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Abstract: Background and objectives.: pox viruses are infectious agents that affect both humans and animals, often presenting
similar skin lesions, making accurate diagnosis a medical challenge. Early detection and classification are crucial for outbreak
control and timely clinical intervention. Automated diagnosis is essential, particularly for accurate multi-class classification.
Methods: the novel ensemble method was developed to address the multi-class-wise prediction by using the Triple Transformer
Ensemble Fusion Method (TTEFM). The TTEFM method was compared with existing pre-trained transformer methods,
including the Vision Transformer (ViT), Mobile ViT, and Data-Efficient Image Transformer (DEiT). The model was trained and
tested using Monkeypox Skin Lesion Dataset (MSLD), which includes four classes: chickenpox, measles, monkeypox and normal.
Results: the TTEFM methods outperform other state-of-the-art works. Based on the evaluation metrics, the methods are
compared with other pre-trained transformers. The TTEFM method attains 99% accuracy for all the classes. The ensemble
techniques were proven using the one-way Analysis of Variance (ANOVA) technique. Conclusion: the automated identification
of skin lesions is crucial for clinical diagnosis, enabling dermatologists to identify and treat pox virus infections effectively. The
presented TTEFM model provides a highly accurate and reliable solution for medical image classification.
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1. Introduction

Every year, the world experiences new outbreaks of
viral diseases. While some have their impact, others do
not. After the COVID-19 outbreak, another lethal viral
outbreak emerged Monkeypox virus (Mpoxv), an
endemic pathogen, still it was not a new disease. In
2024, several viruses, including the Nipah virus [18],
monkeypox, and the “zombie virus,” were in the news,
which gained more attention due to public health risks.
Mpoxv [14] is a virus belonging to the Orthopoxvirus
family, with significant impacts on human health. First
detected in monkeys at a Denmark research laboratory
in 1958 [37], the virus subsequently spread to Central
and West Africa, where it became endemic. However, in
2023, reported cases started to increase in Europe and
North America, raising global concerns [5, 11]. By
September 15,2024, 122 nations had reported more than
one lakh cases, a significant global health issue as the
virus spread outside of traditionally endemic areas [26].
Monkeys are not the only species that can spread the
virus; other species, such as squirrels and rats, can also
do so. The virus will be exposed within two to four
weeks and carry symptoms like fever, swollen lymph
nodes, blistering rashes, and muscle and headache [22].
The rashes will begin to appear on the face, palms, and
other parts of the body. Occasionally, if the condition
becomes severe, the virus may cause the person to die.
The primary diagnosis of monkeypox is Polymerase
Chain Reaction (PCR), which is not available in

remote areas, and the cost of the testing is too high.

The statistical rate of the disease is rising year by
year. So, the automatic identification of the disease is
required based on the computer design. Nowadays, the
automatic system has evolved in all domains, including
object detection, plant disease identification, and the
healthcare sector. In the beginning, Convolutional
Neural Networks (CNNs) performed well in the
classification of diseases, but they could not handle
overlapping feature differentiation in images, which
created difficulties in multi-class classification. To
address this, pre-trained deep learning models have been
proposed, enabling improved feature extraction, the
detection of complex patterns, and reduced
computational costs. These models have proven highly
promising in medical image analysis, enhancing the
accuracy and efficiency of disease detection.

In contrast to CNNs and other pre-trained CNN
variants, which are based on local receptive fields,
transformers have changed image classification by
using self-attention mechanisms to store long-range
dependencies and global context. Special attention is
given to all the affected red bump areas in the human
body. Especially, Vision Transformer (ViTs) segment
images into patches and process them as
sequences, which facilitates efficient feature extraction
without convolutional biases. Likewise, Mobile ViT
and Data-Efficient Image Transformer (DEiT) are some
examples of pre-trained transformer models that
improve performance by learning hierarchical
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representations, especially in multi-class classification.
Although computationally demanding, transformers are
great at processing small datasets and, therefore, are a
strong candidate to replace CNNs for deep image
classification.

1.1. Problem Statement

Among all the skin lesions that are the consequence of
different viral infections, the categorization of these
lesions presents the greatest problem. This is because
the lesions found within and between classes tend to
exhibit visual characteristics that overlap. The
differentiation between one infection and another is
made more difficult by the presence of red bumps and
similarities in texture patterns that are shared by several
types of viruses. The visual resemblance among viral
infections makes it difficult to accurately identify them,
particularly in situations when the lesions are not easily
distinguishable from one another. This might result in a
potential misdiagnosis and a delay in treatment.

To address the challenges of inter-class and intra-
class similarities of the pox virus classification, the
proposed of Triple Transformer Ensemble Fusion
Method (TTEFM) was introduced to reduce the bias and
to provide balanced treatment for all the classes. These
methods integrate the strengths of three pre-trained
transformers, including ViT, DEiT, and Mobile ViT,
with a hard voting strategy. In this method,
all three models independently predict the same input
image, and the majority of the three predictions is
chosen as the final result. This ensemble system
enhances stability, decreases variance, and increases the
model’s ability to generalize between visually similar
skin lesion classes.

1.2. Major Contributions

The primary contributions of this work are evident in the
initial stage, where preprocessing has been finalized
using one-hot label encoding to convert all labels into a
machine-readable format, and normalization of the
transformer has been executed. The ensemble method of
the TTEFM model was introduced to tackle
classification on a per-class basis. Various pre-trained
transformers, such as the ViT, DEiT, and Mobile ViT
methods, are utilized to train and test the images. A one-
way Analysis of Variance (ANOVA) test was conducted
to demonstrate that the ensemble model is distinct from
other methods. The evaluation metrics indicated that the
superior and more reliable model successfully classified
the pox virus images.

