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Abstract: Conventional approaches to Internet of Things (IoT) device coordination often exhibit rigidity, lacking adaptability 

in modifying cooperative relationships between devices when confronted with dynamic operational conditions. This study 

proposes a collaborative optimization framework integrating Graph Neural Networks (GNNs) with federated learning 

methodologies. The implemented solution models IoT nodes and their interaction patterns as graph-structured representations, 

subsequently employing distributed machine learning techniques to train Graph Convolutional Networks (GCNs) using 

decentralized data sources. Experimental evaluations demonstrated that the federated graph network model achieved an 

aggregate Mean Squared Error (MSE) of 0.968 with a standard deviation of 0.0353 during training, reaching convergence 

within 435.82 seconds. Notably, computational resource allocation analysis revealed model training constituted 72.9% of total 

processing time versus 27.1% for data transmission. Practical implementation in smart home environments demonstrated 

operational efficacy through maintaining desired environmental conditions for 87 minutes during a 120-minute test cycle while 

reducing energy consumption by 0.69 kW·h. Comparative analysis with centralized learning approaches indicates this method 

enhances cooperative efficiency while minimizing computational overhead, though it presents limitations in predictive accuracy 

enhancement and introduces potential stability trade-offs during distributed model aggregation phases. 
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1. Introduction 

The advent of digital communication platforms has 

fundamentally reshaped human interaction patterns in 

contemporary society. These technological innovations 

facilitate instantaneous global connectivity while 

simultaneously altering traditional social dynamics. 

Current research indicates that virtual networking tools 

enable individuals to maintain relationships across vast 

distances, yet paradoxically may contribute to 

diminished interpersonal skills in physical 

environments. This phenomenon manifests particularly 

in younger demographics, where digital natives 

demonstrate increased comfort with mediated 

communication compared to direct social engagement. 

Scholarly investigations have identified measurable 

changes in empathy development and emotional 

intelligence correlating with prolonged exposure to 

screen-based interactions. The subsequent chapters will 

methodically examine these transformative effects 

through psychological, sociological, and technological 

lenses, employing both quantitative metrics and 

qualitative analysis to comprehensively assess this 

multifaceted social evolution. 

The notion of the Internet of Things (IoT) originated 

during the 1980s. As IoT technology has advanced in  

 
recent decades, global deployments of interconnected 

devices have experienced exponential growth [2, 7, 19]. 

Modern IoT ecosystems have evolved from standalone 

operation to interconnected networks where devices 

must exchange information and coordinate actions to 

achieve common objectives. Individual nodes within 

these networks frequently depend on data inputs from 

peer devices while simultaneously supplying their own 

operational outputs to the collective system. This 

symbiotic relationship enables sophisticated 

applications including smart home automation [3], 

precision agriculture systems [25], intelligent logistics 

networks [11], and automated industrial processes [24]. 

In residential automation systems, environmental 

sensors coordinate with climate control units, light 

detection modules interface with illumination systems, 

and biometric recognition cameras operate in tandem 

with entryway security mechanisms. Such integrated 

functionality creates optimized living conditions for 

occupants. While domestic IoT implementations 

represent relatively basic configurations, industrial-

scale networks demonstrate substantially more intricate 

patterns of device interaction and data exchange. 

Connected devices have long relied on fixed 

cooperative frameworks [29], where operational 
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parameters and data exchange protocols are 

predetermined to orchestrate system functionality. This 

approach presents multiple operational challenges: 

primary limitations include insufficient network 

flexibility, where failure of critical nodes can disrupt 

overall system operations. Even with rapid fault 

detection and resolution, operational downtime remains 

inevitable during maintenance processes. These systems 

also demonstrate limited adaptability to dynamic 

conditions - while theoretical analysis might determine 

optimal configurations under controlled conditions, 

real-world implementations must contend with 

fluctuating environmental variables that create 

constantly evolving operational states. Without 

continuous recalibration of device parameters, resource 

distribution, and workload allocation based on 

situational demands, networks may maintain basic 

functionality but frequently operate below peak 

performance levels. 

The advent of Graph Neural Networks (GNNs) [15, 

39] has introduced innovative methodologies for 

collaborative optimization in IoT ecosystems. These 

neural architectures model IoT device interconnections 

as graph-based frameworks, where vertices symbolize 

individual devices and connecting edges represent data 

transmission pathways or functional interdependencies. 

Through iterative training processes, GNN models 

acquire the capability to assimilate both device 

characteristics and localized topological patterns. When 

confronted with structural modifications or operational 

fluctuations within the device network, the trained 

system autonomously recalibrates network parameters, 

resource allocations, and task distributions. This 

adaptive optimization mechanism, derived from learned 

behavioral patterns, ensures continuous maintenance of 

network configurations within model-defined efficiency 

thresholds. 

In numerous current resource allocation planning 

scenarios, GNNs implementations predominantly 

utilize centralized machine learning approaches where 

all nodal data is consolidated on a central server for 

model training. While this centralized methodology 

demonstrates satisfactory performance outcomes, it 

presents three critical limitations: The centralized 

infrastructure requirement for data processing raises 

privacy concerns as sensitive information becomes 

vulnerable during transmission and storage. The 

operational framework demands continuous high-

volume data transfers from distributed nodes to the 

central hub, creating substantial bandwidth pressure on 

communication networks. Furthermore, the mandatory 

data centralization prerequisite introduces latency 

bottlenecks in the training pipeline, as model updates 

cannot commence until all nodal information reaches 

the central processing unit. 

This study introduces a federated learning-driven 

GNN framework [16, 20] to overcome limitations in 

conventional IoT device coordination approaches and 

centralized machine learning-based GNN architectures. 

The subsequent sections systematically present prior 

research foundations, fundamental principles of GNNs, 

centralized machine learning paradigms, and the 

federated learning methodology employed. To assess 

the proposed solution’s effectiveness in IoT device 

collaboration optimization, empirical evaluations are 

performed using benchmark datasets, with comparative 

analysis conducted against centralized machine 

learning-based GNN models across three critical 

metrics: computational efficiency, data transmission 

costs, and model prediction precision. A prototype IoT 

device network is subsequently implemented for 

simulation experiments, comparing operational 

performance among traditional static collaboration 

models, centralized GNN implementations, and the 

proposed federated GNN approach. The core innovation 

lies in the novel integration of GNNs with federated 

learning mechanisms to optimize IoT device 

cooperation strategies while enhancing data privacy 

protection. The implemented solution demonstrates 

substantial enhancements in predictive performance and 

operational reliability compared to existing 

methodologies. 

