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Abstract: This study analyses Spectral Efficiency (SE) and throughput under varying user densities (50 to 200 users), mobility 

velocities (0 to 250 km/h), latency, packet loss, and fairness index at diverse Signal-to-Noise Ratio (SNR) levels for different 

scenarios. These scenarios encompass comprehensive massive Multiple-Input Multiple-Output (mMIMO) cooperative Non-

Orthogonal Multiple Access (NOMA), mMIMO cooperative NOMA integrated with Cognitive Radio (CR), and CR-enabled 

mMIMO cooperative NOMA facilitated by Reconfigurable Intelligent Surfaces (RIS) using millimetre-Wave (mmWave) in 6G 

networks. The study investigates the enhancement of latency, packet loss, and fairness indexes in the proposed systems through 

a unique approach that dynamically optimizes power distribution via a Q-learning algorithm. The mathematical clarification of 

each equation offers a comprehensive understanding of signal reception by users, the dynamics and implications of CR, and the 

influence of intelligent RIS optimization on system performance. The findings demonstrate that the incorporation of RIS enhances 

resource allocation, improves user performance in high-density settings, increases average throughput, reduces latency and 

packet loss, and raises the fairness index by mitigating interference and optimizing channel access, particularly when employing 

the proposed optimization algorithm. These results support the advancement of scalable and efficient communication networks 

in the realm of 6G technology. 
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1. Introduction 

Every generation of wireless networks, from 1G to 6G, 

has improved capacity and quality of service [3, 15, 21]. 

Building the 6G network requires complex coding, 

broader frequency bands, and new antenna 

technologies. In 2023, the 3rd Generation Partnership 

Project (3GPP) developed the 6th-generation mobile 

system. At the March 2024 3GPP meeting in Maastricht, 

the Netherlands, the 6G standardization timeline was 

announced. In 2024, 6G technology began setting 

release 19 requirements. The ITU will create technical 

performance standards and performance evaluation 

processes for International Mobile Telecommunications 

2030 (IMT-2030) between 2024 and 2026 [7, 26, 35]. 

Reduced latency, higher throughput, wide 

connectivity, and energy and spectrum efficiency are 

key goals for 6G wireless networks. As intelligent 

gadgets and equipment become more common, data 

transmission has expanded significantly. Several 

TeraHertz (THz) and millimetre-Wave (mmWave) 

advances have been achieved to fulfil the expected high 

demand [31, 32, 54]. Technological issues such as 

coding procedures, frequency band optimization, and  

 
antenna technology must be addressed to launch the 6G 

network. 

There are several multiple-access algorithms, notably 

Non-Orthogonal Multiple Access (NOMA). According 

to [1, 33], NOMA improves Spectral Efficiency (SE) 

and user throughput. Mobile device receivers suppress 

beam-induced interference via Successive Interference 

Cancellation (SIC). [19] NOMA integrates multiple 

users by classifying them based on their power or code. 

With more NOMA users, orthogonal resources become 

inaccessible [10, 11]. The advancement of NOMA is 

anticipated to address these difficulties. These systems 

efficiently accommodate a substantial number of users 

owing to their optimized architecture and reduced 

resource consumption [12]. A strong option that shows 

promise for improving data transfer in mmWave and 

THz communication systems is massive Multiple-Input 

Multiple-Output (mMIMO) NOMA [2, 16]. 

Cognitive Radio (CR) technology is a useful way to 

manage radio frequencies, allowing flexible 

connections that help solve capacity issues in 

conventional licensed wireless networks. Primarily, in 

CR-based networks, there are Primary Users (PUs) or 

authorized users and Secondary Users (SUs) or 
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unauthorized users. The SUs aims to exploit any 

opportunities that arise while they contend with the PUs 

for licensed spectrum [8, 20]. Consequently, CR 

technology will be essential in the advancement of 

future wireless networks and in meeting their 

increasingly rapid demands [13]. 

A Reconfigurable Intelligent Surface (RIS) is capable 

of producing intelligent and efficient radio setups [30, 

53]. Passive Reflecting Elements (RE) in RIS alter the 

phase and amplitude of incoming signals. Traditional 

reflection-only RIS systems cannot provide complete 

spatial communication. STAR-RIS, which uses RIS for 

simultaneous transmission and reflection, is a proposed 

solution [42]. 

Recent studies on mMIMO-NOMA in mmWave/THz 

networks have mostly ignored user grouping and 

focused instead on performance analysis. To meet the 

increased expectations for SE and multiple user 

connections in 6G, NOMA-enabled networks must also 

include organized user grouping. Moreover, user 

clustering in networks functioning in low-frequency 

bands has garnered considerable research attention, but 

mmWave/THz networks remain largely unexamined. 

Nonetheless, user pairing investigations within a 

MIMO-NOMA system are limited to a restricted 

number of users [40, 52]. Recent studies classify users 

as cellular or Device-to-Device (D2D) via a cluster-

matching technique grounded in channel correlation 

[56]. This method converts user clustering into a 

polynomial problem. Despite its general simplicity, a 

hurdle in learning-assisted clustering systems is the 

insufficient initialization of cluster heads. 

