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Abstract: This study analyses Spectral Efficiency (SE) and throughput under varying user densities (50 to 200 users), mobility
velocities (0 to 250 km/h), latency, packet loss, and fairness index at diverse Signal-to-Noise Ratio (SNR) levels for different
scenarios. These scenarios encompass comprehensive massive Multiple-Input Multiple-Output (mMIMO) cooperative Non-
Orthogonal Multiple Access (NOMA), mMIMO cooperative NOMA integrated with Cognitive Radio (CR), and CR-enabled
mMIMO cooperative NOMA facilitated by Reconfigurable Intelligent Surfaces (RIS) using millimetre-Wave (mmWave) in 6G
networks. The study investigates the enhancement of latency, packet loss, and fairness indexes in the proposed systems through
a unique approach that dynamically optimizes power distribution via a Q-learning algorithm. The mathematical clarification of
each equation offers a comprehensive understanding of signal reception by users, the dynamics and implications of CR, and the
influence of intelligent RIS optimization on system performance. The findings demonstrate that the incorporation of RIS enhances
resource allocation, improves user performance in high-density settings, increases average throughput, reduces latency and
packet loss, and raises the fairness index by mitigating interference and optimizing channel access, particularly when employing
the proposed optimization algorithm. These results support the advancement of scalable and efficient communication networks
in the realm of 6G technology.
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1. Introduction

Every generation of wireless networks, from 1G to 6G,
has improved capacity and quality of service [3, 15, 21].
Building the 6G network requires complex coding,
broader frequency bands, and new antenna
technologies. In 2023, the 3 Generation Partnership
Project (3GPP) developed the 6th-generation mobile
system. At the March 2024 3GPP meeting in Maastricht,
the Netherlands, the 6G standardization timeline was
announced. In 2024, 6G technology began setting
release 19 requirements. The ITU will create technical
performance standards and performance evaluation
processes for International Mobile Telecommunications
2030 (IMT-2030) between 2024 and 2026 [7, 26, 35].
Reduced latency, higher throughput, wide
connectivity, and energy and spectrum efficiency are
key goals for 6G wireless networks. As intelligent
gadgets and equipment become more common, data
transmission has expanded significantly. Several
TeraHertz (THz) and millimetre-Wave (mmWave)
advances have been achieved to fulfil the expected high
demand [31, 32, 54]. Technological issues such as
coding procedures, frequency band optimization, and

antenna technology must be addressed to launch the 6G
network.

There are several multiple-access algorithms, notably
Non-Orthogonal Multiple Access (NOMA). According
to [1, 33], NOMA improves Spectral Efficiency (SE)
and user throughput. Mobile device receivers suppress
beam-induced interference via Successive Interference
Cancellation (SIC). [19] NOMA integrates multiple
users by classifying them based on their power or code.
With more NOMA users, orthogonal resources become
inaccessible [10, 11]. The advancement of NOMA is
anticipated to address these difficulties. These systems
efficiently accommodate a substantial number of users
owing to their optimized architecture and reduced
resource consumption [12]. A strong option that shows
promise for improving data transfer in mmWave and
THz communication systems is massive Multiple-Input
Multiple-Output (mMIMO) NOMA [2, 16].

Cognitive Radio (CR) technology is a useful way to
manage radio frequencies, allowing flexible
connections that help solve capacity issues in
conventional licensed wireless networks. Primarily, in
CR-based networks, there are Primary Users (PUs) or
authorized users and Secondary Users (SUs) or
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unauthorized users. The SUs aims to exploit any
opportunities that arise while they contend with the PUs
for licensed spectrum [8, 20]. Consequently, CR
technology will be essential in the advancement of
future wireless networks and in meeting their
increasingly rapid demands [13].

A Reconfigurable Intelligent Surface (RIS) is capable
of producing intelligent and efficient radio setups [30,
53]. Passive Reflecting Elements (RE) in RIS alter the
phase and amplitude of incoming signals. Traditional
reflection-only RIS systems cannot provide complete
spatial communication. STAR-RIS, which uses RIS for
simultaneous transmission and reflection, is a proposed
solution [42].

Recent studies on mMIMO-NOMA in mmWave/THz
networks have mostly ignored user grouping and
focused instead on performance analysis. To meet the
increased expectations for SE and multiple user
connections in 6G, NOMA -enabled networks must also
include organized user grouping. Moreover, user
clustering in networks functioning in low-frequency
bands has garnered considerable research attention, but
mmWave/THz networks remain largely unexamined.
Nonetheless, user pairing investigations within a
MIMO-NOMA system are limited to a restricted
number of users [40, 52]. Recent studies classify users
as cellular or Device-to-Device (D2D) via a cluster-
matching technique grounded in channel correlation
[56]. This method converts user clustering into a
polynomial problem. Despite its general simplicity, a
hurdle in learning-assisted clustering systems is the
insufficient initialization of cluster heads.

