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Abstract: Timely diagnosis and effective treatment planning rely on the accurate classification of brain tumor images. This study
proposes a novel approach called Adaptive Moth Flame Optimized Feedforward Neural Network (AMFO-FNN) using Magnetic
Resonance Imagin (MRI) for brain tumor classification. The method integrates Gaussian filtering for noise reduction and Gray-
Level Co-occurrence Matrix (GLCM) for texture-based feature extraction. Classification is performed using a Feedforward
Neural Network (FNN), whose parameters are optimized using an enhanced moth flame optimization algorithm. The model was
evaluated on the publicly available Br35H dataset comprising 7,023 MRI images across four categories: meningioma, pituitary
tumor, glioma, and no tumor. Applied preprocessing and data augmentation techniques to enhance generalization. Experimental
results, validated through five-fold cross-validation, demonstrate the superior performance of AMFO-FNN, achieving 99.14%
accuracy, 98.95% precision, 99.21% recall, and 99.08% F'1-score. Comparative analysis with advanced models confirms the
efficiency and robustness of the suggested approach. The model also shows minimal overfitting and high consistency, making it
suitable for clinical application. Overall, AMFO-FNN offers a highly accurate and computationally efficient solution for
automated brain tumor diagnosis.
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1. Introduction might crop up. The size, position, and growth rate of the
tumor heavily influence these symptoms. Usual signs
include persistent headaches, seizure-s, mental issues,
shifts in personality or behavior, weakness or begotte-n
paralysis, and troubles with vision [25]. However, it’s
not easy to identify these symptoms specifically in brain
tumors. They often mirror signs of other brain-related
illnesses, confusing diagnoses. Doctors use a mixture of
exams to categorize and pinpoint the tumor.
Neurological evaluations, imaging scans like Magnetic
Resonance Imagin (MRI) or Computed Axial
Tomography (CT), and occasionally, biopsy are used to
confirm the tumor type [17]. The healing path a patient
follows depends on multiple aspects. Therapies could
include surgery, radiation, chemo, specially targeted
medicine, and immunotherapy [4]. Is this therapy aimed
at eliminating the tumor reducing symptoms and
preventing recurrence but minimizing damage to
normal brain tissue? A multidisciplinary approach
including neurosurgeons oncologists’  radiation
therapists and other professionals is necessary for
selecting a treatment plan through meticulous study
[22].

A patient with a brain tumor has a very general range
of prognosis because of the tumor type, stage, and
response to treatment [12]. Procedures such as surgery
to remove benign tumor types normally have a good
prognosis and usually result in a speedy recovery,

Brain tumors pose bold challenges in the intricate realm
of neurological conditions, providing good-sized
limitations for both sufferers and scientific practitioners
[1]. These bizarre growths, originating within the brain
or its adjacent tissues, disrupt the difficult equilibrium
of the principal anxious gadget Central Nervous System
(CNS), frequently to extreme repercussions [24]. A
comprehensive draw close of the biological aspects of
mind tumors is critical for specific diagnosis, treatment,
and dealing with these complex illnesses. Brain tumors
develop as abnormal lumps of tissue that grow in the
brain or surrounding areas [9]. These tumors are
categorized into two fundamental categories based
totally on their supply, primary tumors that originate
inside the brain itself and metastatic tumors that rise
from malignant cells spreading from other parts of the
frame [11]. The actual causes in the back of the
improvement of mind tumors stay uncertain, even
though numerous dangerous elements were identified.
These elements include genetic predisposition,
exposure to ionizing radiation, certain hereditary
conditions, and immune machine disorders. While some
chance elements can be mitigated through lifestyle
modifications, others like genetic susceptibility gift
inherent challenges in the phase of prevention [14].
When a brain tumor appears, various symptoms
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however, malignant tumors pose more challenges and
have poor results. The introduction of new technologies
and patient management approaches in healthcare
contributes to an increase in the probability of recovery
and the quality of survival for a lot of people with brain
tumors and brings hope even for those with the profound
diagnosis [24].