The passage describes the remaining parts of this
paper. In section 2, different authors’ proposed work and
the different benchmark methods are discussed. Section
3 discusses the methods used in this work, which
include the pre-trained transformer and the ensemble
methods of TTEFM. Section 4 presents a discussion of
all the results, including the evaluation metrics. Finally,

the conclusion of the work was discussed with its
limitations and future directions.

2. Related Works

In this area, classical machine learning and deep
learning approaches are used in a wide variety of real-
world settings to recognize objects and classify
photographs, particularly in medical and normal
images. Numerous medical situations call for the
utilization of automatic detection. Previous work
applied to different datasets is discussed with their
techniques and measures.

2.1. Classification for Pox virus and
Monkeypox Virus Using ML and DL
Techniques

In this investigation, Luong et al. [17] utilised a
collection of images, including monkeypox skin lesion
images and a monkeypox image dataset. Using deep
learning methods like ResNet50, VGG16, and
MobileNet, these characteristics were retrieved.
Following this categorization, machine learning
techniques such as the AdaBoost method, decision trees,
logistic trees, random forests, K-Nearest Neighbors
(KNN), and Gaussian naive bayes were used. With a
97% success rate, the combination of MobileNet with
logistic regression produces a progressive outcome.
Magsood et al. [19] reported using the Monkeypox Skin
Lesion Datasets (MSLDs). Using deep learning
methods like ViT, swin Transformer, ResNet 50, ResNet
101, EfficientNetV2, and ConvexNet V2, deep models
are employed for feature extraction. Then, feature
fusion and selection are performed using optimisation
techniques, such as the entropy-controlled firefly
approach. Finally, the classification was done based on
a multi-class support vector machine with 98.65%
accuracy. The proposed application for mobile devices
with human monkeypox detection capabilities, utilizes
an advanced deep-learning techniques to achieve a
successful classification. To maintain the robustness of
performance, the study used models such as ResNet18,
GoogleNet, EfficientNetBO, @ NasNet  Mobile,
ShuffleNet, and MobileNetV2 in disease identification.
Surprisingly, the proposed system worked by achieving
a high level of accuracy (91.11%) in binary
classification, indicating that it could be used as a useful
tool for finding and diagnosing Monkeypox early on
[25].

Bala et al. [2] took a MSID from the Kaggle
repository. The author performed data augmentation to
increase the dataset count and then separated the
training and testing data. The proposed CNN model then
employs machine learning and deep learning
approaches. Sitaula and Shahi [30] tune all types of
hyperparameters to identify the optimal model. The
proposed monkeypox net method achieved a multi-class
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classification rate of 98.91%. In this investigation, the
collected images are from publicly available Google
Images. A deep learning method was applied to classify
multi-class pox virus disease. Various deep learning
methods were applied, including VGG16, VGG19,
ResNet50, ResNet101, IncepResNetv2, MobileNetV2,
InceptionV3, Xception, EfficientNet-B0, EfficientNet-
B2, DenseNet-121, and DenseNet-169, and were
selected the top two accuracies. Xception and
DenseNet-169 were selected to generalize the new
images for the majority voting ensemble method.
Muthulakshmi et al. [21] achieved 85.44% accuracy in
this ensemble method.

2.2. Classification Using Vision Transformer
and DEIT Transformer

In 2024, Hussain et al. [8] utilized the poles of the
prismatic cell LIBs dataset for the laser welding
photographs. The photos were enhanced to increase
their quantity, subsequently extracting features using the
VGG16 and MobileNet approaches. These features are
now integrated into a single vector. The ViT
methodology employs all these attributes for
classification purposes. All eight categories are highly
classified, and the model’s accuracy is 97%. In 2025,
the method [29] utilizes three distinct iris datasets. The
three different feature maps employed to extract image
features: Central Local Adaptive Binary Patterns
(CLABP), Left Local Adaptive Binary Patterns
(LLABP), and Right Local Adaptive Binary Patterns
(RLABP). The ViT technique now utilizes each of these
three methods independently for classification
purposes. The author introduced a novel model that
combines three components into a cohesive feature. The
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features as patches were allocated and subsequently
employed the ViT model to reduce the model’s error
rate. In 2024, Ulukaya and Deari [35] utilized the
annotated rice disease data for classification purposes.
They used data from five distinct rice disease categories
to construct a model. The foundational model is the ViT
base 32, which implements various factors to achieve
optimal accuracy. The model incorporates a fine-tuning
parameter with data augmentation and employs the
categorical focal loss entropy method. The proposed
approaches are compared with other leading
publications, resulting in an accuracy of 88.57% across
five distinct classifications.

2.3. Classification Using Mobile_ViT Method

According to Ding and Yang [9], they collected an apple
leaf dataset from the Ningxian Modern Agricultural
Industrial Park in Qingyang City, Gansu Province, and
the Haisheng Apple Planting Base in Yulinzi Town,
Zhengning County. Five different classes were token
and used deep learning approaches to perform the
classification. These methods include the ViT, the
Mobile_ViT transformer, and the swim transformer. The
improved Mobile ViT method produces a better result
when compared with state-of-the-art works. They
achieved an accuracy of 98.54%. Zhu et al. [38] stated
that the corneal ulcer, located in the human eye, they
employed deep learning techniques. Initially, they
applied the Mobile ViT method, which improved the
extraction of local and global features. The proposed
method produces classification accuracy in the range of
88.7% to 91.5%, respectively. Gradient-weighted class
activation mapping visualizes all the extracted features.

