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Abstract: Deep Learning (DL) is a subfield of Machine Learning (ML) models used in various complex fields. DL algorithms 

are mostly widely used to reconstruct 3D images collected from multiple online sources. It is a very challenging task for the 

existing algorithms to reconstruct 2D images into 3D pictures without losing high-quality pixels because of the complex scenes 

with different lighting situations, dynamic components, and occlusions. This paper presents a novel real-time 3D scene 

reconstruction using neural volumetric representations combined with a Multi-Modal Learning Algorithm (MMLA). The 

proposed MMLA focuses on solving issues like volumetric representations of scenes, which are improved by combining numerous 

modalities such as RGB images, depth sensors, and Inertial Measurement Unit (IMU) data. The MMLA combines the DeepVoxels 

model and Neural Radiance Fields (NeRF) model, which it calls the Neural Rendering technique, to learn complex patterns in 

3D scenes. The pre-trained model EfficientNet accurately obtained the 3D- reconstruction patterns and understood the spatial 

structures that transfer to the proposed MMLA. The proposed MMLA performance is analyzed using the ShapeNet dataset, which 

consists of 2D images. Finally, the experimental results show that the proposed MMLA outperforms the superior performance 

in terms of Mean Squared Error (MSE) of 0.167, Root Mean Squared Error (RMSE) of 0.50, and Mean Absolute Error (MAE) 

of 1.1. These results may differ from other datasets. 
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1. Introduction 

Real-time 3D scene reconstruction is a significant 

technique that allows for the development of dynamic, 

three-dimensional visualizations of circumstances as 

they are evaluated [28]. The method involves gathering 

data from the natural environment via various sensors 

and then processing it to develop a 3D model that can 

be projected and altered in real time. Generally, 3D 

construction is implemented in multiple domains and 

applications that help recreate models like garments [8]; 

the volumetric garment rendering is parallel and 

extracted using a neural renderer. Traditional methods 

were highly reliant on mathematical concepts and multi-

view stereo techniques. In this context, reconstructing 

2D images into 3D images is tedious for the existing 

algorithms. The existing algorithms face several issues 

in the reconstruction of 2D images into 3D images, such 

as lack of missing depth shapes in the input image, some 

parts of the image are hidden in the 2D images, which 

leads to incomplete data, accurate ground truth is 

required to reconstruct the 3D image which is more 

difficult, there is a lot of domain gaps identified with the 

existing dataset such as ShapeNet, and finally, the 

reconstruction of tiny structures, tedious meshes is 

challenging for voxel models. 

 
In recent years, advanced Deep Learning (DL) 

algorithms have been used to develop a better 

understanding of complex patterns and representations 

using neural networks [10]. In medical imaging, 3D 

reconstruction plays a significant role in diagnostics, 

treatment planning, and surgical decisions [2]. 

Traditional methods based on effectively reconstructing 

2D images into 3D scenes have many drawbacks [36]. 

In some cases, the single-view reconstruction identified 

complicated the transformation of images into 2D 

images, which is the most expensive [11, 26]. On the 

other hand, detecting objects in occluded regions is also 

very difficult for existing models. 

This paper mainly focused on combining two 

models, DeepVoxels and Neural Radiance Fields 

(NeRF). The proposed approach also focused on 

reconstructing multiple images. Firstly, it recreates the 

object present in the image. Secondly, it reconstructs the 

3D shape present in the input image. The pre-trained 

model EfficientNet with transfer learning is used to train 

on ShapeNet by analyzing the 2D to 3D reconstruction 

of images based on depth maps, orientation of images, 

and object detection. The proposed approach also 

focused not only on image reconstruction but also on 3D 

object reconstruction. These proposed methods predict 

the camera position, analyze the particular shape from 
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the input image, and align the 3D shapes. The key 

contributions of this research work are given as: 

• This work aims to reconstruct the 2D images into 

high-quality 3D scenes using advanced DL 

algorithms. 

• The proposed approach focused on solving contrast 

variation, obstruction, and dynamic component 

issues. 

• The proposed approach is a novel Multi-Modal 

Learning Algorithm (MMLA). 

• The EfficientNet performs better when training with 

the ShapeNet dataset and extracting the spatial 

features.  

• MMLA combines DeepVoxels and NeRF based on a 

neural rendering approach. 

• Table 1 explains the following algorithms and its 

individual functionalities. 