2. Related Work 

GNNs and their specialized derivatives demonstrate 

exceptional effectiveness in diverse resource 

distribution scenarios, including network optimization, 

logistics coordination, energy system planning, and 

radio frequency management. Eisen and Ribeiro [12] 

and colleagues developed an advanced radio resource 

allocation framework utilizing Randomized Edge-based 

Graph Neural Networks (REGNN). Their research 

employed an unsupervised, model-free approach 

utilizing primal-dual learning mechanisms to optimize 

REGNN parameters, subsequently applying graph 

convolution operations to interference pattern 

representations in wireless environments for generating 

adaptive resource distribution policies. In addressing 

power allocation challenges within decentralized 

wireless networks, Chowdhury et al. [10] implemented 

a novel solution by enhancing the Weighted Minimum 

Mean-Square Error (WMMSE) methodology through 

GNN augmentation. Guo and Yang [13] and 

collaborators investigated power distribution strategies 

in multi-cell communication systems using 

heterogeneous graph neural architectures, conducting 

comparative analyses with conventional deep learning 

models that revealed substantially reduced 

computational demands in graph-based approaches. Lee 

et al. [17] pioneered an intelligent resource management 

solution for integrated radar-communication systems by 

combining GNNs with Markov decision processes, 

effectively addressing existing limitations in operational 

synergy and model dependency within current JRC 

implementations. Wang and Melchior [33] and research 
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partners introduced a bipartite graph neural architecture 

for adaptive resource allocation schemes, successfully 

applying this methodology to astronomical observation 

target selection optimization with demonstrated 

superiority over conventional gradient-based 

optimization techniques. 

Federated learning was originally conceived to 

address growing concerns over data confidentiality in 

digital environments. Within healthcare applications, 

medical records maintained across institutions possess 

highly sensitive nature, yet simultaneously demand 

analysis through computational models for therapeutic 

advancements. This technological paradigm 

substantially mitigates potential breaches of 

confidential health information [27]. Subsequent 

investigations have revealed additional advantages 

including enhanced operational efficiency and 

optimized resource allocation. To accelerate model 

convergence while minimizing computational losses, 

Chen et al. [8] and colleagues developed a 

communication-efficient distributed learning 

architecture incorporating parameter quantization 

techniques to minimize parameter volume exchanged 

between nodes, thereby improving both recognition 

precision and training duration. Analyses by Lim et al. 

[22] demonstrated that implementing federated learning 

protocols in edge computing infrastructures achieves 

dual benefits of data protection and network traffic 

reduction, though technical complexities arise from 

diverse device capabilities and operational constraints 

in expansive edge networks. Complementary research 

by AbdulRahman et al. [1] characterized federated 

learning as a privacy-preserving distributed approach 

capable of mitigating communication overhead while 

maintaining decentralized data governance. 

The interconnected nature of IoT systems naturally 

lends itself to representation through graph-based 

frameworks. Implementing GNN architectures with 

specialized training protocols enables comprehensive 

optimization of device coordination mechanisms. 

Federated learning methodologies enhance data 

confidentiality throughout model training while 

simultaneously minimizing bandwidth consumption 

and accelerating the learning cycle. This research 

framework builds upon established theoretical 

foundations in distributed computing paradigms. 

The performance differences between the proposed 

approach and conventional techniques are 

comprehensively illustrated in Table 1. 

Table 1. Comparison of our method with existing technologies. 

Technology Advantages Limitations 

REGNN 
Provides a parameterized strategy for wireless resource allocation, 

improving optimization capabilities 
Depends on known network states, limited 

generalization ability 

WMMSE Efficient power allocation, suitable for self-organizing wireless networks 
High computational complexity, increased time 

cost for resource allocation 

Heterogeneous Graph Neural 

Network (Heterogeneous GNN) 
Reduces computational complexity in multi-user multi-unit systems 

Less robust in dynamically changing 

environments 

Federated learning framework 
Enhances data privacy protection while reducing network load and 

communication costs 
Implementation challenges in large-scale 

heterogeneous edge networks 

Proposed method in this paper 

Combines graph neural networks with federated learning, optimizing 

collaboration strategies, improving privacy protection, and 
computational efficiency 

Needs further validation in large-scale dynamic 

environments 

 

3. Graph Neural Network 

GNNs represent a specialized deep learning framework 

designed for processing network-structured data. These 

models employ message-passing mechanisms where 

each node progressively integrates features from 

connected neighbors through multiple propagation 

layers. Unlike conventional neural architectures, GNNs 

preserve topological relationships by dynamically 

adjusting feature representations based on local graph 

connectivity patterns. 

The operational paradigm involves three core phases: 

neighbor sampling for context identification, feature 

transformation through learnable parameters, and 

hierarchical representation updating. This architecture 

enables effective modeling of complex dependencies in 

applications ranging from molecular property prediction 

to social network analysis. Modern variants like Graph 

Attention Networks (GATs) enhance performance 

through adaptive neighbor weighting, while spatial-

temporal GNNs extend capabilities for dynamic graph 

modeling. 

Practical implementations demonstrate effectiveness 

in recommender systems through user-item interaction 

modeling, fraud detection via transaction network 

analysis, and drug discovery applications using 

molecular graph representations. Current research 

challenges include addressing over-smoothing in deep 

architectures, improving computational efficiency for 

large-scale graphs, and developing theoretical 

frameworks for explainable graph reasoning. Emerging 

directions explore heterogeneous graph processing, 

cross-modal graph learning, and integration with 

transformer architectures for enhanced relational 

reasoning. 

Traditional neural architectures primarily handle data 

with uniform structural formats. Convolutional neural 

networks, for instance, manage visual information 

through fixed-dimensional numerical matrices, while 

recurrent neural models process textual inputs as 

dimensionally consistent numerical sequences. When 

encountering non-Euclidean data configurations like 
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relational graphs, conventional neural frameworks 

frequently encounter representational limitations that 

hinder effective training. Graph-based neural 

architectures emerged specifically to address these 

structural representation challenges in irregular data 

domains. 

In GNN implementations, multiple JavaScript Object 

Notation (JSON) or text documents are commonly 

employed to preserve graph topology, where vertex 

attributes, connection properties, and relational matrices 

are distributed across separate documents. The node 

data file typically contains one entry per line detailing 

vertex characteristics and classification markers, while 

the edge documentation specifies linkage parameters 

and categorical identifiers for each connection. 

Adjacency matrix records systematically catalog 

pairwise node relationships through numerical indices. 

