-40,

2024. https://doi.org/10.1145/3666001

[16] Gao X., He P., Zhou Y., and Qin X., “A Smart

Healthcare System for Remote Areas Based on the

Edge-Cloud Continuum,” Electronics, vol. 13, no.

21, pp. 1-18, 2024.

https://doi.org/10.3390/electronics13214152

[17] Gomes V., Kleppmann M., Mulligan D., and

Beresford A., “Verifying Strong Eventual

Consistency in Distributed Systems,” in

Proceedings of the ACM on Programming

Languages, Barcelona, pp. 1-28, 2017.

https://doi.org/10.1145/3133933

[18] Gray J., Operating Systems Review: An Advanced

Course, Springer, 1978. https://doi.org/10.1007/3-

540-08755-9_9

[19] Kim T. and Lim J., “An Edge Cloud-Based Body

Data Sensing Architecture for Artificial

Intelligence Computation,” International Journal

of Distributed Sensor Networks, vol. 15, no. 4, pp.

1-12, 2019. DOI:10.1177/1550147719839014

[20] Lam K., Lee V., Hung S., and Kao B., “Impact of

Priority Assignment on Optimistic Concurrency

Control in Distributed Real-Time Databases,” in

Proceedings of 3rd International Workshop on

Real-Time Computing Systems and Applications,

Seoul, pp. 128-135, 1996.

DOI:10.1109/RTCSA.1996.554969

[21] Li Q., Guo M., Peng Z., Cui D., and He J., “Edge-

Cloud Collaborative Computation Offloading for

Mixed Traffic,” IEEE Systems Journal, vol. 17,

no. 3, pp. 5023-5034, 2023.

DOI:10.1109/JSYST.2023.3277003

[22] Maheshwari S., Netalkar P., and Raychaudhuri D.,

“DISCO: Distributed Control Plane Architecture

for Resource Sharing in Heterogeneous Mobile

Edge Cloud Scenarios,” in Proceedings of the

IEEE 40th International Conference on

Distributed Computing Systems, Singapore, pp.

519-529, 2020.

DOI:10.1109/ICDCS47774.2020.00095

[23] Masadeh R., Sharieh A., Abu-Jazoh M., Alshqurat

K., Masadeh S., and Alsharman N., “Independent

Task Scheduling in Cloud Computing

https://doi.org/10.1007/s00500-019-04220-y
https://doi.org/10.1016/j.chb.2025.108601
https://doi.org/10.1145/3603714
https://doi.org/10.1145/356842.356846
https://doi.org/10.1016/j.future.2018.06.043
https://onlinelibrary.wiley.com/doi/10.1002/cpe.6549
https://onlinelibrary.wiley.com/doi/10.1002/cpe.6549
https://dl.acm.org/doi/10.5555/2616448.2616486
https://doi.org/10.1145/3666001
https://doi.org/10.3390/electronics13214152
https://doi.org/10.1145/3133933
http://dx.doi.org/10.1177/1550147719839014

HECOCP: Hybrid Edge-Cloud Optimistic Concurrency Protocol for Sensor Data … 767

Environment using Modified Orca Optimizer,”

International Journal of Advances in Soft

Computing and its Applications, vol. 16, no. 2,

2024. DOI: 10.15849/IJASCA.240730.01

[24] Mughaid A., Obeidat I., Abualigah L., and et al.,

“Intelligent Cybersecurity Approach for Data

Protection in Cloud Computing Based Internet of

Things,” International Journal of Information

Security, vol. 23, pp. 2123-2137, 2024. DOI:

10.1007/s10207-024-00832-0

[25] Rahimi H., Picaud Y., Singh K., Madhusudan G.,

Costanzo S., and Boissier O., “Design and

Simulation of a Hybrid Architecture for Edge

Computing in 5G and Beyond,” IEEE

Transactions on Computers, vol. 70, no. 8, pp.

1213-1224, 2021.

