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Abstract: Background and objectives: pox viruses are infectious agents that affect both humans and animals, often presenting 

similar skin lesions, making accurate diagnosis a medical challenge. Early detection and classification are crucial for outbreak 

control and timely clinical intervention. Automated diagnosis is essential, particularly for accurate multi-class classification. 

Methods: the novel ensemble method was developed to address the multi-class-wise prediction by using the Triple Transformer 

Ensemble Fusion Method (TTEFM). The TTEFM method was compared with existing pre-trained transformer methods, 

including the Vision Transformer (ViT), Mobile_ViT, and Data-Efficient Image Transformer (DEiT). The model was trained and 

tested using Monkeypox Skin Lesion Dataset (MSLD), which includes four classes: chickenpox, measles, monkeypox and normal. 

Results: the TTEFM methods outperform other state-of-the-art works. Based on the evaluation metrics, the methods are 

compared with other pre-trained transformers. The TTEFM method attains 99% accuracy for all the classes. The ensemble 

techniques were proven using the one-way Analysis of Variance (ANOVA) technique. Conclusion: the automated identification 

of skin lesions is crucial for clinical diagnosis, enabling dermatologists to identify and treat pox virus infections effectively. The 

presented TTEFM model provides a highly accurate and reliable solution for medical image classification. 
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1. Introduction 

Every year, the world experiences new outbreaks of 

viral diseases. While some have their impact, others do 

not. After the COVID-19 outbreak, another lethal viral 

outbreak emerged Monkeypox virus (Mpoxv), an 

endemic pathogen, still it was not a new disease. In 

2024, several viruses, including the Nipah virus [18], 

monkeypox, and the “zombie virus,” were in the news, 

which gained more attention due to public health risks. 

Mpoxv [14] is a virus belonging to the Orthopoxvirus 

family, with significant impacts on human health. First 

detected in monkeys at a Denmark research laboratory 

in 1958 [37], the virus subsequently spread to Central 

and West Africa, where it became endemic. However, in 

2023, reported cases started to increase in Europe and 

North America, raising global concerns [5, 11]. By 

September 15, 2024, 122 nations had reported more than 

one lakh cases, a significant global health issue as the 

virus spread outside of traditionally endemic areas [26]. 

Monkeys are not the only species that can spread the 

virus; other species, such as squirrels and rats, can also 

do so. The virus will be exposed within two to four 

weeks and carry symptoms like fever, swollen lymph 

nodes, blistering rashes, and muscle and headache [22]. 

The rashes will begin to appear on the face, palms, and 

other parts of the body. Occasionally, if the condition 

becomes severe, the virus may cause the person to die. 

The primary diagnosis of monkeypox is Polymerase 

Chain Reaction (PCR), which is not available in 

 
remote areas, and the cost of the testing is too high. 

The statistical rate of the disease is rising year by 

year. So, the automatic identification of the disease is 

required based on the computer design. Nowadays, the 

automatic system has evolved in all domains, including 

object detection, plant disease identification, and the 

healthcare sector. In the beginning, Convolutional 

Neural Networks (CNNs) performed well in the 

classification of diseases, but they could not handle 

overlapping feature differentiation in images, which 

created difficulties in multi-class classification. To 

address this, pre-trained deep learning models have been 

proposed, enabling improved feature extraction, the 

detection of complex patterns, and reduced 

computational costs. These models have proven highly 

promising in medical image analysis, enhancing the 

accuracy and efficiency of disease detection.  

In contrast to CNNs and other pre-trained CNN 

variants, which are based on local receptive fields, 

transformers have changed image classification by 

using self-attention mechanisms to store long-range 

dependencies and global context. Special attention is 

given to all the affected red bump areas in the human 

body. Especially, Vision Transformer (ViTs) segment 

images into patches and process them as 

sequences, which facilitates efficient feature extraction 

without convolutional biases. Likewise, Mobile_ViT 

and Data-Efficient Image Transformer (DEiT) are some 

examples of pre-trained transformer models that 

improve performance by learning hierarchical 
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representations, especially in multi-class classification. 

Although computationally demanding, transformers are 

great at processing small datasets and, therefore, are a 

strong candidate to replace CNNs for deep image 

classification. 

1.1. Problem Statement 

Among all the skin lesions that are the consequence of 

different viral infections, the categorization of these 

lesions presents the greatest problem. This is because 

the lesions found within and between classes tend to 

exhibit visual characteristics that overlap. The 

differentiation between one infection and another is 

made more difficult by the presence of red bumps and 

similarities in texture patterns that are shared by several 

types of viruses. The visual resemblance among viral 

infections makes it difficult to accurately identify them, 

particularly in situations when the lesions are not easily 

distinguishable from one another. This might result in a 

potential misdiagnosis and a delay in treatment. 

To address the challenges of inter-class and intra-

class similarities of the pox virus classification, the 

proposed of Triple Transformer Ensemble Fusion 

Method (TTEFM) was introduced to reduce the bias and 

to provide balanced treatment for all the classes. These 

methods integrate the strengths of three pre-trained 

transformers, including ViT, DEiT, and Mobile_ViT, 

with a hard voting strategy. In this method, 

all three models independently predict the same input 

image, and the majority of the three predictions is 

chosen as the final result. This ensemble system 

enhances stability, decreases variance, and increases the 

model’s ability to generalize between visually similar 

skin lesion classes. 

