
The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025 1213

A Novel Risk-Based Testing Framework for

Distributed Agile Software Development

Esha Khanna
Department of Computer Engineering
J. C. Bose University of Science and

Technology YMCA, India
Department of Computer Science and

Technology Manav Rachna University, India

eshakhanna30@gmail.com

Rashmi Popli

Department of Computer Engineering

J. C. Bose University of Science and

Technology, YMCA, India

rashmipopli@gmail.com

Naresh Chauhan

Department of Computer Engineering

J. C. Bose University of Science and

Technology, YMCA, India

nareshchauhan19@gmail.com

Abstract: Distributed Agile Software Development (DASD) is one of the most commonly adopted lifecycle methodologies in the

IT industry. It combines the speed benefits and adaptability of agile development with the cost-effectiveness of distributed

development. In DASD, software is built iteratively in sprints, allowing for changes to be introduced in the later stages of

development. However, such changes can affect the functionality of previously implemented features, highlighting the critical need

for regression testing. In distributed agile environments, constraints on resources, time, and communication make it essential to

prioritize tasks to maximise the efficiency of testing efforts. This work presents a novel risk-based Test Case Prioritization (TCP)

approach for a distributed agile environment that aims to prioritize test cases based on the risk values associated with features by

correlating sprint features with their corresponding test cases. The risk value of a feature is evaluated by considering modified

requirements, feature complexity, and interdependencies. The goal is to identify and test high-risk features early in the distributed

agile development cycle, thereby uncovering critical defects earlier. The proposed work is evaluated using an empirical study.

The results show that the proposed technique has outperformed the existing state-of-the-art techniques.

Keywords: Test case prioritization, risk-based testing, distributed agile software development.

Received April 18, 2025; accepted July 31, 2025
https://doi.org/10.34028/iajit/22/6/14

1. Introduction

In a distributed agile environment, where teams are

geographically dispersed and development cycles are

fast-paced, the need for regression testing becomes

paramount [27]. However, in distributed agile setups,

resources, time, and communication can be limited,

necessitating prioritization to optimise testing efforts

[30]. Prioritizing regression test cases allows the teams

to focus on critical functionalities first, ensuring that

high-impact areas are thoroughly tested within the

constraints of distributed collaboration [6]. This

approach not only maximises test coverage but also

minimises the risk of regression issues slipping into

production [21].

Over the past several years, various Test Case

Prioritization (TCP) techniques have been proposed and

empirically studied to identify faults at early stages,

thereby increasing the fault detection rate [5, 13, 21, 26,

31, 34, 35, 42]. Existing methods include history-based

[16], coverage-based [26], fault severity-based [25], and

requirement-based [14, 37], among others. Some work

combines the existing methods to attain better results

[25]. However, these techniques typically prioritize test

cases according to past test execution data and existing

fault information, although such data may not always be

accessible. Additionally, these methods often neglect the

crucial task of identifying defects early in high-risk

modules, despite the significant importance of

concentrating on such areas to offset resource

limitations.

On the contrary, Risk-Based Testing (RBT) directs

attention to the segments of software posing the greatest

risk [15]. Its objective is the early identification of the

most critical faults within the risky modules, while

keeping costs to a minimum. This approach empowers

testers to prevent or mitigate the occurrence of faults that

could result in significant damage [3, 17, 40]. However,

the existing risk-based TCP techniques do not consider

all the risk factors associated with the DASD

environment.

This work proposes a novel risk-based TCP approach

that correlates the test cases with features in a given

sprint. This approach also takes into account the 10 risk

categories identified for the DASD environment [19].

The goals of the paper are as follows-

• To propose a method to calculate risk values

associated with features in a sprint.

• To propose a novel RBT framework by correlating

test cases with features and assigning higher priority

to test cases covering high-risk features.

• To carry out an empirical study to evaluate the

efficiency of the framework.

• To compare the results of the study with state-of-the-

1214 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

art techniques.

The paper is organised as follows. Section 2 presents the

background, section 3 presents the proposed model,

section 4 presents the empirical study, and section 5

concludes.

2. Background

Distributed Agile Software Development (DASD) has

emerged as a prominent Software Development Life

Cycle (SDLC) model after the COVID-19 pandemic.

DASD combines the agility of Agile Software

Development (ASD) with the speed benefits of

Distributed Software Development (DSD) [2, 20]. ASD

methodology is centred around the principles and

practices of agile frameworks, which focus on iterative

development, collaboration between cross-functional

teams, flexibility in responding to change, and

continuous improvement [38]. In an agile development

scenario, the software is developed in sprints [7]. A

sprint is a small timeframe (usually of 2-4 weeks) in

which the agile team focuses on releasing an increment.

In the scrum framework, the agile team consists of the

product owner, scrum master and a development team

including testers, designers and User Experience (UX)

specialists [23]. The product owner is responsible for

prioritising the backlog on the basis of feedback from

users and the development team. In a sprint, there is a

collection of ceremonies that take place to mark the

milestone of a sprint. The first meeting is called sprint

planning, which is led by the scrum master. In this

meeting, the team decides the goal of the sprint. A sprint

backlog is prepared by adding the stories from the

product backlog, which reflects the goal of the sprint.

After the release increment is decided, the team starts

working on the user stories of a sprint. A short meeting

is carried out daily during the sprint, which helps every

team member to be aligned with the sprint goal. At the

end of the sprint, a sprint review meeting is carried out

to discuss the completion of the goal of the sprint. The

product owner then takes a call to release the increment.

The product owner then reprioritizes the product

backlog based on the current sprint [38].

During the next sprint, feedback from the users and

development team is incorporated into the first release.