DOI:10.1109/TC.2021.3066579

[26] Ramyasree B. and Naveen P., “A Survey on Edge

Computing Mechanisms to Improve Transactional

Data in Manufacturing System,” Journal of

Engineering Sciences, vol. 14, no. 1, pp. 557-564,

2023. https://jespublication.com/upload/2023-

V14I168.pdf

[27] Sutar S., Byranahallieraiah M., and

Shivashankaraiah K., “Objective Approach for

Allocation of Virtual Machine with improved Job

Scheduling in Cloud Computing,” The

International Arab Journal of Information

Technology, vol. 21, no. 1, pp. 46-56, 2024. DOI:

10.34028/iajit/21/1/4

[28] Thomson A., Diamond T., and Ren K., “Calvin:

Fast distributed Transactions for Partitioned

Database Systems,” in Proceedings of the ACM

SIGMOD International Conference on

Management of Data, Arizona, pp. 1-12, 2012.
https://doi.org/10.1145/2213836.2213838

[29] Tran-Dang H. and Kim D., “FRATO: Fog

Resource Based Adaptive Task Offloading for

Delay-Minimizing IoT Service Provisioning,”

IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 10, pp. 2491-2508, 2021.

DOI:10.1109/TPDS.2021.3067654

[30] Veeramachaneni V., “Edge Computing:

Architecture, Applications, and Future Challenges

in a Decentralized Era,” Recent Trends in

Computer Graphics and Multimedia Technology,

vol. 7, no. 1, pp. 8-23, 2025.

https://doi.org/10.5281/zenodo.14166793

[31] Wang C., Bi Z., and Xu L., “IoT and Cloud

Computing in Automation of Assembly Modeling

Systems,” IEEE Transactions on Industrial

Informatics, vol. 10, no. 2, pp. 1426-1434, 2014.

DOI:10.1109/TII.2014.2300346

[32] Wang T., Liang Y., Shen X., Zheng X., Mahmood

A., and Sheng Q., “Edge Computing and Sensor-

Cloud: Overview, Solutions, and Directions,”

ACM Computing Survey, vol. 55, no. 13, pp. 1-37,

2023. https://doi.org/10.1145/3582270

[33] Xiang X., Cao J., and Fan W., “Secure

Authentication and Trust Management Scheme for

Edge AI-Enabled Cyber-Physical Systems,” IEEE

Transactions on Intelligent Transportation

Systems, vol. 26, no. 3, pp. 3237-3249, 2025.

DOI:10.1109/TITS.2025.3529691

Abdelraouf Ishtaiwi is a highly

accomplished academic with over 22

years of experience in teaching and

research in the field of Artificial

Intelligence (AI). He earned his

Master's degree in AI from Griffith

University, Brisbane in 2001,

followed by a Ph.D. in the same field in 2007. Dr.

Ishtaiwi's academic career has been dedicated to

advancing the field of AI through exceptional research

and teaching skills. His expertise in the field has led to

numerous top scientific contributions, including

groundbreaking research on machine learning, local

search algorithms, and optimization methods.

Throughout his career, Dr. Ishtaiwi has published many

research papers in highly regarded academic journals,

demonstrating his significant impact on the field of AI.

His research has been widely cited and has received

recognition from the academic community for its

innovative approach to AI. In addition to his research

accomplishments, Dr. Ishtaiwi is an experienced teacher

and mentor. He has taught a wide range of courses in

AI, including advanced topics in machine learning and

optimization. His dedication to teaching has earned him

accolades from his students and colleagues alike.

Ahmad Nabot is an Assistant

Professor at the Faculty of Science

and Information Technology,

Department of Software Engineering,

Al-Zaytoonah University of Jordan,

Amman, Jordan. He holds a PhD in

Computer Science with a

specialization in Software Engineering. Prior to joining

Al-Zaytoonah University, he served as a faculty

member at Zarqa University, where he contributed to

academic programs in computer science and engaged in

collaborative research initiatives. His research interests

include software development, decision-making,

machine learning, and software component reuse. He

has published in these areas and actively works on

integrating intelligent techniques into software

engineering practices.

https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/3582270

768 The International Arab Journal of Information Technology, Vol. 22, No. 4, July 2025

Omar Alzoubi is an Assistant

Professor of Computer Engineering

at the University of Umm Al-Qura in

Saudi Arabia. With a focus on

Computer Engineering, Dr. Alzoubi

brings a wealth of expertise to his

role. He is committed to advancing

the field through both his research and teaching

endeavors. As a respected academic, Dr. Alzoubi is

dedicated to nurturing the next generation of computer

engineers, guiding students to excel in their studies and

research pursuits. His contributions to the university

community are invaluable as he works towards

furthering knowledge and innovation in the field of

Computer Engineering.

