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Abstract: Timely diagnosis and effective treatment planning rely on the accurate classification of brain tumor images. This study 

proposes a novel approach called Adaptive Moth Flame Optimized Feedforward Neural Network (AMFO-FNN) using Magnetic 

Resonance Imagin (MRI) for brain tumor classification. The method integrates Gaussian filtering for noise reduction and Gray-

Level Co-occurrence Matrix (GLCM) for texture-based feature extraction. Classification is performed using a Feedforward 

Neural Network (FNN), whose parameters are optimized using an enhanced moth flame optimization algorithm. The model was 

evaluated on the publicly available Br35H dataset comprising 7,023 MRI images across four categories: meningioma, pituitary 

tumor, glioma, and no tumor. Applied preprocessing and data augmentation techniques to enhance generalization. Experimental 

results, validated through five-fold cross-validation, demonstrate the superior performance of AMFO-FNN, achieving 99.14% 

accuracy, 98.95% precision, 99.21% recall, and 99.08% F1-score. Comparative analysis with advanced models confirms the 

efficiency and robustness of the suggested approach. The model also shows minimal overfitting and high consistency, making it 

suitable for clinical application. Overall, AMFO-FNN offers a highly accurate and computationally efficient solution for 

automated brain tumor diagnosis. 
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1. Introduction 

Brain tumors pose bold challenges in the intricate realm 

of neurological conditions, providing good-sized 

limitations for both sufferers and scientific practitioners 

[1]. These bizarre growths, originating within the brain 

or its adjacent tissues, disrupt the difficult equilibrium 

of the principal anxious gadget Central Nervous System 

(CNS), frequently to extreme repercussions [24]. A 

comprehensive draw close of the biological aspects of 

mind tumors is critical for specific diagnosis, treatment, 

and dealing with these complex illnesses. Brain tumors 

develop as abnormal lumps of tissue that grow in the 

brain or surrounding areas [9]. These tumors are 

categorized into two fundamental categories based 

totally on their supply, primary tumors that originate 

inside the brain itself and metastatic tumors that rise 

from malignant cells spreading from other parts of the 

frame [11]. The actual causes in the back of the 

improvement of mind tumors stay uncertain, even 

though numerous dangerous elements were identified. 

These elements include genetic predisposition, 

exposure to ionizing radiation, certain hereditary 

conditions, and immune machine disorders. While some 

chance elements can be mitigated through lifestyle 

modifications, others like genetic susceptibility gift 

inherent challenges in the phase of prevention [14]. 

When a brain tumor appears, various symptoms 

 
might crop up. The size, position, and growth rate of the 

tumor heavily influence these symptoms. Usual signs 

include persistent headaches, seizure-s, mental issues, 

shifts in personality or behavior, weakness or begotte-n 

paralysis, and troubles with vision [25]. However, it’s 

not easy to identify these symptoms specifically in brain 

tumors. They often mirror signs of other brain-related 

illnesses, confusing diagnoses. Doctors use a mixture of 

exams to categorize and pinpoint the tumor. 

Neurological evaluations, imaging scans like Magnetic 

Resonance Imagin (MRI) or Computed Axial 

Tomography (CT), and occasionally, biopsy are used to 

confirm the tumor type [17]. The healing path a patient 

follows depends on multiple aspects. Therapies could 

include surgery, radiation, chemo, specially targeted 

medicine, and immunotherapy [4]. Is this therapy aimed 

at eliminating the tumor reducing symptoms and 

preventing recurrence but minimizing damage to 

normal brain tissue? A multidisciplinary approach 

including neurosurgeons oncologists’ radiation 

therapists and other professionals is necessary for 

selecting a treatment plan through meticulous study 

[22]. 

A patient with a brain tumor has a very general range 

of prognosis because of the tumor type, stage, and 

response to treatment [12]. Procedures such as surgery 

to remove benign tumor types normally have a good 

prognosis and usually result in a speedy recovery, 
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however, malignant tumors pose more challenges and 

have poor results. The introduction of new technologies 

and patient management approaches in healthcare 

contributes to an increase in the probability of recovery 

and the quality of survival for a lot of people with brain 

tumors and brings hope even for those with the profound 

diagnosis [24]. 

This research paper is aimed at enhancing the brain 

tumor image classification precision by using the 

proposed Adaptive Moth Flame Optimized Feedforward 

Neural Networks (AMFO-FNN) technique. This goal is 

accomplished by the relation of Moth Flame Optimized 

(MFO) and Feedforward Neural Network (FNN) which 

comprise the features of two different optimization 

approaches and Neural Networks (NNs).  