A compendium of Xu et al. [49] and Chen and Yu [9]
previously examined the efficacy of the STAR-RIS-
based system for simultaneous transmission and
reflection in fading channels. The results indicate that
STAR-RIS performs better than regular RIS in NOMA
systems, especially for users at the cell edge who cannot
connect to the Base Station (BS) directly. The authors
demonstrated that when the signal is weak, the uneven
resource distribution in STAR-RIS can help balance the
power received from the BS, showing that NOMA with
STAR-RIS still functions effectively even without a
direct link between the BS and users. In areas with a
high Signal-to-Noise Ratio (SNR), the impact of
resource allocation is negligible. The authors performed
a comprehensive examination of the efficacy of entire
transmit power systems with STAR-RIS [18, 23]. Yue et
al. [51] evaluated performance for both fault-free and
non-fault-free cascade interference cancellation.
Elhattab et al. [14] conducted a comparison between
NOMA and OMA communication systems within the
context of phase-shifted coupled STAR-RIS.

Many studies mention various cooperative NOMA
designs that utilise RIS systems as a cost-effective
solution for 6G wireless networks. The concept of
employing cooperative NOMA resulted in a reduction
of the overall transmit power. A study by Ren et al. [38]

looked at how using RIS can improve the performance
of users at the edge of a cell in a SWIPT NOMA system,
where information is sent from a user in the center of the
cell to a user at the edge. Liu et al. [28] proposed a two-
step method using RIS to support cooperative NOMA
networks with SWIPT, which could enhance the rate for
strong users while still meeting the service needs of
weak users.

The future of wireless networks is characterized by
CR NOMA. Multiple networks can share a single
frequency due to CR’s sophisticated monitoring and
decision-making, enhancing spectrum utilization [27].
NOMA improves connectivity, equity, and SE by
allowing many users to share time, code, and frequency
resources [29]. The ergodic capacity and Outage
Probability (OP) were assessed from the fundamental
critical path to evaluate the performance of the NOMA-
enhanced network [5]. To promote the use of NOMA
systems among users with equivalent transmission
power, the creators of [25] enhanced uplink
communication through the incorporation of active and
passive RIS. The objective of formulating a hybrid user
clustering and RIS allocation approach was to improve
the implementation of the NOMA scheme and optimize
the system’s aggregate rate [50]. The effectiveness of
the RIS-enhanced NOMA network was analyzed by Vu
et al. [47], concentrating on energy efficiency in both
delay-tolerant and delay-constrained modes. Wu and
Zhang [48] developed a deep learning framework and
assessed a RIS-assisted CR-NOMA system to forecast
ergodic performance.

Most research currently focuses on beamforming
designs that use RIS. While no CR-NOMA network
system model [36] presently exists, passive
beamforming on RIS is the preferred approach after
some simplifications. Therefore, the optimization
procedures differ from our work. Thus, the
characteristic optimization problem presented by Huang
et al. [22] remains relevant even when using analogue
conventions. The approach discussed by Tin et al. [44]
is quite different from ours because we focus on
improving SE using the CR cooperative NOMA
mMIMO network with Down-Link (DL) supported by
intelligent RIS. The principal contributions encompass
the following:

e The study presents a new method for integrating the
mMIMO DL cooperative NOMA system for multiple
users in a 6G mmWave communication environment,
using CR and RIS.

e The effects of different mobility speeds on the
performance of CR mMIMO DL cooperative NOMA
networks are examined, considering both RIS-
equipped and RIS-free scenarios.

e This work employs a Q-learning algorithm to
enhance power distribution in a novel manner,
enabling the system to learn and adapt power levels
based on network conditions, thereby reducing
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delays and packet loss while ensuring fairness.

2. Related Work

Song et al. [41] proposed a STAR-RIS-assisted NOMA
system for mobile edge computing that employs hybrid
deep reinforcement learning. Song et al. [41] research
focuses on energy-efficient computing utilizing RIS and
NOMA; however, it operates within static environments
and lacks CR integration. Our method, by contrast,
adapts in real time based on user mobility and
incorporates spectrum sensing.

Tran ef al. [45] examined energy-saving solutions for
6G networks by employing deep reinforcement learning
to optimize antenna tilt and transmission power. The
paper addresses potential energy management;
however, it omits RIS, NOMA, and CR, which are
central to our research.