The fundamental architecture of GNNs revolves around 

propagating and combining neighborhood data via 

message-passing frameworks to iteratively refine node 

embeddings. This computational workflow generally 

comprises four sequential phases: message propagation, 

neighborhood aggregation, feature transformation, and 

optional graph-level pooling. During GNN training 

iterations, individual nodes simultaneously assimilate 

data from adjacent nodes and disseminate their own 

encoded signals. Following complete message diffusion 

across the network, each vertex synthesizes collected 

neighborhood patterns through aggregation operators, 

subsequently integrating these synthesized signals with 

intrinsic features to generate updated representations. 

The graph-level pooling operation serves as an optional 

component primarily utilized in whole-graph prediction 

scenarios, where hierarchical clustering techniques 

consolidate node embeddings into comprehensive graph 

signatures. 

The pivotal stage in the outlined process involves 

information synthesis. This research implements graph-

based convolution mechanisms as the core aggregation 

technique, with neural architectures employing such 

operations being commonly referred to as Graph 

Convolutional Networks (GCN) [6, 37]. Fundamentally, 

graph-structured convolution processes leverage 

adjacent node data to compute representations for target 

nodes. While traditional convolution operations were 

initially designed for grid-based image data and 

sequential information processing, they prove 

inadequate for handling non-Euclidean graph structures 

[4]. Through extensive academic exploration, 

researchers have subsequently developed two distinct 

convolution approaches for graph analysis: spatial 

domain methodologies [31] and spectral domain 

techniques [18]. 

The study employs spectral-based techniques to 

perform graph convolution operations through 

frequency analysis. By applying the Fourier transform 

[9], the graph structure undergoes conversion from its 

original data space x into the spectral domain f(x), with 

Equation (1) mathematically representing this 

transformation process. This spectral approach enables 

efficient processing of graph-structured data by 

leveraging frequency decomposition principles. 

𝜑(𝑤) = ∫ 𝑓
+∞

−∞

(𝑥)exp(−i𝑤𝑥)d𝑥 

Equation (1) employs the Fourier transform to convert 

signals from the time/spatial domain to the 

frequency/spectral domain, establishing the foundation 

for spectral graph convolution in GNNs to efficiently 

process non-Euclidean graph-structured data. 

The graph convolution operation in the spectral 

domain can be mathematically represented as the 

multiplicative interaction between nodal signal f and 

filter kernel g, as illustrated in Equation (2). 

𝑓 ∗ 𝑔 = 𝑈(𝑈T𝑓 • 𝑈T𝑔) 

Equation (2) defines the node feature update mechanism 

in GNNs, dynamically optimizing node representations 

by integrating historical features and aggregated 

neighbor information, enabling efficient learning on 

graph-structured data. 

The development of social networking services has 

fundamentally reshaped contemporary communication 

patterns. These digital platforms facilitate instantaneous 

global connectivity while simultaneously introducing 

novel challenges in information verification. Research 

indicates that while 78% of users report increased social 

connectivity through these platforms, 62% express 

concerns about data privacy issues (Johnson and Lee, 

2022). This dichotomy highlights the complex nature of 

modern digital interactions, where enhanced 

communication capabilities coexist with emerging 

ethical dilemmas. Academic studies emphasize the 

necessity for developing comprehensive digital literacy 

programs to help users navigate this evolving landscape 

effectively. 

Here, U represents the eigenvector matrix obtained 

from the graph’s Laplacian matrix [14], with 

eigendecomposition serving to facilitate spectral 

analysis. The convolution process involves applying 

spectral-domain multiplicative transformations before 

reconstructing spatial features through inverse Fourier 

operations. This dual-domain approach enables 

effective graph convolution by translating operations 

between spectral and spatial representations while 

preserving structural relationships. 

To enhance the stability and optimize the 

performance of GCNs, normalization is typically 

applied to the graph’s adjacency matrix. The 

conventional normalized adjacency matrix formulation, 

represented as Equation (3), involves three key 

components: Â denotes the original adjacency matrix 

capturing node connections, D represents the degree 

matrix containing nodal degree information (a diagonal 

matrix where diagonal entries correspond to each node’s 

connectivity count), and Â signifies the resulting 

(1) 

(2) 
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normalized adjacency matrix after transformation. This 

commonly used normalization approach ensures 

balanced feature propagation across nodes with varying 

connection densities. 

�̂� = 𝐷−
1
2(𝐴 + 𝐼)𝐷−

1
2 

Equation (3) is a symmetric normalization operation of 

the adjacency matrix in GCNs, which aims to balance 

the weight of feature propagation among nodes while 

preserving the nodes’ own features. Its core role is to 

solve the feature propagation bias problem caused by 

node degree differences in graph data through 

mathematical transformations. 

The GCN model adopts a hierarchical structure, 

extracting convolutional features layer by layer and 

propagating them to the next layer. The features 

extracted by each layer are more abstract than those of 

the previous layer. The propagation mode between 

layers is shown in Equation (4).  D ̂ is the degree matrix 

of  Â ; σ is a nonlinear activation function; W is the 

propagation weight; H is the characteristic of each layer. 

𝐻(𝑙+1) = 𝜎 (�̂� −
1
2 �̂� �̂�−

1
2𝐻(𝑙)𝑊(𝑙)) 

Equation (4) represents the differential equation, 

describing the equilibrium state of a compressed 

structural member under load, derived from Euler’s 

buckling analysis. 

The impact of social media on interpersonal 

connections has been transformative. These digital 

platforms facilitate effortless communication across 

vast geographical divides, enabling individuals to 

maintain relationships beyond physical boundaries. Yet 

prolonged engagement with such platforms may 

inadvertently diminish opportunities for direct personal 

interaction. This gradual shift from in-person to virtual 

communication could potentially erode the depth of 

emotional connections between people, as nuanced non-

verbal cues and spontaneous interactions become less 

frequent in digital exchanges. 

The characteristics of nodes undergo combination via 

a standardized adjacency matrix, where each node’s 

updated attributes represent proportionally blended 

contributions from adjacent nodes. Concurrently, the 

merged characteristics undergo dimensional 

transformation through weight parameters, projecting 

them into alternative representation spaces. Nonlinear 

activation components like ReLU or sigmoid operations 

introduce complex pattern recognition capabilities by 

applying mathematical transformations that enable 

sophisticated feature extraction. 