1.1. Contribution of the Research 

1. Brain tumor images sourced from Kaggle provide a 

valuable dataset for research in medical imaging, 

enabling the development. 

2. The collected images were pre-processed through the 

filter employed with the Gaussian filter, which 

decreases noise and increases the quality of the 

images before analysis. 

3. Features are extracted by measuring the spatial 

correlations between pixel intensities in an image 

using the Gray-Level Co-occurrence Matrix 

(GLCM), providing textural information for image 

analysis and classification applications. 

4. A novel method of AMFO-FNN utilized for 

classification of brain tumor images. 

2. Literature Review 

The Mutual Information-Accelerated Singular Value 

Decomposition (MI-ASVD) approach was examined 

for brain image classification [3]. MI-ASVD exceeded 

Principal Component Analysis (PCA) and Singular 

Value Decomposition (SVD) in terms of accuracy. 

However, more validation on varied datasets and 

research on computing efficiency was required. 

A highly accurate diagnostic model was created for 

identifying brain cancers in MRI images while reducing 

the dangers associated with invasive biopsy procedures 

[5]. The suggested model has superior accuracy, making 

it a viable non-invasive approach for clinical tumor 

identification. 

Hyperspectral imaging was used to investigate tumor 

location in the brain [20]. To discover ideal values, it 

utilized k-based clustering combined with the firefly 

method. Multilayer FNN marks brain areas. The quality 

and accessibility of hyperspectral image data were 

critical to the suggested technique’s efficacy. 

An effective brain tumor detection technique was 

evaluated, which employed hybrid classification with 

MRI data [23]. The approach includes identification 

with a Neural Network-Convolutional Neural Network 

(NN-CNN) hybrid classifier optimized via Crossover 

Operated Rooster-based Chicken Swarm Optimization 

(COR-CSO) which was developed for accurate brain 

tumor identification, hence improving diagnostic 

abilities for medical imaging. 

The accuracy of brain tumor identification was 

improved using CNN [19]. It described a revolutionary 

method that combines image-enhancing techniques. 

Despite its effectiveness, drawbacks include image 

quality fluctuations and the requirement for further 

validation across many datasets. 

A brain tumor classification method was created that 

combines Deep Learning (DL) application with 

traditional Machine Learning (ML) classifiers [21]. 

They succeeded in identifying brain tumors with great 

accuracy by classifiers. Constraints, such as data set 

dependency and the need for the experiment to be tested 

on various datasets, were encountered. 

A modern machine was presented for the early and 

precise detection of mind tumors, which turned into an 

incredibly critical task [18]. The approach made use of 

a redesigned CNN for detecting tumor location. There 

was also the need for further authentication in clinical 

settings. 

A unique Artificial Intelligence (AI) strategy for 

brain tumor classification that combines the hybrid 

extraction of features and a Regularized Extreme 

Learning Machine (RELM) [6]. The method was tested 

on a newly available open dataset and showed effective 

classification performance. However, the study lacked 

detailed validation and generalizability across diverse 

datasets. 

A breast tissue cancer identification strategy was 

provided to extract a procedure to differentiate between 

normal and malignant breast tissues [8]. The used 

features were loaded into an FNN classifier that was 

observed to provide far better classification accuracy 

than previous studies. 

A new type of framework was developed for the 

recognition and classification of cancer tumors in MRI 

images [2]. It used Particle Swarm Optimization (PSO) 

for segmentation and Convolutional Neural Networks 

(CNNs) for classification. Precise performance was 

demonstrated particularly in comparison to the 

traditional ones. 

The limitations of Artificial Neural Networks (ANN) 

in medical image classification were addressed, 

particularly in detecting abnormalities in brain MR 

images [7]. They were expected to provide faster 

convergence and higher accuracy under the same 

iteration conditions as the conventional Counter-

Propagation Network (CPN) and Kohonen networks. 

Experimental findings have shown that brain images 

with aberrancies can be effectively classified. 

A machine vision-based brain tumor classification 

model was created utilizing MRI data to solve the 

delayed and inefficient diagnostic procedure [15, 16]. A 

unique hybrid framework was developed and tested for 

categorizing various forms of brain tumors. However, 
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constraints might exist, such as the necessity for 

additional validation and testing in a broad sample. 