1.2. Major Contributions 

The primary contributions of this work are evident in the 

initial stage, where preprocessing has been finalized 

using one-hot label encoding to convert all labels into a 

machine-readable format, and normalization of the 

transformer has been executed. The ensemble method of 

the TTEFM model was introduced to tackle 

classification on a per-class basis. Various pre-trained 

transformers, such as the ViT, DEiT, and Mobile_ViT 

methods, are utilized to train and test the images. A one-

way Analysis of Variance (ANOVA) test was conducted 

to demonstrate that the ensemble model is distinct from 

other methods. The evaluation metrics indicated that the 

superior and more reliable model successfully classified 

the pox virus images. 

The passage describes the remaining parts of this 

paper. In section 2, different authors’ proposed work and 

the different benchmark methods are discussed. Section 

3 discusses the methods used in this work, which 

include the pre-trained transformer and the ensemble 

methods of TTEFM. Section 4 presents a discussion of 

all the results, including the evaluation metrics. Finally, 

the conclusion of the work was discussed with its 

limitations and future directions. 

2. Related Works 

In this area, classical machine learning and deep 

learning approaches are used in a wide variety of real-

world settings to recognize objects and classify 

photographs, particularly in medical and normal 

images. Numerous medical situations call for the 

utilization of automatic detection. Previous work 

applied to different datasets is discussed with their 

techniques and measures. 

2.1. Classification for Pox virus and 

Monkeypox Virus Using ML and DL 

Techniques 

In this investigation, Luong et al. [17] utilised a 

collection of images, including monkeypox skin lesion 

images and a monkeypox image dataset. Using deep 

learning methods like ResNet50, VGG16, and 

MobileNet, these characteristics were retrieved. 

Following this categorization, machine learning 

techniques such as the AdaBoost method, decision trees, 

logistic trees, random forests, K-Nearest Neighbors 

(KNN), and Gaussian naive bayes were used. With a 

97% success rate, the combination of MobileNet with 

logistic regression produces a progressive outcome. 

Maqsood et al. [19] reported using the Monkeypox Skin 

Lesion Datasets (MSLDs). Using deep learning 

methods like ViT, swin Transformer, ResNet 50, ResNet 

101, EfficientNetV2, and ConvexNet V2, deep models 

are employed for feature extraction. Then, feature 

fusion and selection are performed using optimisation 

techniques, such as the entropy-controlled firefly 

approach. Finally, the classification was done based on 

a multi-class support vector machine with 98.65% 

accuracy. The proposed application for mobile devices 

with human monkeypox detection capabilities, utilizes 

an advanced deep-learning techniques to achieve a 

successful classification. To maintain the robustness of 

performance, the study used models such as ResNet18, 

GoogleNet, EfficientNetB0, NasNet Mobile, 

ShuffleNet, and MobileNetV2 in disease identification. 

Surprisingly, the proposed system worked by achieving 

a high level of accuracy (91.11%) in binary 

classification, indicating that it could be used as a useful 

tool for finding and diagnosing Monkeypox early on 

[25]. 

Bala et al. [2] took a MSID from the Kaggle 

repository. The author performed data augmentation to 

increase the dataset count and then separated the 

training and testing data. The proposed CNN model then 

employs machine learning and deep learning 

approaches. Sitaula and Shahi [30] tune all types of 

hyperparameters to identify the optimal model. The 

proposed monkeypox net method achieved a multi-class 
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classification rate of 98.91%. In this investigation, the 

collected images are from publicly available Google 

Images. A deep learning method was applied to classify 

multi-class pox virus disease. Various deep learning 

methods were applied, including VGG16, VGG19, 

ResNet50, ResNet101, IncepResNetv2, MobileNetV2, 

InceptionV3, Xception, EfficientNet-B0, EfficientNet-

B2, DenseNet-121, and DenseNet-169, and were 

selected the top two accuracies. Xception and 

DenseNet-169 were selected to generalize the new 

images for the majority voting ensemble method. 

Muthulakshmi et al. [21] achieved 85.44% accuracy in 

this ensemble method. 

2.2. Classification Using Vision Transformer 

and DEiT Transformer 

In 2024, Hussain et al. [8] utilized the poles of the 

prismatic cell LIBs dataset for the laser welding 

photographs. The photos were enhanced to increase 

their quantity, subsequently extracting features using the 

VGG16 and MobileNet approaches. These features are 

now integrated into a single vector. The ViT 

methodology employs all these attributes for 

classification purposes. All eight categories are highly 

classified, and the model’s accuracy is 97%. In 2025, 

the method [29] utilizes three distinct iris datasets. The 

three different feature maps employed to extract image 

features: Central Local Adaptive Binary Patterns 

(CLABP), Left Local Adaptive Binary Patterns 

(LLABP), and Right Local Adaptive Binary Patterns 

(RLABP). The ViT technique now utilizes each of these 

three methods independently for classification 

purposes. The author introduced a novel model that 

combines three components into a cohesive feature. The 

features as patches were allocated and subsequently 

employed the ViT model to reduce the model’s error 

rate. In 2024, Ulukaya and Deari [35] utilized the 

annotated rice disease data for classification purposes. 

They used data from five distinct rice disease categories 

to construct a model. The foundational model is the ViT 

base 32, which implements various factors to achieve 

optimal accuracy. The model incorporates a fine-tuning 

parameter with data augmentation and employs the 

categorical focal loss entropy method. The proposed 

approaches are compared with other leading 

publications, resulting in an accuracy of 88.57% across 

five distinct classifications. 

