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Abstract: Deep Learning (DL) is a subfield of Machine Learning (ML) models used in various complex fields. DL algorithms
are mostly widely used to reconstruct 3D images collected from multiple online sources. It is a very challenging task for the
existing algorithms to reconstruct 2D images into 3D pictures without losing high-quality pixels because of the complex scenes
with different lighting situations, dynamic components, and occlusions. This paper presents a novel real-time 3D scene
reconstruction using neural volumetric representations combined with a Multi-Modal Learning Algorithm (MMLA). The
proposed MMLA focuses on solving issues like volumetric representations of scenes, which are improved by combining numerous
modalities such as RGB images, depth sensors, and Inertial Measurement Unit (IMU) data. The MMLA combines the DeepVoxels
model and Neural Radiance Fields (NeRF) model, which it calls the Neural Rendering technique, to learn complex patterns in
3D scenes. The pre-trained model EfficientNet accurately obtained the 3D- reconstruction patterns and understood the spatial
structures that transfer to the proposed MMLA. The proposed MMLA performance is analyzed using the ShapeNet dataset, which
consists of 2D images. Finally, the experimental results show that the proposed MMLA outperforms the superior performance
in terms of Mean Squared Error (MSE) of 0.167, Root Mean Squared Error (RMSE) of 0.50, and Mean Absolute Error (MAE)
of 1.1. These results may differ from other datasets.
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1. Introduction

Real-time 3D scene reconstruction is a significant
technique that allows for the development of dynamic,
three-dimensional visualizations of circumstances as
they are evaluated [28]. The method involves gathering
data from the natural environment via various sensors
and then processing it to develop a 3D model that can
be projected and altered in real time. Generally, 3D
construction is implemented in multiple domains and
applications that help recreate models like garments [8];
the volumetric garment rendering is parallel and
extracted using a neural renderer. Traditional methods
were highly reliant on mathematical concepts and multi-
view stereo techniques. In this context, reconstructing
2D images into 3D images is tedious for the existing
algorithms. The existing algorithms face several issues
in the reconstruction of 2D images into 3D images, such
as lack of missing depth shapes in the input image, some
parts of the image are hidden in the 2D images, which
leads to incomplete data, accurate ground truth is
required to reconstruct the 3D image which is more
difficult, there is a lot of domain gaps identified with the
existing dataset such as ShapeNet, and finally, the
reconstruction of tiny structures, tedious meshes is
challenging for voxel models.

In recent years, advanced Deep Learning (DL)
algorithms have been used to develop a better
understanding of complex patterns and representations
using neural networks [10]. In medical imaging, 3D
reconstruction plays a significant role in diagnostics,
treatment planning, and surgical decisions [2].
Traditional methods based on effectively reconstructing
2D images into 3D scenes have many drawbacks [36].
In some cases, the single-view reconstruction identified
complicated the transformation of images into 2D
images, which is the most expensive [11, 26]. On the
other hand, detecting objects in occluded regions is also
very difficult for existing models.

This paper mainly focused on combining two
models, DeepVoxels and Neural Radiance Fields
(NeRF). The proposed approach also focused on
reconstructing multiple images. Firstly, it recreates the
object present in the image. Secondly, it reconstructs the
3D shape present in the input image. The pre-trained
model EfficientNet with transfer learning is used to train
on ShapeNet by analyzing the 2D to 3D reconstruction
of images based on depth maps, orientation of images,
and object detection. The proposed approach also
focused not only on image reconstruction but also on 3D
object reconstruction. These proposed methods predict
the camera position, analyze the particular shape from
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the input image, and align the 3D shapes. The key
contributions of this research work are given as:

e This work aims to reconstruct the 2D images into
high-quality 3D scenes using advanced DL
algorithms.

e The proposed approach focused on solving contrast
variation, obstruction, and dynamic component
issues.

e The proposed approach is a novel Multi-Modal
Learning Algorithm (MMLA).

e The EfficientNet performs better when training with
the ShapeNet dataset and extracting the spatial
features.

e MMLA combines DeepVoxels and NeRF based on a
neural rendering approach.

e Table 1 explains the following algorithms and its
individual functionalities.