Table 1. List of algorithms and its functionalities used in 3D 

reconstruction. 

Method Functionality 

EfficientNet (pre-
trained) 

The spatial structures extracted and transmit the 
patterns to MMLA. 

MMLA 

Merges RGB data, deep sensors, and Inertial 

Measurement Unit (IMUs) to increase the 
representation of volumetric scenes. 

Neural rendering 

(DeepVoxels +NeRF) 

The 3D scenes represented in a more 

lightweight and vivid form. 

ShapeNet dataset 

It helps to increase the learning of complex 

lighting and structural patterns for high-quality 

3D reconstruction. 

2. Literature Survey 

Bernardini et al. [7] presented the Ball-Pivoting 

Algorithm (BPA) that computes the triangle-shaped 

mesh at a cloud point. The object is retrieved from the 

surface points using multiple scans. The obtained points 

form the triangle using the ball specified by the user. 

The ball plays a significant role in preventing the edges 

of the triangle from forming. The proposed algorithms 

are applied to BPA datasets to obtain the scans of 

complex 3D objects. Wang et al. [29] reviewed several 

3D reconstruction models that are used for 3D images. 

Wang et al. [29] used several SLAM-based techniques 

categorized with metrics such as deep network factors, 

output initialization, datasets, and comparative analysis 

between various models. Han et al. [13] discussed 

several models based on Machine Learning (ML) and 

DL to redesign the 3D images. This article provides the 

literature on multiple algorithms that help reconstruct 

and convert the images into 3D images. The final results 

and analysis show the comparison between various DL 

algorithms demonstrated in this article. Choy et al. [9] 

proposed a novel Recurrent Neural Network (RNN) 

model that improves the 3D reconstructions. The 

proposed network helps to learn the mapping from 

images based on their shapes collected from synthetic 

data. The network selects one or more images to find the 

arbitrary viewpoints and outcomes that help reconstruct 

the object in a 3D occupancy grid. The results show that 

the proposed approach obtains high performance in 3D 

reconstruction. The existing models need to solve the 

issue of finding the accurate texture.  

Zhang et al. [37] proposed the multi-view stereo 

network, which helps reconstruct the scene. The 

proposed Point-based Multi-View Stereo Network with 

Pyramid Attention (Point-MVSNet) helps generate 

high-quality 3D images by reconstructing scenes. The 

performance of the proposed approach is increased by 

designing the pyramid attention module that increases 

the 3D reconstruction of the image.  

Seitz et al. [21] proposed the multi-view stereo 

algorithms and compared them with various existing 

algorithms. The proposed approach obtained the multi-

view image datasets with a high positive rate. The 

algorithms are applied to six benchmark datasets and 

show the evaluation results.  

Tatarchenko et al. [25] presented the deep 

Convolutional Neural Network (CNN) model that 

creates automated 3D outputs effectively utilizing the 

memory. The proposed approach mainly predicts the 

structure and tenancy of separate cells. It also makes 

significant 3D shapes with high-resolution outcomes. 

The proposed approach obtains the mean value for the 

algorithms with R2N2-0.560, OGN-0.596, and Dense-

0.590. Samavati and Soryani [20] developed a novel 

approach that reconstructs the 3D image for the given 

2D image. The proposed approach removes the key-

factor detection and matching. The objects form the 

input image and redesign the shapes of the objects. The 

performance is improved using rapid techniques that 

increase the accuracy of 3D image construction. The 

performance metrics with mean class Accuracy (mAcc) 

for ISBNet is 76.1%, and the mean class Intersection 

over Union (mIoU) for Octree-based Convolutional 

Neural Network (OCNN) is 85.6%. Tulsiani et al. [27] 

presented the advanced learning CNN model that 

focused on detecting objects and segmenting input 

images. It helps to reconstruct the input image into a 3D 

image. The proposed approach is suitable for denoised 

photos, which helps increase the silhouette estimations 

learned from the 2D annotations in datasets. The 

proposed approach applied to the PASCAL 3D+ dataset 

that validates the final output.  

Laga et al. [18] discussed various 2D and 3D vision 

issues handled by the DL algorithms. The stereo-based 

prediction is identified by using the VJV, which depicts 

a wide range of visits, indicating that the data is highly 

variable. SDT and CWN receive the fewest visits. They 

are integrating handmade characteristics across various 

images.  