2.3. Classification Using Mobile_ViT Method 

According to Ding and Yang [9], they collected an apple 

leaf dataset from the Ningxian Modern Agricultural 

Industrial Park in Qingyang City, Gansu Province, and 

the Haisheng Apple Planting Base in Yulinzi Town, 

Zhengning County. Five different classes were token 

and used deep learning approaches to perform the 

classification. These methods include the ViT, the 

Mobile_ViT transformer, and the swim transformer. The 

improved Mobile_ViT method produces a better result 

when compared with state-of-the-art works. They 

achieved an accuracy of 98.54%. Zhu et al. [38] stated 

that the corneal ulcer, located in the human eye, they 

employed deep learning techniques. Initially, they 

applied the Mobile_ViT method, which improved the 

extraction of local and global features. The proposed 

method produces classification accuracy in the range of 

88.7% to 91.5%, respectively. Gradient-weighted class 

activation mapping visualizes all the extracted features. 

Table 1. Summary of the pre-trained CNN and Transformers in detail. 

Author Year Dataset Feature extraction 
Feature 

selection 
Classification 

Best techniques with 

accuracy 

Luong et al. 

[17] 
2023 

Monkeypox 

Skin Lesion 

images 

ResNet50, VGG16, and MobileNet X 

AdaBoost method, decision trees, decision trees, 

logistic regression, random forests, KNN, and 

Gaussian naive bayes  

MobileNet with logistic 

regression-97% 

Maqsood et 

al [19] 
2024 

Monkeypox 

skin lesion 

images 

ViT, Swin transformer, ResNet 50, 

ResNet 101, EfficientNetV2, and 

ConvexNet V2, deep models  

Entropy-

controlled 

firefly  

Multiple SVM 98.65%  

Sahin et al. 

[25] 
2022 MSLD X X 

ResNet18, GoogleNet, EfficientNetB0, NasNet 

Mobile, ShuffleNet, and proposed (MobileNetV2) 
MobileNetV2-91.11%  

Bala et al. [2] 2023 MSLD 

VGG16, ResNet50, MobileNetV1, 

Inception V3, Xception 
X LR RF SVM K-NN XGBoost MobileNetV1+LR-90.64% 

X X 
VGG16, ResNet50, MobileNetV1, Inception V3, 

Xception, and modified CNN(MOXNet) 
MOXNEt-98.91% 

Sitaula and 

Shahi [30] 
2022 

Monkey skin 

lesion images 

dataset 

X X 

VGG16, VGG19, ResNet50, ResNet101, 

IncepResNetv2, MobileNetV2, InceptionV3, 

Xception, EfficientNet-B0, EfficientNet-B2, 

DenseNet-121, and DenseNet-169 

Xception and DenseNet-169 

along with hard voting 

techniques -87.13% 

Din et al. [8] 2024 

Laser 

welding 

images 

VGG16 and MobileNet X Hybrid ViT model  97% 

Ulukaya and 
Deari [35] 

2025 
Rice image 

dataset 
X X 

Mobile Net V2, Efficient Net B7, VGG 19, Inception 

V3, ResNet, Mobile Net V2+FT, Efficient Net 
B7+FT, VGG 19+FT, Inception V3 +FT, ResNet 

152+FT, ViT B16, ViT B32, ViT B16 +FT, ViT 

B32+FT 

88.57% 

ALkahla et 

al. [1] 
2024 

Ovarian 

cancer 
X X Uni-Swin_T, Parallel_Swim_T 96.05% 

Haripriya and 

Inbarani [12] 
2025 

Monkeypox 

skin lesions 
X X 

CNN, VGG16, VGG19, Resnet50, Hybrid Fuzzy 

PCA VGG16 Method 
91.42% 
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Table 1 summarise the pre-trained models of CNN 

and transformer methods used in their applications. 

Monkeypox, apple plant disease, human iris, brain, and 

lung images are studied using distinct sets of images in 

both controlled and uncontrolled contexts. These 

analyses are based on the studies discussed above. For 

the most part, illness categorization is accomplished 

through the utilization of pre-trained methods such as 

CNNs, transformers, and other models. Transformer 

models are the foundation for defining monkeypox 

pictures because they are trained on a small dataset, 

which yields great accuracy at all stages. The pre-

trained transformer techniques are applied to the dataset. 

Having said that, not every class is given the same 

amount of attention. 

3. Materials and Methods 

This section talks about the preprocessing techniques 

and the transformer methods. To import the various 

categories of images as input, along with their relevant 

dimensions. Following the import of the images, the 

next step is the preprocessing stage, where the data 

augmentation and label encoding processes are carried 

out. Fivefold cross-validation was used as the basis for 

the assessment procedure that was carried out on this 

model. Following the completion of this, other deep 

learning algorithms for transformers are implemented. 

When it came to determining the final prediction 

classes, the ensemble techniques were successfully 

utilized. Based on the results, the assessment metrics 

were carried out to determine which approach was 

superior. Finally, we classified each approach based on 

the classes it belonged to. Figure 1 provides a graphical 

representation of the processes for the approaches.  

3.1. Image Pre-processing 

All the images in this section undergo image 

preprocessing techniques to enhance and reduce noise. 

The different techniques can be applied to images. 

In this case, label encoding and data augmentation 

are performed. 

 

Figure 1. Workflow of the methodology. 

3.1.1. Label Encoding 

Generally, the class labels are in categorical form. 

Machines cannot directly process categorical values. 