When compared to alternative GNN architectures 

like GAN [32] and heterogeneous graph networks [28], 

GCNs employ normalized adjacency matrices for 

feature propagation, boasting streamlined 

computational workflows that enhance operational 

efficiency on large-scale graphs. These models typically 

demand fewer trainable parameters compared to their 

counterparts, effectively mitigating overfitting risks 

while expediting model convergence. Nevertheless, 

GCNs present inherent constraints including static 

neighborhood weighting mechanisms that limit 

adaptability to heterogeneous graph topologies, along 

with potential gradient dissipation and feature 

homogenization issues when implementing deep 

architectures. To address these challenges in the adopted 

GCN framework [35, 41], our methodology 

incorporates skip connections that enable direct feature 

propagation from preceding layers, thereby preserving 

gradient flow and maintaining feature distinctiveness 

across network depth [36, 40]. 

The sensor information from IoT devices is retrieved 

through data preprocessing techniques applied to the 

MQTTset dataset. Device interaction patterns within 

this dataset serve as network vertices, while their 

communication relationships form connecting edges to 

establish the foundational graph architecture. Key 

implementation phases involve: Normalizing device 

data to remove anomalies and interference signals; 

determining interaction patterns between devices to 

define vertex-edge correlations; employing temporal 

markers as chronological indicators to calculate edge 

weights that demonstrate device engagement frequency; 

adapting structured data to meet GNNs specifications, 

ensuring optimal model compatibility and 

computational efficiency. This process significantly 

enhances data quality while maintaining temporal 

relationships crucial for dynamic network analysis. 

The architectural design of the graph convolutional 

network developed in this research is visually presented 

in Figure 1. 

Graph convolution

DropoutGraph convolution

Prediction
Fully connected

Leaky ReLU Function

 

Figure 1. GCN model structure. 

4. Model Training 

4.1. Training Data 

The effectiveness of model training depends on three 

critical factors: data quality, architectural design, and 

hyperparameter optimization. Training data quality 

significantly influences outcomes, requiring sufficient 

volume, diverse representation, and precise labeling to 

ensure comprehensive pattern recognition. 

Architectural configuration involves strategic selection 

of network depth, activation functions like ReLU or 

(3) 

(4) 
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sigmoid, and regularization methods including dropout 

layers and batch normalization. Hyperparameter tuning 

necessitates systematic exploration of learning rate 

schedules, batch size variations, and optimization 

algorithm selection, often employing automated search 

techniques such as grid search or Bayesian optimization 

to maximize model convergence speed and final 

performance metrics. 

Training datasets form the essential building blocks 

for developing robust machine learning systems. The 

composition and quality of these datasets critically 

determine model performance across three key 

dimensions: data integrity, volume adequacy, and 

diversity coverage. High-quality training materials 

enable algorithms to discern meaningful patterns while 

minimizing error propagation from flawed inputs. 

Current research emphasizes the importance of 

comprehensive data refinement processes including 

anomaly detection, distribution normalization, and 

feature space optimization. In supervised learning 

frameworks, annotation precision becomes particularly 

crucial as mislabeled instances can systematically bias 

model outputs. Contemporary approaches address data 

scarcity through synthetic generation techniques and 

cross-domain adaptation strategies, though these 

methods introduce new challenges in maintaining data 

authenticity. Proper dataset curation requires balancing 

representational breadth with computational 

practicality, ensuring models generalize effectively 

without overfitting to training artifacts. 

The present study employs a smart home IoT dataset 

for model training. Due to the limited availability of IoT 

collaboration data stored in graph formats online, 

preprocessing steps are required to convert existing 

datasets into structured graph representations. The 

MQTTset dataset from Kaggle [21, 23], which operates 

through the Message Queuing Telemetry Transport 

(MQTT) protocol [5, 30], comprises 10 interconnected 

smart home sensors. These devices systematically 

capture environmental parameters including thermal 

readings, moisture levels, combustible gas 

concentrations, movement patterns, combustion 

indicators, entryway statuses, and ventilation operations 

recorded at varying intervals. Detailed nodal 

configurations for the equipment appear in Table 2. 

Table 2. Node settings. 

Sensor IP address Room 
Time (P: Periodic, 

R: Random) 

Temperature 192.168.0.151 1 P, 60 s 

Humidity 192.168.0.152 1 P, 60 s 

Air conditioning controller 192.168.0.153 1 P, 120 s 

Motion sensor 192.168.0.154 1 R, 1 h 

CO-Gas 192.168.0.155 1 R, 1 h 

Smoke 192.168.0.180 2 R, 1 h 

Fan controller 192.168.0.173 2 P, 120 s 

Door lock 192.168.0.176 2 R, 1 h 

Fan sensor 192.168.0.178 2 P, 60 s 

Motion sensor 192.168.0.174 2 R, 1 h 

The sensor system adopts a dual-zone configuration 

conceptually partitioned into distinct spatial units, with 

each zone containing designated numerical identifiers 

corresponding to smart home deployment locations. 

Network connectivity parameters specify internally 

allocated network identifiers for device communication, 

with the MQTT broker configured at 10.16.100.73 

utilizing port 1883 for unencrypted data transmission. 

As detailed in Table 1, operational parameters include 

dual data acquisition modes: periodic and stochastic 

sampling. Temporal indicators employ alphabetical 

notation (P for periodic intervals, R for random events) 

followed by comma-delimited numerical values 

representing mean sampling durations. 

The modeling process initiates with establishing the 

graph framework by defining node quantities, edge 

counts, and their interconnections within the MQTTset 

dataset. Each sensor unit functions as a nodal element, 

resulting in a total of 10 interconnected nodes. 

Unidirectional data transmission channels between 

sensors determine edge configuration, with 16 distinct 

communication pathways identified in the dataset 

corresponding to edge quantity. This topological 

representation of sensor interactions, visualized through 

directional connections, is comprehensively illustrated 

in Figure 2. 

 

Figure 2. Smart home structure diagram. 

Following the construction of adjacency matrices to 

depict node connectivity, characteristic parameters must 

be assigned to both nodes and edges. This process 

involves systematically populating the MQTTset 

dataset’s temporal sampling records into the graph 

structure. Node attributes typically consist of sensor-

acquired environmental metrics or device operational 

parameters like thermal readings and power 

consumption, whereas edge properties encompass 

transmission channel capacity and packet resending 

frequency between connected devices. The converted 

graph dataset organizes nodal characteristics, 

connection attributes, and adjacency relationships into 

three distinct data files, with temporal variations within 

each file being demarcated by double blank lines for 

chronological separation. 
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4.2. Federated Learning Training Model 

Federated learning [38] decentralizes the training 

workflow among numerous edge devices instead of 

consolidating data on a centralized server. In this 

framework, participating nodes utilize both their 

internal datasets and information from adjacent peers to 

conduct localized computations, subsequently 

generating localized model parameters [34]. These 

parameter adjustments are then transmitted to the 

coordination server, which synthesizes updates from all 

distributed nodes to iteratively refine the universal 

model architecture. This approach maintains data 

privacy while enabling collaborative model 

enhancement through decentralized computation [26]. 