This research paper is aimed at enhancing the brain
tumor image classification precision by using the
proposed Adaptive Moth Flame Optimized Feedforward
Neural Networks (AMFO-FNN) technique. This goal is
accomplished by the relation of Moth Flame Optimized
(MFO) and Feedforward Neural Network (FNN) which
comprise the features of two different optimization
approaches and Neural Networks (NNs).

1.1. Contribution of the Research

1. Brain tumor images sourced from Kaggle provide a
valuable dataset for research in medical imaging,
enabling the development.

2. The collected images were pre-processed through the
filter employed with the Gaussian filter, which
decreases noise and increases the quality of the
images before analysis.

3. Features are extracted by measuring the spatial
correlations between pixel intensities in an image
using the Gray-Level Co-occurrence Matrix
(GLCM), providing textural information for image
analysis and classification applications.

4. A novel method of AMFO-FNN utilized for
classification of brain tumor images.

2. Literature Review

The Mutual Information-Accelerated Singular Value
Decomposition (MI-ASVD) approach was examined
for brain image classification [3]. MI-ASVD exceeded
Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD) in terms of accuracy.
However, more validation on varied datasets and
research on computing efficiency was required.

A highly accurate diagnostic model was created for
identifying brain cancers in MRI images while reducing
the dangers associated with invasive biopsy procedures
[5]- The suggested model has superior accuracy, making
it a viable non-invasive approach for clinical tumor
identification.

Hyperspectral imaging was used to investigate tumor
location in the brain [20]. To discover ideal values, it
utilized k-based clustering combined with the firefly
method. Multilayer FNN marks brain areas. The quality
and accessibility of hyperspectral image data were
critical to the suggested technique’s efficacy.

An effective brain tumor detection technique was
evaluated, which employed hybrid classification with
MRI data [23]. The approach includes identification
with a Neural Network-Convolutional Neural Network
(NN-CNN) hybrid classifier optimized via Crossover

Operated Rooster-based Chicken Swarm Optimization
(COR-CSO) which was developed for accurate brain
tumor identification, hence improving diagnostic
abilities for medical imaging.

The accuracy of brain tumor identification was
improved using CNN [19]. It described a revolutionary
method that combines image-enhancing techniques.
Despite its effectiveness, drawbacks include image
quality fluctuations and the requirement for further
validation across many datasets.

A brain tumor classification method was created that
combines Deep Learning (DL) application with
traditional Machine Learning (ML) classifiers [21].
They succeeded in identifying brain tumors with great
accuracy by classifiers. Constraints, such as data set
dependency and the need for the experiment to be tested
on various datasets, were encountered.

A modern machine was presented for the early and
precise detection of mind tumors, which turned into an
incredibly critical task [18]. The approach made use of
a redesigned CNN for detecting tumor location. There
was also the need for further authentication in clinical
settings.

A unique Artificial Intelligence (Al) strategy for
brain tumor classification that combines the hybrid
extraction of features and a Regularized Extreme
Learning Machine (RELM) [6]. The method was tested
on a newly available open dataset and showed effective
classification performance. However, the study lacked
detailed validation and generalizability across diverse
datasets.

A breast tissue cancer identification strategy was
provided to extract a procedure to differentiate between
normal and malignant breast tissues [8]. The used
features were loaded into an FNN classifier that was
observed to provide far better classification accuracy
than previous studies.

A new type of framework was developed for the
recognition and classification of cancer tumors in MRI
images [2]. It used Particle Swarm Optimization (PSO)
for segmentation and Convolutional Neural Networks
(CNNs) for classification. Precise performance was
demonstrated particularly in comparison to the
traditional ones.

The limitations of Artificial Neural Networks (ANN)
in medical image classification were addressed,
particularly in detecting abnormalities in brain MR
images [7]. They were expected to provide faster
convergence and higher accuracy under the same
iteration conditions as the conventional Counter-
Propagation Network (CPN) and Kohonen networks.
Experimental findings have shown that brain images
with aberrancies can be effectively classified.