A compendium of Xu et al. [49] and Chen and Yu [9] 

previously examined the efficacy of the STAR-RIS-

based system for simultaneous transmission and 

reflection in fading channels. The results indicate that 

STAR-RIS performs better than regular RIS in NOMA 

systems, especially for users at the cell edge who cannot 

connect to the Base Station (BS) directly. The authors 

demonstrated that when the signal is weak, the uneven 

resource distribution in STAR-RIS can help balance the 

power received from the BS, showing that NOMA with 

STAR-RIS still functions effectively even without a 

direct link between the BS and users. In areas with a 

high Signal-to-Noise Ratio (SNR), the impact of 

resource allocation is negligible. The authors performed 

a comprehensive examination of the efficacy of entire 

transmit power systems with STAR-RIS [18, 23]. Yue et 

al. [51] evaluated performance for both fault-free and 

non-fault-free cascade interference cancellation. 

Elhattab et al. [14] conducted a comparison between 

NOMA and OMA communication systems within the 

context of phase-shifted coupled STAR-RIS. 

Many studies mention various cooperative NOMA 

designs that utilise RIS systems as a cost-effective 

solution for 6G wireless networks. The concept of 

employing cooperative NOMA resulted in a reduction 

of the overall transmit power. A study by Ren et al. [38] 

looked at how using RIS can improve the performance 

of users at the edge of a cell in a SWIPT NOMA system, 

where information is sent from a user in the center of the 

cell to a user at the edge. Liu et al. [28] proposed a two-

step method using RIS to support cooperative NOMA 

networks with SWIPT, which could enhance the rate for 

strong users while still meeting the service needs of 

weak users. 

The future of wireless networks is characterized by 

CR NOMA. Multiple networks can share a single 

frequency due to CR’s sophisticated monitoring and 

decision-making, enhancing spectrum utilization [27]. 

NOMA improves connectivity, equity, and SE by 

allowing many users to share time, code, and frequency 

resources [29]. The ergodic capacity and Outage 

Probability (OP) were assessed from the fundamental 

critical path to evaluate the performance of the NOMA-

enhanced network [5]. To promote the use of NOMA 

systems among users with equivalent transmission 

power, the creators of [25] enhanced uplink 

communication through the incorporation of active and 

passive RIS. The objective of formulating a hybrid user 

clustering and RIS allocation approach was to improve 

the implementation of the NOMA scheme and optimize 

the system’s aggregate rate [50]. The effectiveness of 

the RIS-enhanced NOMA network was analyzed by Vu 

et al. [47], concentrating on energy efficiency in both 

delay-tolerant and delay-constrained modes. Wu and 

Zhang [48] developed a deep learning framework and 

assessed a RIS-assisted CR-NOMA system to forecast 

ergodic performance. 

Most research currently focuses on beamforming 

designs that use RIS. While no CR-NOMA network 

system model [36] presently exists, passive 

beamforming on RIS is the preferred approach after 

some simplifications. Therefore, the optimization 

procedures differ from our work. Thus, the 

characteristic optimization problem presented by Huang 

et al. [22] remains relevant even when using analogue 

conventions. The approach discussed by Tin et al. [44] 

is quite different from ours because we focus on 

improving SE using the CR cooperative NOMA 

mMIMO network with Down-Link (DL) supported by 

intelligent RIS. The principal contributions encompass 

the following: 

• The study presents a new method for integrating the 

mMIMO DL cooperative NOMA system for multiple 

users in a 6G mmWave communication environment, 

using CR and RIS. 

• The effects of different mobility speeds on the 

performance of CR mMIMO DL cooperative NOMA 

networks are examined, considering both RIS-

equipped and RIS-free scenarios. 

• This work employs a Q-learning algorithm to 

enhance power distribution in a novel manner, 

enabling the system to learn and adapt power levels 

based on network conditions, thereby reducing 
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delays and packet loss while ensuring fairness. 

2. Related Work 

Song et al. [41] proposed a STAR-RIS-assisted NOMA 

system for mobile edge computing that employs hybrid 

deep reinforcement learning. Song et al. [41] research 

focuses on energy-efficient computing utilizing RIS and 

NOMA; however, it operates within static environments 

and lacks CR integration. Our method, by contrast, 

adapts in real time based on user mobility and 

incorporates spectrum sensing. 

Tran et al. [45] examined energy-saving solutions for 

6G networks by employing deep reinforcement learning 

to optimize antenna tilt and transmission power. The 

paper addresses potential energy management; 

however, it omits RIS, NOMA, and CR, which are 

central to our research. 

Bai et al. [6] developed a multi-agent deep 

reinforcement learning framework incorporating self-

attention for opportunistic spectrum access in CR 

networks. This research omits RIS and NOMA and does 

not consider cooperative learning-based resource 

management with respect to user mobility. 

