The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025 1213

A Novel Risk-Based Testing Framework for
Distributed Agile Software Development

Esha Khanna Rashmi Popli Naresh Chauhan
Department of Computer Engineering Department of Computer Engineering Department of Computer Engineering
J. C. Bose University of Science and J. C. Bose University of Scienceand J. C. Bose University of Science and

Technology YMCA, India Technology, YMCA, India Technology, YMCA, India
Department of Computer Science and rashmipopli@gmail.com nareshchauhan19@gmail.com

Technology Manav Rachna University, India
eshakhanna30@gmail.com

Abstract: Distributed Agile Software Development (DASD) is one of the most commonly adopted lifecycle methodologies in the
IT industry. It combines the speed benefits and adaptability of agile development with the cost-effectiveness of distributed
development. In DASD, software is built iteratively in sprints, allowing for changes to be introduced in the later stages of
development. However, such changes can affect the functionality of previously implemented features, highlighting the critical need
for regression testing. In distributed agile environments, constraints on resources, time, and communication make it essential to
prioritize tasks to maximise the efficiency of testing efforts. This work presents a novel risk-based Test Case Prioritization (TCP)
approach for a distributed agile environment that aims to prioritize test cases based on the risk values associated with features by
correlating sprint features with their corresponding test cases. The risk value of a feature is evaluated by considering modified
requirements, feature complexity, and interdependencies. The goal is to identify and test high-risk features early in the distributed
agile development cycle, thereby uncovering critical defects earlier. The proposed work is evaluated using an empirical study.
The results show that the proposed technique has outperformed the existing state-of-the-art techniques.

Keywords: Test case prioritization, risk-based testing, distributed agile software development.

Received April 18, 2025; accepted July 31, 2025
https://doi.org/10.34028/iajit/22/6/14

1. Introduction modules, despite the significant importance of
concentrating on such areas to offset resource
limitations.

On the contrary, Risk-Based Testing (RBT) directs
attention to the segments of software posing the greatest
risk [15]. Its objective is the early identification of the
most critical faults within the risky modules, while
keeping costs to a minimum. This approach empowers
testers to prevent or mitigate the occurrence of faults that
could result in significant damage [3, 17, 40]. However,
the existing risk-based TCP techniques do not consider
all the risk factors associated with the DASD
environment.

This work proposes a novel risk-based TCP approach
that correlates the test cases with features in a given
sprint. This approach also takes into account the 10 risk
categories identified for the DASD environment [19].

The goals of the paper are as follows-

In a distributed agile environment, where teams are
geographically dispersed and development cycles are
fast-paced, the need for regression testing becomes
paramount [27]. However, in distributed agile setups,
resources, time, and communication can be limited,
necessitating prioritization to optimise testing efforts
[30]. Prioritizing regression test cases allows the teams
to focus on critical functionalities first, ensuring that
high-impact areas are thoroughly tested within the
constraints of distributed collaboration [6]. This
approach not only maximises test coverage but also
minimises the risk of regression issues slipping into
production [21].

Over the past several years, various Test Case
Prioritization (TCP) techniques have been proposed and
empirically studied to identify faults at early stages,
thereby increasing the fault detection rate [5, 13, 21, 26,
31, 34, 35, 42]. Existing methods include history-based e To propose a method to calculate risk values

[16], coverage-based [26], fault severity-based [25], and associated with features in a sprint.
requirement-based [14, 37], among others. Some work e To propose a novel RBT framework by correlating
combines the existing methods to attain better results test cases with features and assigning higher priority
[25]. However, these techniques typically prioritize test to test cases covering high-risk features.

cases according to past test execution data and existing e To carry out an empirical study to evaluate the
fault information, although such data may not always be efficiency of the framework.

accessible. Additionally, these methods often neglect the e To compare the results of the study with state-of-the-
crucial task of identifying defects early in high-risk

1214 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

art techniques.

The paper is organised as follows. Section 2 presents the
background, section 3 presents the proposed model,
section 4 presents the empirical study, and section 5
concludes.

2. Background

Distributed Agile Software Development (DASD) has
emerged as a prominent Software Development Life
Cycle (SDLC) model after the COVID-19 pandemic.
DASD combines the agility of Agile Software
Development (ASD) with the speed benefits of
Distributed Software Development (DSD) [2, 20]. ASD
methodology is centred around the principles and
practices of agile framewaorks, which focus on iterative
development, collaboration between cross-functional
teams, flexibility in responding to change, and
continuous improvement [38]. In an agile development
scenario, the software is developed in sprints [7]. A
sprint is a small timeframe (usually of 2-4 weeks) in
which the agile team focuses on releasing an increment.
In the scrum framework, the agile team consists of the
product owner, scrum master and a development team
including testers, designers and User Experience (UX)
specialists [23]. The product owner is responsible for
prioritising the backlog on the basis of feedback from
users and the development team. In a sprint, there is a
collection of ceremonies that take place to mark the
milestone of a sprint. The first meeting is called sprint
planning, which is led by the scrum master. In this
meeting, the team decides the goal of the sprint. A sprint
backlog is prepared by adding the stories from the
product backlog, which reflects the goal of the sprint.
After the release increment is decided, the team starts
working on the user stories of a sprint. A short meeting
is carried out daily during the sprint, which helps every
team member to be aligned with the sprint goal. At the
end of the sprint, a sprint review meeting is carried out
to discuss the completion of the goal of the sprint. The
product owner then takes a call to release the increment.
The product owner then reprioritizes the product
backlog based on the current sprint [38].