Table 1. List of algorithms and its functionalities used in 3D
reconstruction.

Method Functionality
EfficientNet (pre- |The spatial structures extracted and transmit the

trained) patterns to MMLA.
Merges RGB data, deep sensors, and Inertial
MMLA Measurement Unit (IMUs) to increase the

representation of volumetric scenes.
The 3D scenes represented in a more
lightweight and vivid form.
It helps to increase the learning of complex
lighting and structural patterns for high-quality
3D reconstruction.

Neural rendering
(DeepVoxels +NeRF)

ShapeNet dataset

2. Literature Survey

Bernardini et al. [7] presented the Ball-Pivoting
Algorithm (BPA) that computes the triangle-shaped
mesh at a cloud point. The object is retrieved from the
surface points using multiple scans. The obtained points
form the triangle using the ball specified by the user.
The ball plays a significant role in preventing the edges
of the triangle from forming. The proposed algorithms
are applied to BPA datasets to obtain the scans of
complex 3D objects. Wang et al. [29] reviewed several
3D reconstruction models that are used for 3D images.
Wang et al. [29] used several SLAM-based techniques
categorized with metrics such as deep network factors,
output initialization, datasets, and comparative analysis
between various models. Han et al. [13] discussed
several models based on Machine Learning (ML) and
DL to redesign the 3D images. This article provides the
literature on multiple algorithms that help reconstruct
and convert the images into 3D images. The final results
and analysis show the comparison between various DL
algorithms demonstrated in this article. Choy et al. [9]
proposed a novel Recurrent Neural Network (RNN)
model that improves the 3D reconstructions. The
proposed network helps to learn the mapping from
images based on their shapes collected from synthetic
data. The network selects one or more images to find the
arbitrary viewpoints and outcomes that help reconstruct

the object in a 3D occupancy grid. The results show that
the proposed approach obtains high performance in 3D
reconstruction. The existing models need to solve the
issue of finding the accurate texture.

Zhang et al. [37] proposed the multi-view stereo
network, which helps reconstruct the scene. The
proposed Point-based Multi-View Stereo Network with
Pyramid Attention (Point-MVSNet) helps generate
high-quality 3D images by reconstructing scenes. The
performance of the proposed approach is increased by
designing the pyramid attention module that increases
the 3D reconstruction of the image.

Seitz et al. [21] proposed the multi-view stereo
algorithms and compared them with various existing
algorithms. The proposed approach obtained the multi-
view image datasets with a high positive rate. The
algorithms are applied to six benchmark datasets and
show the evaluation results.

Tatarchenko et al. [25] presented the deep
Convolutional Neural Network (CNN) model that
creates automated 3D outputs effectively utilizing the
memory. The proposed approach mainly predicts the
structure and tenancy of separate cells. It also makes
significant 3D shapes with high-resolution outcomes.
The proposed approach obtains the mean value for the
algorithms with R2N2-0.560, OGN-0.596, and Dense-
0.590. Samavati and Soryani [20] developed a novel
approach that reconstructs the 3D image for the given
2D image. The proposed approach removes the key-
factor detection and matching. The objects form the
input image and redesign the shapes of the objects. The
performance is improved using rapid techniques that
increase the accuracy of 3D image construction. The
performance metrics with mean class Accuracy (mAcc)
for ISBNet is 76.1%, and the mean class Intersection
over Union (mloU) for Octree-based Convolutional
Neural Network (OCNN) is 85.6%. Tulsiani et al. [27]
presented the advanced learning CNN model that
focused on detecting objects and segmenting input
images. It helps to reconstruct the input image into a 3D
image. The proposed approach is suitable for denoised
photos, which helps increase the silhouette estimations
learned from the 2D annotations in datasets. The
proposed approach applied to the PASCAL 3D+ dataset
that validates the final output.