Umer et al. [46] proposed a method using 

reinforcement learning to manage resources in systems 

that use RIS and coordinated multi-point NOMA. It 

employs RL for NOMA and RIS within a coordinated 

multi-point context, although it does not consider CR or 

DL cooperative transmission. 

Our study introduces a cohesive DL cooperative 

NOMA system, characterized by power control via Q-

learning for real-time adaptation, distinguishing it from 

earlier research. It optimizes dynamic RIS phases in 

mobile environments, identifies cognitive spectrum for 

opportunistic access, and evaluates key performance 

metrics, including SE, latency, packet loss, and fairness. 

What makes this design unique is that it performs 

effectively in real 6G scenarios with diverse user types 

and varying mobility rates. 

We contextualize our work by comparing our system 

to major recent advancements in RIS-NOMA and CR-

based 6G systems. While our simulations utilize a 

bespoke model, Table 1 below outlines the principal 

characteristics of current research: 

Table 1. Presents the principal characteristics of our work. 

Study Fundamental technologies Reference scenario Primary metric Performance versus proposal system 

Yue et al. [51] STAR-RIS, NOMA Delay-tolerant NOMA Ergodic rate 
In mobile environments, our system has a greater SE and a 

reduced latency. 

Vu et al. [47] DL-RIS, CR-NOMA 
Static environment, deep 

learning 

Ergodic performance 

prediction 

Our technology demonstrates enhanced SE and reduced latency in 

mobile environments.  

Our system does real-time Q-learning-based adaptation, 
appropriate for dynamic networks. 

Solaiman et 

al. [40] 
mmWave, D2D NOMA Clustered pairing, no RIS SE, Power allocation 

The system we use incorporates advanced RIS and CR 

technologies, resulting in enhanced user equity and throughput. 

De Sena et al. 

[12] 
mMIMO-NOMA 

Fairness under imperfect 
SIC 

Fairness index 
The fairness scores under the RIS-Q-learning hybrid method 

exceed the baseline by around 10%. 

 

3. Materials and Methods 

The wireless network includes multiple groups of k 

users employing mMIMO DL cooperative NOMA, 

operating alongside CR integration and mmWave 

technology, as illustrated in Figure 1. Users are 

positioned at varying distances from the BS, resulting in 

a range of received power levels and utilizing 512-

Quadrature Amplitude Modulation (QAM). 

 

Figure 1. Displays mMIMO PD DL mMIMO cooperative NOMA 

with k users employing CR and mmWave technology. 

In mMIMO, each BS possesses several antennas (M) 

and serves multiple users (N). mMIMO physically 

multiplexes many users and focuses energy into narrow 

beams directed at each user. For each user, the mMIMO 

channel manifests as a matrix exhibiting Rayleigh 

fading, resulting in the received signal comprising 

several distinct, scattered components. When modeling 

the BS (with M antennas) for user k channel, the Hk 

∈ℂM×1 channel vector connecting the BS to the k-th user 

[22]. 

𝐻𝑘 = [ ℎ𝑘,1, ℎ𝑘,2, … , ℎ𝑘,𝑀 ]
𝑇

 

where, k is the system user index. hk,M is the channel 

coefficient between the kth user and the m-th transmit 

antenna. MT is the number of BS or transmit antennas. 

The connection strength of the Rayleigh fading 

channel between the m-th antenna at the BS and the k-

th user is represented by the complex Gaussian random 

variable hk,m∼C𝒩(0, βk). User k perceives βk as large-

scale route loss and shadowing. 

𝑦𝑘 = 𝐻𝑘
𝐻𝑥 + 𝑧𝑘 

where x is the BS broadcast signal, zk∼C𝒩(0, σ2) is the 

AWGN with variance σ2.  

A method is used to check how busy a channel is by 

examining power levels, and the presence of PUs is 

identified using prior knowledge of their signal features, 

expressed mathematically as follows, 

(1) 

(2) 
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𝐸 = ∑ = 1|𝒴[𝑛]|2

𝑁

𝑛

 

The receive signal 𝒴[n], N samples. 

The spectrum sensing decision rule is [34], 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {
𝐻0    𝑖𝑓 𝐸 < 𝜆(𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)
𝐻1    𝑖𝑓 𝐸 ≥ 𝜆(𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑))

 

E is the signal energy and λ is the detection threshold. 

The available bandwidth, Bavail, is determined as 

follows, 

𝐵𝑎𝑣𝑎𝑖𝑙 = 𝐵𝑡𝑜𝑡𝑎𝑙 − 𝐵𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 

Boccupied represents the bandwidth utilized by PUs 

ascertained using spectrum sensing. 

Channel conditions determine NOMA user power 

levels. The total power Pt is allocated among users based 

on their channel conditions. 

𝑃𝑘  = 𝑃𝑡 ∙
1

𝑘
 

User index k (1st user has most power). 