Table 1. Summary of the pre-trained CNN and Transformers in detail.

Author | Year | Dataset Feature extraction Featlfre Classification Best techniques with
selection accuracy
Monkeypox AdaBoost method, decision trees, decision trees, . . L
Luong et al. 2023 | Skin Lesion [ResNet50, VGG16, and MobileNet X logistic regression, random forests, KNN, and MobileNet w ith 1(f,glsm
[17] . . . regression-97%
images Gaussian naive bayes
Madsood ef Monkeypox |ViT, Swin transformer, ResNet 50, Entropy-
ac; [19] 2024 | skin lesion | ResNet 101, EfficientNetV2, and | controlled Multiple SVM 98.65%
images ConvexNet V2, deep models firefly
Sahin et al. ResNet18, GoogleNet, EfficientNetB0, NasNet . o
5] |20%2| MSLD X X | Mobile, ShuffleNet, and proposed (MobileNety2) |  MOPileNetV2-91.11%
VGG16, ResNet30, MobileNetVl, LR RF SVM K-NN XGBoost MobileNetV1+LR-90.64%
Bala e al. [2] 2023 | MSLD Inception V3, Xception
: % X VGG16, ResNet50, MobileNetV1, Inception V3, MOXNE-98.91%
Xception, and modified CNN(MOXNet) T
. Monkey skin VGG16, VGGI9, ResNetSO, RCSNEFIOI’ Xception and DenseNet-169
Sitaula and 2022 llesion images X X IncepResNetv2, MobileNetV2, InceptionV3, alone with hard votin
Shahi [30] datase tg Xception, EfficientNet-B0, EfficientNet-B2, tec}glr:yl os 87\13;/ g
DenseNet-121, and DenseNet-169 1ques -8/.157%
Laser
Dinetal. [8]| 2024 | welding VGG16 and MobileNet X Hybrid ViT model 97%
images
Mobile Net V2, Efficient Net B7, VGG 19, Inception
Ulukava and Rice image V3, ResNet, Mobile Net V2+FT, Efficient Net
Diarin 5 | 2025 datasetg X X B7+FT, VGG 19+FT, Inception V3 +FT, ResNet 88.57%
152+FT, ViT B16, ViT B32, ViT B16 +FT, ViT
B32+FT
ALkahla.ef | 5, | Ovarian X X Uni-Swin_T, Parallel_Swim_T 96.05%
al. [1] cancer
Haripriya and| Monkeypox CNN, VGG16, VGG19, Resnet50, Hybrid Fuzzy o
Tnbarani [12]| 2°% | skin lesions X X PCA VGG16 Method 91.42%
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Table 1 summarise the pre-trained models of CNN
and transformer methods used in their applications.
Monkeypox, apple plant disease, human iris, brain, and
lung images are studied using distinct sets of images in
both controlled and uncontrolled contexts. These
analyses are based on the studies discussed above. For
the most part, illness categorization is accomplished
through the utilization of pre-trained methods such as
CNNs, transformers, and other models. Transformer
models are the foundation for defining monkeypox
pictures because they are trained on a small dataset,
which yields great accuracy at all stages. The pre-
trained transformer techniques are applied to the dataset.
Having said that, not every class is given the same
amount of attention.

3. Materials and Methods

This section talks about the preprocessing techniques
and the transformer methods. To import the various
categories of images as input, along with their relevant
dimensions. Following the import of the images, the
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next step is the preprocessing stage, where the data
augmentation and label encoding processes are carried
out. Fivefold cross-validation was used as the basis for
the assessment procedure that was carried out on this
model. Following the completion of this, other deep
learning algorithms for transformers are implemented.
When it came to determining the final prediction
classes, the ensemble techniques were successfully
utilized. Based on the results, the assessment metrics
were carried out to determine which approach was
superior. Finally, we classified each approach based on
the classes it belonged to. Figure 1 provides a graphical
representation of the processes for the approaches.

3.1. Image Pre-processing

All the images in this section undergo image
preprocessing techniques to enhance and reduce noise.
The different techniques can be applied to images.

In this case, label encoding and data augmentation
are performed.

Mobile WViT_S Vision Transformer

Data-Efficient Image Transformer (DEiT)

f

Deep Learning Techniques

v

Ensemble Method

'

| Classification |

Chickenpox
Measles

> Monkeypox

Normal

Figure 1. Workflow of the methodology.

3.1.1. Label Encoding

Generally, the class labels are in categorical form.
Machines cannot directly process categorical values.
Consequently, we performed one-hot label encoding on
those categorical labels. Now the labels are encoded into
a machine-readable format. The class labels are now
formatted as follows: for chickenpox 0, for measles 1,
for monkeypox 2, and normal 3. Likewise, the label
encoding was performed on the image labels.

3.1.2. Data Augmentation

A small number of images is not enough to train the
deep learning techniques. To traditionally increase the
count of images, data augmentation was performed. The
parameters used for image augmentation are described

in Table 2. The rotation, shear, zoom, width, and
horizontal shift fill modes were performed. In each
folder, the count of the images is typically increased. An
evaluation of this model was performed.