A machine vision-based brain tumor classification
model was created utilizing MRI data to solve the
delayed and inefficient diagnostic procedure [15, 16]. A
unique hybrid framework was developed and tested for
categorizing various forms of brain tumors. However,
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constraints might exist, such as the necessity for
additional validation and testing in a broad sample.

2.1. Research Gap

While recent algorithms have improved brain tumor
classification, fundamental limitations remain. CNNs
and COR-CSO are highly accurate but computationally
demanding and not interpretable for clinical purposes
[19]. Single-dataset AlexNet-based approaches tend to
be non-generalizable [18]. Hyperspectral imaging is
severely data-dependent, diminishing robustness [20].
Numerous studies lack vital statistical protocols such as
k-fold cross-validation and standard deviation
reporting, impacting reproducibility [8]. Feature
selection methods like MI-ASVD have no rationale for
chosen features [3], and wavelet-based approaches
don’t explicitly report their dimensionality reduction
methodologies [2]. Harris Hawks Optimized
Convolution Network (HHOCNN) models also depend
on manually designed features with high training costs
[23]. In contrast, the introduced AMFO-FNN
incorporates GLCM-based features and AMFO to
design a lightweight, interpretable, and statistically
robust model. It has cross-validation, reports standard
deviation, and works well on the Br35H dataset,
showing better accuracy, efficiency, and clinical
relevance than standard and Deep Learning (DL)
approaches.

3. Methodology

In the methodology section, AMFO-FNN for brain
tumor image classification. The data set was collected
from Kaggle. Pre-processing using Gaussian filter.
Then, the feature extraction utilized GLCM. Figure 1
demonstrates the methodology flow.
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Figure 1. Methodology flow of the AMFO-FNN method.

3.1. Dataset

The brain tumor image data employed was the open
source Br35H dataset, acquired from Kaggle [27]. The

dataset is comprised of 7,023 T1-weighted contrast-
enhanced MRI images belonging to four classes:
glioma, meningioma, pituitary tumor, and no tumor. The
images are all unique patient cases and have different
sizes and resolutions. To ensure consistency in model
input, all the images were resized to 256x256 pixels.
The “no tumor” category contains images that show no
sign of abnormal growth and are an important negative
control for the classification task. To provide a strong
and unbiased model evaluation, the data was split with
a stratified 80:20 train-test split to have balanced class
distributions within both sets. Additionally, the research
utilized 5-fold cross-validation on the train data to
determine the model’s generalizability. All the reported
performance metrics are the average five-fold, and the
standard deviation is used to indicate variability and
reliability across runs.

The Br35H dataset consists of a total of 7,023 images
that are distributed across four classes: glioma (1,426
images), meningioma (1,448 images), pituitary tumor
(1,413 images), and no tumor (2,736 images). The
distribution is not extremely unbalanced, with the “no
tumor” class having significantly more samples. To
counter any bias at training time, stratified sampling was
performed at dataset splitting and data augmentation
was used for underrepresented classes.

3.2. Gaussian Filter for Data Pre-Processing

Data pre-processing with a Gaussian filter for brain
tumor image classification involves performing a
Gaussian smoothing operation on the image. This filter
reduces noise and enhances essential image elements,
making them better suited for analysis and classification
applications. The Gaussian filter is used for more
efficient image flattening. It is the initial stage of
detection of noise; however, it is not particularly
efficient at eliminating pepper and salt sounds. It is
derived from the Gaussian distribution.

The probability concentration function in Equation
(1) represents the probability density function of a
Gaussian distribution, denoted as O(w).

L rw-w?/eoy

v27wzf 1)
w represents a grayscale image, | denotes the mean
value and ¢ stands for the standard deviation.

The Gaussian’s standard deviation (o) controls the
level of flattening.