Zheng et al. [38] proposed the Parametric 

Model‑Conditioned Implicit Representation (PaMIR), 

which integrates the dynamic body model with an 

uncontrolled deep latent functionality. The proposed 

PaMIR regularises the free-form deep implicit function 

by leveraging the parametric model’s semantic features, 
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enhancing adaptation capability under challenging 

positions and various apparel configurations. The 

training loss is also used to overcome depth ambiguities, 

resulting in effective surface detail recovery with poor 

body connection. Finally, the organism reference 

optimisation approach is applied to improve the 

precision and uniformity of parametric model estimate 

using the implicit function. Experimental findings 

reveal that our method achieves innovative image-based 

3D human restoration performance in challenging 

situations and garment types.  

Yu et al. [35] presented the new 3D reconstruction 

model that recreates the 1D RGB images. The proposed 

approach adopted the pixel-aligned features. The 

proposed approach’s limitations focused on acquiring 

the voxel-aligned elements from the input image. It also 

retrieves the fine-tuned aligned features from an 

accurate cloud point. Finally, the results show that the 

algorithm applied on ShapeNet dataset and achieved the 

high accuracy on 1D image. Table 2 explains the 

performance of various algorithms  

Table 2. The performance of several algorithms on reconstruction of 

3D images. 

Authors 
Proposed 

approach 
Dataset Performance 

Xie et al. [32] Pix2vox++ 
ShapeNet, Pix3D, 

and Things3D 

IoU-0.670, 

0.436, 

0.430 

Choy et al. [9] 3D-R2N2 
PASCAL 3D and 

ShapeNet 
IoU-0.634 

Banani et al. [5] Novel approach ShapeNet IoU-0.82 

Gwak et al. [12] GAN ShapeNet 0.62 

Bautista et al. 

[6] 

Inductive biases 

encoded 
ShapeNet IoU-0.749 

Rezende et al. 

[19] 

Deep Generative 
Model (DGM) 

ShapeNet IoU-0.751 

Tatarchenko et 

al. [24] 

Feed-forward 

network 
ShapeNet dataset 

Average error for 

nomral image-

0.0057, depth-
0.0207 

Worrall et al. 

[30] 

Encoder-decoder 

networks 
Basel face dataset Test error-2.14 

Isola et al. [15] 

Conditional 

Adversarial 

Networks (CAN) 

Cityscapes dataset Class IOU-0.29 

3. Methodology 

In the methodology section, the methods and algorithms 

are briefly described, along with the mathematical 

models. The subsections explain each algorithm clearly, 

each accompanied by a diagram. Firstly, DeepVoxels 

for the 3D Reconstruction Method is explained in 

section 3.1. Section 3.2 introduced NeRF; section 3.3 

presented the volumetric scene function; section 3.4 

described the volume rendering equation; section 3.6 

proposed the neural network architecture; and section 

3.7 provided the dataset description. 

3.1. DeepVoxels for 3D Reconstruction Method 

DeepVoxels is a 3D reconstruction technique that 

transforms 2D images into deep 3D photos. The 

proposed DeepVoxels aims to develop a 3D model that 

can be analyzed and operated from multiple 

perspectives [23, 34]. Figure 1 describes the 

components used and elaborates on the flow of 

DeepVoxels. This technique is most potent in computer 

vision, Augmented Reality (AR), and Virtual Reality 

(VR) applications. Representing 3D space in voxel grids 

A voxel grid representation is popular in various tasks 

for representing an object or scene in full 3D, with each 

voxel value (volumetric pixel) corresponding to a region 

in 3D space and holding information about the 

properties within 3D space. In this context, a 3D-based 

pixel grid is used in 2D images [14, 22]. The 

information, such as color and occupancy, is stored in a 

Voxel Grid, and then a 3D scene is reconstructed from 

this Voxel Grid. It represents the view-dependent 

appearance of a 3D scene without explicitly modeling 

its geometry. A Vertical 3D grid is trained on different 

constant aspects using the basic 3D scene structure. 

 

Figure 1. Process of deepvoxels. 

It is supervised, does not require a 3D reconstruction 

of the scene, and employs a 2D re-rendering loss to 

enforce context and multi-view topology in a logical 

manner.  