During the next sprint, feedback from the users and
development team is incorporated into the first release.
This may include the addition of new functionality or
modification to the existing feature. The changes
incorporated in the released version endanger the correct
working of the existing features, that has been inherited
from the previous version. This calls for retesting the
next increment with all the test suites of the first and next
increment to verify that new changes have not altered the
working of previously inherited modules. This testing is
known as regression testing [27, 11]. As the agile
methodology accepts the changes during the lifecycle of
a product, regression testing has to be carried out
multiple times in each sprint in Scrum. Re-executing all
the test cases of the regression suite is a time-consuming

task; therefore, the test cases are reordered such that the
most important test cases are executed before the others.
TCP is a type of regression testing that reorders the test
cases on the basis of some factors [21, 26, 27]. These
factors include code coverage, branch coverage, method
coverage, history-based, and risk-based [13, 31, 35].

A test case covering maximum program code
maximises the likelihood of fault detection. Coverage-
based techniques order the test cases of a test suite in
such a way that a test case having more coverage is
assigned a higher priority than a test case covering a
lower priority. Figure 1 presents different coverage-
based techniques, including statement coverage, branch
coverage, function coverage, and fault index
prioritization [21, 36, 42].

Statement
Coverage

Branch
Coverage

Function

Optimal —
coverage

Test Case

Prionitization

Fault-Exposing
potential

Random ’

Fault- Index
Prioritization

Figure 1. Coverage-based TCP techniques.

In the literature, several authors have proposed and
empirically evaluated regression testing techniques. In
the work by Singh et al. [33], a novel test case reduction
method was proposed, combined with a Support-based
Whale Optimisation Algorithm (SWOA) for DASD.
However, the limitation of test case reduction is that it
may exclude potentially critical test cases, leading to
reduced test coverage.

Fault-aware TCP has been used in recent works.
Sugave et al. [39] proposed Fault-aware TCP in
software testing using Jaya archimedes optimisation
algorithm. Garg and Shekha [10] proposed a method
that combines the Fault Sensitivity Index (FSI) with a
ranking-based Genetic Algorithm to prioritize test cases.
Gupta et al. [12] aimed to enhance fault detection rates
and coverage efficacy in both unit and integration
testing phases, based on Shuffled Frog-Leaping
Algorithm (SFLA). However, the limitation of fault
awareness techniques is that existing Fault awareness
information may not always be available.

Kumar and Saxena [22] proposed cost cost-based
technique for TCP using the Hungarian algorithm.
However, the Cost associated with a particular test case
may not always be available. The method assumes static
test cases and may not adapt well to environments where
test cases frequently change or evolve.

Junaid et al. [18] investigated the application of
history-based TCP techniques in regression testing. It
identifies the problem of equal priority assignments in

A Novel Risk-Based Testing Framework for Distributed Agile Software Development 1215

history-based TCP and proposes random sorting as a
potential solution. However, the prioritization technique
is static and doesn’t adapt dynamically to new failures
or evolving test conditions. This makes it less suitable
for DASD projects.

Blockchain has also been used for TCP [9, 29].
However, lots of power is required for mining blocks,
which leads to high energy consumption. Moreover,
data modification in blocks is a major concern.

Traditional TCP techniques often rely on historical
test execution data and known fault information.
However, these sources of data might not always be
available.

RBT focuses on prioritizing segments of the software
that pose the highest risk. Its goal is to identify critical
faults within these high-risk areas as early as possible,
minimising costs while preventing or mitigating
significant damage [15].

Despite its advantages, current RBT techniques often
fail to account for risk factors specific to the DASD
environment. This work proposes a novel risk-based
TCP method by correlating the test cases with the risk
values of features, considering the risk categories of

DASD. In the existing literature, several feature
prioritization techniques are available, including RICE
(reach, impact, confidence, effort), MoSCoW (Must
have, should have, could have, won’t have), Eisenhower
matrix and Weighted Shortest Job First (WSJF) [41].
However, most of these methods are subjective. This
work presents a novel approach to finding the risk
values of features based on modified requirements,
feature complexity, and interdependency.

3. Proposed Model

In order to efficiently prioritize the test cases in a sprint,
the risk values of features in the sprint are evaluated. The
risk associated with sprint features is calculated based on
failure probability and failure impact. Failure probability
is derived from two components, i.e., changed
requirements and feature complexity. Failure impact is
calculated on the basis of the dependency of features.
After assigning risk values to the feature, the correlation
between the feature and the test case is obtained. This
ultimately guides in prioritising the cases. Figure 2
presents the proposed risk-based TCP model.

Y

Changed/
Modified
Requirements

Feature Test
Case

Sprint

corrclation

E Y

User Story 1

Product
Backlog
consisting

Features ma

User Story 2

Feature Complexity

Prioritised Test
Cases

Risk of Feature

sprint

Features <
User Story 3

User Story 4

Dependency on
other features

Figure 2. Risk-based TCP for DASD.

Steps of the proposed model are explained as follows.

e Step 1: Extract features from current sprint user
stories.

Several tools, including Jira, Azure DevOps, typically
offer various features for organising, prioritising, and
tracking user stories and associated features within the
sprint backlog, helping teams effectively manage their
Agile development process.

o Step 2: Derive the failure probability and failure
impact.

The risk value of a feature is calculated as a product of
failure likelihood (probability) and failure impact. We
calculate failure likelihood based on two factors:
changed requirements and feature complexity.

e Failure probability=Changed Requirements+Feature
Complexity.

e Changed/Modified requirements: this factor is
determined by the number of changes or
modifications made to the requirements within a
feature. In software systems, faults often emerge
because of changes to the software, particularly
changes in requirements. Thus, tracking the number
of modified requirements within a feature can serve
as an effective indicator for identifying potential
faults [1]. This factor is obtained by summing the
number of user stories of the current sprint associated
with a feature. The values are normalized within the
range 0-1 by dividing each obtained value by the
highest value of changed requirements. The need for
normalisation is required to scale all the factors in the
same range.

NSi

CR: = MaxviNsT) (1)

Where NS; represents the number of user stories of

1216

feature Fi.

o Feature cmplexity: the feature complexity is
computed based on the effort required and risk values
associated with the user story. Effort in Agile
methodology is expressed through story points, which
are a relative measure of the complexity, effort, and
uncertainty associated with implementing a user
story. Efforts required to complete a feature can be
calculated by obtaining the sum of story points of all
the user stories associated with that feature in the
sprint [36]. The effort is then normalized within the
range 0-1 by dividing each value obtained by the
highest value of effort.