Besides noise attenuation by applying a Gaussian
filter, image normalization was also done to normalize
pixel intensity values between [0, 1] for faster
convergence and training stability. For balancing class
and increasing the diversity of the dataset, data
augmentation techniques of random rotations (+15°),
horizontal and vertical flips, and zoom (90-110%) were
applied. The augmentations were applied only to the
training dataset and avoided overfitting and increased
the model’s generalization.

ow) =
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3.3. Gray-Level Co-Occurrence Matrix
(GLCM) for Feature Extraction

Extracting features in classification of brain tumor
image using GLCM. This algorithm leverages GLCM
for characterizing the association between local pixel
intensities in medical images, thereby allowing for the
recognition of distinctive patterns indicative of brain
tumors. The GLCM, a feature extraction tool, was used
for this study. Firstly, the picture was altered to be in
black and white. Then, the window size to draw the
correlation between the brightness of the central pixel
and the brightness of its surroundings. This link between
elements was formulated as a matrix, which identifies
the frequency that the pixels renew their suspected
direction consecutive. By using the correlation between
the pixel intensities, GLCM gave shape to the texture
derived from the grayscale, to the kernel applied, and to
the direction. The study investigated the fourteen
textural features but only chose six particular features
relevant to this research to significantly reduce the
spatial context information, which is an overhead that
can be a disadvantage factor in the -classification
process. Texture analysis takes a look at the contrast and
uniformity of images; it also measures the similarity of
different parts of the same image and then computes by
means of the evaluation of the following indicators: the
Angular Second Moment (ASM), energy, and
correlation. Even though GLCM gives 14 default
texture features, we chose six features contrast, energy,
homogeneity, entropy, correlation, and dissimilarity
according to a feature ranking experiment on mutual
information and classification effect. The six features
gave the optimal tradeoff between classification
accuracy and computational complexity with noise
reduction of irrelevant features.

e Correlation: the distance between an image’s
brightest areas to its darkest, which is known as the
ridge line, is computed within the luminance of the
pixels. This is information about how bright a good
pixel is compared to the intensity of its neighbors,
Equation (2).

Correlation = Z (=G — H’ (2)

e Contrast: contrast is the difference in intensity
between close pixels. Higher contrast indicates more
variability in intensity values, Equation (3).

N-1N-1
Contrast = (i—))? 3)
)

e Uniformity: often referred to as the reverse
distinction moment, this measurement evaluates the
uniformity or evenness of an image. Elevated values
of uniformity imply a lesser deviation in brightness
amongst adjacent pixels, Equation (4).

N-1N-1
Uniformity = Z Z 1 fg ])])2 4
i=0 i=

e Energy: energy refers to the square root of a picture’s
second-moment angle, gauging the overall spread of
its brightness. A high energy value suggests a texture
that is well arranged or uniform in its distribution,
Equation (5).

Energy =

)

e Dissimilarity: calculating the difference between the
mean high and low in pixels in a particular area.
Bigger scattering ratings would mean more variation
in brightness values, Equation (6).

N-1N-1
Dissimilarity = i, )xli —j (6)
y ; ; p@Dxli—]

o ASM: establishes functions that determine whether
given pixel pairs are homogeneous or not. It counts
the distinct frequencies of gray pairings and displays
high values in images that have a similar texture,
Equation (7).

N-1N-1

Angular Second Moment = Z Z p(i,j)? (7
i=0 i=0

The pursuit of crafting textural features, we employed
grayscale images of the dimensions 100x100 and a
kernel that is 19 units in size. This approach threw up 48
distinct features for each image, each having a spacing
of either 1 or 2 and a specific rotation pegged at 0°, 45°,
90°, or 135°. Every feature receives normalization to
sum up to one and N stands as a numerical
representation of the gray levels.

3.4. Classification Using Adaptive Moth Flame
Optimized Feedforward Neural Networks
(AMFO-FNN)

AMFO-FNN employs a particular supervised learning
method when it comes to classifying glioma images. It
employs a modulated moth flame optimization
technique and FNNs that boost the classification
accuracy. This strategy with weights and biasing
parameters leads to better network suitability to
categorize brain tumor images, thus being more used in
medical diagnosis and treatment plans.