Consequently, we performed one-hot label encoding on 

those categorical labels. Now the labels are encoded into 

a machine-readable format. The class labels are now 

formatted as follows: for chickenpox 0, for measles 1, 

for monkeypox 2, and normal 3. Likewise, the label 

encoding was performed on the image labels. 

3.1.2. Data Augmentation 

A small number of images is not enough to train the 

deep learning techniques. To traditionally increase the 

count of images, data augmentation was performed. The 

parameters used for image augmentation are described 

in Table 2. The rotation, shear, zoom, width, and 

horizontal shift fill modes were performed. In each 

folder, the count of the images is typically increased. An 

evaluation of this model was performed. 

3.2. Model Evaluation 

The model evaluation was done based on K-fold cross-

validation. It works better in generalization for machine 

and deep learning methods [32]. In general, if the 

validation is applied to the model, then it will start its 

training for k-1 times as per the given k. The data will 

take k-1 for training the model, and the last part will be 

for testing. It will just start iterating the models until the 

K value is attained. The cross-fold validation will work 

well for unseen images [36]. 



1182                                                   The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025 

3.3. Vision Transformer 

Convolution and the pooling layer are often the 

foundations upon which CNN operates, extracting the 

characteristics from the picture as raw data. The dense 

layer will generate the final result once the picture 

features have converged. The ViT approach was created 

to address CNN’s drawbacks. It was created by 

Dosovitskiy [10] to use Natural Language Processing 

(NLP) to handle audio and text. Later, it appears in 

medical image processing, which uses the self-attention 

mechanism to provide outstanding outcomes. The self-

attention mechanism, which pays particular attention to 

more significant characteristics, is a key component of 

deep learning. 

 

Figure 2. The architecture of the ViT model. 

 

Figure 3. Details of the transformer encoder. 

The input pictures are separated into patches 

according to H×W×C, where C represents the number 

of channels and H and W represent the image resolution. 

N*(P^2*C), where N is (H*W/P^2) and (P, P) represents 

the resolution of split patches, results from sequencing 

the patches into a 2D flattened form [15]. The linear 

projection transforms all these 2D patches into 1D 

flattened data. Figure 2 illustrates the position 

embedding steps employed to organise the patch 

information, thereby preventing data from being mixed 

up [27]. The hexagon shape indicates the position of the 

pixel, and the cylinder shape represents Pixel values in 

1D format. The transformer encoder now receives the 

embedded patches. Within this Multi-Head Self-

Attention (MSA) mechanism, a separate one was 

formed for each patch. The 1D information is divided 

into three types of matrices: Query (Q), Key (K), and 

Value (V). These work together in the self-attention 

mechanism to figure out how different parts of an image 

relate to each other. The Query (Q) shows what a 

specific part is searching for in other parts, while the 

Key (K) explains what each part contains and how 

relevant it is to the others. After applying attention, the 

Value (V) transmits the actual information. By 

calculating attention scores using Q and K, the model 

identifies which parts are most important and uses V to 

update their representation. This technique allows the 

model to effectively capture long-range dependencies in 

images. The attention score is calculated by using the 

Scaler dot product function. Equation (1) shows the 
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functionality of the dot product. Figure 3 explains the 

working procedure from the embedded patches to the 

transformer encoder. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇|√𝑑𝑘) 𝑉 

Where QKT computes the similarity between the 

patches of images. The square root of dk is used to scale 

the values so that the negative value can be ignored. 

Now the values are multiplied by V, deciding how much 

information can be taken for the final decision. Due to 

the small size of the datasets, this work used a pre-

trained ViT. If the size of the dataset is small, then a 

trained transformer can be used to improve the 

generalization and reduce the computational time for 

training the model. Despite this, the model yields 

superior accuracy as it specifically targets the affected 

lesions of bed bumps for analysis. After extracting the 

features from the MSA mechanism, a Multi-Layer 

Perceptron (MLP) was used to classify the pox virus 

disease. 

3.4. Mobile_ViT Transformer 

The Mobile_ViT is a compact ViT model specifically 

engineered for mobile devices. It incorporates multiple 

convolutional and transformer blocks to improve both 

the speed and accuracy of image classification and 

various computer vision tasks. 

 

 

Figure 4. The architecture of Mobile_ViT_S transformer 

The process initiates with a convolutional layer 

designed to extract local processing features from the 

images. MV2 facilitates the down-sampling of these 

features by a factor of two. This procedure persists 

through multiple blocks, culminating in the mobile ViT 

Block, which maintains compliance with Conv 1x1. A 

global pooling layer is applied before the output layer 

[20], as depicted in Figure 4. 

Inside the Mobile_ViT block, each local and global 

representation of the features is extracted. In the initial 

stage, the input is in the dimension of C*H*W which 

extracts the local features based on the convolutional 

layer starting from n*n dimension to 1*1 dimension. 

With the help of local representation, the global features 

are extracted by using three different techniques such as 

fold, unfold, and transformer block. By concatenating 

the local and global features again the MV2 blocks 

perform again. This process is explained in Figure 5.  

 

Figure 5. Workflow of Mobile_ViT block 

The difference between the traditional ViT method 

and the Mobile_ViT method is in traditional ViT all the 

input images are divided into patches and then 

positional embedding is performed with encoding. 

Since the VIT methods need a large dataset and 

computational time. The mobile _vit method uses the 

unfold, transformer, and fold method to extract the 

features effectively. If handles the small dataset and 

(1) 



1184                                                   The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025 

computational time effectively [6]. 