3.2. Model Evaluation

The model evaluation was done based on K-fold cross-
validation. It works better in generalization for machine
and deep learning methods [32]. In general, if the
validation is applied to the model, then it will start its
training for k-1 times as per the given k. The data will
take k-1 for training the model, and the last part will be
for testing. It will just start iterating the models until the
K value is attained. The cross-fold validation will work
well for unseen images [36].
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3.3. Vision Transformer

Convolution and the pooling layer are often the
foundations upon which CNN operates, extracting the
characteristics from the picture as raw data. The dense
layer will generate the final result once the picture
features have converged. The ViT approach was created
to address CNN’s drawbacks. It was created by

Classes-4
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Measles-1 MLP Head
Monkeypox-2

Normal-3

Patch+Position
Embedding

A
HOLGC)

The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Dosovitskiy [10] to use Natural Language Processing
(NLP) to handle audio and text. Later, it appears in
medical image processing, which uses the self-attention
mechanism to provide outstanding outcomes. The self-
attention mechanism, which pays particular attention to
more significant characteristics, is a key component of
deep learning.

Transformer Encoder

I
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i

Linear Projection of Flattened Paiches

A
B — I
‘ Image Patches }—P P1 P2

Figure 2. The architecture of the ViT model.
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Figure 3. Details of the transformer encoder.

The input pictures are separated into patches
according to HxWxC, where C represents the number
of channels and H and W represent the image resolution.
N*(PA2*C), where N is (H¥*W/P~2) and (P, P) represents
the resolution of split patches, results from sequencing
the patches into a 2D flattened form [15]. The linear
projection transforms all these 2D patches into 1D
flattened data. Figure 2 illustrates the position
embedding steps employed to organise the patch
information, thereby preventing data from being mixed
up [27]. The hexagon shape indicates the position of the
pixel, and the cylinder shape represents Pixel values in
1D format. The transformer encoder now receives the
embedded patches. Within this Multi-Head Self-
Attention (MSA) mechanism, a separate one was

formed for each patch. The 1D information is divided
into three types of matrices: Query (Q), Key (K), and
Value (V). These work together in the self-attention
mechanism to figure out how different parts of an image
relate to each other. The Query (Q) shows what a
specific part is searching for in other parts, while the
Key (K) explains what each part contains and how
relevant it is to the others. After applying attention, the
Value (V) transmits the actual information. By
calculating attention scores using Q and K, the model
identifies which parts are most important and uses V to
update their representation. This technique allows the
model to effectively capture long-range dependencies in
images. The attention score is calculated by using the
Scaler dot product function. Equation (1) shows the
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functionality of the dot product. Figure 3 explains the
working procedure from the embedded patches to the
transformer encoder.

Attention = Softmax (QK"|Vdy)V

(M

Where QK" computes the similarity between the
patches of images. The square root of dyis used to scale
the values so that the negative value can be ignored.
Now the values are multiplied by V, deciding how much
information can be taken for the final decision. Due to
the small size of the datasets, this work used a pre-
trained ViT. If the size of the dataset is small, then a
trained transformer can be used to improve the
generalization and reduce the computational time for
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training the model. Despite this, the model yields
superior accuracy as it specifically targets the affected
lesions of bed bumps for analysis. After extracting the
features from the MSA mechanism, a Multi-Layer
Perceptron (MLP) was used to classify the pox virus
disease.

3.4. Mobile ViT Transformer

The Mobile ViT is a compact ViT model specifically
engineered for mobile devices. It incorporates multiple
convolutional and transformer blocks to improve both
the speed and accuracy of image classification and
various computer vision tasks.
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Figure 4. The architecture of Mobile ViT_S transformer

The process initiates with a convolutional layer
designed to extract local processing features from the
images. MV2 facilitates the down-sampling of these
features by a factor of two. This procedure persists
through multiple blocks, culminating in the mobile ViT
Block, which maintains compliance with Conv 1x1. A
global pooling layer is applied before the output layer
[20], as depicted in Figure 4.

Inside the Mobile ViT block, each local and global

representation of the features is extracted. In the initial
stage, the input is in the dimension of C*H*W which
extracts the local features based on the convolutional
layer starting from n*n dimension to 1*1 dimension.
With the help of local representation, the global features
are extracted by using three different techniques such as
fold, unfold, and transformer block. By concatenating
the local and global features again the MV2 blocks
perform again. This process is explained in Figure 5.
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Figure 5. Workflow of Mobile ViT block

The difference between the traditional ViT method
and the Mobile ViT method is in traditional ViT all the
input images are divided into patches and then
positional embedding is performed with encoding.

Since the VIT methods need a large dataset and
computational time. The mobile _vit method uses the
unfold, transformer, and fold method to extract the
features effectively. If handles the small dataset and
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computational time effectively [6].

3.5. Data Efficient Image Transformer (DEit)

The DEIT is a ViT model proposed by Touvron et al.
[34] to make training transformers more efficient
without needing large-scale datasets. Classic ViT
depend on huge labelled data, e.g., ImageNet-21k,
which makes them expensive to train computationally
and out of the question for small datasets [10]. DEiT
overcomes this challenge by including a distillation
token, through which the model can learn not just from
the input data but also from a teacher network, often a
CNN such as ResNet [34]. This improves learning
efficiency, and the model can generalize well even with
small datasets such as ImageNet-1k.

