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Abstract: The future of Consumer Electronics (CEs) is moving rapidly towards Unmanned Aerial Systems (UAS), wearables,
and Explainable AI (XAI). UAS are facilitating near real-time aerial monitoring of the environment, wearables permit continuous
monitoring of physiological and biometric data, and XAl is the next step toward transparency in systems through XAI informed
decision-making that users of Artificial Intelligence (Al)can trust and understand. In this paper, we propose a new multi-modal
architecture that integrates UAS, wearable devices, and XAI to generate an intelligent and adaptive CE ecosystem. The
architecture proposed uses a sequential data gathering process involving UAS and wearables, and the multi-modal data are
fused and modeled using machine learning techniques. Transparency and user accountability can be established through the use
of XAI systems like Hapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) to
provide clear and actionable explanation of Al-driven outputs. Our results indicate accuracy of 92% with an explanation fidelity
of 95%, a significant improvement over conventional technology. In addition, the proposed architecture will have tremendous
potential for disruption in the healthcare, fitness, and smart home spaces, as personalization and ethical use of data are
paramount. The novel contributions of this work in uniquely bringing together aerial monitoring, physiological monitoring, and
Al furthers toward the goals of building trustworthiness in CEs and user-centered intelligent systems.
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1. Introduction potential lies in the fusion of UAVs, wearables and XAl
[2] that will radically disrupt key sectors. UAVs (more
commonly known as drones) have become increasingly
popular for aerial data capture in the fields of mapping,
environmental monitoring, and surveillance. That said,
far beyond these uses they are usable. In sectors such as
Agricultural Technology (AgriTech), logistics and
disaster management they are being deployed to acquire
real-time data which is useful in better decision-making.
This allows the UAVs with their mobility to establish a
service where may account personal real-time
diagnostic health tracking along with those performed
by wearable devices such as smartwatches and health
sensors at an individual or population level, and
environmental sensing. This combination allows for

For a decade, the only exception to that was the speed
of innovation, but then technology trends converged
(the global industries and consumer experiences were
each on change). One of the most exciting developments
in this technology revolution is the integration of
Unmanned Aerial Vehicles (UAVs) with wearables and
Explainable Al (XAI). The unprecedented convergence
of smart assistants (okay, Google), form factors and
functional capabilities are pushing the envelopes of
existing consumer devices and systems that beg for
smarter ecosystems that further enhance our daily
experiences. Although novelty applications like Alexa
running shoes certainly boast some utility, the real
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continuous health tracking, providing a more in-depth
understanding of someone’ wellbeing.

The critical differentiator in this ecosystem, as
Artificial Intelligence (Al) systems continue to expand
in complexity is XAl. In XAl the systems make sure
that any decision made by an Al powered device is
explainable, interpretable and hence trusted. Existing
approaches to XAl like Local Interpretable Model-
agnostic Explanations (LIME), Hapley Additive
exPlanations (SHAP), Learning to Explain (L2X) and
Anchors tackles this problem statement as for
consumer-facing  applications  transparency  is
paramount (decision trees remind crib here). These
tricks make it possible for the systems built on Al to
show results in an understandable manner by users,
making data-led decisions particularly concerning
health diagnostics and personalized recommendations
reliable and ensuring ethical approaches [8]. The
combination of UAVs, wearables, and XAl can reshape
the third era of CEs that enables completely new
applications in industries like health care and fitness and
smart homes. Coupling these technologies creates a
hyper-connected [3] and responsive system that
improves the user experience, while supporting
transparent and responsible data utilization. The
merging of such smart technologies should hopefully
lead us into a new age in CEs that is more humanitarian,
accountable and adaptive. Figure 1 represents the
existing system architecture.

Towards a different adaptation to be interoperable:
design a synergistic ecosystem composed of UAVs,
wearables, and XAI that allows for seamless
communication, data sharing, and collaborative
functionalities in the next-generation CEs.

System Architecture
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Figure 1. Basic system architecture.

Enhancing user experience and trust: use XAl to
provide transparency into Al-driven decisions such that
users comprehend system behaviours, leading to greater
acceptance of UAVs and wearable technologies.