3.5. Data Efficient Image Transformer (DEit) 

The DEiT is a ViT model proposed by Touvron et al. 

[34] to make training transformers more efficient 

without needing large-scale datasets. Classic ViT 

depend on huge labelled data, e.g., ImageNet-21k, 

which makes them expensive to train computationally 

and out of the question for small datasets [10]. DEiT 

overcomes this challenge by including a distillation 

token, through which the model can learn not just from 

the input data but also from a teacher network, often a 

CNN such as ResNet [34]. This improves learning 

efficiency, and the model can generalize well even with 

small datasets such as ImageNet-1k. 

One of the most important innovations of DEiT is its 

distillation process, which enhances data efficiency 

without compromising accuracy [16]. In contrast to 

conventional ViTs that need enormous amounts of 

labelled data, DEiT learns efficiently by distilling 

knowledge from a pre-trained CNN, minimizing the 

requirement for large datasets [34]. In addition, DEiT is 

computationally efficient and optimized for speed, 

which makes it a feasible solution for real-world 

applications with limited resources. Through the use of 

both self-attention and knowledge distillation, DEiT 

provides similar performance to baseline ViTs while 

reducing data and computational needs substantially 

3.6. Ensemble Transformer 

The ensemble learning technique constructs a model by 

integrating multiple algorithms to achieve enhanced 

outcomes [28]. Nowadays the transformer methods are 

used for the classification of medical images. Three 

different transformation models such as ViT, DEiT, and 

Mobile_ViT method. Vision transformers (ViT, DEiT, 

and Mobile_ViT) revolutionise image processing by 

treating images as patch sequences. It uses self-attention 

to capture global context and performs well on large 

datasets. DEiT is especially improved in efficiency on 

smaller datasets with optimized training and distillation 

techniques. Mobile_ViT combines transformers and 

convolutions for better results in resource-constrained 

environments. These three prediction outcomes are 

combined using the hard voting ensemble method, and 

the respective equations are described from Equations 

(2) to (5) 
𝑋 = 𝑉𝑖𝑇 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟( ) 

𝑌 = 𝐷𝑒𝑖𝑇 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 ( ) 

𝑍 = 𝑀𝑜𝑏𝑖𝑙𝑒_𝑉𝑖𝑇 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 ( ) 

For each test sample X in the Dk test, we will compute 

predictions P(X), P(Y), P(Z), where P(X, Y, Z) Ɛ{1,  2,  

3, 4……..., C} and C is the number of classes. Combine 

predictions using hard voting: 

𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∑ Π(𝑃𝑚(𝑋) = 𝐶

𝑚 ∈ {𝑉𝑖𝑇,𝐷𝑒𝑖𝑇,𝑀𝑜𝑏𝑖𝑙𝑒_𝑉𝐼𝑇}

) 

Where П(.) is the indicator function. 

Algorithm 1: TTEFM method. 

Input: Pox Virus Images 

Output: Classification based on Classes 

Steps: 

1. Initiate  

2. Define the dataset D = {Xi, Yi}
N i=1, where Xi denotes the 

input images and Yi represents the corresponding labels 

3. Load the Dataset D. Ensure Xi Ɛ R H * W * C, where H, W, and 

C are the image's height, width, and channels. 

4. Use the K-Fold cross-validation: 

4.1 Split D into k folds D= {D1, D2, D3, …………., Dk) where 

Dk=(Dk train, D
k Val, D

k test). 

4.2 For each fold K: 

• Dk train is used for training. 

• Dk val is used for validation. 

• Dk test is used for testing. 

5. Load the three transformers: Let MViT, MDEitT, and MMobile_ViT. 

• Train each model on DK Train for all K. 

• Save the predictions PViT, PDEiT, and PMobile_ViT 

6. Perform Ensemble with Hard Voting using Equation (5). 

7. Utilize the performance metric to assess the effectiveness of 

the model.  

8. Classifications are conducted according to class.  

9. Halt. 

The model was designed utilising the aforementioned 

algorithm. The model is an ensemble comprising ViT, 

DEiT, and Mobile_ViT, utilising a hard voting method 

for decision-making. The process involves generating 

independent class labels for each model based on the 

input image. Subsequently, it aggregates the votes and 

selects the majority class as the final output, effectively 

utilising all three methods. In the event of a tie, the final 

decision is determined by selecting the model that 

exhibits the highest validation accuracy as the best 

prediction. Alternatively, a predefined priority order 

may be employed to resolve ties in instances of 

comparable model performances. This ensemble 

method ensures enhanced robustness and accuracy by 

leveraging the complementary strengths of ViT, DEiT, 

and Mobile_ViT. Figure 6 delineates the methodologies 

employed. 

 

Figure 6. Ensemble method of TTEFM model. 

The architecture style of the ensemble model varies 

when the components are trained independently. The 

(2) 

(3) 

(4) 

(5) 
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predicted model exhibited non-uniform calibration 

throughout its entirety. Certain models may rely on 

overconfidence and under confidence for specific 

classifications, leading to biases. The hard voting 

ensemble method was employed to enhance model 

robustness and mitigate bias, offering a straightforward 

approach for integrating heterogeneous models. 

4. Result and Discussion 

This section presents the outcomes of each 

transformation model and the ensemble methods, 

accompanied by their corresponding evaluation metrics. 

The initial subsection addresses the dataset and the 

simulation of system information. This subsequent sub-

section presents the results along with their 

corresponding metrics. 