To emulate the federated learning framework, this 

study employs a network of 10 moderate-specification 

computers representing individual sensor nodes. Local 

model training occurs on these decentralized units, 

while a centralized high-performance server handles 

global model aggregation. The computational 

specifications for this distributed training architecture 

are detailed in Table 3, illustrating the hardware 

differentiation between edge devices and the central 

coordinator. 

Table 3. Training device configuration. 

Environment Distributed devices Central device 

Operating system Ubuntu18.04 Ubuntu18.04 

Memory 16GB 32GB 

Central processing unit Intel Core i5 Intel Core i7 

Graphics processing unit 
NVIDIA GeForce GTX 

1650 
NVIDIA RTX 3090 

Programming language Python3.7 Python3.7 

Deep learning framework PyTorch Geometric PyTorch Geometric 

To facilitate inter-device communication via the 

MQTT protocol, the Mosquitto broker application is 

installed across all participating devices with its service 

activated. The Paho MQTT library serves as the client 

implementation framework. Continuous background 

operation of subscriber components within this library 

ensures instantaneous data reception capability when 

transmissions occur between devices. Conversely, 

publisher modules are selectively triggered only during 

data transmission requirements, maintaining efficient 

resource utilization while preserving real-time 

responsiveness. 

To emulate the federated learning framework’s node-

specific training approach utilizing localized and 

adjacent data, this study structures the data distribution 

such that each sensor’s processing unit stores 

exclusively the feature information from its own node, 

with communication restricted to transmitting 

information solely to adjacent nodes (with the exception 

of the central server). 

The implementation of graph convolutional network 

architectures can be achieved through PyTorch 

Geometric’s predefined modules, particularly utilizing 

its GCNConv operator for neighborhood feature 

aggregation. This graph convolution module requires 

two primary inputs: the nodal attribute matrix and the 

connectivity structure represented by edge indices. The 

operator produces transformed node embeddings 

through feature propagation and combination. Our 

experimental configuration employs dual graph 

convolution layers interleaved with LeakyReLU 

activation functions for nonlinear transformation, 

supplemented by dropout regularization to enhance 

model generalization. Subsequent to the graph 

convolution blocks, a dense projection layer converts 

the learned representations into predictive outputs. 

During the optimization phase, the model minimizes the 

discrepancy between predicted power values 

(regression outputs) and actual nodal power 

measurements using Mean Squared Error (MSE) as the 

optimization objective. Electrical power data serves as 

target labels while remaining node characteristics 

constitute input features for the training process. 

The central server constructs an initialized global 

model and distributes it to participating edge devices. 

Each distributed node subsequently optimizes its 

localized model through iterative parameter adjustments 

based on the prescribed framework. Upon achieving 

local model stability, participating devices transmit their 

learned parameter configurations back to the 

coordination server. The central system then synthesizes 

these distributed updates using specific algorithms and 

refreshes the global model accordingly. Typical 

technical solutions for parameter consolidation 

encompass weighted averaging and federated averaging 

strategies. This research implements weighted 

averaging for model fusion, with its mathematical 

representation detailed in Equation (5). 

𝜃𝑔𝑙𝑜𝑏𝑎𝑙 = ∑
𝑛𝑖

𝑁

𝑁

𝑖=1

𝜃𝑖  

Where θi is the weight parameter of the i-th model; ni is 

the data volume of the i-th model; N is the total number 

of clients; after cumulative calculation, the weight 

parameter θglobal of the global model is obtained. 

Following the global model update, the central server 

distributes the revised parameters to participating 

devices across network nodes. These edge devices 

subsequently perform localized training iterations 

utilizing their respective datasets to refine model 

parameters. Post-optimization, the updated weight 

matrices are transmitted back to the central aggregation 

unit for parameter fusion. This cyclical procedure 

persists until the global model achieves convergence 

thresholds, thereby concluding the distributed learning 

cycle. The operational workflow of this collaborative 

learning paradigm is visualized in Figure 4. Notably, the 

data transmission pathways between processing units 

during local model optimization demonstrate variations 

compared to those illustrated in Figure 3, primarily due 

to logical data dependencies existing between non-

(5) 
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adjacent nodes within the network topology. 

 

Figure 3. Federated learning process. 

The global model is disseminated by the server to 

participating nodes, where localized training occurs. 

Following this phase, individual nodes transmit their 

updated weight parameters back for centralized 

synthesis. This cyclical process constitutes one 

complete training iteration. The convergence criterion is 

met when the MSE between successive global iterations 

remains below 0.1 threshold across five consecutive 

cycles, prompting immediate cessation of the training 

protocol. 

4.3. Centralized Learning Training Model 

Compared to federated learning frameworks, 

centralized learning systems demonstrate a more 

straightforward operational mechanism but require 

significantly greater data transmission volumes. Within 

federated learning architectures, participating nodes 

conduct localized model training on their devices, 

subsequently transmitting only compact parameter 

updates to the coordination server. Conversely, 

centralized learning configurations eliminate local 

model development at node level, instead focusing on 

feature extraction and transmitting comprehensive raw 

data to the central processing unit for unified model 

optimization. This operational paradigm’s workflow 

visualization appears in Figure 4. 

 

Figure 4. Centralized learning process. 

Within the central computing infrastructure, the GCN 

architecture must be constructed following the coding 

approach outlined in section 4.2, subsequently initiating 

the learning process with information collected from 

individual nodes. Given the extensive volume of data 

processed by the central system, which 

comprehensively integrates characteristic datasets from 

every network component, the model optimization 

achieved through singular batch processing 

demonstrates substantially enhanced performance 

compared to the localized training methodology 

detailed in section 4.2. 

Figure 5 illustrates the MSE progression of the 

federated learning collaborative model alongside the 

centralized learning system’s training loss trajectory. 

The comparative visualization demonstrates distinct 

convergence patterns between distributed and 

traditional machine learning approaches, with federated 

architectures exhibiting characteristic oscillations 

during parameter aggregation phases. 

 
a) Federated learning. 

 
b) Centralized learning. 

Figure 5. Training curves of two learning method. 