3.4.1. Adaptive Moth Flame Optimization (AMFQ)

The MFO algorithm was changed by the addition of the
Levy flight and the Cauchy operators. Herein, the
standard MFO Equation (10) portrays its efficiency in
arriving at the optimal solution given enough
computation time. Yet, it cannot avert a relatively slow
search. In order to retain the searching ability of MFO
without the loss of exploration features, enhanced
search operations such as those available in the adaptive
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Cuckoo search algorithm are proposed to be utilized. A
flowchart of an adaptive approach to MFO is shown in
Figure 2.

®)

In the conventional MFO algorithm, the moth moves
based on the distance from the moth to the flame. In the
new update, we would like to incorporate the step size
which will depend on the best, worst, and current moth
position. The step size will manage the distance from the
current position to the new position of the moth.
Equation (9) indicates that, because the number of
iterations will increase, the generation turns inversely
proportional to the step size, where the step size

S(M;,F;) = Dje cos(2mt) + F;
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decreases. Further, Equation (10) uses the computed
step size to advance the moth to another position.

|(b93t FO-fi(6)
1) best()—-worstf

t

)
(10)

Equation (21) provides a degree of arbitrariness in the
position update equation. The next part presents the
performance results and comparative analysis of the
proposed AMFO using a set of conventional single-
objective benchmark functions with varying features.
Figure 2 and Table 1 represents the flow of the AMFO
model.
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Figure 2. Flow of the AMFO model.

Table 1. Hyperparameter table for AMFO-FNN.

Hyperparameter Symbol/Name Typical value(s) Description
Number of moths N 10-100 Size of the population (number of candidate FNN solutions).
Number of flames F Equal to N Top-performing moths used to guide optimization.
Maximum iterations T{maxt 50-500 Total number of optimization iterations.
Dimensionality D Depends on the FNN structure Number of parameters (weights + biases) to optimize.
Adaptive spiral coefficient a -1 to -2 (linearly decreasing) Controls the contraction rate of the spiral function.
Spiral shape constant b 1 Affects the tightness of the logarithmic spiral path.
Randomization factor t Uniform [a, 1] Random value controlling the angle in the spiral update.
Mutation rate (adaptive) n 0.01-0.1 Probability of random mutation for diversity (used adaptively).
Learning rate (optional) n 0.001-0.01 Used if adaptive learning or hybrid training is incorporated.
Activation function - Sigmoid, ReL U, Tanh Activation is used in the FNN hidden/output layers.
Loss function - MSE, CE Measures prediction error during fitness evaluation.
Dataset split ratio - 80% training/20% testing Proportion of data used to evaluate each candidate FNN.
Network topology - Input-hidden-output (e.g., 3-4-1) Defines the architecture of the FNN.

3.4.2. Feedforward Neural Network

Let’s simplify the essential idea of an ANN. Basically,
an ANN has layers with various connected parts. They
work on the data that feeds them to give results. To make
it easy:

e Input and output: the ANN starts with a data input (x)
and in the end, produces an output (), representing a
category-based variable.

e Layers: the ANN has several layers (/). Each layer
has certain units (m). All layers, except the last one,

are hidden. The last one is the output layer.

o Weights and biases: each link between different
layers holds a weight Wl'j This weight shows how
strong the connection is. Plus, each layer has its own
bias b'"'€R).

e Activation functions: these are the rules s¥(.)) that
decide the output of each unit. They use both the
weights and biases. Common choices are the logistic
sigmoid and hyperbolic tangent functions.

e Processing flow: input data gets a weight and then
goes through activation functions in each layer. Each
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layer then makes outputs which become inputs for
the next layer. This cycle happens over and over until
the output layer gives the final result.