_ NSPi
I ™ MaxVi{NSPi}

2)

Where NSP; represents the number of story points of
feature Fi.

The complexity of the feature also depends on the risk
severity of the user story associated with a feature. The
risk severity of a user story can be obtained based on 10
risk factors identified in distributed agile environment.
10 risk categories are represented as objective statement
risks, design risks, testing risks, coding risks, release and
deployment risks, project management risks,

Numerical
Representation
of risks

Textual Risks

The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

communication risks, technology-based risks, external
stakeholder risks and group awareness risks [20]. This
task is accomplished using a Hierarchical Fuzzy
Inference System (HFIS) [32]. The model is created by
dividing the risk categories into two classes, i.e. SDLC
risks and other risks. Objective statement, design,
coding, testing and release and deployment risks come
under the SDLC class. Project Management,
communication, external stakeholders and technology-
based risks are kept in the other risks category. The
output of these two Fuzzy Inference Systems (FIS) is
then fed to a third FIS, which gives us the total risk
severity of the user story. The number of rules using this
HFIS drastically reduces to 3°+3%+52 i.e., 511.

The textual risks associated with user stories are
converted to numerical representation by using the Term
Frequency-Inverse Document Frequency (TF-IDF)
technique. Then, k-means clustering is applied to create
clusters for each risk category. Next, the fuzzy c-means
algorithm is applied to find the membership values of
fuzzy sets for each cluster. The rule base, fuzzy sets and
the presence percentage of risk categories are fed as
input to HFIS. The output of the system is a risk value
associated with a user story, which is then defuzzified
and is used for Backlog prioritization. The overall
architecture is presented in Figure 3.

10 Risk
Clusters

TF-IDF

» K- Mcans

Clustening

| Fuzzy C-Means
Clustening

User Stories with

Y

Hicrarchical Fuzzy

presence percentage
of risk categories

Inference System

v

Risk Severity of User
Story

Y

Backlog Prioritization

Figure 3. Hierarchical fuzzy inference-based risk management system for user story.

Risk severity of a feature can be calculated by the
summation of risk severity of all user stories associated
with a feature and then normalizing the obtained value
in the range 0-1 by dividing each value by the highest

value of risk severity.

RUSi

RFi=——>
"= Maxvi{RUSH

€)

Where RUSI represents the risk of the user story

associated with feature Fi.

Feature complexity is calculated by the summation of
effort and risk severity of the feature. The value is then

divided by 2 to scale between the range 0-1.

FC; (E; + RF)/2

4)
Where FC; represents the feature complexity of feature
Fi.

Failure probability is calculated by the summation of
changed requirement and feature complexity. The
obtained value is then divided by 2 to scale between 0 to
1.

FPi = (CRi + FCi)/2 (%)
Where FP;is the Failure Probability of Feature F;.

o Failure impact: the failure impact value of a feature is
determined by considering the functional

A Novel Risk-Based Testing Framework for Distributed Agile Software Development 1217

dependencies within the software. If a feature
contains faults, these faults may propagate to other
features that are either directly or indirectly dependent
on it. As a result, a feature that is invoked by multiple
other features is likely to be executed more often
during testing, increasing the likelihood of faults
occurring in that feature. Therefore, a feature with a
high invocation degree is more prone to faults. To
calculate the impact, we measure the number of
outgoing dependencies (outdegree) of the feature.
NFCi
Fli = Yaxvinrcy (6)
Where NFC; is the total number of outdegrees of a
feature F;.

o Step 3: Calculate the risk of a feature.

According to Bohem, risk is calculated as a product of
failure occurrence and failure impact. Therefore, feature
risk is calculated by taking the product of failure
probability in Equation (5) and failure impact Equation

(6) [4]

FR; = FP; FI; (7)

o Step 4: Prioritize the test cases by test case-feature
correlation.

The test case is prioritized based on the value obtained
by the summation of risk values of all the features
covered by the test case. To extract a correlation between
features and test case, we perform textual analysis of
acceptance criteria from the user story. Several tools like
xRay (for Jira) and qTest (for DevOps) are available to
trace the correlation between test cases and features [28].
Therefore, prioritized value of a test case can be derived
using the following Equation (8).

T, = Z FRik (3)
i=1

In this context, k denotes the test case, and n refers to the
number of features covered by the k-th test case. After
calculating the risk values for each test case, we
prioritized them in descending order according to those
values. Since test cases in a system may correspond to
different requirements but cover the same features, test
cases that cover the same features will have identical risk
values. In such cases, we randomly prioritized these test
cases.

4. Empirical Study

The efficiency of the proposed model is evaluated with
an Empirical study. Research questions, experimental
subjects, evaluation matrix and threats to validity are
presented in this section.

4.1. Research Questions

e RQI1: Can the proposed model prioritize the test

cases?

e RQ2: Can the proposed model efficiently prioritize
the test cases associated with a user story in
comparison with other state- of- art approaches?

4.2. Experimental Subjects

A dataset has been collected from an IT company that
employs a DASD methodology, with teams located
across India, Canada, and Ukraine. Additionally, the
team members within each country are geographically
spread across various locations. The distribution of team
members across the three countries is outlined in Table
1. The company utilises several tools to facilitate their
Agile processes: Azure DevOps for defining workflows
and managing both product and sprint backlogs, and
Slack for team communication. The data set comprises
1400 user stories with 11 attributes as presented in Table
2. The data set is confidential.

Table 1. Details of teams.

Members Team1l| Team?2 | Team 3

Developers 8 7 8
Quality analyst 5
Scrum master 1
Team product owner 2
Ul/ UX 2

=== |o
N[

Table 2. Data set attributes.