In cooperative NOMA, user k’s received signal is, 

𝑦𝑘  = 𝐻𝑘
𝐻  ∑ = 1

𝑘

𝑛

 √𝑃𝑘𝑥𝑘 + 𝑧𝑘 

xk is the transmitted signal, Pk is the power (higher for 

poorer channel conditions), and zk is noise at user k. SIC 

lets better channel users decode and delete weaker 

channel users’ signals before decoding their own. 

The SINR for k users as [10], 

𝑆𝐼𝑁𝑅𝑘  =  
𝑃𝑘 . ℎ𝑘

∑ 𝑃𝑗 . ℎ𝑗 + 𝑁0
𝐾
𝑗=1,𝑗≠𝑘

 

For cooperative users, the SINR additionally accounts 

for relayed signals [12], 

𝑆𝐼𝑁𝑅𝑐𝑜𝑜𝑝 = 𝑆𝐼𝑁𝑅𝑘 + ∑ 𝑆𝐼𝑁𝑅𝑗

𝐾−1

𝑗=1
 

Calculate the kth user’s SEk, 

𝑆𝐸𝑘 =
𝐵

𝐾
𝑙𝑜𝑔2 + (𝑆𝐼𝑁𝑅𝑐𝑜𝑜𝑝) 

The diverse reflective elements of the intelligent RIS 

device can alter the phase of incoming electromagnetic 

waves, thereby improving communication quality, as 

shown in Figure 2. 

 

Figure 2. Illustrates mMIMO PD DL CR mMIMO cooperative 

NOMA with K users employing intelligent RIS and mmWave 

methodologies. 

The RIS-assisted communication connection channel 

model is, 

𝐻𝑅𝐼𝑆 = 𝐺𝛩𝐻𝑑 

The BS-RIS channel is represented by Hd∈ℂ𝑁𝑅𝐼𝑆×𝑀, 

whereas the RIS-user channel is G∈ℂ𝑁×𝑁𝑅𝐼𝑆. The 

diagonal matrix Θ=diag(𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 , … , 𝑒𝑗𝜃𝑁𝑅𝐼𝑆 ) 

represents the phase shifts caused by the RIS elements.  

The user k received this RIS signal [22], 

𝒴𝑘
𝑅𝐼𝑆 = H𝑘

𝐻𝑥 + g𝑘
𝐻Θ𝐻𝑑𝑥 + 𝑧𝑘 

where gk is the RIS-user channel. 

𝑆𝐼𝑁𝑅𝑅𝐼𝑆 =
𝑃𝑘 ∙ |𝐻𝑅𝐼𝑆|2

𝐼 + 𝑁0
 

where I is user interference. 

RIS signal intensity is greatly improved by 

optimizing phase shifts. Define the optimization 

problem, 

max
𝜃

|𝐻𝑅𝐼𝑆|2 

The user k’s effective NOMA system with RIS channel 

is, 

ℎ𝑒𝑓𝑓,𝑘 = 𝐻𝑘 + 𝑔𝑘
𝐻𝛩𝐻𝑑 

The SE for user k in a NOMA system with RIS [39] is, 

𝑆𝐸𝑘 = 𝑙𝑜𝑔2 (1 +
𝑃𝑘|ℎ𝑒𝑓𝑓,𝑘|

2

∑𝑖<𝑘𝑃𝑖|ℎ𝑒𝑓𝑓,𝑖|
2

+ 𝜎2
) 

Calculate throughput (T) as, 

𝑇 = 𝑆𝐸𝑡𝑜𝑡𝑎𝑙 × 𝐵𝑊𝑎𝑣𝑎𝑖𝑙 

To calculate throughput with and without RIS, alter user 

density by changing the number of users k depending on 

area size A and density 𝜌, K=ρ×A. 

Thus, user density affects throughput [24], 

𝑇𝑤𝑖𝑡ℎ/𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑅𝐼𝑆(𝜌) = ∑ 𝑆𝐸𝑤𝑖𝑡ℎ/𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑅𝐼𝑆,𝑘

𝜌×𝐴

𝑘=1
  

Changes in distance and relative velocities alter channel 

conditions when users move randomly. Let, pk (t)=[xk 

(t), 𝒴k(t)] represent user k’s position at time t. vk 

represents user i’s speed. θk represents user k’s random 

movement direction. The position of user k at time t+Δt 

is, 

𝑃𝑘(𝑡 + 𝛥𝑡) = 𝑃𝑘(𝑡) + 𝑣𝑘𝛥𝑡 ∙ [𝑐𝑜𝑠(𝜃𝑘), 𝑠𝑖𝑛(𝜃𝑘  )]  

Mobility speed in m/s is represented by 

vi∈MobilitySpeeds. 

Modeling the BS-user channel uses path loss, small-

scale fading, and user mobility. For user k at distance dk 

(t), the path loss is [17],  

𝑃𝐿𝑘(𝑡) = (
4𝜋𝑑𝑘(𝑡)

𝜆
)

−𝛼

 

All users’ small-scale fading is modeled as Rayleigh 

fading channels. At time t, the BS-user k channel matrix 

Hk(t) is, 

𝐻𝑘(𝑡) = √𝑃𝐿𝑘(𝑡). (𝐺𝑘(𝑡) + 𝑗𝐵𝑘(𝑡)) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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The real and imaginary channel sections are modeled by 

independent and identically distributed Gaussian 

random matrices Gk(t) and Bk(t). 