Data entry into the entanglement is the first layer and is
the first step towards calculating entanglement weights.
Equation (11) which is the input data,' is used to reckon
the activations of the units in the first layer.

m
Rl = sk+1 <b1 + ng;ﬂx,) (11)
=1

We next estimate the activation functions Sl-i (.) for the
second layer after getting the outputs of the first layer.
Equation (12) is used to compute the activations of the
units in the subsequent layer based on the activations of
the units in the previous layer.

m
R+ = gl (bk+1 " Z it h{c) (12)
=

The estimated probability of the output is calculated
after passing through each hidden layer & sequentially to
the final output, Equation (13).

m
§= bl ) Wt hk (13)
j=1

In the estimating procedure mentioned previously, the
activation functions (.) is essential. In our investigation,
we employ the logistic function, which is commonly
utilized as a nonlinear activation function, Equation

(14).
1

® = e D (9

This estimation is, however, a procedure, which can be
regarded as the adaptation of the weights of the network
by iterative learning in response to data. A neural
network adapts the weights (Wi’j- ) one after the other,
for each layer (k) and each neuron (i) in it. The
performance of the network is gauged on those weights
discovered during the training period. The next stage is
to apply a cost function to achieve the approximation to
the value of weights in the network. The cost function,
which serves as the learning goal function should be
minimized. The Mean Square Error (MSE), or Equation
(15), is the most widely used value function.

N
1
E= NZI =) (15)

Cross-Entropy (CE), a popular cost function, considers
both category variables and input data vectors.

N
S=—Zpi10gqi (16)
i=1

Here, according to Equation (16), p; and ¢; are
continuous possibilities.
Network weight estimate frequently suffers from

overfitting, which impairs the generalization of new
data. This happens when the network gives training data
performance a higher priority than test data
performance. A possible way of reducing overfitting is
through regularization during estimation by adding a
term proportional to the sum of the square weights in the
cost function to punish it and that improves network
generalization performance. Characteristically, this
regularization process can be described using the MSE
cost function in the general form as, Equation (17).

L m
Ereg ZVZZ(Wikj)z‘F(l—)/)E=)/EW+(1—)/)E, (17)

k=iil=1

y€(0,1) is the regularization constant. To optimize
estimate procedures and ensure convergence, Equation
(16) is commonly improved by the gradient descent
technique and the backpropagation method. AMFO-
FNN detects patterns and appropriately solves an
optimization problem, it will depict a rigid and flexible
way to handle hard problems, as depicted in the AMFO-
FNN Algorithm (1).

Algorithm 1: Process of AMFO-FNN

Initialize parameters
initialize_network()
Define moth flame optimization parameters
initialize AMFO _parameters()
Training process
for epoch in range(num_epochs):
Forward propagation
for each training_example in training data:
output = forward_propagation(training_example)
Calculate loss
loss = calculate_loss(output, expected output)
Backward propagation
backward_propagation(loss)
Update network parameters using AMFO
moth_flame_optimization()
Print progress
if epoch % print_interval == 0:
print(“Epoch:”, epoch, “Loss:”, total_loss)
Prediction process
for example in test data:
prediction = forward_propagation(example)
print(“Prediction:”, prediction)

4. Performance of Evaluation

All calculations were performed employing an Intel
Core 17-7800 3.5 GHz CPU. An NVIDIA GeForce GTX
1080 Ti GPU can be utilized for smart modification and
version training. Python 3.7 is operational and it
processes, evaluates, and visualizes records. The
platform was delighted to have adequate RAM capacity
(32 GB), allowing it to run and work gently with
scientific research material.