ID Columns Data type
1 User Story 1D Int
2 User story title String
3 Sprint ID Int
4 Acceptance criteria String
5 Estimation Float
6 Dependency String
7 Priority Int
8 Risk Involved String
9 |Probability of occurrence Int
10 Potential Impact Int
11 Level of Urgency Int

The dataset includes information on various stories
completed in different sprints, along with their
associated story points. The proposed work has been
implemented on 320 user stories consisting of 24
features. The sample association of user story and
features is presented in Table 3.

Table 3. Features associated with user stories.

S.No. Feature number
User Story 1
User Story 2
User Story 3
User Story 4
User Story 5
User Story 6
User Story 7
User Story 8
User Story 9
User Story 10
User Story 11
User Story 12

Al lww NN NR PR

Initially, K-means clustering is applied on the dataset
to cluster the user stories into 10 risk categories [19]. To

1218

apply k-means clustering, the textual risk tags are
converted to a vector space representation using TF-IDF.
Figure 4 presents the implementation in Python. Then,

The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

for each obtained cluster of risk category, fuzzy

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans

from google.colab import
df = pd.read_excel('data.x
print(df.head())

keywords =

files

lsx')

df ['extracted_keywords']) = df['Risks’'].apply(lambda x:

Vectorization using TF-IDF

vectorizer =
tfidf_matrix =

Clustering using K-Means
num_clusters = 3
kmeans =
kmeans. fit(tfidf_matrix)

Assign cluster labels to

TfidfVectorizer()
vectorizer.fit_transform(df['Risks"])

the DataFrame

df['cluster’'] = kmeans.labels_

You can adjust the number of clusters
KMeans (n_clusters=num_clusters, random_state=42)

Output the DataFrame with clusters and extracted keywords

print(df[['Risks', ‘'extrac

ted_keywords',

‘cluster’]]))

Figure 4. Implementation.

[“dependency”, "Dependent™, "Automation", “Rework", “High priority"]
word for word in manual_keywords if word in x])

Table 4. Membership values of fuzzy sets for each risk category.

S. No Risk Category Low Medium High
1 Objective statement (0,0,0.2,0.3) (0.2,0.3,0.6,0.7) (0.6,0.7,1,1)
2 Design risk (0,0,0.15,0.25) | (0.2,0.3,0.37,045) | (0.4,0.6,1,1)
3 Coding risk (0,0,0.15,0.25) | (0.2,0.27,0.37,0.45) | (0.4,0.6,1,1)
4 Testing risk (0,0,0.2,0.3) (0.25,0.4,0.6,0.7) | (0.65,0.75,1,1)
5 |Release and deployment| (0,0,0.1,0.2) | (0.15,0.24,0.32,0.4) | (0.35,0.45,1,1)
6 Project management (0,0,15,0.3) (0.2,0.35,0.55,0.7) | (0.6,0.75,1,1)
7 Communication risk (0,0,0.15,25) (0.2,0.3,0.39,0.45) (0.4,05,1,1)
8 External stakeholder | (0,0,0.11,0.2) | (0.15,0.2,0.32,0.4) | (0.35,0.45,1,1)
9 Group awareness (0,0,0.2,0.3) (0.25,0.4,0.56,0.7) | (0.65,0.75,1,1)
10 Technology based (0,0,0.1,0.2) | (0.15,0.25,0.37,50) | (0.45,0.55,1,1)

Table 5. Rule base for FISI1.

parameters are obtained by applying the fuzzy-c-means
algorithm. The fuzz.cluster.cmeans function from the
scikit-fuzzy library is used to apply the algorithm.

R ID Objective statement risks | Design risk | Coding| Testing |Release and deployment| SDLC risk severity

- a-3) a3 [a3) | a3 (1-3) (a-5)

1 1 1 3 1 3 3

2 3 1 3 3 1 5

3 1 1 1 1 3 4

4 2 2 1 1 3 5

5 3 1 2 2 1 5

6 3 1 1 1 1 5

7 2 1 3 2 1 3

8 2 3 1 2 3 5

9 2 1 3 3 2 4

10 3 2 3 3 2 5

Table 6. Rule base for FIS2.
R ID Project management risk| Communication risk | External stakeholder | Group awareness | Technology based | Risk Severity 2

- a-3) -3) a-3) a-3) a-3) (1-5)
1 2 3 3 1 3 3
2 1 2 1 1 1 1
3 3 2 3 2 1 3
4 2 3 2 2 3 3
5 1 2 3 3 2 2
6 3 3 2 2 2 2
7 2 1 3 3 1 2
8 3 2 1 2 1 2
9 2 3 3 1 3 2
10 2 3 1 3 2 1

A Novel Risk-Based Testing Framework for Distributed Agile Software Development 1219

Table 7. Rule base for FIS3.

Risk ID SDLC risk severity Other risks severity | Total risk severity
-5) a-5) a-5)
1 3 3 3
2 5 1 5
3 4 3 4
4 5 3 5
5 5 2 5
6 5 2 5
7 3 2 3
8 5 2 5
9 4 2 4
10 5 1 5

After applying fuzzy-c-means clustering, the
overlapping sets are obtained for each risk category,
representing linguistic values low, medium and high.
The membership values of these fuzzy sets for each risk
category are represented in Table 4. The rule base of
rules is created with the help of domain experts from the
IT industry. The sample rule base for FIS1, FIS2 and
FIS3 is represented in Tables 5, 6, and 7, respectively.

The effort is calculated based on the story points
obtained from the dataset. Then the feature complexity
is calculated using Equations (2) to (4).

A total of 24 features are tagged with the given set of
user stories. The risk value associated with these features
is obtained by extracting the values of changed
requirements, feature complexity and dependency of
Features from the SUT. The obtained values are
normalized, and feature risk is calculated using
Equations (1) to (7). The obtained values for the 4
features are presented in Table 8.

Table 8. Feature risk.