This may include the addition of new functionality or

modification to the existing feature. The changes

incorporated in the released version endanger the correct

working of the existing features, that has been inherited

from the previous version. This calls for retesting the

next increment with all the test suites of the first and next

increment to verify that new changes have not altered the

working of previously inherited modules. This testing is

known as regression testing [27, 11]. As the agile

methodology accepts the changes during the lifecycle of

a product, regression testing has to be carried out

multiple times in each sprint in Scrum. Re-executing all

the test cases of the regression suite is a time-consuming

task; therefore, the test cases are reordered such that the

most important test cases are executed before the others.

TCP is a type of regression testing that reorders the test

cases on the basis of some factors [21, 26, 27]. These

factors include code coverage, branch coverage, method

coverage, history-based, and risk-based [13, 31, 35].

A test case covering maximum program code

maximises the likelihood of fault detection. Coverage-

based techniques order the test cases of a test suite in

such a way that a test case having more coverage is

assigned a higher priority than a test case covering a

lower priority. Figure 1 presents different coverage-

based techniques, including statement coverage, branch

coverage, function coverage, and fault index

prioritization [21, 36, 42].

Figure 1. Coverage-based TCP techniques.

In the literature, several authors have proposed and

empirically evaluated regression testing techniques. In

the work by Singh et al. [33], a novel test case reduction

method was proposed, combined with a Support-based

Whale Optimisation Algorithm (SWOA) for DASD.

However, the limitation of test case reduction is that it

may exclude potentially critical test cases, leading to

reduced test coverage.

Fault-aware TCP has been used in recent works.

Sugave et al. [39] proposed Fault-aware TCP in

software testing using Jaya archimedes optimisation

algorithm. Garg and Shekha [10] proposed a method

that combines the Fault Sensitivity Index (FSI) with a

ranking-based Genetic Algorithm to prioritize test cases.

Gupta et al. [12] aimed to enhance fault detection rates

and coverage efficacy in both unit and integration

testing phases, based on Shuffled Frog-Leaping

Algorithm (SFLA). However, the limitation of fault

awareness techniques is that existing Fault awareness

information may not always be available.

Kumar and Saxena [22] proposed cost cost-based

technique for TCP using the Hungarian algorithm.

However, the Cost associated with a particular test case

may not always be available. The method assumes static

test cases and may not adapt well to environments where

test cases frequently change or evolve.

Junaid et al. [18] investigated the application of

history-based TCP techniques in regression testing. It

identifies the problem of equal priority assignments in

A Novel Risk-Based Testing Framework for Distributed Agile Software Development 1215

history-based TCP and proposes random sorting as a

potential solution. However, the prioritization technique

is static and doesn’t adapt dynamically to new failures

or evolving test conditions. This makes it less suitable

for DASD projects.

Blockchain has also been used for TCP [9, 29].

However, lots of power is required for mining blocks,

which leads to high energy consumption. Moreover,

data modification in blocks is a major concern.

Traditional TCP techniques often rely on historical

test execution data and known fault information.

However, these sources of data might not always be

available.

RBT focuses on prioritizing segments of the software

that pose the highest risk. Its goal is to identify critical

faults within these high-risk areas as early as possible,

minimising costs while preventing or mitigating

significant damage [15].

Despite its advantages, current RBT techniques often

fail to account for risk factors specific to the DASD

environment. This work proposes a novel risk-based

TCP method by correlating the test cases with the risk

values of features, considering the risk categories of

DASD. In the existing literature, several feature

prioritization techniques are available, including RICE

(reach, impact, confidence, effort), MoSCoW (Must

have, should have, could have, won’t have), Eisenhower

matrix and Weighted Shortest Job First (WSJF) [41].

However, most of these methods are subjective. This

work presents a novel approach to finding the risk

values of features based on modified requirements,

feature complexity, and interdependency.

3. Proposed Model

In order to efficiently prioritize the test cases in a sprint,

the risk values of features in the sprint are evaluated. The

risk associated with sprint features is calculated based on

failure probability and failure impact. Failure probability

is derived from two components, i.e., changed

requirements and feature complexity. Failure impact is

calculated on the basis of the dependency of features.

After assigning risk values to the feature, the correlation

between the feature and the test case is obtained. This

ultimately guides in prioritising the cases. Figure 2

presents the proposed risk-based TCP model.

Figure 2. Risk-based TCP for DASD.

Steps of the proposed model are explained as follows.

• Step 1: Extract features from current sprint user

stories.

Several tools, including Jira, Azure DevOps, typically

offer various features for organising, prioritising, and

tracking user stories and associated features within the

sprint backlog, helping teams effectively manage their

Agile development process.

• Step 2: Derive the failure probability and failure

impact.

The risk value of a feature is calculated as a product of

failure likelihood (probability) and failure impact. We

calculate failure likelihood based on two factors:

changed requirements and feature complexity.

• Failure probability=Changed Requirements+Feature

Complexity.

• Changed/Modified requirements: this factor is

determined by the number of changes or

modifications made to the requirements within a

feature. In software systems, faults often emerge

because of changes to the software, particularly

changes in requirements. Thus, tracking the number

of modified requirements within a feature can serve

as an effective indicator for identifying potential

faults [1]. This factor is obtained by summing the

number of user stories of the current sprint associated

with a feature. The values are normalized within the

range 0-1 by dividing each obtained value by the

highest value of changed requirements. The need for

normalisation is required to scale all the factors in the

same range.

𝐶𝑅𝑖 =
𝑁𝑆𝑖

𝑀𝑎𝑥 ∀𝑖{𝑁𝑆𝑖}

Where NSi represents the number of user stories of

(1)

1216 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

feature Fi.

• Feature cmplexity: the feature complexity is

computed based on the effort required and risk values

associated with the user story. Effort in Agile

methodology is expressed through story points, which

are a relative measure of the complexity, effort, and

uncertainty associated with implementing a user

story. Efforts required to complete a feature can be

calculated by obtaining the sum of story points of all

the user stories associated with that feature in the

sprint [36]. The effort is then normalized within the

range 0-1 by dividing each value obtained by the

highest value of effort.

