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Abstract: Distributed Agile Software Development (DASD) is one of the most commonly adopted lifecycle methodologies in the 

IT industry. It combines the speed benefits and adaptability of agile development with the cost-effectiveness of distributed 

development. In DASD, software is built iteratively in sprints, allowing for changes to be introduced in the later stages of 

development. However, such changes can affect the functionality of previously implemented features, highlighting the critical need 

for regression testing. In distributed agile environments, constraints on resources, time, and communication make it essential to 

prioritize tasks to maximise the efficiency of testing efforts. This work presents a novel risk-based Test Case Prioritization (TCP) 

approach for a distributed agile environment that aims to prioritize test cases based on the risk values associated with features by 

correlating sprint features with their corresponding test cases. The risk value of a feature is evaluated by considering modified 

requirements, feature complexity, and interdependencies. The goal is to identify and test high-risk features early in the distributed 

agile development cycle, thereby uncovering critical defects earlier. The proposed work is evaluated using an empirical study. 

The results show that the proposed technique has outperformed the existing state-of-the-art techniques. 
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1. Introduction 

In a distributed agile environment, where teams are 

geographically dispersed and development cycles are 

fast-paced, the need for regression testing becomes 

paramount [27]. However, in distributed agile setups, 

resources, time, and communication can be limited, 

necessitating prioritization to optimise testing efforts 

[30]. Prioritizing regression test cases allows the teams 

to focus on critical functionalities first, ensuring that 

high-impact areas are thoroughly tested within the 

constraints of distributed collaboration [6]. This 

approach not only maximises test coverage but also 

minimises the risk of regression issues slipping into 

production [21].  

Over the past several years, various Test Case 

Prioritization (TCP) techniques have been proposed and 

empirically studied to identify faults at early stages, 

thereby increasing the fault detection rate [5, 13, 21, 26, 

31, 34, 35, 42]. Existing methods include history-based 

[16], coverage-based [26], fault severity-based [25], and 

requirement-based [14, 37], among others. Some work 

combines the existing methods to attain better results 

[25]. However, these techniques typically prioritize test 

cases according to past test execution data and existing 

fault information, although such data may not always be 

accessible. Additionally, these methods often neglect the 

crucial task of identifying defects early in high-risk  

 
modules, despite the significant importance of 

concentrating on such areas to offset resource 

limitations. 

On the contrary, Risk-Based Testing (RBT) directs 

attention to the segments of software posing the greatest 

risk [15]. Its objective is the early identification of the 

most critical faults within the risky modules, while 

keeping costs to a minimum. This approach empowers 

testers to prevent or mitigate the occurrence of faults that 

could result in significant damage [3, 17, 40]. However, 

the existing risk-based TCP techniques do not consider 

all the risk factors associated with the DASD 

environment.  

This work proposes a novel risk-based TCP approach 

that correlates the test cases with features in a given 

sprint. This approach also takes into account the 10 risk 

categories identified for the DASD environment [19].  

The goals of the paper are as follows- 

• To propose a method to calculate risk values 

associated with features in a sprint. 

• To propose a novel RBT framework by correlating 

test cases with features and assigning higher priority 

to test cases covering high-risk features. 

• To carry out an empirical study to evaluate the 

efficiency of the framework. 

• To compare the results of the study with state-of-the-
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art techniques. 

The paper is organised as follows. Section 2 presents the 

background, section 3 presents the proposed model, 

section 4 presents the empirical study, and section 5 

concludes. 

2. Background 

Distributed Agile Software Development (DASD) has 

emerged as a prominent Software Development Life 

Cycle (SDLC) model after the COVID-19 pandemic. 

DASD combines the agility of Agile Software 

Development (ASD) with the speed benefits of 

Distributed Software Development (DSD) [2, 20]. ASD 

methodology is centred around the principles and 

practices of agile frameworks, which focus on iterative 

development, collaboration between cross-functional 

teams, flexibility in responding to change, and 

continuous improvement [38]. In an agile development 

scenario, the software is developed in sprints [7]. A 

sprint is a small timeframe (usually of 2-4 weeks) in 

which the agile team focuses on releasing an increment. 