One of the most important innovations of DEiT is its
distillation process, which enhances data efficiency
without compromising accuracy [16]. In contrast to
conventional ViTs that need enormous amounts of
labelled data, DEiT learns efficiently by distilling
knowledge from a pre-trained CNN, minimizing the
requirement for large datasets [34]. In addition, DEIT is
computationally efficient and optimized for speed,
which makes it a feasible solution for real-world
applications with limited resources. Through the use of
both self-attention and knowledge distillation, DEiT
provides similar performance to baseline ViTs while
reducing data and computational needs substantially

3.6. Ensemble Transformer

The ensemble learning technique constructs a model by
integrating multiple algorithms to achieve enhanced
outcomes [28]. Nowadays the transformer methods are
used for the classification of medical images. Three
different transformation models such as ViT, DEiT, and
Mobile ViT method. Vision transformers (ViT, DEIT,
and Mobile ViT) revolutionise image processing by
treating images as patch sequences. It uses self-attention
to capture global context and performs well on large
datasets. DEIT is especially improved in efficiency on
smaller datasets with optimized training and distillation
techniques. Mobile ViT combines transformers and
convolutions for better results in resource-constrained
environments. These three prediction outcomes are
combined using the hard voting ensemble method, and
the respective equations are described from Equations

(2)to (5)

X = ViT Transformer() (2)
Y = DeiT Transformer () (3)
Z = Mobile_ViT Transformer () 4)

For each test sample X in the D* ., we will compute
predictions P(X), P(Y), P(Z), where P(X, Y, Z) E{1, 2,
3,4........., C} and C is the number of classes. Combine
predictions using hard voting:

Pensempie(X) = argmax, (P, (X) =) (5)

m € {ViT,DeiT,Mobile_VIT}

Where I1(.) is the indicator function.
Algorithm 1: TTEFM method.

Input: Pox Virus Images
Output: Classification based on Classes
Steps:
1. Initiate
2. Define the dataset D = {X, Y;}" i=1, where X; denotes the
input images and Y; represents the corresponding labels
3. Load the Dataset D. Ensure X; £ """ "C, where H, W, and
C are the image's height, width, and channels.
4. Use the K-Fold cross-validation:
4.1 Split D into k folds D= {D,, D, D;, ......
Dk:(Dk trainy D Vals D test)~
4.2 For each fold K:
o D" ruin is used for training.
« D* .1 is used for validation.
o DF oy is used for testing.
5. Load the three transformers: Let Myir, Mpeit, and Myobiie_yir.
* Train each model on Dk Train for all K.
* Save the predictions Py, Ppeir, and Pubite vir
6. Perform Ensemble with Hard Voting using Equation (5).
7. Utilize the performance metric to assess the effectiveness of
the model.
8. Classifications are conducted according to class.
9. Halt.

weveeer, Di) where

The model was designed utilising the aforementioned
algorithm. The model is an ensemble comprising ViT,
DEiT, and Mobile ViT, utilising a hard voting method
for decision-making. The process involves generating
independent class labels for each model based on the
input image. Subsequently, it aggregates the votes and
selects the majority class as the final output, effectively
utilising all three methods. In the event of a tie, the final
decision is determined by selecting the model that
exhibits the highest validation accuracy as the best
prediction. Alternatively, a predefined priority order
may be employed to resolve ties in instances of
comparable model performances. This ensemble
method ensures enhanced robustness and accuracy by
leveraging the complementary strengths of ViT, DEiT,
and Mobile ViT. Figure 6 delineates the methodologies
employed.

Output of ViT Output of DEIT Cutputof
predicted class Predicted Class Mobile_Vil_38

.

Enszemble Using Hard Voting

t1==pl

Yes

Classification

Figure 6. Ensemble method of TTEFM model.

The architecture style of the ensemble model varies
when the components are trained independently. The
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predicted model exhibited non-uniform calibration
throughout its entirety. Certain models may rely on
overconfidence and under confidence for specific
classifications, leading to biases. The hard voting
ensemble method was employed to enhance model
robustness and mitigate bias, offering a straightforward
approach for integrating heterogeneous models.

4. Result and Discussion

This section presents the outcomes of each
transformation model and the ensemble methods,
accompanied by their corresponding evaluation metrics.
The initial subsection addresses the dataset and the
simulation of system information. This subsequent sub-
section presents the results along with their
corresponding metrics.

4.1. Simulation and Information about Dataset

The Kaggle website hosts the publicly available
Monkeypox Skin Image Dataset (MSID) [3]. All the
images are in colour with 3 channels: red, blue, and
green. The image format is .png, 224 x 224. The dataset
contains 4 different classes: chickenpox, measles,
monkeypox, and normal. The total number of images for
originals is 770. Since we use deep learning techniques,
we need more than just a few images to train the model
and achieve better generalization results. To virtually
increase the count of datasets, we performed image
augmentation. Table 2 describes the original and
virtually enhanced image count details.

All these transformer models were performed on
Windows 11, with a 13th Gen Intel (R) Core (TM) i7-
13620H processor operating at 2.40 GHz and 16 GB of
RAM, and supported by a GPU RTX 4050 system. The
algorithm was developed using Anaconda Navigator
with Jupyter Notebook, along with supporting packages
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such as torch, scikit-learn, timm, NumPy, Pandas, OS,
CSYV, Seaborn, and Matplotlib.

Table 2. Details of the dataset.

Class label name | Original image | Augmented image
Chickenpox 107 508
Measles 91 591
Monkeypox 279 779
Normal 293 793
Total 770 2671

Table 3 lists the parameters used for image
augmentation. We enhance the images using rotation,
shearing, zooming, horizontal flip, and vertical flip. We
gather new dimensions from the enhanced images to
improve the model’s performance for unseen images.