𝐸𝑖 =
𝑁𝑆𝑃𝑖

𝑀𝑎𝑥∀𝑖{𝑁𝑆𝑃𝑖}

Where NSPi represents the number of story points of

feature Fi.

The complexity of the feature also depends on the risk

severity of the user story associated with a feature. The

risk severity of a user story can be obtained based on 10

risk factors identified in distributed agile environment.

10 risk categories are represented as objective statement

risks, design risks, testing risks, coding risks, release and

deployment risks, project management risks,

communication risks, technology-based risks, external

stakeholder risks and group awareness risks [20]. This

task is accomplished using a Hierarchical Fuzzy

Inference System (HFIS) [32]. The model is created by

dividing the risk categories into two classes, i.e. SDLC

risks and other risks. Objective statement, design,

coding, testing and release and deployment risks come

under the SDLC class. Project Management,

communication, external stakeholders and technology-

based risks are kept in the other risks category. The

output of these two Fuzzy Inference Systems (FIS) is

then fed to a third FIS, which gives us the total risk

severity of the user story. The number of rules using this

HFIS drastically reduces to 35+35+52, i.e., 511.

The textual risks associated with user stories are

converted to numerical representation by using the Term

Frequency-Inverse Document Frequency (TF-IDF)

technique. Then, k-means clustering is applied to create

clusters for each risk category. Next, the fuzzy c-means

algorithm is applied to find the membership values of

fuzzy sets for each cluster. The rule base, fuzzy sets and

the presence percentage of risk categories are fed as

input to HFIS. The output of the system is a risk value

associated with a user story, which is then defuzzified

and is used for Backlog prioritization. The overall

architecture is presented in Figure 3.

Figure 3. Hierarchical fuzzy inference-based risk management system for user story.

Risk severity of a feature can be calculated by the

summation of risk severity of all user stories associated

with a feature and then normalizing the obtained value

in the range 0-1 by dividing each value by the highest

value of risk severity.

𝑅𝐹𝑖 =
𝑅𝑈𝑆𝑖

𝑀𝑎𝑥∀𝑖{𝑅𝑈𝑆𝑖}

Where RUSi represents the risk of the user story

associated with feature Fi.

Feature complexity is calculated by the summation of

effort and risk severity of the feature. The value is then

divided by 2 to scale between the range 0-1.

𝐹𝐶𝑖 (𝐸𝑖 + 𝑅𝐹𝑖)/2

Where FCi represents the feature complexity of feature

Fi.

Failure probability is calculated by the summation of

changed requirement and feature complexity. The

obtained value is then divided by 2 to scale between 0 to

1.

𝐹𝑃𝑖 = (𝐶𝑅𝑖 + 𝐹𝐶𝑖)/2

Where FPi is the Failure Probability of Feature Fi.

• Failure impact: the failure impact value of a feature is

determined by considering the functional

(2)

(3)

(4)

(5)

A Novel Risk-Based Testing Framework for Distributed Agile Software Development 1217

dependencies within the software. If a feature

contains faults, these faults may propagate to other

features that are either directly or indirectly dependent

on it. As a result, a feature that is invoked by multiple

other features is likely to be executed more often

during testing, increasing the likelihood of faults

occurring in that feature. Therefore, a feature with a

high invocation degree is more prone to faults. To

calculate the impact, we measure the number of

outgoing dependencies (outdegree) of the feature.

𝐹𝐼𝑖 =
𝑁𝐹𝐶𝑖

𝑀𝑎𝑥∀𝑖{𝑁𝐹𝐶𝑖}

Where NFCi is the total number of outdegrees of a

feature Fi.

• Step 3: Calculate the risk of a feature.

According to Bohem, risk is calculated as a product of

failure occurrence and failure impact. Therefore, feature

risk is calculated by taking the product of failure

probability in Equation (5) and failure impact Equation

(6) [4].

𝐹𝑅𝑖 = 𝐹𝑃𝑖 ∗ 𝐹𝐼𝑖

• Step 4: Prioritize the test cases by test case-feature

correlation.

The test case is prioritized based on the value obtained

by the summation of risk values of all the features

covered by the test case. To extract a correlation between

features and test case, we perform textual analysis of

acceptance criteria from the user story. Several tools like

xRay (for Jira) and qTest (for DevOps) are available to

trace the correlation between test cases and features [28].

Therefore, prioritized value of a test case can be derived

using the following Equation (8).

𝑇𝑘 = ∑ 𝐹𝑅𝑖𝑘

𝑛

𝑖=1

In this context, k denotes the test case, and n refers to the

number of features covered by the k-th test case. After

calculating the risk values for each test case, we

prioritized them in descending order according to those

values. Since test cases in a system may correspond to

different requirements but cover the same features, test

cases that cover the same features will have identical risk

values. In such cases, we randomly prioritized these test

cases.

4. Empirical Study

The efficiency of the proposed model is evaluated with

an Empirical study. Research questions, experimental

subjects, evaluation matrix and threats to validity are

presented in this section.

4.1. Research Questions

• RQ1: Can the proposed model prioritize the test

cases?

• RQ2: Can the proposed model efficiently prioritize

the test cases associated with a user story in

comparison with other state- of- art approaches?

4.2. Experimental Subjects

A dataset has been collected from an IT company that

employs a DASD methodology, with teams located

across India, Canada, and Ukraine. Additionally, the

team members within each country are geographically

spread across various locations. The distribution of team

members across the three countries is outlined in Table

1. The company utilises several tools to facilitate their

Agile processes: Azure DevOps for defining workflows

and managing both product and sprint backlogs, and

Slack for team communication. The data set comprises

1400 user stories with 11 attributes as presented in Table

2. The data set is confidential.

Table 1. Details of teams.