Bai et al. [6] developed a multi-agent deep
reinforcement learning framework incorporating self-
attention for opportunistic spectrum access in CR
networks. This research omits RIS and NOMA and does
not consider cooperative learning-based resource

management with respect to user mobility.

Umer et al. [46] proposed a method using
reinforcement learning to manage resources in systems
that use RIS and coordinated multi-point NOMA. It
employs RL for NOMA and RIS within a coordinated
multi-point context, although it does not consider CR or
DL cooperative transmission.

Our study introduces a cohesive DL cooperative
NOMA system, characterized by power control via Q-
learning for real-time adaptation, distinguishing it from
earlier research. It optimizes dynamic RIS phases in
mobile environments, identifies cognitive spectrum for
opportunistic access, and evaluates key performance
metrics, including SE, latency, packet loss, and fairness.
What makes this design unique is that it performs
effectively in real 6G scenarios with diverse user types
and varying mobility rates.

We contextualize our work by comparing our system
to major recent advancements in RIS-NOMA and CR-
based 6G systems. While our simulations utilize a
bespoke model, Table 1 below outlines the principal
characteristics of current research:

Table 1. Presents the principal characteristics of our work.

Study Fundamental technologies| Reference scenario

Primary metric

Performance versus proposal system

In mobile environments, our system has a greater SE and a

learning

Yue et al. [51] STAR-RIS, NOMA Delay-tolerant NOMA Ergodic rate
reduced latency.
Our technology demonstrates enhanced SE and reduced latency in
Vu et al. [47] DL-RIS, CR-NOMA Static environment, deep |Ergodic performance mobile environments.

prediction

Our system does real-time Q-learning-based adaptation,
appropriate for dynamic networks.

Solaiman et
al. [40]

mmWave, D2D NOMA |Clustered pairing, no RIS |SE, Power allocation

The system we use incorporates advanced RIS and CR
technologies, resulting in enhanced user equity and throughput.

De Sena et al. Fairness under imperfect
[12] mMIMO-NOMA SIC

Fairness index

The faimess scores under the RIS-Q-learning hybrid method
exceed the baseline by around 10%.

3. Materials and Methods

The wireless network includes multiple groups of k
users employing mMIMO DL cooperative NOMA,
operating alongside CR integration and mmWave
technology, as illustrated in Figure 1. Users are
positioned at varying distances from the BS, resulting in
a range of received power levels and utilizing 512-
Quadrature Amplitude Modulation (QAM).

@

CR
Network

Cooperative NOMA Network
with Relay Channel

Obstruction

Figure 1. Displays mMIMO PD DL mMIMO cooperative NOMA
with k users employing CR and mmWave technology.

In mMIMO, each BS possesses several antennas (M)
and serves multiple users (N). mMIMO physically
multiplexes many users and focuses energy into narrow

beams directed at each user. For each user, the mMIMO
channel manifests as a matrix exhibiting Rayleigh
fading, resulting in the received signal comprising
several distinct, scattered components. When modeling
the BS (with M antennas) for user £ channel, the H
€CM! channel vector connecting the BS to the k-4 user
[22].

Hy = [hk,p hk,Zv---'hk,M]T (1)

where, k is the system user index. /i is the channel
coefficient between the kth user and the m-th transmit
antenna. Mr is the number of BS or transmit antennas.

The connection strength of the Rayleigh fading
channel between the m-th antenna at the BS and the k-
th user is represented by the complex Gaussian random
variable Ay n~CMO, pk). User k perceives fk as large-
scale route loss and shadowing.

Yie = Hi'x + 2 2)

where x is the BS broadcast signal, zi~CA0, 6°) is the
AWGN with variance o°.

A method is used to check how busy a channel is by
examining power levels, and the presence of PUs is
identified using prior knowledge of their signal features,
expressed mathematically as follows,
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F=) =1Ymp 3)

The receive signal Y[n], N samples.
The spectrum sensing decision rule is [34],

H, if E < A(spectrum available)

Decision = {Hl if E = A(spectrum occupied))

E is the signal energy and 4 is the detection threshold.
The available bandwidth, B, is determined as
follows,

Bavait = Btotal — Baccupied (4)

Boceuwpiea represents the bandwidth utilized by PUs
ascertained using spectrum sensing.

Channel conditions determine NOMA user power
levels. The total power P, is allocated among users based
on their channel conditions.

1

Pe =Py %)

User index k& (1% user has most power).