RIS channels connect users to the RIS. HRIS,k(t) 

represents the channel matrix for RIS-assisted user k at 

time t [43], 

𝐻𝑅𝐼𝑆,𝑘(𝑡) = √𝑃𝐿𝑅𝐼𝑆,𝑘(𝑡) ⋅ 𝛷(𝑡) ⋅ (𝐺𝑅𝐼𝑆,𝑘(𝑡) + 𝑗𝐵𝑅𝐼𝑆,𝑘(𝑡)) 

The real and imaginary components of the channel from 

RIS to user k are GRIS,k(t) and jB RIS,k(t). 

𝑆𝐼𝑁𝑅𝑅𝐼𝑆,𝑘(t) =
𝑃𝑘(𝑡) ⋅ |𝐻𝑅𝐼𝑆,𝑘(𝑡)|

2

∑𝑗<𝑘𝑃𝑗(𝑡)|𝐻𝑅𝐼𝑆,𝑘(𝑡)|
2

+ 𝑁0

 

𝐷 = 𝑆𝐸 × 𝐵𝑊 

where D is data rate (bps). 

𝐿 =
𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒

𝐷
× 𝑓(𝑆𝑁𝑅) 

where L is latency, f(SNR) is the channel-dependent 

factor for different channel models and user setups. 

For each user, packet loss (Ploss) occurs if their SINR 

falls below a specified SINRthreshold,  

𝑃𝑙𝑜𝑠𝑠 = {
1  𝑖𝑓 𝑆𝐼𝑁𝑅 < 𝑆𝐼𝑁𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐹 =
(∑𝑘=1

𝐾 ∑𝑟𝑘)
2

𝐾 ∙ ∑𝑘=1
𝐾 ∑𝑟𝑘

2 

where F is fairness, rk represents user k’s throughput, Lk 

represents user k’s latency, and β balances latency and 

fairness. 

Algorithm 1: Q-learning algorithm. 

Initialize the Q-Table and hyper parameters (α, γ ,ε, λ, μ, β). 

Commence ε. 

Initialize state s, encompassing SINR,Palloc, and PLossR for each 

user. 

In the ε of convergence or maximum iterations: 

Select action according to the ε-greedy policy. 

Implement action (PK) and monitor: 

Subsequent state s’. 

Reward R(s, a) is determined by delay, packet loss, and fairness. 

Revise Q-value: Q(s, a)→Q(s, a)+α*(R(s, a)+γ*max Q(s', a')-

Q(s, a). 

Update state s to s’. 

End ε. 

Derive the best strategy for latency, packet loss, and equity. 

Implement an effective power allocation strategy. 

End. 

Algorithm (1) studies how to improve cooperative 

NOMA by examining throughput, latency, and packet 

loss, with a focus on how logarithmic power distribution 

affects these aspects and fairness. A general objective is, 

𝑅 = ∑𝑘=1
𝐾 𝑟𝑘 − 𝜆 ⋅ 𝐿 − 𝜇 ⋅ 𝑃 

where, R is system performance reward. rk is user k 

throughput. K user total. L system aggregate latency. P 

system-wide packet loss. The weight factor λ balances 

throughput and latency. μ Weight factor for packet loss 

reduction. Each state s encapsulates pertinent attributes 

of the system, 

𝑠 = {𝑆𝐼𝑁𝑅1, 𝑆𝐼𝑁𝑅2, … , 𝑆𝐼𝑁𝑅𝑘 , 𝑃𝑎𝑙𝑙𝑜𝑐, 𝑃𝑙𝑜𝑠𝑠 𝑅1, 𝑃𝑙𝑜𝑠𝑠 𝑅2, … , 𝑃𝑙𝑜𝑠𝑠 𝑅𝑘  

where, power allocation Palloc, (PLossR) packet loss ratio. 

Power allocation to each user is action as, 

𝑎 = {𝑃1 , 𝑃2, … , 𝑃𝐾} 

a represents the power location of each user, determined 

by ϵ the probability of exploration. 

𝑅(𝑠, 𝑎) = −
1

𝐾
∑𝑘=1

𝐾 _(𝐿𝑘 + 𝜇 ⋅ 𝑃𝐿𝑜𝑠𝑠𝑅𝑘) + 𝛽 ⋅ 𝐹  

Based on the bellman equation, Q-learning updates Q-

values, 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑎′𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 

Q-value for state s and action a; α=learning rate. 

Discount factor (γ factor). The maximum Q-value for 

the subsequent state 𝑠’ over all potential actions 𝑎’. 

The procedure runs until the Q-values converge or 

until a set number of iterations is reached. After that, 

latency, packet loss, and fairness are determined using 

equations 24, 25, and 26, respectively. 