In the scrum framework, the agile team consists of the 

product owner, scrum master and a development team 

including testers, designers and User Experience (UX) 

specialists [23]. The product owner is responsible for 

prioritising the backlog on the basis of feedback from 

users and the development team. In a sprint, there is a 

collection of ceremonies that take place to mark the 

milestone of a sprint. The first meeting is called sprint 

planning, which is led by the scrum master. In this 

meeting, the team decides the goal of the sprint. A sprint 

backlog is prepared by adding the stories from the 

product backlog, which reflects the goal of the sprint. 

After the release increment is decided, the team starts 

working on the user stories of a sprint. A short meeting 

is carried out daily during the sprint, which helps every 

team member to be aligned with the sprint goal. At the 

end of the sprint, a sprint review meeting is carried out 

to discuss the completion of the goal of the sprint. The 

product owner then takes a call to release the increment. 

The product owner then reprioritizes the product 

backlog based on the current sprint [38].  

During the next sprint, feedback from the users and 

development team is incorporated into the first release. 

This may include the addition of new functionality or 

modification to the existing feature. The changes 

incorporated in the released version endanger the correct 

working of the existing features, that has been inherited 

from the previous version. This calls for retesting the 

next increment with all the test suites of the first and next 

increment to verify that new changes have not altered the 

working of previously inherited modules. This testing is 

known as regression testing [27, 11]. As the agile 

methodology accepts the changes during the lifecycle of 

a product, regression testing has to be carried out 

multiple times in each sprint in Scrum. Re-executing all 

the test cases of the regression suite is a time-consuming 

task; therefore, the test cases are reordered such that the 

most important test cases are executed before the others. 

TCP is a type of regression testing that reorders the test 

cases on the basis of some factors [21, 26, 27]. These 

factors include code coverage, branch coverage, method 

coverage, history-based, and risk-based [13, 31, 35]. 

A test case covering maximum program code 

maximises the likelihood of fault detection. Coverage-

based techniques order the test cases of a test suite in 

such a way that a test case having more coverage is 

assigned a higher priority than a test case covering a 

lower priority. Figure 1 presents different coverage-

based techniques, including statement coverage, branch 

coverage, function coverage, and fault index 

prioritization [ 21, 36, 42]. 

 

Figure 1. Coverage-based TCP techniques. 

In the literature, several authors have proposed and 

empirically evaluated regression testing techniques. In 

the work by Singh et al. [33], a novel test case reduction 

method was proposed, combined with a Support-based 

Whale Optimisation Algorithm (SWOA) for DASD. 

However, the limitation of test case reduction is that it 

may exclude potentially critical test cases, leading to 

reduced test coverage. 

Fault-aware TCP has been used in recent works. 

Sugave et al. [39] proposed Fault-aware TCP in 

software testing using Jaya archimedes optimisation 

algorithm. Garg and Shekha [10] proposed a method 

that combines the Fault Sensitivity Index (FSI) with a 

ranking-based Genetic Algorithm to prioritize test cases. 

Gupta et al. [12] aimed to enhance fault detection rates 

and coverage efficacy in both unit and integration 

testing phases, based on Shuffled Frog-Leaping 

Algorithm (SFLA). However, the limitation of fault 

awareness techniques is that existing Fault awareness 

information may not always be available. 

Kumar and Saxena [22] proposed cost cost-based 

technique for TCP using the Hungarian algorithm. 

However, the Cost associated with a particular test case 

may not always be available. The method assumes static 

test cases and may not adapt well to environments where 

test cases frequently change or evolve. 

Junaid et al. [18] investigated the application of 

history-based TCP techniques in regression testing. It 

identifies the problem of equal priority assignments in 
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history-based TCP and proposes random sorting as a 

potential solution. However, the prioritization technique 

is static and doesn’t adapt dynamically to new failures 

or evolving test conditions. This makes it less suitable 

for DASD projects. 

Blockchain has also been used for TCP [9, 29]. 

However, lots of power is required for mining blocks, 

which leads to high energy consumption. Moreover, 

data modification in blocks is a major concern. 

Traditional TCP techniques often rely on historical 

test execution data and known fault information. 

However, these sources of data might not always be 

available. 

RBT focuses on prioritizing segments of the software 

that pose the highest risk. Its goal is to identify critical 

faults within these high-risk areas as early as possible, 

minimising costs while preventing or mitigating 

significant damage [15].  