Identification of optimization: explanation-based
decision-making models for optimizing performance
objectives such as efficiency, energy consumption, and
accuracy in UAV and wearable systems

The remainder of the paper is organized as follows.
Section 2 reviews related work and identifies debt in

posterior research, where recent advances in the
integration of UAVs, wearable devices, and XAl has led
to limitations. In section 3, we propose a multi-model
architecture to carry out just simple objectives within
the system design, the data-fusion, a machine learning
element, and applying techniques in XAlI. In section 4
we analyze experimental results by synthetic
simulations, an evaluation of the system’s performance
and comparison with previous posterior methods. In
section 5, we conclude the paper with plausible future
research directions toward better supporting the
proposed framework.

2. Related Work

UAVs, wearable devices, and Al have also been widely
studied in other fields. Drones are also expected to be
used within logistics, surveillance and healthcare; while
wearables will provide near-continuous monitoring of
health and fitness. As Al moves forward and becomes
more integrated, the explanations for how it makes
choices XAI has risen to a larger point on the agenda to
ensure transparency and user trust in systems powered
by Al. We summarize previous work The remainder of
the paper is organized as follows. Section 2 reviews
related work and identifies debt in posterior research,
where recent advances in the integration of UAVs,
wearable devices, and XAI has led to limitations. In
section 3, we propose a multi-model architecture to
carry out just simple objectives within the system
design, the data-fusion, a machine learning element, and
applying techniques in XAl In section 4 we analyze
experimental results by synthetic simulations, an
evaluation of the system’s performance and comparison
with previous posterior methods. In section 5, we
conclude the paper with plausible future research
directions toward better supporting the proposed
framework and adapting the framework to larger
canonical domains. emphasizing the incremental
progress made independently in these fronts but none
have explored integrating to address early adopter’s CEs
applications. We highlight the pertinent research, their
shortcoming and the scope integration to bridge these
gaps.

Do et al. [5] combination of satellites and UAVs is
enabling a new type of communication networks. The
uses, challenges, and future applications of UAV-
satellite hybrids are explored in this article. Satellites
provide global coverage, while UAVs add regional
accessibility and flexibility. Their combination could
have a range of applications such as disaster response,
remote communication for environmental monitoring or
scientific research missions. And there are a lot of other
means: network coordination, energy efficiency,
security, signal Intelligent Reflecting Surface (IRS)
interference etc. All that need to be solved in this system
as well, so future research might be on swarm
intelligence or Al-based decisions-related one or hybrid
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communication architectures. When you pair UAVs
with satellites, a revolution prepares for the change in
planetary communication by offering smoother and
effective connectivity.

Tyrovolas et al. [20] the future standardization of the
communication system will also be greatly affected if
UAVs intentionally manage their limited energy
appropriately, which naturally limits their available
time. Reconfigurable Intelligent Surfaces (RISs)
promise to extend the communication range of UAVs
without overcomplicating their physical properties. In
this letter, we present a scheme of multiple UAVs
cooperating with RIS, where each UAV assists the RIS
by providing effective Gain-to-Temperature (G/T)
uplink. In terms of numerical results in the rest of S1-
S3, we validate that for all kinds of air-to-ground RIS-
assisted networks, compared to when UAV utilizing an
omnidirectional antenna or a directional antenna only
pointing downwards to communicate with this ground
node.

Now, Lee ef al. [13] are proposing a new method of
charging batteries for wearable devices, as described in
a letter. A charger can also charge lots of devices, and
conductive fabrics embedded into clothes for on-body
charging. Our simple component layout allows for load
independent Constant Current (CC) and Constant
Voltage (CV) charging. A standout feature of our
approach is that each individual device can
autonomously control its own charging mode. Even
though the system can theoretically be extended to an
infinite number of devices, therefore CC and CV could
only yield results that differ by up to 5% in practice.

Kumar et al. [12] due to the importance of Ground-
Penetrating Radar (GPR) data inspection for near-
surface geophysics and constant advances in the

application of Deep Learning (DL), a brief overview of
the GPR imaging has been made. One of the biggest
obstacles is that DL models are highly complex, making
it difficult to explain their conclusions. In this study,
XAl methods Gradient-weighted Class Activation
Mapping (Grad-CAM) and LIME are employed to
provide a quantitative insight into the inversion
procedure of 2-D GPR based on DL. To the best of our
knowledge, this is the first time interpretable
components have been incorporated into model
predictions for a subsurface utility mapping application
that uses automatic interpretation of GPR data. These
features summarized as important features and the
corresponding hierarchy for the extraction of
hierarchical features [8]. As a result, we provide a
thorough analysis of the model’s mechanisms for
geophysical DL models which improves interpretability
and establishes a basis for a new XAl-subsurface utility
detection paradigm contributing towards more accurate,
trustworthy and interpretable geophysical DL solutions.