Laga et al. [18] discussed various 2D and 3D vision
issues handled by the DL algorithms. The stereo-based
prediction is identified by using the VJV, which depicts
a wide range of visits, indicating that the data is highly
variable. SDT and CWN receive the fewest visits. They
are integrating handmade characteristics across various
images.

Zheng et al. [38] proposed the Parametric
Model-Conditioned Implicit Representation (PaMIR),
which integrates the dynamic body model with an
uncontrolled deep latent functionality. The proposed
PaMIR regularises the free-form deep implicit function
by leveraging the parametric model’s semantic features,
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enhancing adaptation capability under challenging
positions and various apparel configurations. The
training loss is also used to overcome depth ambiguities,
resulting in effective surface detail recovery with poor
body connection. Finally, the organism reference
optimisation approach is applied to improve the
precision and uniformity of parametric model estimate
using the implicit function. Experimental findings
reveal that our method achieves innovative image-based
3D human restoration performance in challenging
situations and garment types.

Yu et al. [35] presented the new 3D reconstruction
model that recreates the 1D RGB images. The proposed
approach adopted the pixel-aligned features. The
proposed approach’s limitations focused on acquiring
the voxel-aligned elements from the input image. It also
retrieves the fine-tuned aligned features from an
accurate cloud point. Finally, the results show that the
algorithm applied on ShapeNet dataset and achieved the
high accuracy on 1D image. Table 2 explains the
performance of various algorithms

Table 2. The performance of several algorithms on reconstruction of
3D images.

Authors Proposed Dataset Performance
approach
. 1oU-0.670,
Xie et al. [32] Pix2vox++ St;a:\rzje?sith PS'):;%D’ 0.436,
9 0.430
PASCAL 3D and
Choy et al. [9] 3D-R2N2 ShapeNet loU-0.634
Banani et al. [5]| Novel approach ShapeNet loU-0.82
Gwak et al. [12] GAN ShapeNet 0.62
Bautista etal. | Inductive biases
[6] encoded ShapeNet loU-0.749
Rezende et al. | Deep Generative
[19] Model (DGM) ShapeNet loU-0.751
Average error for
Tatarchenko et| Feed-forward nomral image-
al. [24] network | ohapeNetdataset o oy0g o
0.0207
Worrall etal. | Encoder-decoder Basel face dataset| Test error-2.14
[30] networks
Conditional
Isola et al. [15] Adversarial  Cityscapes datasetf Class I0U-0.29
Networks (CAN)

3. Methodology

In the methodology section, the methods and algorithms
are briefly described, along with the mathematical
models. The subsections explain each algorithm clearly,
each accompanied by a diagram. Firstly, DeepVoxels
for the 3D Reconstruction Method is explained in
section 3.1. Section 3.2 introduced NeRF; section 3.3
presented the volumetric scene function; section 3.4
described the volume rendering equation; section 3.6
proposed the neural network architecture; and section
3.7 provided the dataset description.

3.1. DeepVoxels for 3D Reconstruction Method

DeepVoxels is a 3D reconstruction technique that
transforms 2D images into deep 3D photos. The
proposed DeepVoxels aims to develop a 3D model that
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can be analyzed and operated from multiple
perspectives [23, 34]. Figure 1 describes the
components used and elaborates on the flow of
DeepVoxels. This technigue is most potent in computer
vision, Augmented Reality (AR), and Virtual Reality
(VR) applications. Representing 3D space in voxel grids
A voxel grid representation is popular in various tasks
for representing an object or scene in full 3D, with each
voxel value (volumetric pixel) corresponding to a region
in 3D space and holding information about the
properties within 3D space. In this context, a 3D-based
pixel grid is used in 2D images [14, 22]. The
information, such as color and occupancy, is stored in a
Voxel Grid, and then a 3D scene is reconstructed from
this Voxel Grid. It represents the view-dependent
appearance of a 3D scene without explicitly modeling
its geometry. A Vertical 3D grid is trained on different
constant aspects using the basic 3D scene structure.