Despite its advantages, current RBT techniques often 

fail to account for risk factors specific to the DASD 

environment. This work proposes a novel risk-based 

TCP method by correlating the test cases with the risk 

values of features, considering the risk categories of 

DASD. In the existing literature, several feature 

prioritization techniques are available, including RICE 

(reach, impact, confidence, effort), MoSCoW (Must 

have, should have, could have, won’t have), Eisenhower 

matrix and Weighted Shortest Job First (WSJF) [41]. 

However, most of these methods are subjective. This 

work presents a novel approach to finding the risk 

values of features based on modified requirements, 

feature complexity, and interdependency. 

3. Proposed Model 

In order to efficiently prioritize the test cases in a sprint, 

the risk values of features in the sprint are evaluated. The 

risk associated with sprint features is calculated based on 

failure probability and failure impact. Failure probability 

is derived from two components, i.e., changed 

requirements and feature complexity. Failure impact is 

calculated on the basis of the dependency of features. 

After assigning risk values to the feature, the correlation 

between the feature and the test case is obtained. This 

ultimately guides in prioritising the cases. Figure 2 

presents the proposed risk-based TCP model.  

 

Figure 2. Risk-based TCP for DASD. 

Steps of the proposed model are explained as follows. 

• Step 1: Extract features from current sprint user 

stories. 

Several tools, including Jira, Azure DevOps, typically 

offer various features for organising, prioritising, and 

tracking user stories and associated features within the 

sprint backlog, helping teams effectively manage their 

Agile development process. 

• Step 2: Derive the failure probability and failure 

impact. 

The risk value of a feature is calculated as a product of 

failure likelihood (probability) and failure impact. We 

calculate failure likelihood based on two factors: 

changed requirements and feature complexity. 

• Failure probability=Changed Requirements+Feature 

Complexity. 

• Changed/Modified requirements: this factor is 

determined by the number of changes or 

modifications made to the requirements within a 

feature. In software systems, faults often emerge 

because of changes to the software, particularly 

changes in requirements. Thus, tracking the number 

of modified requirements within a feature can serve 

as an effective indicator for identifying potential 

faults [1]. This factor is obtained by summing the 

number of user stories of the current sprint associated 

with a feature. The values are normalized within the 

range 0-1 by dividing each obtained value by the 

highest value of changed requirements. The need for 

normalisation is required to scale all the factors in the 

same range. 

𝐶𝑅𝑖 =
𝑁𝑆𝑖

𝑀𝑎𝑥 ∀𝑖{𝑁𝑆𝑖}
 

Where NSi represents the number of user stories of 

(1) 
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feature Fi. 

• Feature cmplexity: the feature complexity is 

computed based on the effort required and risk values 

associated with the user story. Effort in Agile 

methodology is expressed through story points, which 

are a relative measure of the complexity, effort, and 

uncertainty associated with implementing a user 

story. Efforts required to complete a feature can be 

calculated by obtaining the sum of story points of all 

the user stories associated with that feature in the 

sprint [36]. The effort is then normalized within the 

range 0-1 by dividing each value obtained by the 

highest value of effort. 

𝐸𝑖 =
𝑁𝑆𝑃𝑖

𝑀𝑎𝑥∀𝑖{𝑁𝑆𝑃𝑖}
 

Where NSPi represents the number of story points of 

feature Fi. 

The complexity of the feature also depends on the risk 

severity of the user story associated with a feature. The 

risk severity of a user story can be obtained based on 10 

risk factors identified in distributed agile environment. 

10 risk categories are represented as objective statement 

risks, design risks, testing risks, coding risks, release and 

deployment risks, project management risks, 

communication risks, technology-based risks, external 

stakeholder risks and group awareness risks [20]. This 

task is accomplished using a Hierarchical Fuzzy 

Inference System (HFIS) [32]. The model is created by 

dividing the risk categories into two classes, i.e. SDLC 

risks and other risks. Objective statement, design, 

coding, testing and release and deployment risks come 

under the SDLC class. Project Management, 

communication, external stakeholders and technology-

based risks are kept in the other risks category. The 

output of these two Fuzzy Inference Systems (FIS) is 

then fed to a third FIS, which gives us the total risk 

severity of the user story. The number of rules using this 

HFIS drastically reduces to 35+35+52, i.e., 511. 