Sinha and Das [19] for the flow of reliable
monitoring data in an Internent of Things (IoT) network,
it is necessary to build a correct technique for early
prediction of failure. Modern Al driven defect detection
methods are not reliable enough to be used with safety-
critical systems in the industry as they have high
computational cost and black-box nature. We address
these limitations by proposing an loT-based Explainable
Al framework built on Learning Classifier Systems
(XAI-LCS) approach that uses the relevant extreme
gradient boosting feature selection technique and
generates complete explanations for not only bias and
drift detection but also Full Failure (CF) and precision
degradation diagnosis on a range of sensor faults. Table
1 summarizes the related works relatively.

Table 1. Summary of related words.

Reference Focus area Key techniques Limitations Relation to proposed work
Do etal. [5] UAV-satellite Hvbrid networks Lack of personalized data, no integration | Our work integrates UAV with on-ground biometric
) communication Y with XAl or wearables data and adds explainability for user-centric systems
Tyrovolas et al. UAV and RIS Signal optimization Focus on energy and coverage; no end-user| We address data mterpreta_bﬂnty and user-focused
[20] interaction or explainability applications
. . . Power optimization only, no Al or UAV | We extend wearable utility with real-time decision-
Leeetal. [13]| Wearablecharging | Conductive fabrics context making and integration
Kumar et al. GPR with XAl Grad-CAM, LIME Domain-specific, lacks fusion with We generalize XAl use to _multl—modal fusion in CE
[12] UAVs/wearables devices
Sinha and Das loT fault diagnosis | XAI-LCS, XGBoost No integration with physical sensors or user| We incorporate blometr_lc and envi rpnmental Sensors
[19] feedback into explainable decisions

While the studies listed in Table 1 that contribute to
their  respective fields UAV  communication
optimization, wearable technologies, or XAl they do so
largely in a non-integrated manner. Specifically, most
of these studies are either unsuccessful in integrating
environmental and physiological data into a holistic
embedded solution that can be used in real-time, or they
do not leverage the potential for explainability in user-
facing applications. Our work is unique in integrating
UAVs, wearable sensors, and XAl together in a multi-
modal architecture to develop a personalized approach
to decision-making with interpretable outputs. This

integration allows us to resolve the fragmentation seen
in prior approaches, as well as address the issues of user
trust, data fusion and breadth of application—focusing on
the use-cases of smart healthcare, fitness and ambient
home systems. Thus, our contributions create a
significant gap, by enabling a contextually-aware,
ethically-embedded and explainable CEs ecosystem for
next-generation devices.

3. Proposed Methodology
The market has been further expanded with the coupling
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of wearables and XAl, totally changing future CEs
systems such as; UAVs [18]. This approach provides
near-real-time data on the environment and situational
awareness through aerial data collection via UAV, whilst
wearable sensors provide continuous monitoring of
biometric data for personalized health and wellness-
related insights. This integration of such technologies
requires complex data fusion since knowledge is
coming not only from UAVs but also the wearables, thus
new knowledge about the user and his/her context
should be formed. XAI [4] ensures transparency,
interpretability and comprehensiveness of the Al-driven
decisions in the domain targeted by the user helping to
integrate Al with domain knowledges. This foster trust
and accountability in deploying an Al especially in
sensitive applications like health care where an Al might
make a recommendation leading to choices which
impact on the user well-being. Indeed, the combination
of UAVs, Wearables and XAl births intelligent systems
responsive [17] to user’s personalized desires with
explicable insight for improving user experience. This
convergence will result in smart CEs devices, which will
be represent next-gen type of electronics in future such
as health care, smart home and fitness level monitors
etc., and shall make human life easier to control.
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! 1
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{ % Unified Model Output
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Figure 2. Proposed system architecture.

Figure 2 shows the working of the proposed system
architecture. A schematic overview of the integrated
system architecture involving UAVS, wearable devices
and XAl for developing smart and real-time insights
[21]. The hardware layer: UAVs with environment
sensors and user health monitoring wearable devices
data collection and preprocessing layer this layer
harmonizes and scrubs the data, acquired from both
sources, source fusion techniques (like Kalman filters)
fuse data read-outs. Al Processing and XAl layer here
the Al models quickly process this data, and an
explainability method like SHAP or LIME translates
these actions into interpretable insights. The third part
of this layer is the cloud and edge computing layer,
which acts as a bridge between cloud-based data storage
and processing system as well as local computation to
reduce latency. The Ul and feedback layer provides
real-time insights and alerts powered off Al predictions.
Security and privacy layer ensures data is encrypted

while in motion and provides users control of who
shares with whom.

e Step 1.1: Data collection and preprocessing.