Members Team 1 Team 2 Team 3

Developers 8 7 8

Quality analyst 5 5 4

Scrum master 1 1 1

Team product owner 2 1 1

UI/ UX 2 1 2

Table 2. Data set attributes.

ID Columns Data type

1 User Story ID Int

2 User story title String

3 Sprint ID Int

4 Acceptance criteria String

5 Estimation Float

6 Dependency String

7 Priority Int

8 Risk Involved String

9 Probability of occurrence Int

10 Potential Impact Int

11 Level of Urgency Int

The dataset includes information on various stories

completed in different sprints, along with their

associated story points. The proposed work has been

implemented on 320 user stories consisting of 24

features. The sample association of user story and

features is presented in Table 3.

Table 3. Features associated with user stories.

S.No. Feature number

User Story 1 1

User Story 2 1

User Story 3 1

User Story 4 1

User Story 5 2

User Story 6 2

User Story 7 2

User Story 8 3

User Story 9 3

User Story 10 4

User Story 11 4

User Story 12 4

Initially, K-means clustering is applied on the dataset

to cluster the user stories into 10 risk categories [19]. To

(6)

(7)

(8)

1218 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

apply k-means clustering, the textual risk tags are

converted to a vector space representation using TF-IDF.

Figure 4 presents the implementation in Python. Then,

for each obtained cluster of risk category, fuzzy

parameters are obtained by applying the fuzzy-c-means

algorithm. The fuzz.cluster.cmeans function from the

scikit-fuzzy library is used to apply the algorithm.

Figure 4. Implementation.

Table 4. Membership values of fuzzy sets for each risk category.

S. No Risk Category Low Medium High

1 Objective statement (0,0,0.2,0.3) (0.2,0.3,0.6,0.7) (0.6,0.7,1,1)

2 Design risk (0,0,0.15,0.25) (0.2,0.3,0.37,0.45) (0.4, 0.6,1,1)

3 Coding risk (0,0,0.15,0.25) (0.2,0.27,0.37,0.45) (0.4, 0.6,1,1)

4 Testing risk (0,0,0.2,0.3) (0.25,0.4,0.6,0.7) (0.65,0.75,1,1)

5 Release and deployment (0,0,0.1,0.2) (0.15,0.24,0.32,0.4) (0.35,0.45,1,1)

6 Project management (0,0,15,0.3) (0.2,0.35,0.55,0.7) (0.6,0.75,1,1)

7 Communication risk (0,0,0.15,25) (0.2,0.3,0.39,0.45) (0.4,0.5,1,1)

8 External stakeholder (0,0,0.11,0.2) (0.15,0.2,0.32,0.4) (0.35,0.45,1,1)

9 Group awareness (0,0,0.2,0.3) (0.25,0.4,0.56,0.7) (0.65,0.75,1,1)

10 Technology based (0,0,0.1,0.2) (0.15,0.25,0.37,50) (0.45,0.55,1,1)

Table 5. Rule base for FIS1.

R_ID
Objective statement risks Design risk Coding Testing Release and deployment SDLC risk severity

(1-3) (1-3) (1-3) (1-3) (1-3) (1-5)

1 1 1 3 1 3 3

2 3 1 3 3 1 5

3 1 1 1 1 3 4

4 2 2 1 1 3 5

5 3 1 2 2 1 5

6 3 1 1 1 1 5

7 2 1 3 2 1 3

8 2 3 1 2 3 5

9 2 1 3 3 2 4

10 3 2 3 3 2 5

Table 6. Rule base for FIS2.

R_ID
Project management risk Communication risk External stakeholder Group awareness Technology based Risk Severity 2

(1-3) (1-3) (1-3) (1-3) (1-3) (1-5)

1 2 3 3 1 3 3

2 1 2 1 1 1 1

3 3 2 3 2 1 3

4 2 3 2 2 3 3

5 1 2 3 3 2 2

6 3 3 2 2 2 2

7 2 1 3 3 1 2

8 3 2 1 2 1 2

9 2 3 3 1 3 2

10 2 3 1 3 2 1

A Novel Risk-Based Testing Framework for Distributed Agile Software Development 1219

Table 7. Rule base for FIS3.

Risk ID
SDLC risk severity Other risks severity Total risk severity

(1-5) (1-5) (1-5)

1 3 3 3

2 5 1 5

3 4 3 4

4 5 3 5

5 5 2 5

6 5 2 5

7 3 2 3

8 5 2 5

9 4 2 4

10 5 1 5

After applying fuzzy-c-means clustering, the

overlapping sets are obtained for each risk category,

representing linguistic values low, medium and high.

The membership values of these fuzzy sets for each risk

category are represented in Table 4. The rule base of

rules is created with the help of domain experts from the

IT industry. The sample rule base for FIS1, FIS2 and

FIS3 is represented in Tables 5, 6, and 7, respectively.

The effort is calculated based on the story points

obtained from the dataset. Then the feature complexity

is calculated using Equations (2) to (4).

A total of 24 features are tagged with the given set of

user stories. The risk value associated with these features

is obtained by extracting the values of changed

requirements, feature complexity and dependency of

Features from the SUT. The obtained values are

normalized, and feature risk is calculated using

Equations (1) to (7). The obtained values for the 4

features are presented in Table 8.

Table 8. Feature risk.

Features
Changed

requirements

Feature

complexity
Dependency

Risk of

feature

Feature 1 1 1 0.5 1

Feature 2 0.75 0.5 1 1.25

Feature 3 0.5 0.68 0 0

Feature 4 0.75 0.68 1 1.43

4.3. Evaluation Matrix

The Average Percentage of Faults Detected (APFD)

metric, introduced by Elbaum et al. [8], evaluates the

speed at which faults in a system are identified within a

test suite. It calculates the average fault detection rate on

a scale from 0 to 1, where higher values indicate a better

rate of fault detection, and lower values suggest poorer

detection performance.