Input Image

Projection Equation Unprojection Equation

_> 2D Coaversion to 3D )

Depth of Pixel

!

Volume Rendering

!

Loss Function

Figure 1. Process of deepvoxels.

It is supervised, does not require a 3D reconstruction
of the scene, and employs a 2D re-rendering loss to
enforce context and multi-view topology in a logical
manner.

e Projection Equation: to project a 3D point onto a 2D
image plane, we use:

X =1[4,B,C,1]" @

x = KRX (2)

Where x=[u, v, w]" the projected point in homogeneous

coordinates, K is is the intrinsic matrix of the camera,
and R is the extrinsic matrix (rotation and translation).

e Unprojection Equation: to unproject a 2D pixel
x=[u,v]" into 3D space, given depth

A=dK x (3)

¢ Volume Rendering: the color of a pixel in the novel
view can be computed using volume rendering:

t t
Cc(r) = j fr(t)c(t)exp (—f t(s)ds)dt (@)
tn tn
Here, the C(r) represents the colour along a ray r is, z(t)
is the density along the ray, and c(t)is the color at
position t.
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e Loss Function: the reconstruction loss used to train
the network is typically based on the difference
between the predicted image and the ground truth
image:

£= 3 llprea(@,h) = Ipe(a, b)IP )
a,b

Where lyred - Predicted image and I is the ground truth
image.

3.2. Neural Radiance Fields (NeRF)

NeRF is an innovative 3D scene representation and
reconstruction approach that has gained significant
attention in recent years. Figure 2 describes the step-by-
step process for 3D reconstruction [1]. NeRF utilizes
DL techniques to render highly realistic images from
sparse sets of 2D photographs. Unlike traditional 3D
reconstruction methods, NeRF incorporates scene

Input Image

dimensions and appeal into a neural network, allowing
for the formation of fresh views of a scene with high
accuracy [31]. It models the scene as a continuous
volumetric field, where each point in 3D space emits
light (radiance) in different directions. In this context,
the radiance field is represented by neural networks that
select the pairs of 3D axes and view the directions and
outcomes of the ray samples with RGB color and
density values [3, 4, 17, 33]. The 2D images are
generated by using radiance fields that integrate the long
rays using volumetric rendering technigues. This
procedure simulates light traveling through the scene
and combining the color and opacity to create pixel
values. The difference between the rendered images and
input photographs is reduced, and the network
parameters are optimized to learn the implicit
representation of the scene. This neural network
encodes the scene’s geometry and appearance and
allows high-quality rendering from any viewpoint.

Volumetric Scene (input )

stage with 3D data)

Volumetric Scene

(Processing)

!

Discretization of Volume

Rendering

\ 4

Neural Network

\ 4

Loss Function

v

A

Result Analysis

Figure 2. Process steps for NeRF.

3.3. Volumetric Scene Function

The input scene is initializes continuously with the
function FO which arrange the 3D position a=(a, b, ¢)
and a 2D direction d=(0, @) and outcomes the colour
c=(r, g, b) and o represents the density of volume:

Fo:(x,d) > (c,0) (6)

3.4. Volume Rendering Equation

Initialize the ray obtained from camera r(t)=o+td where
o0 represents the origin of rays and d represents the
direction of ray, the color C(r) of the pixel is measured
by using volume rendering:

cr) = ftf T()o(r(t))c(r(e), d)dt @)
t

n

Where T(t) the cumulative transmission with the ray
from ty to t:

t
T(t) = exp (—f a(r(s))ds) (8)
th

In practice, the continuous integral is approximated
using quadrature, specifically a discrete sum over
sampled points:

N
€Y~ ) Ty = exp(=ai8))e ©)
i=1

Where: &; is the distance between adjacent sample
points.

T; is the transmittance from the origin to the i
sample.
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3.5. Neural Network Architecture

The neural network Fy is typically a multi-layer
perceptron (MLP) that takes as input the position x and
direction d. Positional encoding is often applied to the
inputs to enable the network to learn high-frequency
functions:

y(a) =

(sin(2°nx) , cos(2°x) , ..., sin(2t"1mx) , cos (2L 1nx))  (10)

3.6. Loss Function

The model undergoes training with a loss function that
reduces the variance within the projected colour C(r)
and the ground truth colour Cy for each ray.