2.1. Research Gap 

While recent algorithms have improved brain tumor 

classification, fundamental limitations remain. CNNs 

and COR-CSO are highly accurate but computationally 

demanding and not interpretable for clinical purposes 

[19]. Single-dataset AlexNet-based approaches tend to 

be non-generalizable [18]. Hyperspectral imaging is 

severely data-dependent, diminishing robustness [20]. 

Numerous studies lack vital statistical protocols such as 

k-fold cross-validation and standard deviation 

reporting, impacting reproducibility [8]. Feature 

selection methods like MI-ASVD have no rationale for 

chosen features [3], and wavelet-based approaches 

don’t explicitly report their dimensionality reduction 

methodologies [2]. Harris Hawks Optimized 

Convolution Network (HHOCNN) models also depend 

on manually designed features with high training costs 

[23]. In contrast, the introduced AMFO-FNN 

incorporates GLCM-based features and AMFO to 

design a lightweight, interpretable, and statistically 

robust model. It has cross-validation, reports standard 

deviation, and works well on the Br35H dataset, 

showing better accuracy, efficiency, and clinical 

relevance than standard and Deep Learning (DL) 

approaches. 

3. Methodology 

In the methodology section, AMFO-FNN for brain 

tumor image classification. The data set was collected 

from Kaggle. Pre-processing using Gaussian filter. 

Then, the feature extraction utilized GLCM. Figure 1 

demonstrates the methodology flow. 

 

Figure 1. Methodology flow of the AMFO-FNN method. 

3.1. Dataset 

The brain tumor image data employed was the open 

source Br35H dataset, acquired from Kaggle [27]. The 

dataset is comprised of 7,023 T1-weighted contrast-

enhanced MRI images belonging to four classes: 

glioma, meningioma, pituitary tumor, and no tumor. The 

images are all unique patient cases and have different 

sizes and resolutions. To ensure consistency in model 

input, all the images were resized to 256×256 pixels. 

The “no tumor” category contains images that show no 

sign of abnormal growth and are an important negative 

control for the classification task. To provide a strong 

and unbiased model evaluation, the data was split with 

a stratified 80:20 train-test split to have balanced class 

distributions within both sets. Additionally, the research 

utilized 5-fold cross-validation on the train data to 

determine the model’s generalizability. All the reported 

performance metrics are the average five-fold, and the 

standard deviation is used to indicate variability and 

reliability across runs. 

The Br35H dataset consists of a total of 7,023 images 

that are distributed across four classes: glioma (1,426 

images), meningioma (1,448 images), pituitary tumor 

(1,413 images), and no tumor (2,736 images). The 

distribution is not extremely unbalanced, with the “no 

tumor” class having significantly more samples. To 

counter any bias at training time, stratified sampling was 

performed at dataset splitting and data augmentation 

was used for underrepresented classes. 

3.2. Gaussian Filter for Data Pre-Processing 

Data pre-processing with a Gaussian filter for brain 

tumor image classification involves performing a 

Gaussian smoothing operation on the image. This filter 

reduces noise and enhances essential image elements, 

making them better suited for analysis and classification 

applications. The Gaussian filter is used for more 

efficient image flattening. It is the initial stage of 

detection of noise; however, it is not particularly 

efficient at eliminating pepper and salt sounds. It is 

derived from the Gaussian distribution. 

The probability concentration function in Equation 

(1) represents the probability density function of a 

Gaussian distribution, denoted as O(w).  

𝑂(𝑤) =
1

√2𝜋𝜎2
𝑓−(𝑤−𝜇)2/(2𝜎)2

 

w represents a grayscale image, μ denotes the mean 

value and σ stands for the standard deviation.  

The Gaussian’s standard deviation (σ) controls the 

level of flattening. 

Besides noise attenuation by applying a Gaussian 

filter, image normalization was also done to normalize 

pixel intensity values between [0, 1] for faster 

convergence and training stability. For balancing class 

and increasing the diversity of the dataset, data 

augmentation techniques of random rotations (±15°), 

horizontal and vertical flips, and zoom (90-110%) were 

applied. The augmentations were applied only to the 

training dataset and avoided overfitting and increased 

the model’s generalization. 