3.1. Simulation Parameters 

Table 1 presents the simulation parameters for the 

proposed systems model in 6G networks. The results 

indicate the relationship between the scalability of these 

systems and the increase in user count, SNR, and 

throughput. The charts illustrate the outcomes of various 

mMIMO cooperative NOMA scenarios, highlighting 

the differences between configurations that include 

intelligent RIS and CR and those that do not, as well as 

how mobility speed and network density influence 

throughput and latency at varying user densities. 

Table 1. Presents comprehensive details on the simulator settings 

employed for modeling proposal system networks. 

Parameter Value 

Number of users 50,100,150, and 200 

Mobility speeds 0 to 250 Km/h 

Number of antennas 256x256 

RIS configuration 512x512 

SNR (dB) -20 to 20 

Modulations 512 QAM 

Path-loss exp. 2.7 

BW 10 GHz 

Cellular type Microcells 

Frequency range 28 GHz to100 GHz 

4. Results and Discussions 

Figure 3 shows the SE and SNR for 50, 100, 150, and 

200 users in the mmWave mMIMO DL CR cooperative 

NOMA Primary Destination (PD) system. The SE 

improved as the SNR increased. The group of 50 users 

may achieve a maximum SE of 3.9 bps/Hz. For user 

groups of 100, 150, and 200, the corresponding SE at 20 

dB SNR is 2.8, 2.2, and 1.9 bps/Hz, respectively. When 

the combination system is used with the intelligent RIS, 

the SE at 20 dB SNR for user groups of 50, 100, 150, 

and 200 is 4.8, 3.6, 3.0, and 2.6 bps/Hz. Compared to 

performance without RIS, the system’s SE has been 

(21) 

(22) 

(24) 

(26) 

(25) 

(27) 

(28) 

(29) 

(30) 

(31) 
(23) 
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enhanced by 10.3%, 12.5%, 15.3%, and 15.6%, 

respectively. 

The results show that the RIS significantly improves 

SE in the proposed system, especially as the number of 

users increases. The considerable improvements for 

groups of 150 and 200 users demonstrate that RIS is 

important for keeping the system operating efficiently 

as more users join. This makes it a strong option for 

boosting SE in high-user-density networks. On the other 

hand, varying user numbers (50 to 200) show that 

NOMA with RIS support maintains consistent SE 

performance for up to 150 users. Thereafter, 

interference causes performance degradation of roughly 

12%. Through calculations and tests, it was observed 

that at 20 dB SNR, reducing RIS elements from 

512×512 to 256×256 lowers SE by 18%, showing a 

trade-off between hardware complexity and 

performance. Additionally, introducing a 10% error to 

SIC lowers SE by 22% for 200 users (compared to 

perfect SIC). The final result outperformed that 

observed Zhang [55] and Papazafeiropoulos [37]. Our 

technique achieves a 2.1-fold enhancement in SE at 20 

dB SNR compared to the results in [40]. 

 

Figure 3. SE versus SNR for 4 different groups of mMIMO DL CR 

cooperative NOMA users with and without intelligent RIS. 

Figure 4-a) and (b) depicts the throughput and 

mobility speed (0 to 250 km/h) for 200 users in the 

mmWave mMIMO DL CR cooperative NOMA PD 

system, comparing cases with and without intelligent 

RIS. Throughput diminishes as the velocity of 

movement increases. Figure 4-a) demonstrates that a 

system with a -20 dB SNR undergoes a more rapid 

decrease in throughput as mobility speed escalates, 

unlike the system using RIS. Mobility rates of 40 km/h 

intensify system attenuation, resulting in a significant 

reduction in throughput. The poor SNR causes the 

signal quality to deteriorate to such an extent that 

increases in transmission power are unable to maintain 

an acceptable throughput level. 

  

a) Throughput against mobility speed for 

50 users at SNR of -20 dB. 

b) Throughput against mobility speed for 

50 users at SNR of 20 dB. 

Figure 4. Throughput against mobility speed for 50 mMIMO DL CR 

cooperative NOMA users with and without intelligent RIS. 

The system illustrated in Figure 4-b) has an SNR of 

20 dB. At low mobility rates (0 to 70 km/h), throughput 

shows a minor enhancement, especially with the 

application of RIS. As mobility increases, throughput 

decreases. RIS has no impact on throughput 

performance at high speeds (up to 250 km/h) compared 

with systems without RIS. At a higher SNR level of 20 

dBm, throughput consistently exceeds that of the lower 

SNR level of -20 dBm across all speeds. The study 

shows that higher transmit power reduces losses caused 

by mobility. 

 

Figure 5. Throughput versus user density of mMIMO DL CR 

cooperative NOMA users with and without intelligent RIS. 