The computation formula of APFD is as follows:

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝐹1 + 𝑇𝐹2 + ⋯ . 𝑇𝐹𝑚

𝑛 ∗ 𝑚
+

1

2𝑛

where n denotes the total number of test cases in the test

suite, m is the number of faults in the SUT, and TFf

denotes the location of the test case that finds fault f in

the test suite

4.4. Results

To verify the correct functionality of features, 150 test

cases have been taken in a suite. These test cases are then

correlated to the features. Table 9 represents the sample

correlation for 15 test cases. The test cases of the suite

are prioritized based on original order, reverse order,

random order, feature coverage based and proposed

feature risk-based techniques. The different

prioritization algorithms are compared based on the

average percentage of fault detection metric. The results

are presented in Table 10.

Table 9. Correlation of test cases and features.

Test Cases Feature 1 Feature 2 Feature 3

TC1 ✓ ✓

TC2 ✓ ✓

TC3 ✓ ✓

TC4 ✓ ✓

TC5 ✓

TC6 ✓

TC7 ✓

TC8 ✓

TC9 ✓ ✓

TC10 ✓

TC11 ✓

TC12 ✓

TC13 ✓

TC14 ✓

TC15 ✓

Table 10. Average percentage of faults detected.

TCP APFD

Original Order 0.71

Reverse Order 0.86

Random order 0.84

Feature coverage based 0.89

Proposed technique 0.95

Figure 5. Comparison with existing technique.

As in Figure 5 the results show that the proposed

technique outperforms the other prioritization

techniques with an APFD value of 0.95.

(9)

1220 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Table 11 presents a comparison of the proposed work

with existing techniques based on APDF.

Table 11. Comparison with existing work.

Authors Year TCP technique APFD

Junaid et al. [18] 2024 History based 0.87

Garg and Shekha
[10]

2024
Fault Indexed based multiple

objective
0.88

Li [24] 2021 Fault severity based 0.91

Gupta and
Mahapatra [12]

2023 Feature coverage based 0.87

Sugave et al. [39] 2025
Fault aware Jaya Archimedes

optimization algorithm
0.93

Kumar and Saxena

[22]
2025 Coverage based 0.82

Zhou et al. [43] 2021 Random TCP 0.86

Proposed technique Feature risk severity based 0.95

4.5. Threats to Validity

This section presents the threats to validity of the

proposed approach.

4.5.1. Internal Validity

In this study, we have examined feature risks based on

10 risk factors associated with DASD. We acknowledge

that the emergence of new, uncertain risks could

potentially affect the assessed severity of a feature.

Further, for each risk category, we have assigned the

membership values of low, medium and high. Altering

these membership values could influence the dependent

variable of risk severity. However, to address this

potential validity threat, a pivot study has been carried

out to aim to minimize any such validity threats.

4.5.2. External Validity

The subject systems employed for empirical studies in

this work are of medium size. However, it is

acknowledged that larger industrial projects may

produce varied results. To address these limitations, we

plan to conduct further experiments involving bigger

industrial projects, which aligns with one of our future

research directions.

4.6. Limitations and Future Work

The data of 1400 user stories from a real-world IT

project are taken, which is adequate for the study’s

objectives. Further, the work is evaluated on 320 user

stories of an IT project. A total of 10 risk categories

related to a distributed agile environment have been

included. Future research could broaden the scope of the

proposed method by examining its application in a

variety of DASD projects, spanning different industries

and project scales. This would provide valuable insights

into the method’s adaptability and scalability in real-

world environments, enabling a deeper understanding of

its performance across diverse conditions. Additionally,

the method’s potential for generalization to larger

projects and its applicability to additional risk categories

will be explored. To further validate its effectiveness,

user feedback and expert opinions, gathered through

surveys or interviews with project managers,

developers, and other stakeholders, could be

incorporated into the risk assessment process. This

would help ensure the method’s practicality, strengthen

its reliability, and enhance its usefulness for

practitioners, ultimately making it more robust and

versatile for real-world applications.

5. Conclusions

TCP is essential in DASD, wherein the software is

developed in sprints. TCP reorders the test cases if the

SUT in a way that the most important test cases are

executed before others. However, the existing TCP

techniques use the past test execution data and existing

fault information, which may not always be available.

RBT, focuses on identifying and testing the risky

modules, so that most risky features are tested within a

limited time and resources. However, the existing risk-

based TCP methods do not take into account the risks

involved in a distributed agile environment

This study introduces a novel approach to risk-based

test case prioritisation in distributed agile environments,

focusing on prioritizing test cases according to the risk

levels associated with various features by linking sprint

features to their respective test cases. The approach

offers a new perspective on evaluating the risk of

features by considering factors such as modified

requirements, feature complexity, and

interdependencies. The aim is to identify and test high-

risk features early in the distributed agile development

process, helping to uncover critical defects sooner.

While risks have traditionally been used to prioritize

test cases, applying risks related to DASD for feature

prioritization is a relatively new concept. As DASD

grows in popularity, strategies for improving TCP in

such settings are becoming increasingly important.

Associating risk values with features and correlating

them with test cases can lead to more efficient RBT.

The experiments indicate that the proposed approach

achieves a TCP with an APFD of 0.95. Ultimately, the

findings of the proposed work offer valuable insights and

will stimulate future discussion and advancement of

knowledge in the field.

References

[1] Alsaadi B. and Saeedi K., “Data-Driven Effort

Estimation Techniques of Agile User Stories: A

Systematic Literature Review,” Artificial

Intelligence Review, vol. 22, pp. 5485-5516, 2022.

https://link.springer.com/article/10.1007/s10462-

021-10132-x

[2] Alzoubi Y. and Mishra A., “Enterprise

Architecture Contribution in Distributed Agile

Software Development,” Systems Engineering,

vol. 27, pp. 570-584, 2024.

https://link.springer.com/article/10.1007/s10462-021-10132-x
https://link.springer.com/article/10.1007/s10462-021-10132-x

A Novel Risk-Based Testing Framework for Distributed Agile Software Development 1221

https://incose.onlinelibrary.wiley.com/doi/full/10.