£=>"116) - Cei3 (11)
TER

To summarize, NeRF uses a neural network to model a
3D scene by learning a volumetric representation from
a set of 2D images. The network predicts the color and
density at any 3D point and viewing direction, which are
then used to render images from novel viewpoints via
volume rendering. This involves:

e Defining a neural network that predicts colour and
density.

e The volume rendering is used to measure the colour
rays transferring into the scene.

e Training the network using the discrepancy between
rendered and ground truth images.

This approach enables the creation of detailed and
realistic 3D reconstructions from 2D images.

3.7. Dataset Description

It is a well-annotated database for 3D shapes of general
objects. In ShapeNet, these are object classes like tables
or chairs that serve as important mini tasks to many
different computer vision or ML problems, such as 3D
shape recognition, reconstruction, or segmentation. In
all, there are 13255 images for experimentation [4]. Of
these, 7000 images were used for training and 6255 for
testing. Figure 3 shows the sample images of ShapreNet

?w

Figure 3. ShapeNet dataset table and chairs images.

Ly
E’

4. Performance Metrics

The performance of proposed 3D image reconstruction

is mainly based on various scenarios that analyze the
model’s strength. These algorithms are most widely
implemented using the Python language, 16 GB RAM,
1 TB hard drive, and an Intel 17 processor to handle the
overhead issues in the system. The 2D input image
contains several occlusions that appear at the time of
input processing. The following parameters show the
quality of the final output image.

4.1. Accuracy Metrics

The parameters compared with reconstructed model
with a ground truth.

e Mean Squared Error (MSE): this is the parameter
that shows the difference between similar points in
predicted (reconstructed) and actual label.

MSE = —Za 1Zb @) —K@bP  (12)

¢ Root Mean Squared Error (RMSE): it provides the
error magnitude.

1 X
RMSE = j&za=1(y“ — 9a)? (13)

e Mean Absolute Error (MAE): the average of the
quantitative variations among each point.

1* .
MAE = Ezazl(ya -3 (14)

5. Ablation Study

Table 3 compares various DL algorithms by their 3D
reconstruction performance on the sofa. Three typical
error measures, MSE, RMSE, and MAE, are employed
to measure the reconstruction quality; they are used as
guality metrics to evaluate the performance; the lower,
the better. The Convolutional Network (CN) and
Encoder-Decoder Networks (EDN) obtain higher error
rates than the other models; this represents low
reconstruction ability. +AMask+SFB performs better
and has smaller error values, implying its 3D output is
more detailed. Notably, the MMLA model outperforms
the other methods in terms of three metrics, MSE
(0.167), RMSE (0.50), and MAE (1.1), indicating that
the MMLA model has better performance in generating
accurate and good-quality 3D sofa reconstructions. It
demonstrates that MMLA can reduce structural errors
and improve visual realism in 3D modeling. Finally, the
Figure 4 shows the visualization graph for comparison
of existing algorithms with proposed approach.

Table 3. Performance of algorithms based on 3D reconstruction
quality (conversion of sofa).

MSE | RMSE | MAE
CNJ9] 0.431 | 0.101 3.3
EDN [5] 0.347 | 0.991 2.3
+AMask + SFB [16] | 0.301 0.78 1.9
MMLA 0.167 0.50 11
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MSE @ RMSE @ MAE

Percentage (%)

CN[€] EDN [5] Pix2Pix [12] MMLA

Algonithms

Figure 4. Comparison between algorithms based on reconstruction
quality (conversion of sofa).