(1) 



Innovative Approach for Brain Tumor Image Classification with Novel Optimized ...                                                             1205 

3.3. Gray-Level Co-Occurrence Matrix 

(GLCM) for Feature Extraction 

Extracting features in classification of brain tumor 

image using GLCM. This algorithm leverages GLCM 

for characterizing the association between local pixel 

intensities in medical images, thereby allowing for the 

recognition of distinctive patterns indicative of brain 

tumors. The GLCM, a feature extraction tool, was used 

for this study. Firstly, the picture was altered to be in 

black and white. Then, the window size to draw the 

correlation between the brightness of the central pixel 

and the brightness of its surroundings. This link between 

elements was formulated as a matrix, which identifies 

the frequency that the pixels renew their suspected 

direction consecutive. By using the correlation between 

the pixel intensities, GLCM gave shape to the texture 

derived from the grayscale, to the kernel applied, and to 

the direction. The study investigated the fourteen 

textural features but only chose six particular features 

relevant to this research to significantly reduce the 

spatial context information, which is an overhead that 

can be a disadvantage factor in the classification 

process. Texture analysis takes a look at the contrast and 

uniformity of images; it also measures the similarity of 

different parts of the same image and then computes by 

means of the evaluation of the following indicators: the 

Angular Second Moment (ASM), energy, and 

correlation. Even though GLCM gives 14 default 

texture features, we chose six features contrast, energy, 

homogeneity, entropy, correlation, and dissimilarity 

according to a feature ranking experiment on mutual 

information and classification effect. The six features 

gave the optimal tradeoff between classification 

accuracy and computational complexity with noise 

reduction of irrelevant features. 

• Correlation: the distance between an image’s 

brightest areas to its darkest, which is known as the 

ridge line, is computed within the luminance of the 

pixels. This is information about how bright a good 

pixel is compared to the intensity of its neighbors, 

Equation (2). 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

√(𝜎𝑖)(𝜎𝑗)

𝑁−1

𝑖=0

𝑁−1

𝑖=0

 

• Contrast: contrast is the difference in intensity 

between close pixels. Higher contrast indicates more 

variability in intensity values, Equation (3). 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑(𝑖 − 𝑗)2

𝑁−1

𝑖=0

 𝑁−1

𝑖=0

 

• Uniformity: often referred to as the reverse 

distinction moment, this measurement evaluates the 

uniformity or evenness of an image. Elevated values 

of uniformity imply a lesser deviation in brightness 

amongst adjacent pixels, Equation (4). 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ∑ ∑
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖=0

𝑁−1

𝑖=0

 

• Energy: energy refers to the square root of a picture’s 

second-moment angle, gauging the overall spread of 

its brightness. A high energy value suggests a texture 

that is well arranged or uniform in its distribution, 

Equation (5). 

𝐸𝑛𝑒𝑟𝑔𝑦 = √∑ ∑ 𝑝(𝑖, 𝑗)2

𝑁−1

𝑖=0

𝑁−1

𝑖=0

 

• Dissimilarity: calculating the difference between the 

mean high and low in pixels in a particular area. 

Bigger scattering ratings would mean more variation 

in brightness values, Equation (6). 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑥|𝑖 − 𝑗|

𝑁−1

𝑖=0

𝑁−1

𝑖=0

 

• ASM: establishes functions that determine whether 

given pixel pairs are homogeneous or not. It counts 

the distinct frequencies of gray pairings and displays 

high values in images that have a similar texture, 

Equation (7). 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 = ∑ ∑ 𝑝(𝑖, 𝑗)2

𝑁−1

𝑖=0

𝑁−1

𝑖=0

 

The pursuit of crafting textural features, we employed 

grayscale images of the dimensions 100x100 and a 

kernel that is 19 units in size. This approach threw up 48 

distinct features for each image, each having a spacing 

of either 1 or 2 and a specific rotation pegged at 0°, 45°, 

90°, or 135°. Every feature receives normalization to 

sum up to one and N stands as a numerical 

representation of the gray levels. 

3.4. Classification Using Adaptive Moth Flame 

Optimized Feedforward Neural Networks 

(AMFO-FNN) 

AMFO-FNN employs a particular supervised learning 

method when it comes to classifying glioma images. It 

employs a modulated moth flame optimization 

technique and FNNs that boost the classification 

accuracy. This strategy with weights and biasing 

parameters leads to better network suitability to 

categorize brain tumor images, thus being more used in 

medical diagnosis and treatment plans. 