The textual risks associated with user stories are 

converted to numerical representation by using the Term 

Frequency-Inverse Document Frequency (TF-IDF) 

technique. Then, k-means clustering is applied to create 

clusters for each risk category. Next, the fuzzy c-means 

algorithm is applied to find the membership values of 

fuzzy sets for each cluster. The rule base, fuzzy sets and 

the presence percentage of risk categories are fed as 

input to HFIS. The output of the system is a risk value 

associated with a user story, which is then defuzzified 

and is used for Backlog prioritization. The overall 

architecture is presented in Figure 3. 

 

Figure 3. Hierarchical fuzzy inference-based risk management system for user story. 

Risk severity of a feature can be calculated by the 

summation of risk severity of all user stories associated 

with a feature and then normalizing the obtained value 

in the range 0-1 by dividing each value by the highest 

value of risk severity. 

𝑅𝐹𝑖 =
𝑅𝑈𝑆𝑖

𝑀𝑎𝑥∀𝑖{𝑅𝑈𝑆𝑖}
 

Where RUSi represents the risk of the user story 

associated with feature Fi. 

Feature complexity is calculated by the summation of 

effort and risk severity of the feature. The value is then 

divided by 2 to scale between the range 0-1.  

𝐹𝐶𝑖  (𝐸𝑖 + 𝑅𝐹𝑖)/2 

Where FCi represents the feature complexity of feature 

Fi. 

Failure probability is calculated by the summation of 

changed requirement and feature complexity. The 

obtained value is then divided by 2 to scale between 0 to 

1. 

𝐹𝑃𝑖 =  (𝐶𝑅𝑖 +  𝐹𝐶𝑖)/2 

Where FPi is the Failure Probability of Feature Fi. 

• Failure impact: the failure impact value of a feature is 

determined by considering the functional 

(2) 

(3) 

(4) 

(5) 
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dependencies within the software. If a feature 

contains faults, these faults may propagate to other 

features that are either directly or indirectly dependent 

on it. As a result, a feature that is invoked by multiple 

other features is likely to be executed more often 

during testing, increasing the likelihood of faults 

occurring in that feature. Therefore, a feature with a 

high invocation degree is more prone to faults. To 

calculate the impact, we measure the number of 

outgoing dependencies (outdegree) of the feature.  

𝐹𝐼𝑖  =
𝑁𝐹𝐶𝑖

𝑀𝑎𝑥∀𝑖{𝑁𝐹𝐶𝑖}
 

Where NFCi is the total number of outdegrees of a 

feature Fi. 

• Step 3: Calculate the risk of a feature. 

According to Bohem, risk is calculated as a product of 

failure occurrence and failure impact. Therefore, feature 

risk is calculated by taking the product of failure 

probability in Equation (5) and failure impact Equation 

(6) [4]. 

𝐹𝑅𝑖 =  𝐹𝑃𝑖 ∗  𝐹𝐼𝑖   

• Step 4: Prioritize the test cases by test case-feature 

correlation. 

The test case is prioritized based on the value obtained 

by the summation of risk values of all the features 

covered by the test case. To extract a correlation between 

features and test case, we perform textual analysis of 

acceptance criteria from the user story. Several tools like 

xRay (for Jira) and qTest (for DevOps) are available to 

trace the correlation between test cases and features [28]. 

Therefore, prioritized value of a test case can be derived 

using the following Equation (8). 

𝑇𝑘 =  ∑ 𝐹𝑅𝑖𝑘

𝑛

𝑖=1

 

In this context, k denotes the test case, and n refers to the 

number of features covered by the k-th test case. After 

calculating the risk values for each test case, we 

prioritized them in descending order according to those 

values. Since test cases in a system may correspond to 

different requirements but cover the same features, test 

cases that cover the same features will have identical risk 

values. In such cases, we randomly prioritized these test 

cases. 

4. Empirical Study 

The efficiency of the proposed model is evaluated with 

an Empirical study. Research questions, experimental 

subjects, evaluation matrix and threats to validity are 

presented in this section.  

4.1. Research Questions 

• RQ1: Can the proposed model prioritize the test 

cases? 