Table 4 compares algorithms regarding the quality of
3D reconstruction, which evaluates the following
performances. The CN obtains the low performance in
terms of (MSE: 0.443, RMSE: 0.99, MAE: 3.6) and
reconstructs the low-quality images of the models. The
error values are reduced, and the EDN’s performance is
better, recommending a better ability to learn spatial
features. The +AMask+SFB [16] is a GAN-style
reconstruction model that obtains better performances
in terms of MAE (1.6) that reflects high visual features.
Finally, the MMLA outperforms high performance,
representing the lowest errors (MSE: 0.143, RMSE:
0.51, MAE: 0.99), representing high learning accuracy
and high-quality 3D reconstructions. Finally, the Figure
5 shows the visualization graph for comparison of
existing algorithms with proposed approach.

Table 4. Performance of algorithms based on 3D reconstruction
quality (conversion of table).

MSE | RMSE | MAE
Convolutional Network [9] 0.443 0.99 3.6
Encoder-Decoder Networks [5] | 0.352 0.88 2.4
+AMask + SFB [16] 0.312 0.77 1.6
MMLA 0.143 0.51 0.99

@ MSE @RMSE @ MAE

Percentage (%)

CN[9] EDN [5]

Algorithms

Figure 5. Comparison between algorithms based on reconstruction
quality (conversion of table).

Table 5 explains a comparison of various algorithms
utilized for the 3D reconstruction of the chair images
and shows that the CN achieves the most significant
error values (MSE: 0.398, RMSE: 0.98, MAE: 3.23),
which leads to low accuracy of reconstruction. The
EDN performs moderately better, getting lower errors
(MSE: 0.292, RMSE: 0.87, MAE: 2.23), while the better

performance of +AMask+SFB [16] (MSE: 0.241,
RMSE: 0.74, MAE: 1.57). Nevertheless, the
performances of the proposed MMLA model were best
in all indices, and the error rate was far lower (MSE:
0.131, RMSE: 0.52, and MAE: 0.987). These results
confirm that MMLA can more accurately capture the
structural and spatial details of the 3D chair pattern
models with better quality than existing methods.
Finally, the Figure 6 shows the visualization graph for
comparison of existing algorithms with proposed
approach.

Table 5. Performance of algorithms based on 3D reconstruction
quality (conversion of chair)

MSE | RMSE | MAE
CN[9] 0398 | 098 | 3.23

EDNS [5] 0.292 | 0.87 | 2.23
+AMask + SFB [16] | 0.241 | 0.74 | 1.57
MMLA 0.131 | 052 | 0.987

@® MSE RMSE @ MAE

4

= 3 323

=

&

£ 2

8 157

o

[=4]
1 0.987
0 | e |

CN[9) EDN [5] Pix2Pix [12] MMLA

Algorithms

Figure 6. Comparison between algorithms based on reconstruction
quality (conversion of chair).

6. Conclusions

Neural representations of volumes (e.g., DeepVoxels,
neural rendering technique, and NeRF) have
revolutionized the real-time 3D scene representation
mechanisms through unconventional approaches. These
approaches use DL to learn how to scan and capture
realistic 3D scenes from sparse or dense multimodal sets
of observed data, like images or videos. In this context,
the NeRF is one of the effective 3D reconstruction
models focused on geometry and appearance at a refined
stage. It is one of the practical features for applications
that require accurate rendering patterns.
Multidimensional data like images and depth maps
significantly increase the strength and perfectness of 3D
reconstruction. The proposed approach alleviates the
data sparsity and enhances the reconstruction quality
under challenging scenarios. It allows the rendering and
reconstruction of 3D scenes in real-time or near real-
time, which makes these methods also useful for
interactive work, including VR, AR, and gaming.
DeepVoxels and neural rendering techniques provide
scalable solutions for complex scenes and varied object
shapes. The performance of MMLA is measured using
an MSE of 0.167, RMSE of 0.50, and MAE of 1.1 for
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the sofa-type images. For the table and chair type
images, the performance is MSE of 0.143 and 0.131,
RMSE of 0.51 and 0.52, and MAE of 0.99 and 0.987.

Furthermore,

these techniques demonstrate good

generalization performance over multiple scenes and
datasets.
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