• Projection Equation: to project a 3D point onto a 2D 

image plane, we use: 

𝑋 = [𝐴,𝐵, 𝐶, 1]𝑇 

𝑥 = 𝐾𝑅𝑋 

Where x=[u, v, w]T the projected point in homogeneous 

coordinates, K is is the intrinsic matrix of the camera, 

and R is the extrinsic matrix (rotation and translation). 

• Unprojection Equation: to unproject a 2D pixel 

x=[u,v]T into 3D space, given depth 

𝐴 = 𝑑𝐾−1𝑥 

• Volume Rendering: the color of a pixel in the novel 

view can be computed using volume rendering: 

𝐶(𝑟) = ∫ 𝜏(𝑡)𝑐(𝑡)𝑒𝑥𝑝⁡(−∫ 𝜏(𝑠)𝑑𝑠)𝑑𝑡
𝑡

𝑡𝑛

𝑡𝑓

𝑡𝑛

 

Here, the C(r) represents the colour along a ray r is, τ(t) 

is the density along the ray, and c(t)is the color at 

position t. 

(1) 

(2) 

(3) 

(4) 
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• Loss Function: the reconstruction loss used to train 

the network is typically based on the difference 

between the predicted image and the ground truth 

image: 

ℒ =∑||𝐼𝑝𝑟𝑒𝑑(𝑎, 𝑏) − 𝐼𝑔𝑡(𝑎, 𝑏)||
2

𝑎,𝑏

 

Where Ipred - Predicted image and Igt is the ground truth 

image. 

3.2. Neural Radiance Fields (NeRF) 

NeRF is an innovative 3D scene representation and 

reconstruction approach that has gained significant 

attention in recent years. Figure 2 describes the step-by-

step process for 3D reconstruction [1]. NeRF utilizes 

DL techniques to render highly realistic images from 

sparse sets of 2D photographs. Unlike traditional 3D 

reconstruction methods, NeRF incorporates scene 

dimensions and appeal into a neural network, allowing 

for the formation of fresh views of a scene with high 

accuracy [31]. It models the scene as a continuous 

volumetric field, where each point in 3D space emits 

light (radiance) in different directions. In this context, 

the radiance field is represented by neural networks that 

select the pairs of 3D axes and view the directions and 

outcomes of the ray samples with RGB color and 

density values [3, 4, 17, 33]. The 2D images are 

generated by using radiance fields that integrate the long 

rays using volumetric rendering techniques. This 

procedure simulates light traveling through the scene 

and combining the color and opacity to create pixel 

values. The difference between the rendered images and 

input photographs is reduced, and the network 

parameters are optimized to learn the implicit 

representation of the scene. This neural network 

encodes the scene’s geometry and appearance and 

allows high-quality rendering from any viewpoint. 

 

Figure 2. Process steps for NeRF. 

3.3. Volumetric Scene Function 

The input scene is initializes continuously with the 

function F0 which arrange the 3D position a=(a, b, c) 

and a 2D direction d=(θ, ∅) and outcomes the colour 

c=(r, g, b) and σ represents the density of volume: 

𝐹𝜃: (𝑥, 𝑑) → (𝑐, 𝜎) 

3.4. Volume Rendering Equation 

Initialize the ray obtained from camera r(t)=o+td where 

o represents the origin of rays and d represents the 

direction of ray, the color C(r) of the pixel is measured 

by using volume rendering: 

𝐶(𝑟) = ∫ 𝑇(𝑡)𝜎(𝑟(𝑡))𝑐(𝑟(𝑡), 𝑑)𝑑𝑡
𝑡𝑓

𝑡𝑛

 

Where T(t) the cumulative transmission with the ray 

from tn to t: 

𝑇(𝑡) = 𝑒𝑥𝑝⁡(−∫ 𝜎(𝑟(𝑠))𝑑𝑠)
𝑡

𝑡𝑛

 

In practice, the continuous integral is approximated 

using quadrature, specifically a discrete sum over 

sampled points: 

𝐶(𝑟) ≈∑𝑇𝑖(1 − 𝑒𝑥𝑝(−𝜎𝑖𝛿𝑖))𝑐𝑖

𝑁

𝑖=1

 

Where: δi is the distance between adjacent sample 

points. 

Ti is the transmittance from the origin to the ith 

sample. 