4.1. Simulation and Information about Dataset 

The Kaggle website hosts the publicly available 

Monkeypox Skin Image Dataset (MSID) [3]. All the 

images are in colour with 3 channels: red, blue, and 

green. The image format is .png, 224 x 224. The dataset 

contains 4 different classes: chickenpox, measles, 

monkeypox, and normal. The total number of images for 

originals is 770. Since we use deep learning techniques, 

we need more than just a few images to train the model 

and achieve better generalization results. To virtually 

increase the count of datasets, we performed image 

augmentation. Table 2 describes the original and 

virtually enhanced image count details. 

All these transformer models were performed on 

Windows 11, with a 13th Gen Intel (R) Core (TM) i7-

13620H processor operating at 2.40 GHz and 16 GB of 

RAM, and supported by a GPU RTX 4050 system. The 

algorithm was developed using Anaconda Navigator 

with Jupyter Notebook, along with supporting packages 

such as torch, scikit-learn, timm, NumPy, Pandas, OS, 

CSV, Seaborn, and Matplotlib. 

Table 2. Details of the dataset. 

Class label name Original image Augmented image 

Chickenpox 107 508 

Measles 91 591 

Monkeypox 279 779 

Normal 293 793 

Total 770 2671 

Table 3 lists the parameters used for image 

augmentation. We enhance the images using rotation, 

shearing, zooming, horizontal flip, and vertical flip. We 

gather new dimensions from the enhanced images to 

improve the model’s performance for unseen images. 

Table 3. Parameter of image augmentation. 

Parameter name Parameter size 

Rotation Range 40 

The range for width shift_ 0.3 

The range for height shift 0.3 

Shear Range 0.3 

Zoom Range 0.3 

horizontal flip True 

vertical flip True 

fill mode Nearest 

4.2. Result Analysis and Measures 

4.2.1. Performance Metrics 

To compare the proposed method to existing benchmark 

methods, the statistical metrics used here are accuracy, 

precision, recall, F1-score, balanced accuracy, 

specificity, and geometric mean. The computation is 

done based on a confusion matrix. A confusion matrix 

for multi-class classification has N labels with N actual 

and expected values. Based on the confusion matrix, 

evaluation metrics of the transformer methods and their 

description are described in Table 4. Based on these 

metrics the evaluation was done for the transformer 

models and the proposed work of TTEFM. 

Table 4. Evaluation metrics for transformer methods. 

Method Name Formula Description 

Accuracy [13] 
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
 Finds the overall correctness of the model. 

Precision [4] 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 Finds the proportion of true positive out of all positive predictions 

Recall (or) Sensitivity [31] 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 The model finds the correctly identified positive samples 

F1- Score [24] 
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 Combines both precision and recall and stores them as a single value 

Balanced Accuracy [23] 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

It will give equal weight priority to both minority and majority classes. 

This measure is suitable for imbalanced datasets. 

Specificity (or) true negative rate [7] 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

TNR measures the model’s ability to identify the negative samples 

correctly. 

Geometric Mean [33] √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 
It finds the balance between sensitivity and specificity and is useful for 

imbalanced datasets. 

False Positive Rate (FPR) 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

FPR measures the proportion of negative instances incorrectly classified as 

positive. 

 

4.2.2. Result Analysis 

Based on the above metrics, different transformation 

models were applied to both the original and augmented 

images. 

The 5-fold cross-validation method was used for the 

training and testing phase. The mean value is used to 

find each transformation model’s training and testing 

accuracy in each fold. This value is then used as the 
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accuracy for each model, and the values are shown in 

Table 5. This table clearly states that the training phase 

of the original images performs well. However, in 

general, it provides less accuracy compared to training. 

Introducing new images led to a further decline in the 

model’s performance, likely due to the limited size of 

the training dataset. 

Image augmentation techniques were employed as a 

key aspect to address this issue and improve 

generalisation. By increasing the count of the images in 

the training phases, which means different directions in 

angle and the dimension of the images and other 

transformations are introduced to a diverse dataset 

during training. 

The augmented images now perform better in terms 

of generalisation. So, augmentation techniques were 

useful when we had small datasets. 

Table 5. Training and testing accuracy of different transformer methods for both original and augmented images. 

Evaluation/Methods 
Original images Augmented images 

DEiT  Mobile_ViT Vision transformer DEiT  Mobile_ViT Vision transformer 

Fold 1 100 99.51 100 99.81 99.11 99.39 

Fold 2 100 98.38 97.08 100 99.34 98.36 

Fold 3 100 99.03 99.68 100 99.44 99.67 

Fold 4 100 98.54 99.68 100 99.44 99.67 

Fold 5 100 98.86 100 100 99.67 99.25 

Average (training) 100 98.86 99.29 99.96 99.40 99.27 

Average (testing) 92.73 91.95 91.04 98.46 98.24 95.92 

Standard deviation 0.0008 0.0020  0.0054 

Confidence level ±0.0007 ±0.0018 ±0.0047 

Table 6. Comparative analysis of different transformers with their measures. 

Methods Accuracy Precision Recall F1-Score Balanced accuracy Specificity Geometric mean 

ViT 95.92 95.89 95.54 95.69 95.54 98.62 97.06 

DEiT 98.46 98.41 98.41 98.41 98.41 99.49 98.95 

Mobile_ViT 98.24 98.20 98.12 98.16 98.12 99.41 98.76 

TTEFM 99.03 98.98 98.99 98.98 98.99 99.68 99.33 

 

Table 6 shows a comparative analysis of different 

transformation models with their respective values. The 

tale contains accuracy, precision, recall, F1-score, 

balanced accuracy, specificity, and the geometric mean 

value. Remarkably, within 10 epochs, the model 

produces a strong result for the benchmark method. 