Features Changed Feature Dependency Risk of
requirements | complexity feature
Feature 1 1 1 0.5 1
Feature 2 0.75 0.5 1 1.25
Feature 3 0.5 0.68 0 0
Feature 4 0.75 0.68 1 1.43

4.3. Evaluation Matrix

The Average Percentage of Faults Detected (APFD)
metric, introduced by Elbaum et al. [8], evaluates the
speed at which faults in a system are identified within a
test suite. It calculates the average fault detection rate on
a scale from 0 to 1, where higher values indicate a better
rate of fault detection, and lower values suggest poorer
detection performance.
The computation formula of APFD is as follows:
TF1+TF2+~-.TFm+i 9)
n*m 2n

where n denotes the total number of test cases in the test
suite, m is the number of faults in the SUT, and TF:
denotes the location of the test case that finds fault f in
the test suite

APFD = 1 —

4.4. Results

To verify the correct functionality of features, 150 test
cases have been taken in a suite. These test cases are then

correlated to the features. Table 9 represents the sample
correlation for 15 test cases. The test cases of the suite
are prioritized based on original order, reverse order,
random order, feature coverage based and proposed
feature risk-based techniques. The different
prioritization algorithms are compared based on the
average percentage of fault detection metric. The results
are presented in Table 10.

Table 9. Correlation of test cases and features.

Test Cases | Feature 1 | Feature2 | Feature3

TC1
TC2
TC3
TC4
TCS
TC6
TC7
TC8
TC9 v
TC10
TC11
TC12
TC13 v
TC14 v
TC15 v

NENINES

NENINENEN

NSNS

ANANAN

Table 10. Average percentage of faults detected.

TCP APFD

Original Order 0.71

Reverse Order 0.86

Random order 0.84

Feature coverage based 0.89

Proposed technique 0.95
1
09
0.8
0.7
= 0.6
% 05
04
03
02
0.1
0

Original Reverse Fandom Feature Proposed
Order Order order coverage technique
based

Test Case Prioritization Technique
Figure 5. Comparison with existing technique.
As in Figure 5 the results show that the proposed

technique outperforms the other prioritization
techniques with an APFD value of 0.95.

1220 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Table 11 presents a comparison of the proposed work
with existing techniques based on APDF.

Table 11. Comparison with existing work.

Authors Year TCP technique APFD
Junaid et al. [18] | 2024 History based 0.87
Garg and Shekha 2024 Fault Indexe_d bqsed multiple 088

[10] objective

Li [24] 2021 Fault severity based 0.91
Gupta and

Mahapatra [12] 2023 Feature coverage based 0.87

Sugave etal, [39] | 2025 | FaultawareJaya Archimedes | oq

optimization algorithm

Kumar [a2r12d] Saxena 2025 Coverage based 0.82

Zhou et al. [43] | 2021 Random TCP 0.86

Proposed technique Feature risk severity based 0.95

4.5. Threats to Validity

This section presents the threats to validity of the
proposed approach.

4.5.1. Internal Validity

In this study, we have examined feature risks based on
10 risk factors associated with DASD. We acknowledge
that the emergence of new, uncertain risks could
potentially affect the assessed severity of a feature.
Further, for each risk category, we have assigned the
membership values of low, medium and high. Altering
these membership values could influence the dependent
variable of risk severity. However, to address this
potential validity threat, a pivot study has been carried
out to aim to minimize any such validity threats.

4.5.2. External Validity

The subject systems employed for empirical studies in
this work are of medium size. However, it is
acknowledged that larger industrial projects may
produce varied results. To address these limitations, we
plan to conduct further experiments involving bigger
industrial projects, which aligns with one of our future
research directions.

4.6. Limitations and Future Work

The data of 1400 user stories from a real-world IT
project are taken, which is adequate for the study’s
objectives. Further, the work is evaluated on 320 user
stories of an IT project. A total of 10 risk categories
related to a distributed agile environment have been
included. Future research could broaden the scope of the
proposed method by examining its application in a
variety of DASD projects, spanning different industries
and project scales. This would provide valuable insights
into the method’s adaptability and scalability in real-
world environments, enabling a deeper understanding of
its performance across diverse conditions. Additionally,
the method’s potential for generalization to larger
projects and its applicability to additional risk categories
will be explored. To further validate its effectiveness,

user feedback and expert opinions, gathered through
surveys or interviews with project managers,
developers, and other stakeholders, could be
incorporated into the risk assessment process. This
would help ensure the method’s practicality, strengthen
its reliability, and enhance its usefulness for
practitioners, ultimately making it more robust and
versatile for real-world applications.

5. Conclusions

TCP is essential in DASD, wherein the software is
developed in sprints. TCP reorders the test cases if the
SUT in a way that the most important test cases are
executed before others. However, the existing TCP
techniques use the past test execution data and existing
fault information, which may not always be available.
RBT, focuses on identifying and testing the risky
modules, so that most risky features are tested within a
limited time and resources. However, the existing risk-
based TCP methods do not take into account the risks
involved in a distributed agile environment

This study introduces a novel approach to risk-based
test case prioritisation in distributed agile environments,
focusing on prioritizing test cases according to the risk
levels associated with various features by linking sprint
features to their respective test cases. The approach
offers a new perspective on evaluating the risk of
features by considering factors such as modified
requirements, feature complexity, and
interdependencies. The aim is to identify and test high-
risk features early in the distributed agile development
process, helping to uncover critical defects sooner.

While risks have traditionally been used to prioritize
test cases, applying risks related to DASD for feature
prioritization is a relatively new concept. As DASD
grows in popularity, strategies for improving TCP in
such settings are becoming increasingly important.
Associating risk values with features and correlating
them with test cases can lead to more efficient RBT.

The experiments indicate that the proposed approach
achieves a TCP with an APFD of 0.95. Ultimately, the
findings of the proposed work offer valuable insights and
will stimulate future discussion and advancement of
knowledge in the field.