(5) 

(6) 

(7) 

(8) 

(9) 
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3.5. Neural Network Architecture 

The neural network Fθ is typically a multi-layer 

perceptron (MLP) that takes as input the position x and 

direction d. Positional encoding is often applied to the 

inputs to enable the network to learn high-frequency 

functions: 

𝛾(𝑎) = 

(𝑠𝑖𝑛(20𝜋𝑥) , 𝑐𝑜𝑠(20𝜋𝑥) , … . , 𝑠𝑖𝑛(2𝐿−1𝜋𝑥) , 𝑐𝑜𝑠(2𝐿−1𝜋𝑥)) 

3.6. Loss Function 

The model undergoes training with a loss function that 

reduces the variance within the projected colour C(r) 

and the ground truth colour Cgt for each ray. 

ℒ = ∑||𝐶(𝑟) − 𝐶𝑔𝑡(𝑟)||2
2

𝑟∈𝑅

 

To summarize, NeRF uses a neural network to model a 

3D scene by learning a volumetric representation from 

a set of 2D images. The network predicts the color and 

density at any 3D point and viewing direction, which are 

then used to render images from novel viewpoints via 

volume rendering. This involves: 

• Defining a neural network that predicts colour and 

density. 

• The volume rendering is used to measure the colour 

rays transferring into the scene. 

• Training the network using the discrepancy between 

rendered and ground truth images. 

This approach enables the creation of detailed and 

realistic 3D reconstructions from 2D images. 

3.7. Dataset Description 

It is a well-annotated database for 3D shapes of general 

objects. In ShapeNet, these are object classes like tables 

or chairs that serve as important mini tasks to many 

different computer vision or ML problems, such as 3D 

shape recognition, reconstruction, or segmentation. In 

all, there are 13255 images for experimentation [4]. Of 

these, 7000 images were used for training and 6255 for 

testing. Figure 3 shows the sample images of ShapreNet 

dataset. 

 

Figure 3. ShapeNet dataset table and chairs images. 

4. Performance Metrics 

The performance of proposed 3D image reconstruction 

is mainly based on various scenarios that analyze the 

model’s strength. These algorithms are most widely 

implemented using the Python language, 16 GB RAM, 

1 TB hard drive, and an Intel I7 processor to handle the 

overhead issues in the system. The 2D input image 

contains several occlusions that appear at the time of 

input processing. The following parameters show the 

quality of the final output image. 

4.1. Accuracy Metrics 

The parameters compared with reconstructed model 

with a ground truth. 

• Mean Squared Error (MSE): this is the parameter 

that shows the difference between similar points in 

predicted (reconstructed) and actual label. 

𝑀𝑆𝐸 =
1

𝑥 ∙ 𝑦
∑ ∑ [𝐼(𝑎, 𝑏) − 𝐾(𝑎, 𝑏)]2

𝑦

𝑏=1

𝑥

𝑎=1
 

• Root Mean Squared Error (RMSE): it provides the 

error magnitude. 

𝑅𝑀𝑆𝐸 = √
1

𝑎
∑ (𝑦𝑎 − 𝑦̂𝑎)

2
𝑥

𝑎=1
 

• Mean Absolute Error (MAE): the average of the 

quantitative variations among each point. 

𝑀𝐴𝐸 =
1

𝑎
∑ (𝑦𝑎 − 𝑦̂𝑎)

𝑥

𝑎=1
 

5. Ablation Study 

Table 3 compares various DL algorithms by their 3D 

reconstruction performance on the sofa. Three typical 

error measures, MSE, RMSE, and MAE, are employed 

to measure the reconstruction quality; they are used as 

quality metrics to evaluate the performance; the lower, 

the better. The Convolutional Network (CN) and 

Encoder-Decoder Networks (EDN) obtain higher error 

rates than the other models; this represents low 

reconstruction ability. +AMask+SFB performs better 

and has smaller error values, implying its 3D output is 

more detailed. Notably, the MMLA model outperforms 

the other methods in terms of three metrics, MSE 

(0.167), RMSE (0.50), and MAE (1.1), indicating that 

the MMLA model has better performance in generating 

accurate and good-quality 3D sofa reconstructions. It 

demonstrates that MMLA can reduce structural errors 

and improve visual realism in 3D modeling. Finally, the 

Figure 4 shows the visualization graph for comparison 

of existing algorithms with proposed approach. 

Table 3. Performance of algorithms based on 3D reconstruction 

quality (conversion of sofa). 