4.1. Performance Comparison

A comparative performance comparison of different
brain tumor classification techniques tested over a
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benchmarked MRI dataset. The suggested AMFO-FNN
model is compared with the latest methods, such as
HHOCNN [10], AlexNet with Extreme Learning
Machine (ELM) [27], and Batch Normalized AlexNet-
ELM optimized by Chaotic Bat Algorithm (BN-
AlexNet-ELM-CBA)  [13]. The classification
performance of each model is evaluated by accuracy,
precision, recall, and Fl-score. The comparison of
performances of different brain tumor classification
models illustrates that the suggested AMFO-FNN
model performs better than any other approach on major
evaluation measures. A particular maximum accuracy of
99.14% shows how well the model can classify both
tumor and non-tumor cases. The model also achieves a
precision of 98.95%, representing high reliability in
making accurate tumor case identification among all
positive predictions. The model’s recall (99.21%)
indicates its remarkable ability to identify true tumor
cases, and it is extremely important in medical diagnosis
to reduce missed detections. Additionally, the F1-score
of 99.08% indicates a highly balanced performance
between precision and recall, which further assures the
robustness and clinical importance of the model.
Furthermore, compared with the HHOCNN model,
whose performance was slightly lower but still
competitive, the AlexNet+tELM and BN-AlexNet-
ELM-CBA models achieved relatively moderate
performance. Generally, AMFO-FNN provides the most
precise, consistent, and reliable results among the tested
methods and hence remains the best method for
detecting brain tumors.

Table 2 and Figures 3, 4, and 5 represent the output
of the comparison of key metrics.

Table 2. Comparative performance of brain tumor classification
models using MRI images.

Accuracy | Precision | Recall | F1-score

Methods %) | (%) | (%) | (%)
HHOCNN [10] 98.00 97.90 98.70 98.80
AlexNet + ELM [27] 96.00 94.00 94.00 96.00

BN-AlexNet-ELM-CBA [13]| 96.43 96.17 | 97.14 | 96.50
AMFO-FNN [Proposed] 99.14 98.95 | 99.21 99.08

AMFO-FNN
[Proposed]

BN-AlexNet-
ELM-CBA [13]

Methods

AlexNet+ELM
271

HHO-CNN [10]

90 92 94 96 98 100
Accuracy (%)

Figure 3. Comparative accuracy analysis of brain tumor detection
techniques.

B Precision
B Recall

P )
Ve
/
100 4

98
96
94
92 +

/ v

e d

// //
T T T T

90

Values (%)

HHO-CNN [10] AlexNet+ELM BN-AlexNet- AMFO-FNN
27 ELM-CBA[13] [Proposed]
Methods

Figure 4. Evaluation of precision and recall rates across different
classification models.
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Figure 5. Fl-score performance comparison for brain tumor
classification approaches.

Table 3 shows the five-fold cross-validation results
of the AMFO-FNN model, confirming its stable
performance.

Table 3. Five-fold cross-validation results of the AMFO-FNN model.

Fold Accuracy (%)| Precision (%) | Recall (%) | F1-score (%)
Fold 1 98.95 98.70 99.10 98.85
Fold 2 99.30 99.10 99.40 99.25
Fold 3 99.00 98.80 99.20 99.00
Fold 4 99.40 99.20 99.30 99.20
Fold 5 99.10 99.00 99.05 99.10

Mean+SD | 99.14+0.17 98.95+0.18 | 99.21+0.13 | 99.08+0.14

4.2. Confusion Matrix

The training accuracy rises steadily to over 90%, while
the validation accuracy plateaus at over 82%, indicating
good learning and generalization. Meanwhile, the
training loss decreases step by step, and the validation
loss demonstrates declining behavior with very little
overfitting. The shallow disparity in the training and
validation curves specifies that the model performs well
with high performance and without extreme variance
between observed and unobserved data. Figure 6
provides the training and validation accuracy and loss
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curves for 10 epochs.
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Figure 6. Confusion matrix of AMFO-FNN.

4.3. Accuracy and Loss

The matrix shows high classification accuracy of all
four classes: glioma, meningioma, pituitary, and no
tumor. Ideal classification for the first three classes of
tumors and one misclassification among the “no tumor”
class were achieved, where the sample was wrongly
classified as meningioma. The matrix shows the
efficiency and effectivity of the proposed method in
multi-class brain tumor image -classification. The
impressive ability of the model to classify in a diagonal-
dominant fashion can be seen in the matrix. It is only
between no tumor and meningioma that it gets confused,
and it indicates slight feature representation overlap for
these classes. Figure 7 shows the confusion matrix for
the AMFO-FNN model on the test set.
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Figure 7. Training and validation accuracy/loss curves across
epochs.