3.4.1. Adaptive Moth Flame Optimization (AMFO) 

The MFO algorithm was changed by the addition of the 

Levy flight and the Cauchy operators. Herein, the 

standard MFO Equation (10) portrays its efficiency in 

arriving at the optimal solution given enough 

computation time. Yet, it cannot avert a relatively slow 

search. In order to retain the searching ability of MFO 

without the loss of exploration features, enhanced 

search operations such as those available in the adaptive 

(2)  

(3)  

(4)  

(5)  

(6)  

(7)  
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Cuckoo search algorithm are proposed to be utilized. A 

flowchart of an adaptive approach to MFO is shown in 

Figure 2. 

𝑆(𝑀𝑖 , 𝐹𝑗) = 𝐷𝑗𝑒𝑏𝑡 cos(2𝜋𝑡) + 𝐹𝑗 

In the conventional MFO algorithm, the moth moves 

based on the distance from the moth to the flame. In the 

new update, we would like to incorporate the step size 

which will depend on the best, worst, and current moth 

position. The step size will manage the distance from the 

current position to the new position of the moth. 

Equation (9) indicates that, because the number of 

iterations will increase, the generation turns inversely 

proportional to the step size, where the step size 

decreases. Further, Equation (10) uses the computed 

step size to advance the moth to another position. 

𝑋𝑖
𝑡+1 = (

1

𝑡
)

|
(𝑏𝑒𝑠𝑡 𝑓(𝑡)−𝑓𝑖(𝑡))
𝑏𝑒𝑠𝑡( )−𝑤𝑜𝑟𝑠𝑡𝑓

|

 

𝑀𝑜𝑡ℎ𝑝𝑜𝑠𝑡(𝑡+1) = 𝑀𝑜𝑡ℎ𝑝𝑜𝑠(𝑡) + 𝑝 ∗ 𝑋𝑖
𝑡+1 

Equation (21) provides a degree of arbitrariness in the 

position update equation. The next part presents the 

performance results and comparative analysis of the 

proposed AMFO using a set of conventional single-

objective benchmark functions with varying features. 

Figure 2 and Table 1 represents the flow of the AMFO 

model. 

 

 

Figure 2. Flow of the AMFO model. 

Table 1. Hyperparameter table for AMFO-FNN. 

Hyperparameter Symbol/Name Typical value(s) Description 

Number of moths N 10-100 Size of the population (number of candidate FNN solutions). 

Number of flames F Equal to N Top-performing moths used to guide optimization. 

Maximum iterations T{max} 50-500 Total number of optimization iterations. 

Dimensionality D Depends on the FNN structure Number of parameters (weights + biases) to optimize. 

Adaptive spiral coefficient a -1 to -2 (linearly decreasing) Controls the contraction rate of the spiral function. 

Spiral shape constant b 1 Affects the tightness of the logarithmic spiral path. 

Randomization factor t Uniform [a, 1] Random value controlling the angle in the spiral update. 

Mutation rate (adaptive) μ 0.01-0.1 Probability of random mutation for diversity (used adaptively). 

Learning rate (optional) η 0.001-0.01 Used if adaptive learning or hybrid training is incorporated. 

Activation function – Sigmoid, ReLU, Tanh Activation is used in the FNN hidden/output layers. 

Loss function – MSE, CE Measures prediction error during fitness evaluation. 

Dataset split ratio – 80% training/20% testing Proportion of data used to evaluate each candidate FNN. 

Network topology – Input-hidden-output (e.g., 3-4-1) Defines the architecture of the FNN. 

 

3.4.2. Feedforward Neural Network 

Let’s simplify the essential idea of an ANN. Basically, 

an ANN has layers with various connected parts. They 

work on the data that feeds them to give results. To make 

it easy: 

• Input and output: the ANN starts with a data input (x) 

and in the end, produces an output (y), representing a 

category-based variable. 

• Layers: the ANN has several layers (l). Each layer 

has certain units (m). All layers, except the last one, 

are hidden. The last one is the output layer. 

• Weights and biases: each link between different 

layers holds a weight 𝑤𝑖𝑗
𝑘 . This weight shows how 

strong the connection is. Plus, each layer has its own 

bias bl+1∈ℝ). 

• Activation functions: these are the rules 𝑠𝑖
𝑘(. )) that 

decide the output of each unit. They use both the 

weights and biases. Common choices are the logistic 

sigmoid and hyperbolic tangent functions. 

• Processing flow: input data gets a weight and then 

goes through activation functions in each layer. Each 

(8) (9) 

(10)  
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layer then makes outputs which become inputs for 

the next layer. This cycle happens over and over until 

the output layer gives the final result. 