The ViT method attains 95.92 for accuracy, 95.89 for 

precision, 95.54 for recall, 95.69 for F1-score, 95.54 for 

balanced accuracy, 98.62 for specificity, and 97.06 for 

the geometric mean, respectively. The DEiT method 

yields superior results, with scores of 98.46, 98.41, 

98.41, 98.41, 99.49, and 98.95, respectively. The 

Mobile_ViT method has 98.24, 98.20, 98.12, 98.16, 

98.12, 99.41, and 98.76, respectively.  

 

Figure 7. Comparative analysis of different transformer models with measures. 

When compared to the other benchmark methods, the 

ensemble method, known as the TTEFM method, yields 

superior results. The metric values for accuracy, 

precision, recall, F1-score, balanced accuracy, 

specificity, and geometric mean are 99.03%, 98.98%, 

98.99%, 98.98%, 98.98%, 99.68%, and 99.33%, 

respectively. Figure 7 also illustrates the result, 

providing a clear pictorial presentation of the 

comparative performance. 

4.2.3. Discussion and Comparison 

The proposed method, TTEFM, is an ensemble model 

that combines the strengths of ViT, DEiT, and 

Mobile_ViT transformer methods to achieve superior 

class-wise classification performance. The core 

objectives of each method are outlined below: 

 ViT: ViT treats images as sequences of patches, 

replacing convolutional layers with a self-attention 
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mechanism to capture global context features and the 

relationships between patches. It is particularly 

effective for datasets with large dependencies. 

 DEiT: DEiT focuses on enabling efficient training of 

ViTs on smaller datasets. Techniques like knowledge 

distillation and optimized training strategies make it 

competitive with CNNs in terms of accuracy and 

resource efficiency, even with limited data. 

 Mobile_ViT: designed for resource-constrained 

environments such as mobile and edge devices, 

Mobile_ViT combines the strengths of transformers 

and convolutions to deliver high efficiency and 

accuracy on small datasets. 

By combining these three methods, TTEFM exploits the 

individual strengths of these methods to improve 

generalization across classes. The ensemble method 

employs hard voting strategies that ensure equal 

importance for every class, contributing to robust 

performance on diverse datasets. Though ViT attains 

high accuracy by capturing global features, the 

precision, recall, and F1-score values vary across 

classes, as shown in Figure 8. This indicates that class-

wise performance is not consistent. Compared to ViT, 

DEiT generalises better on new images, especially when 

working with smaller datasets, as shown in Figure 9. 

This arises from its primary focus on training efficiency. 

 

Figure 8. Classification report of the ViT method. 

 

Figure 9. Classification report of DEiT method. 

Mobile_ViT shows excellent performance in 

resource-constrained environments, achieving good 

accuracy while maintaining efficiency. The 

classification report in Figure 10 highlights its 

effectiveness. The TTEFM model proposed here 

surpasses these individual methods by showing 

consistently high accuracy for all classes. It places equal 

importance on each class and provides comprehensive 

generalisation and reduced variability in the 

performance metrics. The classification report of 

TTEFM, as shown in Figure 11, is well-balanced and 

superior. Combining the goals of ViT, DEiT, and 

Mobile_ViT in a TTEFM ensemble model enables 

better general performance for a class-wise 

classification task. 

 

Figure 10. Classification report of Mobile_ViT method. 

 

Figure 11. Classification report of TTEFM method. 

The batch size determines the quantity of samples 

handled during one forward and backwards pass. A 

reasonable batch size strikes a compromise between 

optimal memory use and minimising noise in photos. 

So, the normal batch size for the model is taken as 32. 

An epoch refers to the total count of complete iterations 

across the training dataset. The number of complete 

passes through the training datasets is called the epochs. 

If the training period is too long, the model will move to 

overfit, and the generalization of the image will become 

difficult. Based on the epoch and the learning rate, the 

model will face the difficulties. The learning rate will 

control the speed of training. The step size for updating 

the model weights during optimization. The parameters 

used in the transformation models are discussed in Table 

7. 

Table 7. Hyperparameters for transformation models. 

Parameter name Values 

Epoch 10 

K-fold 5-fold 

Learning rate  0.0001 

Optimizer Adam 

Loss Cross_Entropy loss 

Batch size  32 

 

Figure 12. Confusion Matrix of the ViT Method. 
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The confusion matrix says how the transformation 

model works in each class. A combination of true 

positive, true negative, false positive, and false negative 

values is obtained. Each parameter has its 

characteristics. Figure 12 describes the ViT method of 

the confusion matrix. The total true values are 2561, and 

the false values are 109, respectively. Still, the models 

contain some amount of misclassification data. The 

DEit methods have the total true values as 2629 and the 

total false values as 41. 

 

Figure 13. Confusion matrix of DEiT method. 

 

Figure 14. Confusion matrix of Mobile_ViT method. 

 

Figure 15. Confusion matrix of TTEFM method. 

Figure 13 explains how the DEiT method, in 

comparison to the ViT model, generates a lower false 

rate and more true values. The Mobile_ViT has the true 

values as 2623 and the total false values as 47, which is 

explained in Figure 14. The TTEFM method has a total 

value of 2691, and the false values are 26. The proposed 

works outperform all state-of-the-art methods, ensuring 

that each class receives equal importance. Figure 15 

expresses the TTEFM confusion matrix. 