1002/sys.21739

[3] Aziz M. and Choi J., “Prioritization of Risks in

Agile Software Projects Through an Analytic

Hierarchy Process Approach,” Procedia

Computer Science, vol. 233, pp. 713-722, 2024.

https://doi.org/10.1016/j.procs.2024.03.260

[4] Boehm B., “Software Risk Management:

Principles and Practices,” IEEE Software, vol. 8,

no. 1, pp. 32-41, 1991.

https://ieeexplore.ieee.org/document/62930

[5] Catal C. and Mishra D., “Test Case Prioritization:

A Systematic Mapping Study,” Software Quality

Journal, vol. 21, no. 3, pp. 445-478, 2012.

https://doi.org/10.1007/s11219-012-9181-z

[6] Chi J., Qu Y., Zheng Q., Yang Z., and et al.,

“Relation-based Test Case Prioritization for

Regression Testing,” Journal of Systems and

Software, vol. 163, pp. 110539, 2020.

https://doi.org/10.1016/j.jss.2020.110539

[7] Dingsøyr T., Nerur S., Balijepally V., and Moe N.,

“A Decade of Agile Methodologies: Towards

Explaining Agile Software Development,”

Journal of Systems and Software, vol. 85, no. 6,

pp. 1213-1221, 2012.

https://doi.org/10.1016/j.jss.2012.02.033

[8] Elbaum S., Malishevsky A., and Rothermel G.,

“Test Case Prioritization: A Family of Empirical

Studies,” IEEE Transactions on Software

Engineering, vol. 28, no. 2, pp. 159-182, 2002.

https://ieeexplore.ieee.org/document/988497

[9] Farooq U., Kalim Z., Qureshi J., Rasheed S., and

Abid A., “A Blockchain-based Framework for

Distributed Agile Software Development,” IEEE

Access, vol. 10, pp. 17977-17995, 2022.

https://ieeexplore.ieee.org/document/9694597

[10] Garg V. and Shekha S., “Fault Sensitivity Index-

based Multi-Objective Test Case Prioritization,”

Journal of Electrical Engineering, vol. 75, no. 2,

pp. 151-160, 2024. https://reference-

global.com/article/10.2478/jee-2024-0018

[11] Gladston A., Nehemiah K., Narayanasamy P., and

Kannan A., “Test Case Prioritisation for

Regression Testing Using Immune Operator,” The

International Arab Journal of Information

Technology, vol. 13, no. 6, pp. 31-37, 2016.

https://www.iajit.org/PDF/Vol.%2013,%20No.%

206/5585.pdf

[12] Gupta A. and Mahapatra R., “Test Case

Prioritization in Unit and Integration Testing: A

Shuffled-Frog-Leaping Approach,” Computers,

Materials and Continua, vol. 74, no. 3, pp. 5369-

5387, 2023.

https://www.techscience.com/cmc/v74n3/50872/

html

[13] Hao D., Zhang L., and Mei H., “Test-Case

Prioritization: Achievements and Challenges,”

Frontiers in Computational Science, vol. 10, pp.

769-777, 2016. https://doi.org/10.1007/s11704-

016-6112-3

[14] Hasnain M., Pasha M., Ghani I., and Jeong S.,

“Functional Requirement-based Test Case

Prioritization in Regression Testing: A Systematic

Literature Review,” SN Computer Science, vol. 2,

no. 421, 2021.

https://link.springer.com/article/10.1007/s42979-

021-00821-3

[15] Hettiarachchi C., Do H., and Choi B., “Risk-based

Test Case Prioritization Using a Fuzzy Expert

System,” Information and Software Technology,

vol. 69, pp. 1-15, 2016.

https://doi.org/10.1016/j.infsof.2015.08.008

[16] Huang Y., Peng K., and Huang C., “A History-

based Cost-Cognizant Test Case Prioritization

Technique in Regression Testing,” Journal of

Systems and Software, vol. 85, no. 3, pp. 626-637,

2012. https://doi.org/10.1016/j.jss.2011.09.063

[17] Jahan H., Feng Z., and Mahmud S., “Risk-based

Test Case Prioritization by Correlating System

Methods and their Associated Risks,” Arabian

Journal for Science and Engineering, vol. 45, pp.

6125-6138, 2020.

https://link.springer.com/article/10.1007/s13369-

020-04472-z

[18] Junaid H., Jawawi D., and Ahmad J., “An

Exploratory Study of History-based Test Case

Prioritization Techniques on Different Datasets,”

Baghdad Science Journal, vol. 21, no. 2, pp. 609-

621, 2024. DOI:10.21123/bsj.2024.9604

[19] Khanna E., Popli R., and Chauhan N.,

“Identification and Classification of Risk Factors

in Distributed Agile Software Development,”

Journal of Web Engineering, vol. 21, no. 6, pp.