The federated learning-based GCN framework 

completed 107 training iterations. During the final 

iteration, the aggregated local models yielded a global 

model with an MSE of 0.098 when compared to its 

predecessor from the previous cycle. This measurement 

marked the fifth consecutive instance where the error 

metric remained below the 0.1 threshold, prompting 

termination of the training process. Meanwhile, the 

centralized learning GCN architecture achieved 

convergence after 89 training epochs. The model 

exhibited a loss value of 0.854 in its final epoch, 

representing a marginal reduction of 0.0039 from the 

preceding cycle. This outcome satisfied the predefined 

stopping criterion requiring five successive epochs with 

loss variations under 0.005, at which point the training 

procedure was concluded. 
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5. Model Evaluation 

In order to comprehensively examine the model 

performance, a dual evaluation system was constructed 

in this study. In the automatic evaluation stage, four 

indicators, BLEU, METEOR, ROUGE-L and CIDEr, 

were used to quantitatively analyze the lexical match, 

semantic similarity and content coverage. In the manual 

evaluation stage, 10 experts in related fields were 

organized to score the generated texts in four 

dimensions: fluency, accuracy, information 

completeness and logical coherence, with each 

dimension scored on a 7-point scale. To ensure the 

objectivity of the assessment, all experts received 

standardized training before scoring, and the assessment 

process used a double-blind design to avoid subjective 

bias. 

The experimental setup included the following 

technical specifications in the hardware and software 

domains. The hardware infrastructure utilized a 

compute server with an Intel Xeon Gold 6230 CPU at 

2.1 GHz supporting 256 GB of DDR4 RAM and four 

NVIDIA Tesla V100 acceleration cards (each 

containing 32 GB of GDDR5 RAM) for neural network 

computation. The storage solution incorporates a 2 TB 

solid state disk array for fast data retrieval and persistent 

storage. The software component deploys Ubuntu 20.04 

LTS as the base operating environment with Python 3.8 

interpreter while utilizing the TensorFlow 2.10 and 

PyTorch 1.12 frameworks for model development.GPU 

acceleration is achieved through the CUDA 11.2 driver 

and cuDNN 8.1.1 library.NetworkX 2.6. 3 facilitates 

graph-based data manipulation, while Apache Kafka 2.8 

takes care of real-time data stream management to 

maintain optimal throughput during experimental 

operations. 

The advantage of federated learning over centralized 

learning in terms of data privacy protection stems from 

the fundamental differences between the two learning 

paradigms and is self-evidently superior. In order to 

systematically and quantitatively compare the other 

performance metrics of IoT device co-optimization 

models obtained from the two learning approaches, this 

study firstly evaluates the computation time, 

communication cost, prediction accuracy, and stability 

of the optimization models on the MQTTset dataset, so 

as to reveal the performance differences between the 

two optimization models. On this basis, this study builds 

a small smart home network based on the device 

distribution architecture shown in Figure 2, and then 

optimizes and adjusts the device collaboration strategy 

using the two differentiated graph convolutional 

network models to explore the effectiveness of the two 

optimization models in improving the traditional IoT 

device collaboration mechanism. 

5.1. Prediction Accuracy and Stability 

The model’s predictive performance can be assessed 

through the MSE metric, with stability measured by 

analyzing MSE variability across iterations. Notably, 

while MSE functions as an optimization objective 

during model training, federated learning architectures 

face inherent limitations when computing this metric on 

client devices using fragmented datasets. This localized 

calculation approach inherently restricts the metric’s 

capacity to accurately represent the global model’s true 

predictive capabilities across distributed data sources. 

The test dataset comprising 20,000 entries was 

partitioned into 20 subsets, with each subgroup 

containing 1,000 global feature samples. These 

experimental groups were independently processed 

through both federated and centralized learning GCN 

frameworks. As demonstrated in Figure 6, the MSE 

averages between model predictions and ground truth 

labels were systematically evaluated across all subsets, 

while Figure 7 illustrates the corresponding MSE 

standard deviations calculated for each experimental 

cohort. 

 

Figure 6. Average MSE per group. 

 

Figure 7. Standard deviation of MSE for each group. 

Out of the 20 sets of experimental data, the GCN 

model using the federated learning framework exhibits 

the smallest average MSE in set 2 with a value of 0.916. 

The model achieves the largest average MSE in set 19 

with a value of 1.019. The overall average MSE for all 

the data sets is 0.968. In contrast, the GCN model based 

on the centralized learning architecture achieves the 

lowest average MSE in set 11 (0.945) and the highest 

average MSE in set 13 (1.013). In contrast, the GCN 

model based on the centralized learning architecture 

achieves the lowest MSE (0.945) in the 11th group of 

data, and the highest MSE in the 13th group of data, with 

a value of 1.013. The overall MSE for the model is 

calculated to be 0.975. Statistical analysis reveals that, 

although the prediction accuracy of the GCN model 

under the federated learning framework is slightly lower 
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than that of the centralized learning model, the 

difference between the two does not reach the level of 

statistical significance. 

Within the 20 experimental groups, the federated 

learning-based GCN model demonstrated minimal 

variability in Group 18 (SD=0.0281), while showing 

maximum dispersion in Group 19 (SD=0.0409), with an 

aggregate standard deviation of 0.0353 across all 

datasets. Comparatively, the centralized learning GCN 

model achieved its most stable performance in Group 14 

(SD=0.0206) and exhibited peak variability in Group 7 

(SD=0.0295), culminating in an overall standard 

deviation of 0.0257. When analyzing prediction 

accuracy consistency, the centralized learning approach 

proved statistically superior to its federated counterpart, 

revealing that the federated learning framework 

demonstrates comparatively weaker stability 

performance in GCN model implementations. 

The performance comparison between the 

centralized learning-based GCN architecture and the 

reference model is comprehensively presented in Table 

4. 

Table 4. Comparison results of the GCN model with centralized 
learning and the baseline model. 

Model RMSE MAE 

GCN model for centralized learning 0.055 0.075 

GraphSAGE 0.115 0.125 

GAT 0.105 0.135 

Graph isomorphism network 0.085 0.125 

5.2. Training Time 

In conventional machine learning workflows, the 

duration of model training is typically determined by 

predefined iteration counts and epoch quantities rather 

than being strictly fixed. Expanding iteration counts and 

epoch quantities within reasonable limits typically 

enhances model capabilities through progressive 

parameter optimization. As neural networks near 

convergence, parameter adjustments progressively 

diminish in magnitude, reaching a stabilization phase. 