• RQ2: Can the proposed model efficiently prioritize 

the test cases associated with a user story in 

comparison with other state- of- art approaches? 

4.2. Experimental Subjects 

A dataset has been collected from an IT company that 

employs a DASD methodology, with teams located 

across India, Canada, and Ukraine. Additionally, the 

team members within each country are geographically 

spread across various locations. The distribution of team 

members across the three countries is outlined in Table 

1. The company utilises several tools to facilitate their 

Agile processes: Azure DevOps for defining workflows 

and managing both product and sprint backlogs, and 

Slack for team communication. The data set comprises 

1400 user stories with 11 attributes as presented in Table 

2. The data set is confidential. 

Table 1. Details of teams. 

Members Team 1 Team 2 Team 3 

Developers 8 7 8 

Quality analyst 5 5 4 

Scrum master 1 1 1 

Team product owner 2 1 1 

UI/ UX 2 1 2 

Table 2. Data set attributes. 

ID Columns Data type 

1 User Story ID Int 

2 User story title String 

3 Sprint ID Int 

4 Acceptance criteria String 

5 Estimation Float 

6 Dependency String 

7 Priority Int 

8 Risk Involved String 

9 Probability of occurrence Int 

10 Potential Impact Int 

11 Level of Urgency Int 

The dataset includes information on various stories 

completed in different sprints, along with their 

associated story points. The proposed work has been 

implemented on 320 user stories consisting of 24 

features. The sample association of user story and 

features is presented in Table 3. 

Table 3. Features associated with user stories. 

S.No. Feature number 

User Story 1 1 

User Story 2 1 

User Story 3 1 

User Story 4 1 

User Story 5 2 

User Story 6 2 

User Story 7 2 

User Story 8 3 

User Story 9 3 

User Story 10 4 

User Story 11 4 

User Story 12 4 

Initially, K-means clustering is applied on the dataset 

to cluster the user stories into 10 risk categories [19]. To 

(6) 

(7) 

(8) 
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apply k-means clustering, the textual risk tags are 

converted to a vector space representation using TF-IDF. 

Figure 4 presents the implementation in Python. Then, 

for each obtained cluster of risk category, fuzzy 

parameters are obtained by applying the fuzzy-c-means 

algorithm. The fuzz.cluster.cmeans function from the 

scikit-fuzzy library is used to apply the algorithm.  

 

Figure 4. Implementation. 

Table 4. Membership values of fuzzy sets for each risk category. 

S. No Risk Category Low  Medium  High  

1 Objective statement (0,0,0.2,0.3) (0.2,0.3,0.6,0.7) (0.6,0.7,1,1) 

2 Design risk (0,0,0.15,0.25) (0.2,0.3,0.37,0.45) (0.4, 0.6,1,1) 

3 Coding risk (0,0,0.15,0.25) (0.2,0.27,0.37,0.45) (0.4, 0.6,1,1) 

4 Testing risk (0,0,0.2,0.3) (0.25,0.4,0.6,0.7) (0.65,0.75,1,1) 

5 Release and deployment (0,0,0.1,0.2) (0.15,0.24,0.32,0.4) (0.35,0.45,1,1) 

6 Project management (0,0,15,0.3) (0.2,0.35,0.55,0.7) (0.6,0.75,1,1) 

7 Communication risk (0,0,0.15,25) (0.2,0.3,0.39,0.45) (0.4,0.5,1,1) 

8 External stakeholder (0,0,0.11,0.2) (0.15,0.2,0.32,0.4) (0.35,0.45,1,1) 

9 Group awareness (0,0,0.2,0.3) (0.25,0.4,0.56,0.7) (0.65,0.75,1,1) 

10 Technology based (0,0,0.1,0.2) (0.15,0.25,0.37,50) (0.45,0.55,1,1) 

Table 5. Rule base for FIS1. 

R_ID 
Objective statement risks Design risk Coding Testing Release and deployment SDLC risk severity 

(1-3) (1-3) (1-3) (1-3) (1-3) (1-5) 

1 1 1 3 1 3 3 

2 3 1 3 3 1 5 

3 1 1 1 1 3 4 

4 2 2 1 1 3 5 

5 3 1 2 2 1 5 

6 3 1 1 1 1 5 

7 2 1 3 2 1 3 

8 2 3 1 2 3 5 

9 2 1 3 3 2 4 

10 3 2 3 3 2 5 

Table 6. Rule base for FIS2. 