 MSE RMSE MAE 

CN [9] 0.431 0.101 3.3 

EDN [5] 0.347 0.991 2.3 

+AMask + SFB [16] 0.301 0.78 1.9 

MMLA 0.167 0.50 1.1 

(10) 

(11) 

(12) 

(13) 

(14) 
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Figure 4. Comparison between algorithms based on reconstruction 

quality (conversion of sofa). 

Table 4 compares algorithms regarding the quality of 

3D reconstruction, which evaluates the following 

performances. The CN obtains the low performance in 

terms of (MSE: 0.443, RMSE: 0.99, MAE: 3.6) and 

reconstructs the low-quality images of the models. The 

error values are reduced, and the EDN’s performance is 

better, recommending a better ability to learn spatial 

features. The +AMask+SFB [16] is a GAN-style 

reconstruction model that obtains better performances 

in terms of MAE (1.6) that reflects high visual features. 

Finally, the MMLA outperforms high performance, 

representing the lowest errors (MSE: 0.143, RMSE: 

0.51, MAE: 0.99), representing high learning accuracy 

and high-quality 3D reconstructions. Finally, the Figure 

5 shows the visualization graph for comparison of 

existing algorithms with proposed approach. 

Table 4. Performance of algorithms based on 3D reconstruction 

quality (conversion of table). 

 MSE RMSE MAE 

Convolutional Network [9] 0.443 0.99 3.6 

Encoder-Decoder Networks [5] 0.352 0.88 2.4 

+AMask + SFB [16] 0.312 0.77 1.6 

MMLA 0.143 0.51 0.99 

 

Figure 5. Comparison between algorithms based on reconstruction 

quality (conversion of table). 

Table 5 explains a comparison of various algorithms 

utilized for the 3D reconstruction of the chair images 

and shows that the CN achieves the most significant 

error values (MSE: 0.398, RMSE: 0.98, MAE: 3.23), 

which leads to low accuracy of reconstruction. The 

EDN performs moderately better, getting lower errors 

(MSE: 0.292, RMSE: 0.87, MAE: 2.23), while the better 

performance of +AMask+SFB [16] (MSE: 0.241, 

RMSE: 0.74, MAE: 1.57). Nevertheless, the 

performances of the proposed MMLA model were best 

in all indices, and the error rate was far lower (MSE: 

0.131, RMSE: 0.52, and MAE: 0.987). These results 

confirm that MMLA can more accurately capture the 

structural and spatial details of the 3D chair pattern 

models with better quality than existing methods. 

Finally, the Figure 6 shows the visualization graph for 

comparison of existing algorithms with proposed 

approach. 

Table 5. Performance of algorithms based on 3D reconstruction 

quality (conversion of chair) 

 MSE RMSE MAE 

CN [9] 0.398 0.98 3.23 

EDNs [5] 0.292 0.87 2.23 

+AMask + SFB [16] 0.241 0.74 1.57 

MMLA 0.131 0.52 0.987 

 

Figure 6. Comparison between algorithms based on reconstruction 

quality (conversion of chair). 

6. Conclusions 

Neural representations of volumes (e.g., DeepVoxels, 

neural rendering technique, and NeRF) have 

revolutionized the real-time 3D scene representation 

mechanisms through unconventional approaches. These 

approaches use DL to learn how to scan and capture 

realistic 3D scenes from sparse or dense multimodal sets 

of observed data, like images or videos. In this context, 

the NeRF is one of the effective 3D reconstruction 

models focused on geometry and appearance at a refined 

stage. It is one of the practical features for applications 

that require accurate rendering patterns. 

Multidimensional data like images and depth maps 

significantly increase the strength and perfectness of 3D 

reconstruction. The proposed approach alleviates the 

data sparsity and enhances the reconstruction quality 

under challenging scenarios. It allows the rendering and 

reconstruction of 3D scenes in real-time or near real-

time, which makes these methods also useful for 

interactive work, including VR, AR, and gaming. 

DeepVoxels and neural rendering techniques provide 

scalable solutions for complex scenes and varied object 

shapes. The performance of MMLA is measured using 

an MSE of 0.167, RMSE of 0.50, and MAE of 1.1 for 
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the sofa-type images. For the table and chair type 

images, the performance is MSE of 0.143 and 0.131, 

RMSE of 0.51 and 0.52, and MAE of 0.99 and 0.987. 

Furthermore, these techniques demonstrate good 

generalization performance over multiple scenes and 

datasets. 
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