 

Figure 16. Class-wise ROC curve for ViT model. 

 

Figure 17. Class-wise ROC curve for DEiT model 

The ROC curve can be derived from the confusion 

matrix, which is essential for determining the FPR and 

assessing model performance. The distribution of the 

ROC curve by class is presented herein. Figure 16 

illustrates the ViT model, highlighting the true 

predictions of each model and their interactions with 

one another. The predicted probabilities for chickenpox, 

measles, monkeypox, and healthy individuals were 

0.95, 0.98, 0.98, and 0.98, respectively. The model 

demonstrated limitations in predicting the chickenpox 

virus. The DEiT transformer method determines all the 

classes to be equal. Figure 17 illustrates that the AUC 

values for chickenpox, measles, monkeypox, and 

normal were 0.99. 

 

Figure 18. Class-wise ROC curve for Mobil_ViT model. 
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Figure 19. Class-wise ROC curve for TTEFM model. 

Figures 18 and 19 illustrate the Mobile_ViT model 

and the proposed TTEFM models, which use a class-

wise approach. The Mobile_ViT models achieve an 

accuracy of 0.98 for both chickenpox and monkeypox. 

For Healthy and Measles, it achieves a true positive 

value of 0.99. The TTEFM method achieves a score of 

0.99 for chickenpox, measles, and monkeypox. The true 

value of 1.00 is achieved as healthy. 

 

Figure 20. Model-wise comparison of training cost and inference 

time. 

Figure 20 explains the training cost and the inference 

time of individual models along with the proposed 

method of TTEFM. Since the model has a high 

inference time but still the accuracy and the F1 score of 

the model were high when compared with individual 

methods. Based on the accuracy and the F1-score, the 

additional computational cost, especially in diagnostics 

of the viral infection, is necessary. 

4.2.4. Ablation Analysis 

In the beginning, the model overfitted and underfitted at 

epoch 5. The cross-validation progressively increased 

the epoch count to correct those issues. 

DEiT and ViT with Mobile_ViT_S employed the 

stringent voting ensemble approach, which resulted in 

lower accuracy, although the individual model accuracy 

can exceed 98%. The deterioration is mostly caused by 

comparable structures and overlapping prediction 

properties in paired systems. The ensemble cannot 

utilize model diversity, which is essential for effective 

hard voting. 

Although the ViT+DEiT combination had 97% 

accuracy, the ensemble could not guarantee 

performance increases in all class forecasts. The 

classification reports revealed class-wise balancing 

difficulties, with good predictions for measles and 

chickenpox but often incorrect alarms for monkeypox 

and vice versa. A consistent pattern in all examined 

ensembles suggests that models tend to complement 

each other in deficiencies due to structural and 

predictive similarities. 

To prove that ensemble methods differ from other 

benchmark methods, the one-way ANOVA statistical 

method was used. Before testing the model, a hypothesis 

has been created. 

𝐻𝑜: 𝜇𝑚𝑜𝑑𝑒𝑙 =  𝜇𝑇𝑇𝐸𝐹𝑀 

𝐻1: 𝜇𝑚𝑜𝑑𝑒𝑙 ≠  𝜇𝑇𝑇𝐸𝐹𝑀 

In Equation (6), Ho indicates that the mean accuracy of 

all three models is equal to TTEFM; then the model has 

no significant difference when compared with the 

(α=0.05) value. In Equation (7), H1 indicates that the 

mean of the model accuracy is not equal to TTEFM; 

then it significantly differs from the model. The p-value 

was computed for three models vs. TTEFM. The ViT vs. 

TTEFM model attains a p-value of 0.0164. The DEiT 

vs. TTEFM attains 0.0245, and the Mobile_ViT_S vs. 

TTEFM attains 0.0188. All three values of P indicate 

that the models are significantly different from one 

another, and this assertion was statistically confirmed. 

5. Conclusions and Future Direction 

In this paper, the introduction of TTEFM, which is an 

ensemble model combining the strengths of three 

variations of the Transformer: ViT, DEiT, and 

Mobile_ViT. ViT extracts global context features, DEiT 

performs well on smaller datasets, and Mobile_ViT is 

designed for lightweight systems. By ensembling these 

models, TTEFM provides more balanced and robust 

predictions across all classes, as verified in our class-

wise performance. This balance enhances stability and 

reduces bias in imbalanced or multi-class datasets. 

However, promising its performance, TTEFM has 

some drawbacks. The ensemble framework boosts 

computational complexity, which translates to increased 

inference time and memory usage relative to single 

models. Such trade-offs can restrict the model’s 

usability in real-time or low-resource clinical settings, 

such as mobile health systems or rural clinics. 

Future research will aim to minimize the 

computational burden of TTEFM by compressing, 

pruning, or distilling the model to facilitate deployment 

on edge devices. Additionally, integrating eXplainable 

AI (XAI) methods can increase clinical trust by 

increasing transparency in the decision process. 

Investigating adaptive inference methods or light 

ensembling may also ensure that TTEFM is made 

suitable for real-time diagnosis and point-of-care 

applications. Additionally, the cross-dataset validation 

(7) 

(6) 
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will be done in future. Based on this model, real-time 

handheld devices can be developed for identifying viral 

infections in low-resource clinical settings.  
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