Table 3. Parameter of image augmentation.

Parameter name Parameter size

Rotation Range 40
The range for width shift 0.3
The range for height shift 0.3
Shear Range 0.3
Zoom Range 0.3

horizontal flip True

vertical flip True

fill mode Nearest

4.2. Result Analysis and Measures
4.2.1. Performance Metrics

To compare the proposed method to existing benchmark
methods, the statistical metrics used here are accuracy,
precision, recall, Fl-score, balanced accuracy,
specificity, and geometric mean. The computation is
done based on a confusion matrix. A confusion matrix
for multi-class classification has N labels with N actual
and expected values. Based on the confusion matrix,
evaluation metrics of the transformer methods and their
description are described in Table 4. Based on these
metrics the evaluation was done for the transformer
models and the proposed work of TTEFM.

Table 4. Evaluation metrics for transformer methods.

Method Name Formula

Description

TP+TN

Accuracy [13]

Finds the overall correctness of the model.

TP+TN + FP + FN
TP

Precision [4] m

Finds the proportion of true positive out of all positive predictions

TP

Recall (or) Sensitivity [31] m

The model finds the correctly identified positive samples

2 * (Precision * Recall)

FI-S 24
core [24] (Precision + Recall)

Combines both precision and recall and stores them as a single value

Balanced Accuracy [23] Sensitivity + Specificity

It will give equal weight priority to both minority and majority classes.

2 This measure is suitable for imbalanced datasets.
N T EPE -
Specificity (or) true negative rate [7] TNR measures the model’s ability to identify the negative samples
TN + FP correctly.
. — —— It finds the balance between sensitivity and specificity and is useful for
Geometric Mean [33] \/Senszthty * Specificity imbalanced datasets.
7P - P - -
False Positive Rate (FPR) IFPR measures the proportion of neggtlye instances incorrectly classified as
FP+TN positive.

4.2.2. Result Analysis

Based on the above metrics, different transformation
models were applied to both the original and augmented
images.

The 5-fold cross-validation method was used for the
training and testing phase. The mean value is used to
find each transformation model’s training and testing
accuracy in each fold. This value is then used as the
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accuracy for each model, and the values are shown in
Table 5. This table clearly states that the training phase
of the original images performs well. However, in
general, it provides less accuracy compared to training.
Introducing new images led to a further decline in the
model’s performance, likely due to the limited size of
the training dataset.

Image augmentation techniques were employed as a
key aspect to address this issue and improve
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generalisation. By increasing the count of the images in
the training phases, which means different directions in
angle and the dimension of the images and other
transformations are introduced to a diverse dataset
during training.

The augmented images now perform better in terms
of generalisation. So, augmentation techniques were
useful when we had small datasets.

Table 5. Training and testing accuracy of different transformer methods for both original and augmented images.

Original images

Augmented images

Evaluation/Methods DEIiT |Mobile_ViT| Vision transformer DEiT Mobile_ViT | Vision transformer

Fold 1 100 99.51 100 99.81 99.11 99.39
Fold 2 100 98.38 97.08 100 99.34 98.36
Fold 3 100 99.03 99.68 100 99.44 99.67
Fold 4 100 98.54 99.68 100 99.44 99.67
Fold 5 100 98.86 100 100 99.67 99.25
Average (training) 100 98.86 99.29 99.96 99.40 99.27
Average (testing) 92.73 91.95 91.04 98.46 98.24 95.92
Standard deviation 0.0008 0.0020 0.0054

Confidence level +0.0007 +0.0018 +0.0047

Table 6. Comparative analysis of different transformers with their measures.

Methods Accuracy | Precision | Recall | F1-Score | Balanced accuracy | Specificity | Geometric mean
ViT 95.92 95.89 95.54 95.69 95.54 98.62 97.06
DEIT 98.46 98.41 98.41 98.41 98.41 99.49 98.95
Mobile ViT 98.24 98.20 98.12 98.16 98.12 99.41 98.76
TTEFM 99.03 98.98 98.99 98.98 98.99 99.68 99.33

Table 6 shows a comparative analysis of different
transformation models with their respective values. The
tale contains accuracy, precision, recall, Fl-score,
balanced accuracy, specificity, and the geometric mean
value. Remarkably, within 10 epochs, the model
produces a strong result for the benchmark method.

precision, 95.54 for recall, 95.69 for F1-score, 95.54 for
balanced accuracy, 98.62 for specificity, and 97.06 for
the geometric mean, respectively. The DEIiT method
yields superior results, with scores of 98.46, 98.41,
98.41, 98.41, 99.49, and 98.95, respectively. The
Mobile ViT method has 98.24, 98.20, 98.12, 98.16,

The ViT method attains 95.92 for accuracy, 95.89 for

100

Average Values

98.12, 99.41, and 98.76, respectively.

Comparative Anlaysis of Different Transformers with Measures

99.03

9546
08.24

!5!‘

Accuracy

052 - 9898

054

Precision

9899

98.12
0841

95‘

Recall

= Vit = Deit

956‘

9812 95 09
984}

gj‘ ‘

Balanced Accuracy

98.16 0g.02

F1-Score

98.41

Measures

Mobile vit mTTEFM

99,41
99.68
9948

Specificity

98.76
9933

98.93
!1.| ‘

Geometric Mean

Figure 7. Comparative analysis of different transformer models with measures.