R_ID 
Project management risk Communication risk External stakeholder Group awareness Technology based Risk Severity 2  

(1-3) (1-3) (1-3) (1-3) (1-3) (1-5) 

1 2 3 3 1 3 3 

2 1 2 1 1 1 1 

3 3 2 3 2 1 3 

4 2 3 2 2 3 3 

5 1 2 3 3 2 2 

6 3 3 2 2 2 2 

7 2 1 3 3 1 2 

8 3 2 1 2 1 2 

9 2 3 3 1 3 2 

10 2 3 1 3 2 1 
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Table 7. Rule base for FIS3. 

Risk ID 
SDLC risk severity Other risks severity Total risk severity 

(1-5) (1-5) (1-5) 

1 3 3 3 

2 5 1 5 

3 4 3 4 

4 5 3 5 

5 5 2 5 

6 5 2 5 

7 3 2 3 

8 5 2 5 

9 4 2 4 

10 5 1 5 

 

After applying fuzzy-c-means clustering, the 

overlapping sets are obtained for each risk category, 

representing linguistic values low, medium and high. 

The membership values of these fuzzy sets for each risk 

category are represented in Table 4. The rule base of 

rules is created with the help of domain experts from the 

IT industry. The sample rule base for FIS1, FIS2 and 

FIS3 is represented in Tables 5, 6, and 7, respectively. 

The effort is calculated based on the story points 

obtained from the dataset. Then the feature complexity 

is calculated using Equations (2) to (4).  

A total of 24 features are tagged with the given set of 

user stories. The risk value associated with these features 

is obtained by extracting the values of changed 

requirements, feature complexity and dependency of 

Features from the SUT. The obtained values are 

normalized, and feature risk is calculated using 

Equations (1) to (7). The obtained values for the 4 

features are presented in Table 8. 

Table 8. Feature risk. 

Features 
Changed 

requirements 

Feature 

complexity 
Dependency 

Risk of 

feature 

Feature 1 1 1 0.5 1 

Feature 2 0.75 0.5 1 1.25 

Feature 3 0.5 0.68 0 0 

Feature 4 0.75 0.68 1 1.43 

4.3. Evaluation Matrix 

The Average Percentage of Faults Detected (APFD) 

metric, introduced by Elbaum et al. [8], evaluates the 

speed at which faults in a system are identified within a 

test suite. It calculates the average fault detection rate on 

a scale from 0 to 1, where higher values indicate a better 

rate of fault detection, and lower values suggest poorer 

detection performance. 

The computation formula of APFD is as follows: 

𝐴𝑃𝐹𝐷 =  1 −
𝑇𝐹1 + 𝑇𝐹2 + ⋯ . 𝑇𝐹𝑚

𝑛 ∗ 𝑚
+

1

2𝑛
 

where n denotes the total number of test cases in the test 

suite, m is the number of faults in the SUT, and TFf 

denotes the location of the test case that finds fault f in 

the test suite 

4.4. Results 

To verify the correct functionality of features, 150 test 

cases have been taken in a suite. These test cases are then 

correlated to the features. Table 9 represents the sample 

correlation for 15 test cases. The test cases of the suite 

are prioritized based on original order, reverse order, 

random order, feature coverage based and proposed 

feature risk-based techniques. The different 

prioritization algorithms are compared based on the 

average percentage of fault detection metric. The results 

are presented in Table 10. 

Table 9. Correlation of test cases and features. 

Test Cases Feature 1 Feature 2 Feature 3 

TC1 ✓ ✓  

TC2 ✓ ✓  

TC3 ✓ ✓  

TC4 ✓ ✓  

TC5 ✓   

TC6  ✓  

TC7  ✓  

TC8  ✓  

TC9 ✓ ✓  

TC10   ✓ 

TC11   ✓ 

TC12   ✓ 

TC13  ✓  

TC14  ✓  

TC15  ✓  

Table 10. Average percentage of faults detected. 

TCP  APFD 

Original Order 0.71 

Reverse Order 0.86 

Random order 0.84 

Feature coverage based 0.89 

Proposed technique 0.95 

 

Figure 5. Comparison with existing technique. 