Awad Ramadan is a dedicated

academician with a strong

commitment to excellence in

education and administration. He

holds the position of Lecturer in the

Computer Science Department at the

College of Computing in

AlQunfudah, Umm Al-Qura University, Saudi Arabia,

a role he has served in since 2007. Additionally, he plays

a vital role as a member of the Academic Oversight

Committee, ensuring quality standards in education

since 2021. With a wealth of experience and a proactive

approach, Awad Mohamed Ramadan continues to make

significant contributions to the academic community at

Umm Al-Qura University.

Abdulbasit Darem an Associate

Professor of Cybersecurity at

Northern Border University (NBU) in

Saudi Arabia, is a prominent

researcher with extensive

contributions to the fields of

cybersecurity. Holding a Ph.D. in

Computer Science from Mysore University, India, Dr.

Darem has led numerous research initiatives, including

serving as the Principal Investigator (PI) for multiple

funded projects, such as those addressing AI,

cybersecurity threats, ransomware detection, and

privacy in social networks. He has published over 70

articles in international refereed journals with high

impact factors and presented several conference papers,

tackling critical issues using AI (machine learning and

Deep learning). As the Chair of the Cybersecurity

Research Group (RG-NBU-2022-1724) and RDO-1385

project, Dr. Darem actively conducts innovative

research and collaborates with international teams to

address emerging challenges in cybersecurity. His work

has earned him recognition and multiple awards for

academic excellence like the Excellence Award in

Scientific Research 2024 in Northern Border

University, highlighting his dedication to advancing

cybersecurity knowledge and solutions through

impactful research.

Asma Alhashmi an Associate Professor at the

Computer Science Department, Northern Border

University (NBU), Saudi Arabia, is an accomplished

researcher specializing in cybersecurity, software

engineering, and web engineering. With a Ph.D. in

Computer Science from Mysore University, India, she

has contributed extensively to advancing cybersecurity

and related fields through her research. Dr. Alhashmi

has led multiple high-impact projects, including serving

as Principal Investigator (PI) for research on

ransomware early detection and phishing

countermeasures, both funded by NBU. She has co-led

projects on cybersecurity threats, privacy in social

networks, and smart home security systems, showcasing

her interdisciplinary approach to addressing pressing

technological challenges. Dr. Alhashmi has published

over 50 articles in internationally referred journals and

conferences, covering areas such as deep learning-based

malware detection, fraud detection in financial systems,

and cybersecurity in cloud-assisted IoT environments.

Her work has been widely cited, reflecting its impact on

the research community. She also actively collaborates

with international teams, contributing to projects on

digital forgery detection and behavioral malware

detection. In addition to her research contributions, Dr.

Alhashmi serves as a reviewer for high-impact journals,

including Springer’s Cluster Computing and Elsevier’s

Computers and Security. Her research projects and

publications underscore her commitment to advancing

cybersecurity knowledge and developing practical

solutions for real-world problems.

Mohammad Alauthman Received

PhD degree from Northumbria

University Newcastle, UK in 2016.

He received a B.Sc. degree in

Computer Science from Hashemite

University, Jordan, in 2002, and

received M.Sc. degrees in Computer

Science from Amman Arab University, Jordan, in 2004.

Currently, he is Assistant Professor and senior lecturer

at Department of Information Security, Petra

University, Jordan. His main research areas

cybersecurity, Cyber Forensics, advanced machine

learning and data science applications.

Amjad Aldweesh is a computer

assistant professor interested in the

Blockchain and Smart contracts

technology as well as cyber security.

Amjad has a Bachelor degree in

computer science. He has a MSc

degree in advanced computer science

and security from the University of Manchester with

distinction. Amjad is the second in the UK and the first

in the middle-east to have a PhD in the Blockchain and

Smart contracts technology from Newcastle University.