In cooperative NOMA, user ks received signal is,
k

yie = HE Y =1 P+ 2 ()
Xk is the transmitted signal, Py is the power (higher for
poorer channel conditions), and z is noise at user k. SIC
lets better channel users decode and delete weaker

channel users’ signals before decoding their own.
The SINR for & users as [10],

Pk'hk

7
j=1j2k P hj + No ™

SINR,, =

For cooperative users, the SINR additionally accounts
for relayed signals [12],

K-1
SINRoop = SINR + Z SINR (8)
j=1
Calculate the k" user’s SEj,

B
SEk = Elogz + (SINRCOOp) (9)

The diverse reflective elements of the intelligent RIS
device can alter the phase of incoming electromagnetic
waves, thereby improving communication quality, as
shown in Figure 2.

Figure 2. Illustrates mMIMO PD DL CR mMIMO cooperative
NOMA with K users employing intelligent RIS and mmWave
methodologies.

The RIS-assisted communication connection channel
model is,

HRIS = G@Hd (10)
The BS-RIS channel is represented by H,eCNrIs*M
whereas the RIS-user channel is GECN*Nris, The
diagonal matrix @:diag(ej b1 /02 o) 19Nms)
represents the phase shifts caused by the RIS elements.
The user k received this RIS signal [22],

YIS = Hflx + gl OH x + 2, (11)

where gi is the RIS-user channel.

Py - |HRIS|2

SINRRIS = 1+N0

(12)

where [ is user interference.

RIS signal intensity is greatly improved by
optimizing phase shifts. Define the optimization
problem,

TT1‘921X|1‘1RIS|2 (13)

The user ks effective NOMA system with RIS channel
is,

hefri = Hi + g OH, (14)
The SE for user k£ in a NOMA system with RIS [39] is,
SE;, = log, (1+ P"lheff"‘lzz ) (15)
YickPilhessi|” + 02
Calculate throughput (7) as,
T = SEcorat X BW gpair (16)

To calculate throughput with and without RIS, alter user
density by changing the number of users £ depending on
area size 4 and density o, K=pxA4.

Thus, user density affects throughput [24],

pPXA
Twitnjwithout ris(P) = Zk—l SEwitnjwithout risk ~ (17)

Changes in distance and relative velocities alter channel
conditions when users move randomly. Let, pr (£)=[x«
(), Yu(#)] represent user ks position at time ¢ w
represents user i s speed. 6y represents user k5 random
movement direction. The position of user k at time +A4¢
is,

Pt + At) = P (t) + v At - [cos(6y), sin(6, )] (18)

Mobility speed in m/s s
viEMobilitySpeeds.

Modeling the BS-user channel uses path loss, small-
scale fading, and user mobility. For user k at distance dj
(¢), the path loss is [17],

represented by

PLy(t) = (4"‘1/1"@)_0(

(19)

All users’ small-scale fading is modeled as Rayleigh
fading channels. At time #, the BS-user £ channel matrix
H(t) is,

() = {PLic(0). (Gi(8) + jBi (1) (20)
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The real and imaginary channel sections are modeled by
independent and identically distributed Gaussian
random matrices Gi(¢) and Bx(?).

RIS channels connect users to the RIS. Hgsi(?)
represents the channel matrix for RIS-assisted user k at
time ¢ [43],

Hpisp(t) =/ PLpisic(t) - @(t) - (Gris i (t) + jBrisk () (21)

The real and imaginary components of the channel from
RIS to user k are Grisi(f) and jB risi(?).

2

SINRpys e (0) = P () - |HRIS,k(t)2| (22)
Zj<kPj(t)|HRIS,k(t)| + Ny

D = SE x BW (23)

where D is data rate (bps).

_ Data Size
B D

where L is latency, fISNR) is the channel-dependent
factor for different channel models and user setups.

For each user, packet loss (Pi.ss) occurs if their SINR
falls below a specified SINR reshoid,

x f(SNR) (24)

_ 1 ifSINR < SINRth‘reshald
Pioss = {0 otherwise (25)
K 2
o ZizaZn) (26)

K- 2?:12&2

where F is fairness, 7, represents user ks throughput, Ly
represents user k5 latency, and S balances latency and
fairness.

Algorithm 1: Q-learning algorithm.

Initialize the Q-Table and hyper parameters (a, v &, 1, i, p).
Commence .

Initialize state s, encompassing SINR, paiioe, and PprossR for each
user.

In the € of convergence or maximum iterations:

Select action according to the e-greedy policy.

Implement action (Px) and monitor:

Subsequent state s’.

Reward R(s, a) is determined by delay, packet loss, and fairness.
Revise Q-value: Q(s, a)—Q(s, a)+a*(R(s, a)+y*max Q(s', a’)-
0fs, a).