When compared to the other benchmark methods, the

4.2.3. Discussion and Comparison

ensemble method, known as the TTEFM method, yields
superior results. The metric values for accuracy,
precision, recall, Fl-score, balanced accuracy,
specificity, and geometric mean are 99.03%, 98.98%,
98.99%, 98.98%, 98.98%, 99.68%, and 99.33%,
respectively. Figure 7 also illustrates the result,
providing a clear pictorial presentation of the
comparative performance.

The proposed method, TTEFM, is an ensemble model
that combines the strengths of ViT, DEiT, and
Mobile ViT transformer methods to achieve superior
class-wise classification performance. The core
objectives of each method are outlined below:

e VIiT: ViT treats images as sequences of patches,
replacing convolutional layers with a self-attention
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mechanism to capture global context features and the
relationships between patches. It is particularly
effective for datasets with large dependencies.

e DEIT: DEIT focuses on enabling efficient training of
ViTs on smaller datasets. Techniques like knowledge
distillation and optimized training strategies make it
competitive with CNNs in terms of accuracy and
resource efficiency, even with limited data.

e Mobile ViT: designed for resource-constrained
environments such as mobile and edge devices,
Mobile ViT combines the strengths of transformers
and convolutions to deliver high efficiency and
accuracy on small datasets.

By combining these three methods, TTEFM exploits the
individual strengths of these methods to improve
generalization across classes. The ensemble method
employs hard voting strategies that ensure equal
importance for every class, contributing to robust
performance on diverse datasets. Though ViT attains
high accuracy by capturing global features, the
precision, recall, and Fl-score values vary across
classes, as shown in Figure 8. This indicates that class-
wise performance is not consistent. Compared to ViT,
DEIT generalises better on new images, especially when
working with smaller datasets, as shown in Figure 9.
This arises from its primary focus on training efficiency.

Classification Report:

precision recall fl-score  suppor:

Chickenpox .96 9.90 9.93 508
Measles 09.96 9.98 9.97 591
Monkeypox 09.96 9.97 9.96 779
Normal 09.96 9.97 9.97 792
accuracy 9.96 2670
macro avg 9.96 9.96 9.96 2670
weighted avg 9.96 9.96 9.96 2670

Figure 8. Classification report of the ViT method.

Classification Report:

precision recall fl-score  support

Chickenpox 0.97 0.98 0.98 508
Measles 09.99 0.98 0.99 591
Monkeypox 0.98 0.98 0.98 779
Normal 0.99 0.99 0.99 792
accuracy 0.98 2670
macro avg 8.98 8.98 9.98 2670
weighted avg 0.98 0.98 0.98 2670

Figure 9. Classification report of DEiT method.

Mobile ViT shows excellent performance in
resource-constrained environments, achieving good
accuracy while  maintaining  efficiency. The
classification report in Figure 10 highlights its
effectiveness. The TTEFM model proposed here
surpasses these individual methods by showing
consistently high accuracy for all classes. It places equal
importance on each class and provides comprehensive
generalisation and reduced variability in the
performance metrics. The classification report of
TTEFM, as shown in Figure 11, is well-balanced and
superior. Combining the goals of ViT, DEiT, and

Mobile ViT in a TTEFM ensemble model enables
better general performance for a class-wise
classification task.

Classification Report:

precision recall fl-score support

Chickenpox 0.97 0.96 0.97 568
Measles 0.99 0.99 0.99 501
Monkeypox 0.97 0.98 .98 779
Normal 0.99 08.99 8.99 792
accuracy .98 2670
macro avg 0.98 0.98 8.98 2670
weighted avg 0.98 0.98 .98 2670

Figure 10. Classification report of Mobile ViT method.

Classification Report:

precision recall fl-score  support

] @.98 @.99 @.99 508

1 0.99 0.99 .99 591

2 @.99 @.99 @.99 779

3 @.99 @.99 @.99 792

accuracy @.99 2670
macro avg 9.99 8.99 @.99 2670
weighted avg 9.99 8.99 8.99 2670

Figure 11. Classification report of TTEFM method.

The batch size determines the quantity of samples
handled during one forward and backwards pass. A
reasonable batch size strikes a compromise between
optimal memory use and minimising noise in photos.
So, the normal batch size for the model is taken as 32.
An epoch refers to the total count of complete iterations
across the training dataset. The number of complete
passes through the training datasets is called the epochs.
If the training period is too long, the model will move to
overfit, and the generalization of the image will become
difficult. Based on the epoch and the learning rate, the
model will face the difficulties. The learning rate will
control the speed of training. The step size for updating
the model weights during optimization. The parameters
used in the transformation models are discussed in Table
7.

Table 7. Hyperparameters for transformation models.

Parameter name Values
Epoch 10
K-fold 5-fold
Learning rate 0.0001
Optimizer Adam
Loss Cross_Entropy loss
Batch size 32

Confusion Matrix of ViT
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Chickenpox Measles Monkeypox Healthy
Predicted Labels

Figure 12. Confusion Matrix of the ViT Method.
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The confusion matrix says how the transformation
model works in each class. A combination of true
positive, true negative, false positive, and false negative
values is obtained. Each parameter has its
characteristics. Figure 12 describes the ViT method of
the confusion matrix. The total true values are 2561, and
the false values are 109, respectively. Still, the models
contain some amount of misclassification data. The
DEit methods have the total true values as 2629 and the
total false values as 41.