4.4. ROC Curve Analysis

The ability to differentiate tumor vs. non-tumor cases
from MRI images. The Receiver Operating
Characteristic (ROC) curve graphically shows the True
Positive Rate (TPR) against the False Positive Rate
(FPR) over various classification thresholds. Area
Under the Curve (AUC) value obtained with 0.9497,
shows an extremely high discriminative power of the
model. An AUC of near 1.0 indicates that the model has
a good ability to differentiate between tumor and non-
tumor samples with very few misclassifications or
errors. The sharp upturn in the top-left corner shows that
the model can attain a very high TPR at low FPRs. This
outcome confirms the strength and clinical value of the
AMFO-FNN model in effectively classifying brain
tumors. Figure 8 shows the ROC curve of the proposed
AMFO-FNN model.
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Figure 8. ROC curve with AUC for the AMFO-FNN model.

4.5. Discussion

The performance comparison of the proposed AMFO-
FNN model and other brain tumor classification models
shows that the proposed model evidently outperforms
other classification models. It has the best value in all
evaluation criteria among all tested models. HHOCNN
[10], AlexNet+ELM [27], and BN-AlexNet-ELM-CBA
[13] have comparatively lower performance in all
criteria. Additionally, unsupervised autoencoder-based
multimodal fusion methods [26] face limitations such as
the need for larger datasets to improve generalization
and the absence of validation in real-time clinical
hardware. The high performance of AMFO-FNN also
reveals its efficiency in precisely classifying tumor
cases with a very good sensitivity-specificity balance.
Its capacity for optimizing feature learning and
classification makes it an effective and stable method
for the diagnosis of brain tumors from MRI images. A
comparative experiment was conducted to examine the
impact of preprocessing steps. Models without Gaussian
filtering and normalization suffered a 4-6% decline in
accuracy and a greater variance in cross-validation
results, supporting the effectiveness of our
preprocessing pipeline in stabilizing learning and
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improving classification performance. Training and
validation loss curves for the model were tracked to
check for overfitting. They demonstrated good
convergence with minimal divergence, showing that the
model generalizes well for new data. Dropout and early
stopping were employed during training to prevent
overfitting further.

5. Conclusions

Brain tumor classification utilizing medical imaging
entails assessing images like MRI scans to classify
tumors based on their features, assisting in diagnosis as
well as planning for treatment. The study introduced
AMFO-FNN for brain tumor image classification. By
combining the advantages of MFO and FNN, the
proposed method significantly improves classification
accuracy over previous methods. The data was collected
from Kaggle. Pre-processing used a Gaussian filter.
GLCM for feature extraction helped refine the input
data for classification. Evaluation factors including
99.21% recall, 98.95% precision, 99.08% F1-score, and
99.14% accuracy revealed that the AMFO-FNN method
outperformed state-of-the-art methods. These findings
on brain tumors demonstrate the potential of the
proposed method to improve early detection and
treatment planning, leading to better patient outcomes.
The proposed method efficiently classifies brain tumor
images, and could assist physicians make more educated
decisions, ultimately improving the overall treatment of
brain tumor patients.

5.1. Limitation and Future Scope

The availability and quality of labeled data are one of
the most significant obstacles in developing effective
algorithms for brain tumor classification. High-quality
labeled datasets are critical for training strong models,
but collecting them might be difficult due to privacy
issues and restricted access to medical images along
with the differences in image-capturing methodologies.
Combining data collected through various imaging
modalities, including MRI, CT and Positron Emission
Tomography (PET) scans, can lead to an improved
comprehension of brain tumors. Future research might
focus on creating models that can successfully combine
data from several imagined sources to increase
classification accuracy.

Data Availability

https://www.kaggle.com/datasets/masoudnickparvar/br
ain-tumor-mri-dataset
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