Data entry into the entanglement is the first layer and is 

the first step towards calculating entanglement weights. 

Equation (11) which is the input data,' is used to reckon 

the activations of the units in the first layer. 

ℎ𝑖
1 = 𝑠𝑖

𝑘+1 (𝑏1 + ∑ 𝑤𝑖𝑗
𝑘+1

𝑚

𝑗=1

𝑥𝑗) 

We next estimate the activation functions 𝑠𝑖
𝑖(. ) for the 

second layer after getting the outputs of the first layer. 

Equation (12) is used to compute the activations of the 

units in the subsequent layer based on the activations of 

the units in the previous layer. 

ℎ𝑖
𝑘+1 = 𝑠𝑖

𝑘+1 (𝑏𝑘+1 + ∑ 𝑤𝑖𝑗
𝑘+1

𝑚

𝑗=1

ℎ𝑖
𝑘) 

The estimated probability of the output is calculated 

after passing through each hidden layer k sequentially to 

the final output, Equation (13).  

𝑦̂ = 𝑏𝑙+1 +  ∑ 𝑤𝑖𝑗
𝑘+1

𝑚

𝑗=1

ℎ𝑖
𝑘 

In the estimating procedure mentioned previously, the 

activation functions (.) is essential. In our investigation, 

we employ the logistic function, which is commonly 

utilized as a nonlinear activation function, Equation 

(14). 

𝑠(𝑥) =
1

1 + exp (−𝑥)
 

This estimation is, however, a procedure, which can be 

regarded as the adaptation of the weights of the network 

by iterative learning in response to data. A neural 

network adapts the weights (𝑤𝑖𝑗
𝑘  )  one after the other, 

for each layer (k) and each neuron (i) in it. The 

performance of the network is gauged on those weights 

discovered during the training period. The next stage is 

to apply a cost function to achieve the approximation to 

the value of weights in the network. The cost function, 

which serves as the learning goal function should be 

minimized. The Mean Square Error (MSE), or Equation 

(15), is the most widely used value function. 

𝐸 =
1

𝑁
∑  (𝑦𝑖

𝑁

𝑖=1

−𝑦̂1)2, 

Cross-Entropy (CE), a popular cost function, considers 

both category variables and input data vectors. 

𝑆 = − ∑ 𝑝𝑖

𝑁

𝑖=1

log 𝑞𝑖 

Here, according to Equation (16), pi and qi are 

continuous possibilities. 

Network weight estimate frequently suffers from 

overfitting, which impairs the generalization of new 

data. This happens when the network gives training data 

performance a higher priority than test data 

performance. A possible way of reducing overfitting is 

through regularization during estimation by adding a 

term proportional to the sum of the square weights in the 

cost function to punish it and that improves network 

generalization performance. Characteristically, this 

regularization process can be described using the MSE 

cost function in the general form as, Equation (17). 

𝐸𝑟𝑒𝑔 = 𝛾 ∑ ∑ (𝑤𝑖𝑗
𝑘 )

2
𝑚

𝑖,𝑙=1

𝑙

𝑘=𝑖

+ (1 − 𝛾)𝐸 = 𝛾𝐸𝑤 + (1 − 𝛾)𝐸, 

γ∈(0,1) is the regularization constant. To optimize 

estimate procedures and ensure convergence, Equation 

(16) is commonly improved by the gradient descent 

technique and the backpropagation method. AMFO-

FNN detects patterns and appropriately solves an 

optimization problem, it will depict a rigid and flexible 

way to handle hard problems, as depicted in the AMFO-

FNN Algorithm (1). 

Algorithm 1: Process of AMFO-FNN 

Initialize parameters 

initialize_network() 

Define moth flame optimization parameters 

initialize_AMFO_parameters() 

Training process 

for epoch in range(num_epochs): 

   Forward propagation 

    for each training_example in training_data: 

        output = forward_propagation(training_example) 

        Calculate loss 

        loss = calculate_loss(output, expected_output) 

   Backward propagation 

backward_propagation(loss) 

   Update network parameters using AMFO 

moth_flame_optimization() 

   Print progress 

    if epoch % print_interval == 0: 

print(“Epoch:”, epoch, “Loss:”, total_loss) 

Prediction process 

for example in test_data: 

    prediction = forward_propagation(example) 

print(“Prediction:”, prediction) 

4. Performance of Evaluation 

All calculations were performed employing an Intel 

Core i7-7800 3.5 GHz CPU. An NVIDIA GeForce GTX 

1080 Ti GPU can be utilized for smart modification and 

version training. Python 3.7 is operational and it 

processes, evaluates, and visualizes records. The 

platform was delighted to have adequate RAM capacity 

(32 GB), allowing it to run and work gently with 

scientific research material.  