Figure 5 shows the mmWave mMIMO DL CR 

cooperative NOMA PD system with and without 

intelligent RIS. It presents the average throughput and 

user density for different user numbers. Average 

throughput decreases as user density increases. The 

group of 50 users had average throughputs of 0.1332 

and 0.1530 Mbps/Hz, and 0.6753 and 0.7057 Mbps/Hz, 

while the group of 200 users had average throughputs of 

0.0333 and 0.0383 Mbps/Hz, and 0.1698 and 0.1785 

Mbps/Hz, both without and with intelligent RIS at SNR 
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levels of -20 dB and 20 dB, respectively. Compared to 

performance without RIS, the system’s average 

throughput increased by 6.9% and 2.2% for 50 users, 

and by 1.3% and 2.4% for 200 users. As the number of 

users grows, performance per user declines due to 

interference and the manner in which resources are 

shared. In cooperative NOMA systems, it is common for 

several users to compete for the same resources. RIS 

alleviates the impact of user density by enhancing 

channel conditions and reducing interference. High 

user-density scenarios present ongoing challenges. 

Quantizing phase shifts to 2-bit levels instead of 

continuous ones reduces throughput by 9%, as 

beamforming is not as effective as it could be. 

 

Figure 6. Latency vs. user density for three various systems. 

Figure 6 illustrates how latency varies with the 

number of users in three systems: mMIMO cooperative 

NOMA, mMIMO CR cooperative NOMA, and 

mMIMO CR cooperative NOMA with intelligent RIS. 

As user competition for limited resources intensifies, 

network congestion and interference occur, leading to 

increased latency as user density rises. The latency for 

mMIMO cooperative NOMA and mMIMO CR 

cooperative NOMA using intelligent RIS systems was 

11.8% and 17.2% better, respectively, for 20 users 

compared to mMIMO CR cooperative NOMA, which 

had a latency of 1.56 ms. At a user density of 50, 

mMIMO cooperative NOMA and mMIMO CR 

cooperative NOMA using intelligent RIS systems 

exhibited 15.3% and 22.6% lower latency than mMIMO 

CR cooperative NOMA, which recorded a latency of 

12.34 ms at an SNR of 20 dB. The mMIMO-CR 

cooperative NOMA system with an intelligent RIS 

performs better in terms of latency, even with many 

users, making it a strong choice for busy 6G networks 

where interference management is crucial. 

Figure 7 exhibits the variation in latency relative to 

the number of users across three distinct systems: 

mMIMO cooperative NOMA, mMIMO CR cooperative 

NOMA, and mMIMO CR cooperative NOMA 

integrated with intelligent RIS utilizing a Q-learning 

algorithm. At a user density of 20, the latencies recorded 

are 0.62135, 0.73904, and 0.57279 ms. At a user density 

of 50, the latencies are 3.8383 ms for mMIMO 

cooperative NOMA, 5.0415 ms for CR mMIMO 

cooperative NOMA, and 3.362 ms for CR mMIMO 

cooperative NOMA systems with the intelligent RIS at 

20 dB SNR. At a user density of 20, the results indicate 

that the CR mMIMO cooperative NOMA has 8.6% 

more latency than the basic cooperative NOMA with 

mMIMO. This increase is attributed to the channel 

sensing and interference management that the CR 

mMIMO cooperative NOMA must perform. Using 

intelligent RIS reduces latency by 4% compared to 

traditional cooperative NOMA with mMIMO and by 

12.6% compared to CR mMIMO cooperative NOMA. 

When 50 users are present, the CR cooperative mMIMO 

NOMA RIS-enhanced system has 19.9% less latency 

than the CR mMIMO cooperative NOMA system and 

7.4% less latency than the mMIMO cooperative NOMA 

system. This decrease is reasonable because RIS alters 

how signals reflect to reduce interference in busy areas, 

leading to quicker transmission and lower latency. The 

sudden increase in the new result compared to the 

previous one is due to Q-learning selecting different 

methods of power allocation based on the number of 

users. At low user density, Q-learning distributes power 

more evenly, resulting in greater stability in latency. 

 

Figure 7. Latency versus user density for three different scenarios 

with optimization algorithm. 

Figure 8 shows how packet loss changes with the 

number of users in three different systems: mMIMO 

cooperative NOMA, mMIMO CR cooperative NOMA, 

and mMIMO CR cooperative NOMA with intelligent 

RIS. At a user density of 10, the packet loss performance 

of three systems is 10%, 12%, and 5%, and at the user 

density of 50, the packet loss performance of three 

systems is 22%, 22.5%, and 21%, respectively, at SNR 

of 20 dB. An increase in users results in greater 

interference and diminished resources, adversely 

affecting all systems. Optimal placement of RISs, phase 

adjustments, and additional strategies, such as user 
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clustering and improved power distribution, can 

optimize performance.  

 

Figure 8. Packet loss against user density for three different scenarios 

with optimization method. 

Figure 9 illustrates how packet loss varies with the 

number of users in three different systems: mMIMO 

cooperative NOMA, mMIMO CR cooperative NOMA, 

and mMIMO CR cooperative NOMA with intelligent 

RIS integration using Q-learning. At 50 users and 20 dB 

SNR, each of the three systems achieves a packet loss 

performance level of 9%, 12%, and 1%, respectively. 