Update state s to s .

End e.

Derive the best strategy for latency, packet loss, and equity.
Implement an effective power allocation strategy.

End.

Algorithm (1) studies how to improve cooperative
NOMA by examining throughput, latency, and packet
loss, with a focus on how logarithmic power distribution
affects these aspects and fairness. A general objective is,

R=YK . r—A-L—pu-P (27)

where, R is system performance reward. r is user k
throughput. K user total. L system aggregate latency. P
system-wide packet loss. The weight factor 4 balances
throughput and latency. u Weight factor for packet loss
reduction. Each state s encapsulates pertinent attributes
of the system,

s = {SINRy,SINR, ..., SINRy, Pattoc: Pross Rus Pioss Ray -r Pross R~ (28)

where, power allocation P, (PLossR) packet loss ratio.
Power allocation to each user is action as,

a={P,P,, .., P} (29)

a represents the power location of each user, determined
by e the probability of exploration.

1
R(s,a) = _Ezlkgl-(l'k + 4 ProssRi) +B-F (30)

Based on the bellman equation, Q-learning updates Q-
values,

Q(s,a) « Q(s,a) + a[R(s,a) + ya'maxQ(s',a’) — Q(s,a)] (31)

Q-value for state s and action a; a=learning rate.
Discount factor (y factor). The maximum Q-value for
the subsequent state s’ over all potential actions a’.

The procedure runs until the Q-values converge or
until a set number of iterations is reached. After that,
latency, packet loss, and fairness are determined using
equations 24, 25, and 26, respectively.

3.1. Simulation Parameters

Table 1 presents the simulation parameters for the
proposed systems model in 6G networks. The results
indicate the relationship between the scalability of these
systems and the increase in user count, SNR, and
throughput. The charts illustrate the outcomes of various
mMIMO cooperative NOMA scenarios, highlighting
the differences between configurations that include
intelligent RIS and CR and those that do not, as well as
how mobility speed and network density influence
throughput and latency at varying user densities.

Table 1. Presents comprehensive details on the simulator settings
employed for modeling proposal system networks.

Parameter Value
Number of users 50,100,150, and 200
Mobility speeds 0 to 250 Km/h

Number of antennas 256x256
RIS configuration 512x512
SNR (dB) -20 to 20
Modulations 512 QAM
Path-loss exp. 2.7
BW 10 GHz
Cellular type Microcells
Frequency range 28 GHz t0100 GHz

4. Results and Discussions

Figure 3 shows the SE and SNR for 50, 100, 150, and
200 users in the mmWave mMIMO DL CR cooperative
NOMA Primary Destination (PD) system. The SE
improved as the SNR increased. The group of 50 users
may achieve a maximum SE of 3.9 bps/Hz. For user
groups of 100, 150, and 200, the corresponding SE at 20
dB SNR is 2.8, 2.2, and 1.9 bps/Hz, respectively. When
the combination system is used with the intelligent RIS,
the SE at 20 dB SNR for user groups of 50, 100, 150,
and 200 is 4.8, 3.6, 3.0, and 2.6 bps/Hz. Compared to
performance without RIS, the system’s SE has been
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enhanced by 10.3%,
respectively.

The results show that the RIS significantly improves
SE in the proposed system, especially as the number of
users increases. The considerable improvements for
groups of 150 and 200 users demonstrate that RIS is
important for keeping the system operating efficiently
as more users join. This makes it a strong option for
boosting SE in high-user-density networks. On the other
hand, varying user numbers (50 to 200) show that
NOMA with RIS support maintains consistent SE
performance for up to 150 wusers. Thereafter,
interference causes performance degradation of roughly
12%. Through calculations and tests, it was observed
that at 20 dB SNR, reducing RIS elements from
512x512 to 256%x256 lowers SE by 18%, showing a
trade-off between hardware complexity and
performance. Additionally, introducing a 10% error to
SIC lowers SE by 22% for 200 users (compared to
perfect SIC). The final result outperformed that
observed Zhang [55] and Papazafeiropoulos [37]. Our
technique achieves a 2.1-fold enhancement in SE at 20
dB SNR compared to the results in [40].

12.5%, 15.3%, and 15.6%,

~—6— Cooperative-NOMA (50 users)
= = - With Intelligent RIS (50 users)
Cooperative-NOMA (100 users)
= ¥ -With Intelligent RIS (100 users) :
=& Cooperative-NOMA (150 users) |..................
+ With Intelligent RIS (150 users)
—B— Cooperative-NOMA (200 users) <
= ¥ -With Intelligent RIS (200 users)

10° b

A

Spectral Efficiency (bps/Hz)

-20 -15 -10 -5 0 5 10 15 20
SNR (dB)

Figure 3. SE versus SNR for 4 different groups of mMIMO DL CR
cooperative NOMA users with and without intelligent RIS.