Confusion Matrix of DEIT

700
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explained in Figure 14. The TTEFM method has a total
value of 2691, and the false values are 26. The proposed
works outperform all state-of-the-art methods, ensuring
that each class receives equal importance. Figure 15
expresses the TTEFM confusion matrix.
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Figure 13. Confusion matrix of DEIiT method.
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Figure 14. Confusion matrix of Mobile ViT method.
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Figure 15. Confusion matrix of TTEFM method.

'
Chickenpox

Figure 13 explains how the DEiT method, in
comparison to the ViT model, generates a lower false
rate and more true values. The Mobile ViT has the true
values as 2623 and the total false values as 47, which is

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 16. Class-wise ROC curve for ViT model.
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Figure 17. Class-wise ROC curve for DEiT model

The ROC curve can be derived from the confusion
matrix, which is essential for determining the FPR and
assessing model performance. The distribution of the
ROC curve by class is presented herein. Figure 16
illustrates the ViT model, highlighting the true
predictions of each model and their interactions with
one another. The predicted probabilities for chickenpox,
measles, monkeypox, and healthy individuals were
0.95, 0.98, 0.98, and 0.98, respectively. The model
demonstrated limitations in predicting the chickenpox
virus. The DEIT transformer method determines all the
classes to be equal. Figure 17 illustrates that the AUC
values for chickenpox, measles, monkeypox, and
normal were 0.99.
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Figure 18. Class-wise ROC curve for Mobil ViT model.
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Figure 19. Class-wise ROC curve for TTEFM model.

Figures 18 and 19 illustrate the Mobile ViT model
and the proposed TTEFM models, which use a class-
wise approach. The Mobile ViT models achieve an
accuracy of 0.98 for both chickenpox and monkeypox.
For Healthy and Measles, it achieves a true positive
value of 0.99. The TTEFM method achieves a score of
0.99 for chickenpox, measles, and monkeypox. The true
value of 1.00 is achieved as healthy.

Model-wise Comparison of Training Cost and Inference Time
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Figure 20. Model-wise comparison of training cost and inference
time.

Figure 20 explains the training cost and the inference
time of individual models along with the proposed
method of TTEFM. Since the model has a high
inference time but still the accuracy and the F1 score of
the model were high when compared with individual
methods. Based on the accuracy and the Fl-score, the
additional computational cost, especially in diagnostics
of the viral infection, is necessary.

4.2.4. Ablation Analysis

In the beginning, the model overfitted and underfitted at
epoch 5. The cross-validation progressively increased
the epoch count to correct those issues.
DEIiT and VIiT with Mobile ViT S employed the
stringent voting ensemble approach, which resulted in
lower accuracy, although the individual model accuracy
can exceed 98%. The deterioration is mostly caused by
comparable structures and overlapping prediction
properties in paired systems. The ensemble cannot
utilize model diversity, which is essential for effective
hard voting.

Although the ViT+DEiT combination had 97%
accuracy, the ensemble could not guarantee

performance increases in all class forecasts. The
classification reports revealed class-wise balancing
difficulties, with good predictions for measles and
chickenpox but often incorrect alarms for monkeypox
and vice versa. A consistent pattern in all examined
ensembles suggests that models tend to complement
each other in deficiencies due to structural and
predictive similarities.

To prove that ensemble methods differ from other
benchmark methods, the one-way ANOVA statistical
method was used. Before testing the model, a hypothesis
has been created.

Ho! bmodet = UTTEFM (6)
Hy: lhmoder # UTTEFM (7)

In Equation (6), Ho indicates that the mean accuracy of
all three models is equal to TTEFM; then the model has
no significant difference when compared with the
(0=0.05) value. In Equation (7), H: indicates that the
mean of the model accuracy is not equal to TTEFM;
then it significantly differs from the model. The p-value
was computed for three models vs. TTEFM. The ViT vs.
TTEFM model attains a p-value of 0.0164. The DEiT
vs. TTEFM attains 0.0245, and the Mobile ViT S vs.
TTEFM attains 0.0188. All three values of P indicate
that the models are significantly different from one
another, and this assertion was statistically confirmed.

5. Conclusions and Future Direction

In this paper, the introduction of TTEFM, which is an
ensemble model combining the strengths of three
variations of the Transformer: ViT, DEiT, and
Mobile ViT. ViT extracts global context features, DEiT
performs well on smaller datasets, and Mobile ViT is
designed for lightweight systems. By ensembling these
models, TTEFM provides more balanced and robust
predictions across all classes, as verified in our class-
wise performance. This balance enhances stability and
reduces bias in imbalanced or multi-class datasets.

However, promising its performance, TTEFM has
some drawbacks. The ensemble framework boosts
computational complexity, which translates to increased
inference time and memory usage relative to single
models. Such trade-offs can restrict the model’s
usability in real-time or low-resource clinical settings,
such as mobile health systems or rural clinics.

Future research will aim to minimize the
computational burden of TTEFM by compressing,
pruning, or distilling the model to facilitate deployment
on edge devices. Additionally, integrating eXplainable
Al (XAI) methods can increase clinical trust by
increasing transparency in the decision process.
Investigating adaptive inference methods or light
ensembling may also ensure that TTEFM is made
suitable for real-time diagnosis and point-of-care
applications. Additionally, the cross-dataset validation
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will be done in future. Based on this model, real-time
handheld devices can be developed for identifying viral
infections in low-resource clinical settings.
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