The results indicate that the combination of RIS with Q-

learning substantially enhances packet loss mitigation in 

densely populated cooperative NOMA systems. When 

there are a lot of users, this strategy cuts down on packet 

loss by a lot. When the γ value goes from 0.95 to 0.9, 

immediate advantages become more relevant. In 

dynamic situations, this method increases packet loss by 

5% but improves latency by 15%. In static conditions, a 

5% CSI inaccuracy leads RIS beamforming 

misalignment to increase packet loss by 12%. RIS+Q-

learning decreases latency by 35% and enhances 

fairness by 28% compared to NOMA with fixed power 

allocation [12]. 

 

Figure 9. Packet loss vs. user density for three different scenarios 

with Q-learning logarithm. 

Figure 10 shows the variation in the fairness index 

relative to SNR across three distinct systems: the 

NOMA cooperative mMIMO system, the NOMA 

cooperative mMIMO CR system, and the mMIMO 

cooperative NOMA CR system integrated with 

intelligent RIS. The system exhibits considerable 

instability in fairness across various configurations and 

SNR levels, with limited fluctuation in fairness values. 

CR and RIS appear to exert a negligible influence on 

fairness, showing minimal variation from the baseline 

cooperative NOMA system. Nonetheless, they continue 

to provide certain advantages, such as improved signal 

quality and a better user experience. Moreover, fairness 

is constrained by factors such as power distribution 

schemes, user demographics, and channel conditions, 

which remain relatively consistent across many 

configurations. At an SNR of 20 dB, the fairness index 

ratings for the three systems are 0.476, 0.474, and 0.48, 

respectively, with 50 users.  

 

Figure 10. Fairness index versus SNR for three different scenarios. 

Figure 11 shows three alternative systems, including 

the mMIMO cooperative NOMA, and how the fairness 

index evolves with SNR. The systems being compared 

are mMIMO cooperative NOMA, mMIMO cooperative 

NOMA with intelligent RIS, and systems that use the Q-

learning method. When the SNR is low, especially at -5 

dB, the system has trouble keeping power distribution 

fair among users due to poor signal conditions, which 

leads to losing the benefits of CR and RIS because of 

high interference. Additionally, Q-learning may struggle 

to balance exploration seeking superior solutions with 

exploitation selecting the most effective known action, 

resulting in instability and suboptimal fairness. With 50 

users and a 20 dB SNR, the fairness index values for the 

three systems are 0.577, 0.541, and 0.594, respectively. 

Upon examining the fairness index before and after Q-

learning, we observe that all three systems exhibited 

improvements of 9.5%, 6.6%, and 10.6%, respectively. 

Q-learning and RIS can enhance the equity of 

cooperative NOMA systems by diminishing power 

usage and augmenting signal quality for users with 

poorer connections. The performance of all individuals 
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will be enhanced consequently. Increasing ε from 0.1 to 

0.2 enhances fairness by 8% while concurrently 

decelerating convergence by 30%. 

 

Figure 11. Fairness index versus against SNR for three different 

scenarios with optimization technique. 

Even though our models assume perfect conditions, 

several real-world problems require addressing: large 

RIS arrays (512×512) and mMIMO systems (256×256) 

demand substantial physical infrastructure, which raises 

both power and capital costs. Passive RIS modules are 

less expensive than active beamforming arrays but make 

large-scale implementation more difficult [43]. 

Obtaining accurate channel state information in RIS-

enabled systems is challenging, particularly due to the 

double-fading effect in the BS-RIS-User links. This 

increases the cost of operation and the time required for 

estimation, as observed by Gomes et al. [17]. To 

enhance phase shifting, RIS components must be 

controlled in real time. This introduces signaling 

overhead, which is especially problematic in dynamic 

scenarios where users require the ability to move freely. 

Without effective signaling systems, delays may offset 

the benefits of RIS [4, 55]. These deployment 

challenges highlight the importance of well-designed 

systems and the substantial further work required in 

low-complexity RIS control, CSI estimation, and 

hardware architecture optimization. 

5. Conclusions 

The suggested system attains significant improvements 

in SE through the utilization of CR spectrum sensing 

and intelligent phase shift optimization across various 

user settings within the mmWave environment. 

Research demonstrates that integrating RIS into CR-

based mMIMO cooperative NOMA systems 

substantially improves average throughput, decreases 

latency and packet loss, and increases the fairness index, 

particularly in scenarios characterized by high user 

density. The results indicate that RIS-assisted 

cooperative NOMA excels in reducing interference, 

improving signal quality, and mitigating the impact of 

high mobility on system performance, making it a 

promising solution for future 6G networks. The study 

indicates that Q-learning methods are highly effective in 

reducing latency and packet loss and in improving 

fairness in crowded mmWave areas. It brings multiple 

benefits to the proposed system by dynamically 

distributing power, enabling the system to adapt to user 

density and fluctuating network conditions, thus greatly 

reducing interference and resource competition. Future 

research will focus on achieving further improvements 

in system performance through enhanced power 

allocation and user scheduling, particularly in RIS-

enabled systems. 
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