Figure 4-a) and (b) depicts the throughput and
mobility speed (0 to 250 km/h) for 200 users in the
mmWave mMIMO DL CR cooperative NOMA PD
system, comparing cases with and without intelligent
RIS. Throughput diminishes as the velocity of
movement increases. Figure 4-a) demonstrates that a
system with a -20 dB SNR undergoes a more rapid
decrease in throughput as mobility speed escalates,
unlike the system using RIS. Mobility rates of 40 km/h
intensify system attenuation, resulting in a significant
reduction in throughput. The poor SNR causes the
signal quality to deteriorate to such an extent that
increases in transmission power are unable to maintain
an acceptable throughput level.

The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

—&— Cooperative (With RIS)
- -0~ - Cooperative (Without RIS)

—@&— Cooperative (With RIS)
- -0~ - Cooperative (Without RIS) |

(=]
o
Throughput (Mbps)

Throughput (Mbps)

2 L i
0 100 200 300 0 100 200 300

Mobility Speed (Km/h) Mobility Speed (Km/h)

a) Throughput against mobility speed for b) Throughput against mobility speed for
50 users at SNR of -20 dB. 50 users at SNR of 20 dB.

Figure 4. Throughput against mobility speed for 50 mMIMO DL CR
cooperative NOMA users with and without intelligent RIS.

The system illustrated in Figure 4-b) has an SNR of
20 dB. At low mobility rates (0 to 70 km/h), throughput
shows a minor enhancement, especially with the
application of RIS. As mobility increases, throughput
decreases. RIS has no impact on throughput
performance at high speeds (up to 250 km/h) compared
with systems without RIS. At a higher SNR level of 20
dBm, throughput consistently exceeds that of the lower
SNR level of -20 dBm across all speeds. The study
shows that higher transmit power reduces losses caused
by mobility.

2.5 T T
=—©— Cooperative NOMA (SNR = -20 dB)
= %= :With Intelligent RIS (SNR = -20 dB)
Cooperative NOMA (SNR = 20 dB)
2G4 = %= +With Intelligent RIS (SNR =20 dB) |
N
N
— A
§_ N
1.5 F S 1
=3 s
5 AN
% A
> | - |
g =
~ S~
~
= o
05 =8
&=~ _
==
— o
0 | |
50 100 150 200

Number of user

Figure 5. Throughput versus user density of mMIMO DL CR
cooperative NOMA users with and without intelligent RIS.

Figure 5 shows the mmWave mMIMO DL CR
cooperative NOMA PD system with and without
intelligent RIS. It presents the average throughput and
user density for different user numbers. Average
throughput decreases as user density increases. The
group of 50 users had average throughputs of 0.1332
and 0.1530 Mbps/Hz, and 0.6753 and 0.7057 Mbps/Hz,
while the group of 200 users had average throughputs of
0.0333 and 0.0383 Mbps/Hz, and 0.1698 and 0.1785
Mbps/Hz, both without and with intelligent RIS at SNR



Stimulating the Efficiency of Massive MIMO Cooperative NOMA Applying RIS in 6G Networks 1171

levels of -20 dB and 20 dB, respectively. Compared to
performance without RIS, the system’s average
throughput increased by 6.9% and 2.2% for 50 users,
and by 1.3% and 2.4% for 200 users. As the number of
users grows, performance per user declines due to
interference and the manner in which resources are
shared. In cooperative NOMA systems, it is common for
several users to compete for the same resources. RIS
alleviates the impact of user density by enhancing
channel conditions and reducing interference. High
user-density scenarios present ongoing challenges.
Quantizing phase shifts to 2-bit levels instead of
continuous ones reduces throughput by 9%, as
beamforming is not as effective as it could be.

4.5 =—8—mMIM O Cooperative NOMA
= ¥ mMIMO Cooperative NOMA + CR A
4 CR mMIMO Cooperative NOMA + RIS 7|
| F
3571 1
@ 3f
g
P25 ¢
g
2
w 2 |-
—
15
1 -
05
ol@ 4.52._-,_5_,,-1?.4'-_-_ = : . . . ; ,
0 5 10 15 20 25 30 35 40 45 50

Number of users

Figure 6. Latency vs. user density for three various systems.