References

[1] Alsaadi B. and Saeedi K., “Data-Driven Effort
Estimation Techniques of Agile User Stories: A
Systematic Literature Review,” Artificial
Intelligence Review, vol. 22, pp. 5485-5516, 2022.
https://link.springer.com/article/10.1007/s10462-
021-10132-x

[2] Alzoubi Y. and Mishra A., “Enterprise
Architecture Contribution in Distributed Agile
Software Development,” Systems Engineering,
vol. 217, pp. 570-584, 2024.

https://link.springer.com/article/10.1007/s10462-021-10132-x
https://link.springer.com/article/10.1007/s10462-021-10132-x

A Novel Risk-Based Testing Framework for Distributed Agile Software Development

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

https://incose.onlinelibrary.wiley.com/doi/full/10.
1002/sys.21739

Aziz M. and Choi J., “Prioritization of Risks in
Agile Software Projects Through an Analytic
Hierarchy = Process Approach,” Procedia
Computer Science, vol. 233, pp. 713-722, 2024.
https://doi.org/10.1016/j.procs.2024.03.260
Boehm B., “Software Risk Management:
Principles and Practices,” IEEE Software, vol. 8,
no. 1, pp. 32-41, 1991.
https://ieeexplore.ieee.org/document/62930
Catal C. and Mishra D., “Test Case Prioritization:
A Systematic Mapping Study,” Software Quality
Journal, vol. 21, no. 3, pp. 445-478, 2012.
https://doi.org/10.1007/s11219-012-9181-z

Chi J., Qu Y., Zheng Q., Yang Z., and et al.,
“Relation-based Test Case Prioritization for
Regression Testing,” Journal of Systems and
Software, vol. 163, pp. 110539, 2020.
https://doi.org/10.1016/j.jss.2020.110539
Dingseyr T., Nerur S., Balijepally V., and Moe N.,
“A Decade of Agile Methodologies: Towards
Explaining Agile Software Development,”
Journal of Systems and Software, vol. 85, no. 6,
pp. 1213-1221, 2012.
https://doi.org/10.1016/j.jss.2012.02.033

Elbaum S., Malishevsky A., and Rothermel G.,
“Test Case Prioritization: A Family of Empirical
Studies,” |EEE Transactions on Software
Engineering, vol. 28, no. 2, pp. 159-182, 2002.
https://ieeexplore.ieee.org/document/988497
Faroog U., Kalim Z., Qureshi J., Rasheed S., and
Abid A., “A Blockchain-based Framework for
Distributed Agile Software Development,” IEEE
Access, vol. 10, pp. 17977-17995, 2022.
https://ieeexplore.ieee.org/document/9694597
Garg V. and Shekha S., “Fault Sensitivity Index-
based Multi-Objective Test Case Prioritization,”
Journal of Electrical Engineering, vol. 75, no. 2,
pp. 151-160, 2024. https://reference-
global.com/article/10.2478/jee-2024-0018
Gladston A., Nehemiah K., Narayanasamy P., and
Kannan A., “Test Case Prioritisation for
Regression Testing Using Immune Operator,” The
International Arab Journal of Information
Technology, vol. 13, no. 6, pp. 31-37, 2016.
https://www.iajit.org/PDF/V0l.%2013,%20N0.%
206/5585.pdf

Gupta A. and Mahapatra R., “Test Case
Prioritization in Unit and Integration Testing: A
Shuffled-Frog-Leaping Approach,” Computers,
Materials and Continua, vol. 74, no. 3, pp. 5369-
5387, 2023.
https://www.techscience.com/cmc/v74n3/50872/
html

Hao D., Zhang L., and Mei H., “Test-Case
Prioritization: Achievements and Challenges,”
Frontiers in Computational Science, vol. 10, pp.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

1221

769-777, 2016. https://doi.org/10.1007/s11704-
016-6112-3

Hasnain M., Pasha M., Ghani I., and Jeong S.,
“Functional Requirement-based Test Case
Prioritization in Regression Testing: A Systematic
Literature Review,” SN Computer Science, vol. 2,
no. 421, 2021.
https://link.springer.com/article/10.1007/s42979-
021-00821-3

Hettiarachchi C., Do H., and Choi B., “Risk-based
Test Case Prioritization Using a Fuzzy Expert
System,” Information and Software Technology,
vol. 69, pp. 1-15, 2016.
https://doi.org/10.1016/j.infsof.2015.08.008
Huang Y., Peng K., and Huang C., “A History-
based Cost-Cognizant Test Case Prioritization
Technique in Regression Testing,” Journal of
Systems and Software, vol. 85, no. 3, pp. 626-637,
2012. https://doi.org/10.1016/j.jss.2011.09.063
Jahan H., Feng Z., and Mahmud S., “Risk-based
Test Case Prioritization by Correlating System
Methods and their Associated Risks,” Arabian
Journal for Science and Engineering, vol. 45, pp.
6125-6138, 2020.
https://link.springer.com/article/10.1007/s13369-
020-04472-z

Junaid H., Jawawi D., and Ahmad J., “An
Exploratory Study of History-based Test Case
Prioritization Techniques on Different Datasets,”
Baghdad Science Journal, vol. 21, no. 2, pp. 609-
621, 2024. DOI:10.21123/bsj.2024.9604

Khanna E., Popli R., and Chauhan N,
“Identification and Classification of Risk Factors
in Distributed Agile Software Development,”
Journal of Web Engineering, vol. 21, no. 6, pp.
1831-1851, 2022.
https://ieeexplore.ieee.org/document/10246944
Khanna E., Popli R., and Chauhan N., Agile
Software Development, Wiley Al, 2023.
https://ieeexplore.ieee.org/document/10953243
Khatibsyarbini M., Isa M., Jawawi D., and
Tumeng R., “Test Case Prioritization Approaches
in Regression Testing: A Systematic Literature
Review,” Information and Software Technology,
vol. 93, pp. 74-93, 2018.
https://doi.org/10.1016/j.infsof.2017.08.014
Kumar S. and Saxena V., “Optimization and
Prioritization of Test Cases through the Hungarian
Algorithm,” Journal of Advances in Mathematics
and Computer Science, vol. 40, no. 3, pp. 61-72,
2025.
https://journaljamcs.com/index.php/JAMCS/artic
le/view/1978