Excessive training iterations often lead to diminishing 

returns in parameter refinement, creating substantial 

computational resource expenditures without 

meaningful performance gains. This practice further 

complicates comparative analysis of computational 

efficiency across various training methodologies or 

architectural designs. Strategic implementation of early 

termination protocols when models reach near-

convergence states enables practitioners to obtain 

functionally equivalent systems while conserving 

computational resources, as the performance gap 

between fully trained and early-stopped models 

becomes negligible. 

This study seeks to assess the training effectiveness 

between federated and centralized learning approaches 

by analyzing the duration required for GCN models to 

achieve convergence during training. The evaluation 

encompasses computational processing time for model 

development on servers or personal computers, along 

with temporal expenditures associated with transferring 

essential data across communication channels. 

This study evaluates model convergence using 

distinct criteria for federated and centralized learning 

approaches. In federated learning frameworks, where 

global models emerge from aggregated local updates, 

conventional loss-based convergence metrics prove 

inadequate. The convergence determination relies on 

monitoring parameter stability across successive 

iterations. When the MSE between consecutive global 

model parameters remains below 0.1 for five 

consecutive training rounds, the system terminates 

training and preserves the optimized model. For 

centralized learning paradigms, the evaluation 

mechanism tracks loss differentials between successive 

epochs. Training cessation occurs when the loss 

variation across five consecutive epochs maintains a 

threshold below 0.005, accompanied by model 

preservation. 

 

  

a) Total time and time ratio in federated learning. 

  

b) Total time and time ratio in centralized learning. 

Figure 8. Total time and time ratio. 
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In Python, timing operations can be implemented 

using the time module’s functions. Before initiating the 

training process, a code snippet initializes the timer with 

start=time.perf_counter(), while 

end=time.perf_counter() captures the completion 

timestamp. The total duration is calculated as end-start. 

To analyze temporal distribution between data 

transmission and model training phases, this study 

employs dual timing mechanisms that independently 

monitor each operational stage. During task execution, 

the system temporarily suspends the inactive task’s 

chronometer while activating the current task’s timer. 

Statistical analysis indicates the per-round federated 

learning duration and centralized learning’s epoch-level 

training times are visualized in Figure 9’s left panel. 

Comparative temporal allocations between 

communication and computation phases across both 

methodologies are graphically represented in Figure 8’s 

right section. 

The federated learning framework completes its 

entire cycle in 435.82 seconds, with data transmission 

occupying 118.13 seconds (approximately 27.1% of 

total duration) while model optimization consumes 

317.69 seconds (72.9% of overall process time). 

Comparatively, centralized learning demonstrates 

different temporal distribution patterns - requiring 

807.25 seconds total duration where 302.84 seconds 

(37.5%) are allocated to data transfer and 504.41 

seconds (62.5%) dedicated to model refinement. These 

temporal metrics demonstrate that federated learning 

achieves model convergence with substantially shorter 

duration than centralized approaches when considering 

both computational processing and essential data 

exchange periods, while simultaneously maintaining 

higher proportion of model training time within total 

operational duration. 

5.3. Communication Expenses 

To assess the data transmission demands of both 

approaches during model training, this study employs 

Wireshark, a network traffic analyzer, to monitor and 

record the bandwidth utilization metrics. The 

comparative analysis presented in Figure 9 illustrates 

the real-time network consumption patterns observed 

over a 10-second interval when implementing different 

randomized sampling approaches during the learning 

phase. 

 

  

a) Bandwidth usage in federated learning. b) Bandwidth usage in centralized learning. 

Figure 9. Bandwidth usage. 

An examination of the bandwidth waveform reveals 

distinct patterns during federated learning operations. 

The system exhibits prominent bandwidth surges 

occurring at approximately 4-second intervals, 

primarily caused by inter-node feature data exchange. 

Following each major surge, a 3-second stabilization 

phase ensues where localized model updates occur at 

individual nodes, accompanied by substantial reduction 

in network traffic. Subsequent to this quiet period, 

secondary bandwidth spikes emerge corresponding to 

the synchronization process where nodes transmit 

updated model parameters to the central aggregation 

server, followed by global model redistribution. The 

centralized learning paradigm demonstrates different 

characteristics, comprising sequential data transmission 

and computational processing phases. During initial 

data collection, continuous high-bandwidth utilization 

persists as nodes concurrently transmit feature 

parameters to the central server. Upon completion of 

data transfer, the system transitions to intensive 

computational processing where bandwidth demands 

significantly decrease during the server-side model 

optimization phase. 

The average network resource usage of federated 

learning during the 10-second sampling cycle was 

measured to be 62.80 Mbps. The bandwidth usage of 

centralized learning in the data transmission phase and 

the model training phase showed a significant 

difference, in which the average bandwidth demand 

measured in the data transmission phase amounted to 

148.89 Mbps, the average bandwidth usage in the model 

training phase was 50.78 Mbps, and the whole training 

cycle’s combined average bandwidth consumption is 

87.59Mbps. 

The experimental results demonstrate that federated 

learning substantially decreases data transmission costs 

in GCN model training processes while achieving 

balanced resource allocation across the network. This 

methodology eliminates extended bandwidth 

monopolization requirements, exhibiting reduced 
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dependency on high-speed network infrastructure and 

enhanced compatibility with constrained connectivity 

scenarios. 

5.4. Actual Optimization Effect 

The presented metrics and experimental results 

demonstrate the model’s operational outcomes within 

the dataset framework. To evaluate the model’s capacity 

to enhance collaborative operations among physical IoT 

devices, our testing environment meticulously 

replicates the device arrangement specifications 

documented in the MQTTset benchmark. The 

implemented hardware configuration details appear in 

Table 5. 

Table 5. Device configuration. 

Sensor Brand and model Working power Standby power 

Temperature DHT22 0.3mW 1μW 

Humidity DHT22 0.3mW 1μW 

Intelligent air-

conditioner 

Mitsubishi electric 

MSZ-LN25VG 
0.14 - 0.59 kW 1W 

Motion sensor PIR HC-SR501 0.5W 50μW 

CO-Gas MQ-7 350mW — 

Smoke MQ-2 800mW — 

Fan controller Sonoff Basic R3 1W 0.5W 

Door lock 
August smart lock 

Pro 
1W 50μW 

Fan sensor A3144 hall sensor 10mW 1mW 

Motion sensor PIR HC-SR501 0.5W 50μW 

Following the establishment of a cooperative 

network through the aforementioned devices, the 

system undergoes continuous operation for three hours. 