Figure 6 illustrates how latency varies with the
number of users in three systems: mMIMO cooperative
NOMA, mMIMO CR cooperative NOMA, and
mMIMO CR cooperative NOMA with intelligent RIS.
As user competition for limited resources intensifies,
network congestion and interference occur, leading to
increased latency as user density rises. The latency for
mMIMO cooperative  NOMA and mMIMO CR
cooperative NOMA using intelligent RIS systems was
11.8% and 17.2% better, respectively, for 20 users
compared to mMIMO CR cooperative NOMA, which
had a latency of 1.56 ms. At a user density of 50,
mMIMO cooperative  NOMA and mMIMO CR
cooperative NOMA using intelligent RIS systems
exhibited 15.3% and 22.6% lower latency than mMIMO
CR cooperative NOMA, which recorded a latency of
12.34 ms at an SNR of 20 dB. The mMIMO-CR
cooperative NOMA system with an intelligent RIS
performs better in terms of latency, even with many
users, making it a strong choice for busy 6G networks
where interference management is crucial.

Figure 7 exhibits the variation in latency relative to
the number of users across three distinct systems:
mMIMO cooperative NOMA, mMIMO CR cooperative
NOMA, and mMIMO CR cooperative NOMA
integrated with intelligent RIS utilizing a Q-learning

algorithm. At a user density of 20, the latencies recorded
are 0.62135, 0.73904, and 0.57279 ms. At a user density
of 50, the latencies are 3.8383 ms for mMIMO
cooperative NOMA, 5.0415 ms for CR mMIMO
cooperative NOMA, and 3.362 ms for CR mMIMO
cooperative NOMA systems with the intelligent RIS at
20 dB SNR. At a user density of 20, the results indicate
that the CR mMIMO cooperative NOMA has 8.6%
more latency than the basic cooperative NOMA with
mMIMO. This increase is attributed to the channel
sensing and interference management that the CR
mMIMO cooperative NOMA must perform. Using
intelligent RIS reduces latency by 4% compared to
traditional cooperative NOMA with mMIMO and by
12.6% compared to CR mMIMO cooperative NOMA.
When 50 users are present, the CR cooperative mMIMO
NOMA RIS-enhanced system has 19.9% less latency
than the CR mMIMO cooperative NOMA system and
7.4% less latency than the mMIMO cooperative NOMA
system. This decrease is reasonable because RIS alters
how signals reflect to reduce interference in busy areas,
leading to quicker transmission and lower latency. The
sudden increase in the new result compared to the
previous one is due to Q-learning selecting different
methods of power allocation based on the number of
users. At low user density, Q-learning distributes power
more evenly, resulting in greater stability in latency.
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Figure 7. Latency versus user density for three different scenarios
with optimization algorithm.

Figure 8 shows how packet loss changes with the
number of users in three different systems: mMIMO
cooperative NOMA, mMIMO CR cooperative NOMA,
and mMIMO CR cooperative NOMA with intelligent
RIS. At auser density of 10, the packet loss performance
of three systems is 10%, 12%, and 5%, and at the user
density of 50, the packet loss performance of three
systems is 22%, 22.5%, and 21%, respectively, at SNR
of 20 dB. An increase in users results in greater
interference and diminished resources, adversely
affecting all systems. Optimal placement of RISs, phase
adjustments, and additional strategies, such as user
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clustering and improved power distribution, can
optimize performance.

25

20

-
o

-
o

Packet Loss (%)

k) = : : :
i i —8—mMIM O Cooperative NOMA
i H = ¥ 'mMIMO Cooperative NOMA + CR
_ g H CR mMIMO Cooperative NOMA + RIS
0 —B-@-5-

0 5 10 15 20 25 30 35 40 45 50
Number of users

Figure 8. Packet loss against user density for three different scenarios
with optimization method.

Figure 9 illustrates how packet loss varies with the
number of users in three different systems: mMIMO
cooperative NOMA, mMIMO CR cooperative NOMA,
and mMIMO CR cooperative NOMA with intelligent
RIS integration using Q-learning. At 50 users and 20 dB
SNR, each of the three systems achieves a packet loss
performance level of 9%, 12%, and 1%, respectively.
The results indicate that the combination of RIS with Q-
learning substantially enhances packet loss mitigation in
densely populated cooperative NOMA systems. When
there are a lot of users, this strategy cuts down on packet
loss by a lot. When the y value goes from 0.95 to 0.9,
immediate advantages become more relevant. In
dynamic situations, this method increases packet loss by
5% but improves latency by 15%. In static conditions, a
5% CSI inaccuracy leads RIS beamforming
misalignment to increase packet loss by 12%. RIS+Q-
learning decreases latency by 35% and enhances
fairness by 28% compared to NOMA with fixed power
allocation [12].