Lawong D. and Akanfe O., “Overcoming Team
Challenges in Project Management: The Scrum
Framework,” Organizational Dynamics, vol. 54,
no. 1, pp. 101073, 2025.
https://doi.org/10.1016/j.orgdyn.2024.101073

https://incose.onlinelibrary.wiley.com/doi/full/10.1002/sys.21739
https://incose.onlinelibrary.wiley.com/doi/full/10.1002/sys.21739
https://doi.org/10.1016/j.procs.2024.03.260
https://ieeexplore.ieee.org/document/62930
https://doi.org/10.1007/s11219-012-9181-z
https://doi.org/10.1016/j.jss.2020.110539
https://doi.org/10.1016/j.jss.2012.02.033
https://ieeexplore.ieee.org/document/988497
https://ieeexplore.ieee.org/document/9694597
https://reference-global.com/article/10.2478/jee-2024-0018
https://reference-global.com/article/10.2478/jee-2024-0018
https://www.iajit.org/PDF/Vol.%2013,%20No.%206/5585.pdf
https://www.iajit.org/PDF/Vol.%2013,%20No.%206/5585.pdf
https://www.techscience.com/cmc/v74n3/50872/html
https://www.techscience.com/cmc/v74n3/50872/html
https://doi.org/10.1007/s11704-016-6112-3
https://doi.org/10.1007/s11704-016-6112-3
https://link.springer.com/article/10.1007/s42979-021-00821-3
https://link.springer.com/article/10.1007/s42979-021-00821-3
https://doi.org/10.1016/j.infsof.2015.08.008
https://doi.org/10.1016/j.jss.2011.09.063
https://link.springer.com/article/10.1007/s13369-020-04472-z
https://link.springer.com/article/10.1007/s13369-020-04472-z
https://ieeexplore.ieee.org/document/10246944
https://ieeexplore.ieee.org/document/10953243
https://doi.org/10.1016/j.infsof.2017.08.014
https://journaljamcs.com/index.php/JAMCS/article/view/1978
https://journaljamcs.com/index.php/JAMCS/article/view/1978
https://doi.org/10.1016/j.orgdyn.2024.101073

1222

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Li Y., “A Fault Prediction and Cause
Identification Approach in Complex Industrial
Processes Based on Deep Learning,”
Computational Intelligence and Neuroscience,
vol. 2021, pp. 1-13, 2021.
https://onlinelibrary.wiley.com/doi/10.1155/2021
16612342

Mahdieh M., Mirian-Hosseinabadi S., Etemadi K.,
Nosrati A., and Jalali S., “Incorporating Fault-
Proneness Estimations into Coverage-based Test
Case Prioritization Methods,” Information and
Software Technology, vol. 121, pp. 106269, 2020.
https://doi.org/10.1016/j.infsof.2020.106269
Mukherjee R. and Patnaik K., “A Survey on
Different Approaches for Software Test Case
Prioritization,” Journal of King Saud University-
Computer and Information Sciences, vol. 33, no.
9, pp. 1041-1054, 2021.
https://doi.org/10.1016/j.jksuci.2018.09.005
Parida S., Rath D., and Mishra D., Meta Heuristic
Techniques in Software Engineering and its
Applications, Springer, 2022.
https://doi.org/10.1007/978-3-031-11713-8 16
Pecorelli F., Palomba F., and De Lucia A., “The
Relation of Test-Related Factors to Software
Quality: A Case Study on Apache Systems,”
Empirical Software Engineering, vol. 26, no. 6,
pp. 1-42, 2021. https://doi.org/10.1007/510664-
020-09891-y

Qureshi J., Farooq M., Khelifi A., and Atal Z.,
“Harnessing the Potential of Blockchain in
ChainAgilePlus Framework for the Improvement
of Distributed Scrum of Scrums Agile Software
Development,” IEEE Access, vol. 12, pp. 105724-
105743, 2024.
https://ieeexplore.ieee.org/document/10595117
Sakhrawi Z. and Labidi T., “Test Case Selection
and Prioritisation Approach for Automated
Regression Testing Using Ontology and COSMIC
Measurement,” Automated Software Engineering,
vol. 31, no. 2, pp. 1453, 2024,
https://doi.org/10.1007/s10515-024-00447-8
Saraswat P., Singhal A., and Bansal A., Software
Engineering, Springer, 2019.
https://doi.org/10.1007/978-981-10-8848-3_48
Shivanandam S. and Deepa S., Principles of Soft
Computing, Wiley, 2011.
https://ebooks.wileyindia.com/home/product-
details/282517;seoMode=true

Singh M., Chauhan N., and Popli R., “Test Case
Reduction and SWOA Optimization for
Distributed Agile Software Development Using
Regression Testing,” Multimedia Tools and
Applications, vol. 84, pp. 7065-7090, 2025.
https://link.springer.com/article/10.1007/s11042-
024-19148-1

Singh Y., “Systematic Literature Review on
Regression Test Prioritization Techniques:

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Difference between Literature Review and
Systematic Literature,” Informatica, vol. 36, no. 4,
pp. 379-408, 2012.
https://www.informatica.si/index.php/informatica
larticle/view/420/424

Singhal S., Jatana N., Suri B., Misra S., and
Fernandez-Sanz L., “Systematic Literature
Review on Test Case Selection and Prioritization:
A Tertiary Study,” Applied Sciences, vol. 11, no.
24, pp. 1-34, 2021. https://www.mdpi.com/2076-
3417/11/24/1212

Sommerville I. and Sawyer P., Requirements
Engineering: A Good Practice Guide, John Wiley
and Sons, 1997. https://www.wiley.com/en-
us/Requirements+Engineering%3A+A+Good+Pr
actice+Guide-p-9780471974444