4.1. Performance Comparison 

A comparative performance comparison of different 

brain tumor classification techniques tested over a 

(11)  

(12)  

(13)  

(14)  

(15)  

(16)  

(17)  
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benchmarked MRI dataset. The suggested AMFO-FNN 

model is compared with the latest methods, such as 

HHOCNN [10], AlexNet with Extreme Learning 

Machine (ELM) [27], and Batch Normalized AlexNet-

ELM optimized by Chaotic Bat Algorithm (BN-

AlexNet-ELM-CBA) [13]. The classification 

performance of each model is evaluated by accuracy, 

precision, recall, and F1-score. The comparison of 

performances of different brain tumor classification 

models illustrates that the suggested AMFO-FNN 

model performs better than any other approach on major 

evaluation measures. A particular maximum accuracy of 

99.14% shows how well the model can classify both 

tumor and non-tumor cases. The model also achieves a 

precision of 98.95%, representing high reliability in 

making accurate tumor case identification among all 

positive predictions. The model’s recall (99.21%) 

indicates its remarkable ability to identify true tumor 

cases, and it is extremely important in medical diagnosis 

to reduce missed detections. Additionally, the F1-score 

of 99.08% indicates a highly balanced performance 

between precision and recall, which further assures the 

robustness and clinical importance of the model. 

Furthermore, compared with the HHOCNN model, 

whose performance was slightly lower but still 

competitive, the AlexNet+ELM and BN-AlexNet-

ELM-CBA models achieved relatively moderate 

performance. Generally, AMFO-FNN provides the most 

precise, consistent, and reliable results among the tested 

methods and hence remains the best method for 

detecting brain tumors. 

Table 2 and Figures 3, 4, and 5 represent the output 

of the comparison of key metrics.  

Table 2. Comparative performance of brain tumor classification 

models using MRI images. 

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

HHOCNN [10] 98.00 97.90 98.70 98.80 

AlexNet + ELM [27] 96.00 94.00 94.00 96.00 

BN-AlexNet-ELM-CBA [13] 96.43 96.17 97.14 96.50 

AMFO-FNN [Proposed] 99.14 98.95 99.21 99.08 

 

Figure 3. Comparative accuracy analysis of brain tumor detection 

techniques. 

 

Figure 4. Evaluation of precision and recall rates across different 

classification models. 

 

Figure 5. F1-score performance comparison for brain tumor 

classification approaches. 

Table 3 shows the five-fold cross-validation results 

of the AMFO-FNN model, confirming its stable 

performance. 

Table 3. Five-fold cross-validation results of the AMFO-FNN model. 

Fold Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Fold 1 98.95 98.70 99.10 98.85 

Fold 2 99.30 99.10 99.40 99.25 

Fold 3 99.00 98.80 99.20 99.00 

Fold 4 99.40 99.20 99.30 99.20 

Fold 5 99.10 99.00 99.05 99.10 

Mean±SD 99.14±0.17 98.95±0.18 99.21±0.13 99.08±0.14 

4.2. Confusion Matrix 

The training accuracy rises steadily to over 90%, while 

the validation accuracy plateaus at over 82%, indicating 

good learning and generalization. Meanwhile, the 

training loss decreases step by step, and the validation 

loss demonstrates declining behavior with very little 

overfitting. The shallow disparity in the training and 

validation curves specifies that the model performs well 

with high performance and without extreme variance 

between observed and unobserved data. Figure 6 

provides the training and validation accuracy and loss 
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curves for 10 epochs. 

 

Figure 6. Confusion matrix of AMFO-FNN. 

4.3. Accuracy and Loss 

The matrix shows high classification accuracy of all 

four classes: glioma, meningioma, pituitary, and no 

tumor. Ideal classification for the first three classes of 

tumors and one misclassification among the “no tumor” 

class were achieved, where the sample was wrongly 

classified as meningioma. The matrix shows the 

efficiency and effectivity of the proposed method in 

multi-class brain tumor image classification. The 

impressive ability of the model to classify in a diagonal-

dominant fashion can be seen in the matrix. It is only 

between no tumor and meningioma that it gets confused, 

and it indicates slight feature representation overlap for 

these classes. Figure 7 shows the confusion matrix for 

the AMFO-FNN model on the test set. 