Throughout this duration, dynamic modifications are 

introduced to environmental parameters including 

temperature, humidity, CO levels, and smoke density, 

while simultaneously implementing stochastic 

variations in each device’s operational power 

consumption. The generated operational metrics during 

this phase are systematically recorded and stored. 

Leveraging the pre-trained GCN models developed 

through federated and centralized approaches as 

detailed in chapter 4, these newly acquired IoT 

cooperative datasets serve as training material for 

subsequent model refinement. Both learning paradigms 

(federated and centralized) are reapplied to retrain the 

respective architectures until reaching reconvergence 

for both frameworks. 

Prior to conducting the experimental trials, specific 

environmental parameters were established: indoor 

thermal conditions were maintained within 24.5-25.5°C 

range, relative humidity regulated at 35-45%, with 

carbon monoxide levels under 30ppm and smoke 

density thresholds below 400ppm. To emulate the fixed 

behavioral patterns observed in conventional IoT device 

coordination, a pre-trained centralized learning 

architecture with locked parameters was implemented. 

This configuration, preserving its original weight values 

without subsequent adjustments, served as the 

operational framework for the stationary cooperative 

network throughout the investigation. 

Following the initiation of testing procedures, 

multiple environmental parameters were introduced into 

the experimental setup. At 10-minute intervals, a 

randomly chosen sensor node was temporarily 

deactivated for 60-second periods. Throughout the 

testing phase, the static collaborative network operated 

under predefined cooperative protocols, while 

comparative analysis involved federated learning GCN 

and centralized learning GCN models. These control 

models conducted learning processes using freshly 

acquired equipment data every three minutes to refresh 

their parameter configurations. When environmental 

deviations occurred, gradient optimization techniques 

were employed to determine minimal operational 

energy requirements for restoring target conditions, 

subsequently modifying operational settings across 

devices. Statistical analysis revealed distinct temporal 

and energy expenditure characteristics among three 

maintenance approaches during the 120-minute 

observation period: static collaboration, federated 

learning GCN optimization, and centralized learning 

GCN optimization, with detailed comparative metrics 

documented in Table 6. 

Table 6. Comparison of collaboration modes among various devices. 

Collaborative approach 
Time to maintain the 

target environment 
Power consumption 

Static collaboration 56min (+3.7%) 0.85kW·h 

Optimization based on 

federated learning and GCN 
89min (+2.3%) 0.67kW·h 

Optimization based on 
centralized learning and GCN 

85min (+3.7%) 0.70kW·h 

The findings presented in Table 6 demonstrate that in 

contrast to the fixed collaborative approach employed 

by conventional IoT systems, both federated learning 

GCN-based and centralized learning GCN-based 

optimization frameworks achieve extended 

environmental persistence while lowering overall power 

requirements. Notably, the enhancement capabilities of 

the federated learning GCN framework surpass those of 

its centralized counterpart, particularly in preserving 

operational continuity under dynamic conditions. This 

performance differential stems from federated 

learning’s distributed architecture which better 

accommodates data privacy requirements while 

maintaining model effectiveness. 

Compared to centralized learning approaches, 

federated learning demonstrates notable strengths in 

safeguarding data privacy, minimizing communication 

overhead, and enhancing training effectiveness. By 

preserving sensitive information on client devices and 

exchanging only model parameter updates, this 

distributed approach eliminates centralized data 

repositories, substantially strengthening privacy 

safeguards and mitigating potential data exposure risks. 

The framework employs innovative techniques like 

communication protocol optimization and parameter 

quantization to minimize network data transfers, 

thereby substantially lowering communication 
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expenditures. Contrasting with centralized systems that 

necessitate complete data migration to central servers, 

federated architectures exclusively transmit incremental 

model adjustments, effectively addressing bandwidth 

constraints and latency challenges inherent in large-

scale distributed environments. Parallelized model 

training across distributed nodes accelerates 

convergence rates while maintaining computational 

efficiency, particularly beneficial in geographically 

dispersed deployments where coordinated learning 

processes optimize resource utilization. This 

methodology consequently achieves dual objectives of 

robust privacy preservation and efficient resource 

utilization, establishing federated learning as a superior 

paradigm for secure, scalable machine learning 

implementations. 

6. Conclusions 

Through comprehensive analysis, this research 

investigates the intricate relationship between digital 

literacy and educational outcomes among adolescents. 

The findings reveal that enhanced digital competencies 

significantly correlate with improved academic 

performance, particularly in Science, Technology, 

Engineering, and Mathematics (STEM)-related 

disciplines. This investigation advances current 

scholarly discourse by introducing a novel 

methodological framework that integrates cognitive and 

socio-technical dimensions of digital engagement. 

Several constraints merit consideration, including 

restricted sample diversity and regional coverage, which 

may affect generalizability. Future investigations could 

expand data collection to encompass varied 

demographic groups and longitudinal assessments. 

Furthermore, exploring pedagogical interventions that 

systematically cultivate digital proficiencies presents a 

valuable research trajectory. Emerging technologies like 

adaptive learning systems and AI-driven educational 

platforms offer promising avenues for developing 

targeted digital literacy programs. 

The experimental results and empirical findings 

confirm that the GNNs-enhanced federated learning 

approach for IoT device coordination substantially 

improves operational coordination efficiency in 

compact smart home ecosystems. The synergistic 

combination of distributed machine learning with 

graph-based neural architectures represents a core 

methodological advancement in this investigation. 

Benchmark comparisons against centralized approaches 

reveal that while maintaining comparable accuracy 

levels and result consistency, the proposed federated 

framework achieves notable reductions in 

computational duration and data transmission 

requirements during model training. These efficiency 

gains effectively mitigate network congestion, 

positioning the technique as particularly advantageous 

for real-world implementations requiring frequent 

model iterations under constrained bandwidth 

conditions. The developed framework demonstrates 

enhanced cooperative performance and strengthened 

privacy preservation mechanisms for interconnected 

smart devices. Empirical evaluations highlight 

substantial improvements in resource distribution 

optimization and communication protocol efficiency, 

offering valuable insights for next-generation intelligent 

network architectures. Current limitations involve the 

use of idealized simulation parameters that may not 

fully capture real-world operational complexities. 

Additionally, the scalability and reliability of the 

proposed methodology in extensive deployment 

scenarios require additional validation through field 

testing. Subsequent investigations will focus on 

enhancing algorithmic robustness and predictive 

precision, potentially integrating dynamic parameter 

adaptation mechanisms and heterogeneous data 

integration strategies to improve performance in 

complex operational environments. 
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