Srikanth H., Hettiarachchi C., and Do H.,
“Requirements Based Test Prioritization Using
Risk Factors: An Industrial Study,” Information
and Software Technology, vol. 69, pp. 71-83,
2016.
https://doi.org/10.1016/j.infsof.2015.09.002
Stray V., Hoda R., Paasivaara M., Lenarduzzi V.,
and Mendez D., “Theories in Agile Software
Development: Past, Present, and Future
Introduction to the XP 2020 Special Section,”
Information and Software Technology, vol. 152,
pp. 107058, 2022.
https://doi.org/10.1016/j.infsof.2022.107058
Sugave S., Kulkarni Y, Jagdale B., and Gutte V.,
“Fault-Aware Test Case Prioritization in Software
Testing Using Jaya Archimedes Optimization
Algorithm,” Journal of Electronic Testing, vol.
41, pp. 41-60, 2025.
https://link.springer.com/article/10.1007/s10836-
025-06157-7

Wang Y., Zhu Z., Yang B., Guo F., and Yu H.,
“Using Reliability Risk Analysis to Prioritize Test
Cases,” Journal of Systems and Software, vol.
139, pp. 14-31, 2018.
https://doi.org/10.1016/j.jss.2018.01.033
Webber R., Unlocking Agile’s Missed Potential,
Wiley-IEEE Press, 2022.
https://onlinelibrary.wiley.com/doi/10.1002/9781
119849117.ch5

Yoo S. and Harman M., “Regression Testing
Minimisation, Selection and Prioritization: A
Survey,” Test Verification and Reliability, vol. 22,
no. 2, pp. 1-60, 2007.
https://www.cse.chalmers.se/~feldt/advice/yoo_2
010_regression_testing_survey.pdf

Zhou Z., Liu C., Chen T., Tse T., and Susilo W.,
“Beating Random Test Case Prioritization,” |IEEE
Transactions on Reliability, vol. 70, no. 2, pp.
654-675, 2021.
https://ieeexplore.ieee.org/document/9118977

https://onlinelibrary.wiley.com/doi/10.1155/2021/6612342
https://onlinelibrary.wiley.com/doi/10.1155/2021/6612342
https://doi.org/10.1016/j.infsof.2020.106269
https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1007/978-3-031-11713-8_16
https://doi.org/10.1007/s10664-020-09891-y
https://doi.org/10.1007/s10664-020-09891-y
https://ieeexplore.ieee.org/document/10595117
https://doi.org/10.1007/s10515-024-00447-8
https://doi.org/10.1007/978-981-10-8848-3_48
https://link.springer.com/article/10.1007/s11042-024-19148-1
https://link.springer.com/article/10.1007/s11042-024-19148-1
https://www.informatica.si/index.php/informatica/article/view/420/424
https://www.informatica.si/index.php/informatica/article/view/420/424
https://www.mdpi.com/2076-3417/11/24/1212
https://www.mdpi.com/2076-3417/11/24/1212
https://www.wiley.com/en-us/Requirements+Engineering%3A+A+Good+Practice+Guide-p-9780471974444
https://www.wiley.com/en-us/Requirements+Engineering%3A+A+Good+Practice+Guide-p-9780471974444
https://www.wiley.com/en-us/Requirements+Engineering%3A+A+Good+Practice+Guide-p-9780471974444
https://doi.org/10.1016/j.infsof.2015.09.002
https://doi.org/10.1016/j.infsof.2022.107058
https://link.springer.com/article/10.1007/s10836-025-06157-7
https://link.springer.com/article/10.1007/s10836-025-06157-7
https://doi.org/10.1016/j.jss.2018.01.033
https://onlinelibrary.wiley.com/doi/10.1002/9781119849117.ch5
https://onlinelibrary.wiley.com/doi/10.1002/9781119849117.ch5
https://www.cse.chalmers.se/~feldt/advice/yoo_2010_regression_testing_survey.pdf
https://www.cse.chalmers.se/~feldt/advice/yoo_2010_regression_testing_survey.pdf
https://ieeexplore.ieee.org/document/9118977

A Novel Risk-Based Testing Framework for Distributed Agile Software Development 1223

Esha Khanna is currently pursuing
Ph. D. in Computer Engineering from
J. C. Bose University of Science and
Technology, YMCA, Faridabad,
India. She holds a Master of
Technology degree and a Bachelor of

4i Technology degree in Computer
Science and Englneerlng She is working as an Assistant
Professor at Manav Rachna University, India. She has
11 years of teaching experience. Her main research area
focuses on Machine Learning, Software Testing, and
Distributed Agile Software Development

Rashmi Popli is an Associate
Professor at J.C. Bose University of
Science and Technology, YMCA,
Faridabad, India. She has 21 years of
rich experience in Teaching, and 4
research scholars are pursuing PhD
; under her guidance and supervision.
Her areas of specialisation include Machine Learning,
Software Engineering, Software Testing, Network
Security and automation of software. She has published
more than 50 research papers in various International
Journals and conferences. She is a lifetime member of
ISTE and CSI. She is also holding the position of
Faculty In-Charge, Industrial Collaboration and
Consultancy and Coordinator IQAC.

Naresh Chauhan is working as a
Professor in J.C. Bose University of
Science and Technology, YMCA,
India. He has received his Ph.D.
(Computer Engineering) from MD
University, Rohtak (Haryana) in
2008, M.Tech. (Information
Technology) from GGS Indraprastha University, Delhi
in 2004 and B.Tech. (Computer Engg.) from NIT
Kurukshetra, in the year 1992. He has about 30 years of
experience in teaching and the industries. He served
Bharat Electronics Ltd. and Motorola India Ltd. His
research interests include Internet technologies,
Software Engineering,Software Testing and Real time
systems. He has published two books on Software
Testing and Operating Systems published by Oxford
University Press, India.