14

—8—mMIM O Cooperative NOMA
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10

Packet Loss (%)

Number of users

Figure 9. Packet loss vs. user density for three different scenarios
with Q-learning logarithm.
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Figure 10 shows the variation in the fairness index
relative to SNR across three distinct systems: the
NOMA cooperative mMIMO system, the NOMA
cooperative mMIMO CR system, and the mMIMO
cooperative  NOMA CR system integrated with
intelligent RIS. The system exhibits considerable
instability in fairness across various configurations and
SNR levels, with limited fluctuation in fairness values.
CR and RIS appear to exert a negligible influence on
fairness, showing minimal variation from the baseline
cooperative NOMA system. Nonetheless, they continue
to provide certain advantages, such as improved signal
quality and a better user experience. Moreover, fairness
is constrained by factors such as power distribution
schemes, user demographics, and channel conditions,
which remain relatively consistent across many
configurations. At an SNR of 20 dB, the fairness index
ratings for the three systems are 0.476, 0.474, and 0.48,
respectively, with 50 users.

0.484

=—8—mMIMO cooperative NOMA
= % mMIMO cooperative NOMA + CR
0.482 CR mMIM O cooperative NOMA + RIS

0.48
0.476 -

0.474 pi-nfyenmnBonmmanfd
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0.466

20

SNR (dB)

Figure 10. Fairness index versus SNR for three different scenarios.

Figure 11 shows three alternative systems, including
the mMIMO cooperative NOMA, and how the fairness
index evolves with SNR. The systems being compared
are mMIMO cooperative NOMA, mMIMO cooperative
NOMA with intelligent RIS, and systems that use the Q-
learning method. When the SNR is low, especially at -5
dB, the system has trouble keeping power distribution
fair among users due to poor signal conditions, which
leads to losing the benefits of CR and RIS because of
high interference. Additionally, Q-learning may struggle
to balance exploration seeking superior solutions with
exploitation selecting the most effective known action,
resulting in instability and suboptimal fairness. With 50
users and a 20 dB SNR, the fairness index values for the
three systems are 0.577, 0.541, and 0.594, respectively.
Upon examining the fairness index before and after Q-
learning, we observe that all three systems exhibited
improvements of 9.5%, 6.6%, and 10.6%, respectively.
Q-learning and RIS can enhance the equity of
cooperative NOMA systems by diminishing power
usage and augmenting signal quality for users with
poorer connections. The performance of all individuals
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will be enhanced consequently. Increasing € from 0.1 to
0.2 enhances fairness by 8% while concurrently
decelerating convergence by 30%.
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Figure 11. Fairness index versus against SNR for three different
scenarios with optimization technique.

Even though our models assume perfect conditions,
several real-world problems require addressing: large
RIS arrays (512x512) and mMIMO systems (256x256)
demand substantial physical infrastructure, which raises
both power and capital costs. Passive RIS modules are
less expensive than active beamforming arrays but make
large-scale implementation more difficult [43].
Obtaining accurate channel state information in RIS-
enabled systems is challenging, particularly due to the
double-fading effect in the BS-RIS-User links. This
increases the cost of operation and the time required for
estimation, as observed by Gomes et al. [17]. To
enhance phase shifting, RIS components must be
controlled in real time. This introduces signaling
overhead, which is especially problematic in dynamic
scenarios where users require the ability to move freely.
Without effective signaling systems, delays may offset
the benefits of RIS [4, 55]. These deployment
challenges highlight the importance of well-designed
systems and the substantial further work required in
low-complexity RIS control, CSI estimation, and
hardware architecture optimization.

5. Conclusions

The suggested system attains significant improvements
in SE through the utilization of CR spectrum sensing
and intelligent phase shift optimization across various
user settings within the mmWave environment.
Research demonstrates that integrating RIS into CR-
based mMIMO cooperative NOMA  systems
substantially improves average throughput, decreases
latency and packet loss, and increases the fairness index,
particularly in scenarios characterized by high user
density. The results indicate that RIS-assisted
cooperative NOMA excels in reducing interference,
improving signal quality, and mitigating the impact of

high mobility on system performance, making it a
promising solution for future 6G networks. The study
indicates that Q-learning methods are highly effective in
reducing latency and packet loss and in improving
fairness in crowded mmWave areas. It brings multiple
benefits to the proposed system by dynamically
distributing power, enabling the system to adapt to user
density and fluctuating network conditions, thus greatly
reducing interference and resource competition. Future
research will focus on achieving further improvements
in system performance through enhanced power
allocation and user scheduling, particularly in RIS-
enabled systems.
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