1831-1851, 2022.

https://ieeexplore.ieee.org/document/10246944

[20] Khanna E., Popli R., and Chauhan N., Agile

Software Development, Wiley AI, 2023.

https://ieeexplore.ieee.org/document/10953243

[21] Khatibsyarbini M., Isa M., Jawawi D., and

Tumeng R., “Test Case Prioritization Approaches

in Regression Testing: A Systematic Literature

Review,” Information and Software Technology,

vol. 93, pp. 74-93, 2018.

https://doi.org/10.1016/j.infsof.2017.08.014

[22] Kumar S. and Saxena V., “Optimization and

Prioritization of Test Cases through the Hungarian

Algorithm,” Journal of Advances in Mathematics

and Computer Science, vol. 40, no. 3, pp. 61-72,

2025.

https://journaljamcs.com/index.php/JAMCS/artic

le/view/1978

[23] Lawong D. and Akanfe O., “Overcoming Team

Challenges in Project Management: The Scrum

Framework,” Organizational Dynamics, vol. 54,

no. 1, pp. 101073, 2025.

https://doi.org/10.1016/j.orgdyn.2024.101073

https://incose.onlinelibrary.wiley.com/doi/full/10.1002/sys.21739
https://incose.onlinelibrary.wiley.com/doi/full/10.1002/sys.21739
https://doi.org/10.1016/j.procs.2024.03.260
https://ieeexplore.ieee.org/document/62930
https://doi.org/10.1007/s11219-012-9181-z
https://doi.org/10.1016/j.jss.2020.110539
https://doi.org/10.1016/j.jss.2012.02.033
https://ieeexplore.ieee.org/document/988497
https://ieeexplore.ieee.org/document/9694597
https://reference-global.com/article/10.2478/jee-2024-0018
https://reference-global.com/article/10.2478/jee-2024-0018
https://www.iajit.org/PDF/Vol.%2013,%20No.%206/5585.pdf
https://www.iajit.org/PDF/Vol.%2013,%20No.%206/5585.pdf
https://www.techscience.com/cmc/v74n3/50872/html
https://www.techscience.com/cmc/v74n3/50872/html
https://doi.org/10.1007/s11704-016-6112-3
https://doi.org/10.1007/s11704-016-6112-3
https://link.springer.com/article/10.1007/s42979-021-00821-3
https://link.springer.com/article/10.1007/s42979-021-00821-3
https://doi.org/10.1016/j.infsof.2015.08.008
https://doi.org/10.1016/j.jss.2011.09.063
https://link.springer.com/article/10.1007/s13369-020-04472-z
https://link.springer.com/article/10.1007/s13369-020-04472-z
https://ieeexplore.ieee.org/document/10246944
https://ieeexplore.ieee.org/document/10953243
https://doi.org/10.1016/j.infsof.2017.08.014
https://journaljamcs.com/index.php/JAMCS/article/view/1978
https://journaljamcs.com/index.php/JAMCS/article/view/1978
https://doi.org/10.1016/j.orgdyn.2024.101073

1222 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

[24] Li Y., “A Fault Prediction and Cause

Identification Approach in Complex Industrial

Processes Based on Deep Learning,”

Computational Intelligence and Neuroscience,

vol. 2021, pp. 1-13, 2021.

https://onlinelibrary.wiley.com/doi/10.1155/2021

/6612342

[25] Mahdieh M., Mirian-Hosseinabadi S., Etemadi K.,

Nosrati A., and Jalali S., “Incorporating Fault-

Proneness Estimations into Coverage-based Test

Case Prioritization Methods,” Information and

Software Technology, vol. 121, pp. 106269, 2020.

https://doi.org/10.1016/j.infsof.2020.106269

[26] Mukherjee R. and Patnaik K., “A Survey on

Different Approaches for Software Test Case

Prioritization,” Journal of King Saud University-

Computer and Information Sciences, vol. 33, no.

9, pp. 1041-1054, 2021.

https://doi.org/10.1016/j.jksuci.2018.09.005

[27] Parida S., Rath D., and Mishra D., Meta Heuristic

Techniques in Software Engineering and its

Applications, Springer, 2022.

https://doi.org/10.1007/978-3-031-11713-8_16

[28] Pecorelli F., Palomba F., and De Lucia A., “The

Relation of Test-Related Factors to Software

Quality: A Case Study on Apache Systems,”

Empirical Software Engineering, vol. 26, no. 6,

pp. 1-42, 2021. https://doi.org/10.1007/s10664-

020-09891-y

[29] Qureshi J., Farooq M., Khelifi A., and Atal Z.,

“Harnessing the Potential of Blockchain in

ChainAgilePlus Framework for the Improvement

of Distributed Scrum of Scrums Agile Software

Development,” IEEE Access, vol. 12, pp. 105724-

105743, 2024.

https://ieeexplore.ieee.org/document/10595117

[30] Sakhrawi Z. and Labidi T., “Test Case Selection

and Prioritisation Approach for Automated

Regression Testing Using Ontology and COSMIC

Measurement,” Automated Software Engineering,

vol. 31, no. 2, pp. 1453, 2024.

https://doi.org/10.1007/s10515-024-00447-8

[31] Saraswat P., Singhal A., and Bansal A., Software

Engineering, Springer, 2019.

https://doi.org/10.1007/978-981-10-8848-3_48

[32] Shivanandam S. and Deepa S., Principles of Soft

Computing, Wiley, 2011.

https://ebooks.wileyindia.com/home/product-

details/282517;seoMode=true

[33] Singh M., Chauhan N., and Popli R., “Test Case

Reduction and SWOA Optimization for

Distributed Agile Software Development Using

Regression Testing,” Multimedia Tools and

Applications, vol. 84, pp. 7065-7090, 2025.

https://link.springer.com/article/10.1007/s11042-

024-19148-1

[34] Singh Y., “Systematic Literature Review on

Regression Test Prioritization Techniques:

Difference between Literature Review and

Systematic Literature,” Informatica, vol. 36, no. 4,

pp. 379-408, 2012.

https://www.informatica.si/index.php/informatica

/article/view/420/424

[35] Singhal S., Jatana N., Suri B., Misra S., and

Fernandez-Sanz L., “Systematic Literature

Review on Test Case Selection and Prioritization:

A Tertiary Study,” Applied Sciences, vol. 11, no.