As in Figure 5 the results show that the proposed 

technique outperforms the other prioritization 

techniques with an APFD value of 0.95. 

(9) 
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Table 11 presents a comparison of the proposed work 

with existing techniques based on APDF. 

Table 11. Comparison with existing work. 

Authors Year TCP technique APFD 

Junaid et al. [18] 2024 History based 0.87 

Garg and Shekha 
[10] 

2024 
Fault Indexed based multiple 

objective 
0.88 

Li [24] 2021 Fault severity based 0.91 

Gupta and 
Mahapatra [12] 

2023 Feature coverage based 0.87 

Sugave et al. [39] 2025 
Fault aware Jaya Archimedes 

optimization algorithm 
0.93 

Kumar and Saxena 

[22] 
2025 Coverage based 0.82 

Zhou et al. [43] 2021 Random TCP 0.86 

Proposed technique Feature risk severity based 0.95 

4.5. Threats to Validity 

This section presents the threats to validity of the 

proposed approach. 

4.5.1. Internal Validity 

In this study, we have examined feature risks based on 

10 risk factors associated with DASD. We acknowledge 

that the emergence of new, uncertain risks could 

potentially affect the assessed severity of a feature. 

Further, for each risk category, we have assigned the 

membership values of low, medium and high. Altering 

these membership values could influence the dependent 

variable of risk severity. However, to address this 

potential validity threat, a pivot study has been carried 

out to aim to minimize any such validity threats. 

4.5.2. External Validity 

The subject systems employed for empirical studies in 

this work are of medium size. However, it is 

acknowledged that larger industrial projects may 

produce varied results. To address these limitations, we 

plan to conduct further experiments involving bigger 

industrial projects, which aligns with one of our future 

research directions. 

4.6. Limitations and Future Work 

The data of 1400 user stories from a real-world IT 

project are taken, which is adequate for the study’s 

objectives. Further, the work is evaluated on 320 user 

stories of an IT project. A total of 10 risk categories 

related to a distributed agile environment have been 

included. Future research could broaden the scope of the 

proposed method by examining its application in a 

variety of DASD projects, spanning different industries 

and project scales. This would provide valuable insights 

into the method’s adaptability and scalability in real-

world environments, enabling a deeper understanding of 

its performance across diverse conditions. Additionally, 

the method’s potential for generalization to larger 

projects and its applicability to additional risk categories 

will be explored. To further validate its effectiveness, 

user feedback and expert opinions, gathered through 

surveys or interviews with project managers, 

developers, and other stakeholders, could be 

incorporated into the risk assessment process. This 

would help ensure the method’s practicality, strengthen 

its reliability, and enhance its usefulness for 

practitioners, ultimately making it more robust and 

versatile for real-world applications. 

5. Conclusions 

TCP is essential in DASD, wherein the software is 

developed in sprints. TCP reorders the test cases if the 

SUT in a way that the most important test cases are 

executed before others. However, the existing TCP 

techniques use the past test execution data and existing 

fault information, which may not always be available. 

RBT, focuses on identifying and testing the risky 

modules, so that most risky features are tested within a 

limited time and resources. However, the existing risk-

based TCP methods do not take into account the risks 

involved in a distributed agile environment  

This study introduces a novel approach to risk-based 

test case prioritisation in distributed agile environments, 

focusing on prioritizing test cases according to the risk 

levels associated with various features by linking sprint 

features to their respective test cases. The approach 

offers a new perspective on evaluating the risk of 

features by considering factors such as modified 

requirements, feature complexity, and 

interdependencies. The aim is to identify and test high-

risk features early in the distributed agile development 

process, helping to uncover critical defects sooner. 

While risks have traditionally been used to prioritize 

test cases, applying risks related to DASD for feature 

prioritization is a relatively new concept. As DASD 

grows in popularity, strategies for improving TCP in 

such settings are becoming increasingly important. 

Associating risk values with features and correlating 

them with test cases can lead to more efficient RBT. 

The experiments indicate that the proposed approach 

achieves a TCP with an APFD of 0.95. Ultimately, the 

findings of the proposed work offer valuable insights and 

will stimulate future discussion and advancement of 

knowledge in the field. 
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