 

 

a) Training and validation accuracy. 

 

b) Training and validation loss. 

Figure 7. Training and validation accuracy/loss curves across 

epochs. 

4.4. ROC Curve Analysis 

The ability to differentiate tumor vs. non-tumor cases 

from MRI images. The Receiver Operating 

Characteristic (ROC) curve graphically shows the True 

Positive Rate (TPR) against the False Positive Rate 

(FPR) over various classification thresholds. Area 

Under the Curve (AUC) value obtained with 0.9497, 

shows an extremely high discriminative power of the 

model. An AUC of near 1.0 indicates that the model has 

a good ability to differentiate between tumor and non-

tumor samples with very few misclassifications or 

errors. The sharp upturn in the top-left corner shows that 

the model can attain a very high TPR at low FPRs. This 

outcome confirms the strength and clinical value of the 

AMFO-FNN model in effectively classifying brain 

tumors. Figure 8 shows the ROC curve of the proposed 

AMFO-FNN model. 

 

Figure 8. ROC curve with AUC for the AMFO-FNN model. 

4.5. Discussion 

The performance comparison of the proposed AMFO-

FNN model and other brain tumor classification models 

shows that the proposed model evidently outperforms 

other classification models. It has the best value in all 

evaluation criteria among all tested models. HHOCNN 

[10], AlexNet+ELM [27], and BN-AlexNet-ELM-CBA 

[13] have comparatively lower performance in all 

criteria. Additionally, unsupervised autoencoder-based 

multimodal fusion methods [26] face limitations such as 

the need for larger datasets to improve generalization 

and the absence of validation in real-time clinical 

hardware. The high performance of AMFO-FNN also 

reveals its efficiency in precisely classifying tumor 

cases with a very good sensitivity-specificity balance. 

Its capacity for optimizing feature learning and 

classification makes it an effective and stable method 

for the diagnosis of brain tumors from MRI images. A 

comparative experiment was conducted to examine the 

impact of preprocessing steps. Models without Gaussian 

filtering and normalization suffered a 4-6% decline in 

accuracy and a greater variance in cross-validation 

results, supporting the effectiveness of our 

preprocessing pipeline in stabilizing learning and 
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improving classification performance. Training and 

validation loss curves for the model were tracked to 

check for overfitting. They demonstrated good 

convergence with minimal divergence, showing that the 

model generalizes well for new data. Dropout and early 

stopping were employed during training to prevent 

overfitting further. 

5. Conclusions 

Brain tumor classification utilizing medical imaging 

entails assessing images like MRI scans to classify 

tumors based on their features, assisting in diagnosis as 

well as planning for treatment. The study introduced 

AMFO-FNN for brain tumor image classification. By 

combining the advantages of MFO and FNN, the 

proposed method significantly improves classification 

accuracy over previous methods. The data was collected 

from Kaggle. Pre-processing used a Gaussian filter. 

GLCM for feature extraction helped refine the input 

data for classification. Evaluation factors including 

99.21% recall, 98.95% precision, 99.08% F1-score, and 

99.14% accuracy revealed that the AMFO-FNN method 

outperformed state-of-the-art methods. These findings 

on brain tumors demonstrate the potential of the 

proposed method to improve early detection and 

treatment planning, leading to better patient outcomes. 

The proposed method efficiently classifies brain tumor 

images, and could assist physicians make more educated 

decisions, ultimately improving the overall treatment of 

brain tumor patients. 

5.1. Limitation and Future Scope  

The availability and quality of labeled data are one of 

the most significant obstacles in developing effective 

algorithms for brain tumor classification. High-quality 

labeled datasets are critical for training strong models, 

but collecting them might be difficult due to privacy 

issues and restricted access to medical images along 

with the differences in image-capturing methodologies. 

Combining data collected through various imaging 

modalities, including MRI, CT and Positron Emission 

Tomography (PET) scans, can lead to an improved 

comprehension of brain tumors. Future research might 

focus on creating models that can successfully combine 

data from several imagined sources to increase 

classification accuracy. 

Data Availability 

https://www.kaggle.com/datasets/masoudnickparvar/br

ain-tumor-mri-dataset 
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