24, pp. 1-34, 2021. https://www.mdpi.com/2076-

3417/11/24/1212

[36] Sommerville I. and Sawyer P., Requirements

Engineering: A Good Practice Guide, John Wiley

and Sons, 1997. https://www.wiley.com/en-

us/Requirements+Engineering%3A+A+Good+Pr

actice+Guide-p-9780471974444

[37] Srikanth H., Hettiarachchi C., and Do H.,

“Requirements Based Test Prioritization Using

Risk Factors: An Industrial Study,” Information

and Software Technology, vol. 69, pp. 71-83,

2016.

https://doi.org/10.1016/j.infsof.2015.09.002

[38] Stray V., Hoda R., Paasivaara M., Lenarduzzi V.,

and Mendez D., “Theories in Agile Software

Development: Past, Present, and Future

Introduction to the XP 2020 Special Section,”

Information and Software Technology, vol. 152,

pp. 107058, 2022.

https://doi.org/10.1016/j.infsof.2022.107058

[39] Sugave S., Kulkarni Y, Jagdale B., and Gutte V.,

“Fault-Aware Test Case Prioritization in Software

Testing Using Jaya Archimedes Optimization

Algorithm,” Journal of Electronic Testing, vol.

41, pp. 41-60, 2025.

https://link.springer.com/article/10.1007/s10836-

025-06157-7

[40] Wang Y., Zhu Z., Yang B., Guo F., and Yu H.,

“Using Reliability Risk Analysis to Prioritize Test

Cases,” Journal of Systems and Software, vol.

139, pp. 14-31, 2018.

https://doi.org/10.1016/j.jss.2018.01.033

[41] Webber R., Unlocking Agile’s Missed Potential,

Wiley-IEEE Press, 2022.

https://onlinelibrary.wiley.com/doi/10.1002/9781

119849117.ch5

[42] Yoo S. and Harman M., “Regression Testing

Minimisation, Selection and Prioritization: A

Survey,” Test Verification and Reliability, vol. 22,

no. 2, pp. 1-60, 2007.

https://www.cse.chalmers.se/~feldt/advice/yoo_2

010_regression_testing_survey.pdf

[43] Zhou Z., Liu C., Chen T., Tse T., and Susilo W.,

“Beating Random Test Case Prioritization,” IEEE

Transactions on Reliability, vol. 70, no. 2, pp.

654-675, 2021.

https://ieeexplore.ieee.org/document/9118977

https://onlinelibrary.wiley.com/doi/10.1155/2021/6612342
https://onlinelibrary.wiley.com/doi/10.1155/2021/6612342
https://doi.org/10.1016/j.infsof.2020.106269
https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1007/978-3-031-11713-8_16
https://doi.org/10.1007/s10664-020-09891-y
https://doi.org/10.1007/s10664-020-09891-y
https://ieeexplore.ieee.org/document/10595117
https://doi.org/10.1007/s10515-024-00447-8
https://doi.org/10.1007/978-981-10-8848-3_48
https://link.springer.com/article/10.1007/s11042-024-19148-1
https://link.springer.com/article/10.1007/s11042-024-19148-1
https://www.informatica.si/index.php/informatica/article/view/420/424
https://www.informatica.si/index.php/informatica/article/view/420/424
https://www.mdpi.com/2076-3417/11/24/1212
https://www.mdpi.com/2076-3417/11/24/1212
https://www.wiley.com/en-us/Requirements+Engineering%3A+A+Good+Practice+Guide-p-9780471974444
https://www.wiley.com/en-us/Requirements+Engineering%3A+A+Good+Practice+Guide-p-9780471974444
https://www.wiley.com/en-us/Requirements+Engineering%3A+A+Good+Practice+Guide-p-9780471974444
https://doi.org/10.1016/j.infsof.2015.09.002
https://doi.org/10.1016/j.infsof.2022.107058
https://link.springer.com/article/10.1007/s10836-025-06157-7
https://link.springer.com/article/10.1007/s10836-025-06157-7
https://doi.org/10.1016/j.jss.2018.01.033
https://onlinelibrary.wiley.com/doi/10.1002/9781119849117.ch5
https://onlinelibrary.wiley.com/doi/10.1002/9781119849117.ch5
https://www.cse.chalmers.se/~feldt/advice/yoo_2010_regression_testing_survey.pdf
https://www.cse.chalmers.se/~feldt/advice/yoo_2010_regression_testing_survey.pdf
https://ieeexplore.ieee.org/document/9118977

A Novel Risk-Based Testing Framework for Distributed Agile Software Development 1223

Esha Khanna is currently pursuing

Ph. D. in Computer Engineering from

J. C. Bose University of Science and

Technology, YMCA, Faridabad,

India. She holds a Master of

Technology degree and a Bachelor of

Technology degree in Computer

Science and Engineering. She is working as an Assistant

Professor at Manav Rachna University, India. She has

11 years of teaching experience. Her main research area

focuses on Machine Learning, Software Testing, and

Distributed Agile Software Development

Rashmi Popli is an Associate

Professor at J.C. Bose University of

Science and Technology, YMCA,

Faridabad, India. She has 21 years of

rich experience in Teaching, and 4

research scholars are pursuing PhD

under her guidance and supervision.

Her areas of specialisation include Machine Learning,

Software Engineering, Software Testing, Network

Security and automation of software. She has published

more than 50 research papers in various International

Journals and conferences. She is a lifetime member of

ISTE and CSI. She is also holding the position of

Faculty In-Charge, Industrial Collaboration and

Consultancy and Coordinator IQAC.

Naresh Chauhan is working as a

Professor in J.C. Bose University of

Science and Technology, YMCA,

India. He has received his Ph.D.

(Computer Engineering) from MD

University, Rohtak (Haryana) in

2008, M.Tech. (Information

Technology) from GGS Indraprastha University, Delhi

in 2004 and B.Tech. (Computer Engg.) from NIT

Kurukshetra, in the year 1992. He has about 30 years of

experience in teaching and the industries. He served

Bharat Electronics Ltd. and Motorola India Ltd. His

research interests include Internet technologies,

Software Engineering,Software Testing and Real time

systems. He has published two books on Software

Testing and Operating Systems published by Oxford

University Press, India.