Data collection is the first step in the process. UAVs
capture environmental, geographic, and situational data
through sensors, cameras, and other imaging
technologies [16]. Wearable devices collect biometric
data, including heart rate, steps, temperature, and other
physiological metrics. This data is represented as:

o Duyav ()={x1, X 2,..., xa} (UAV sensor data at time ¢)
® Dwearable (£)=Y1, V2 ,...., Ym (Wearable sensor data at
time ¢)

Where:

e x; represents the measurements captured by UAV
sensors (e.g., temperature, humidity, air quality).

e y; represents the physiological readings from the
wearable (e.g., heart rate, skin temperature, activity
level).

The data from UAVs and wearables are synchronized in
time for fusion purposes. This is achieved using
temporal alignment techniques, where the data streams
from both devices are aligned on a common time axis.

e Step 1.2: Data collection and preprocessing.

Data fusion integrates the UAV [9] and wearable data to
create a unified feature set for predictive modeling. This
step can be expressed as a weighted sum or other fusion
methods:

FusionData =a-U+ (1 —a) - W (H

where 0<a<lis the weight assigned to UAV data, and 1-
a is the weight for wearable device data.

e Step 1.3: Machine learning models for predictions.

Predictive modelling is performed to gain insights from
the fused data. Here, different machine learning
algorithms are employed for classification and
regression tasks.

o Step 1.3.1: Model selection.

e Decision trees: a decision tree algorithm is a
supervised learning model used for classification and
regression tasks [11]. It recursively splits the data
based on feature values to create a tree-like structure.
The decision tree model can be represented as:

f(X) = Tree(X) 2)
where f(X) is the predicted output, and X is the feature
vector.

o Step 1.3.2: Explainable Al (XAI) techniques.

XAI methods provide transparency and interpretability
in Al models. The following techniques are used to
interpret the predictions made by the machine learning
models.
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a) LIME

LIME is a method that approximates complex models
by locally fitting interpretable models (e.g., linear
models) around a given prediction.

LIME(f, 2) = argmin Eyp [L(f (x), 0)] 3)

where f is the original model, x* is the instance to
explain, and L is the loss function.

b) SHAP
SHAP values use cooperative game theory to attribute
each feature’s contribution to the model’s output.

IN|!

¢ = , ,
SQN\{L.}|5|-(|N| [S| = 1)!

FEUD -1 @)

where ¢; is the Shapley value for feature i, and f{\S) is the
model’s output for subset S of features.

¢) L2X

L2X learns a model that produces explanations by
selecting a subset of input features that are most relevant
to the prediction.

Anchor(x) = {x; | P(y = c [x; ) > 1} ®)]

where x; are the features that anchor the prediction ccc,
and 7 is the threshold for certainty.

LZX(]?'X) =argmingcy Ex.p [L (f(x)'f(xs))] (6)

where xs is the subset of features selected by the model,
and L is the loss function

e Step 1.4: Model evaluation and performance metrics.

To evaluate the performance of the predictive model,
common metrics such as accuracy, precision, recall, and
F1-score are used:

p _ TP+TN
Ay = TP ¥ TN + FP + FN )

where:

TP=True Positives, TN=True Negatives, FP=False
Positives, FN=False Negatives.

For regression models, metrics such as Mean
Squared Error (MSE) are used:

N
1 -~
MSE = NZ(%‘ —9)? (8)
where y; is the true value, and y;" is the predicted value

4. Proposed Multi-Model
Terminology

e UAVs: a drone or remotely operated aircraft used for
data collection.

e Wearable devices: smart devices worn on the body
that collect physiological data (e.g., smartwatches,
fitness trackers).

e XAI: techniques used to interpret and explain Al

model predictions.

e LIME: a model-agnostic explanation technique that
approximates complex models locally with simpler
interpretable models.

e SHAP: a game-theoretic approach to explain
individual predictions by attributing feature
importance.

e [2X: an approach that selects the most relevant
features to explain model predictions.

e Anchors: an explanation technique that uses rules to
highlight features that guarantee a prediction
outcome.

This methodology ensures that the AI models used in
CEs are transparent, explainable, and trustworthy,
enabling users to understand and trust the predictions
made by the system.

e Step 1: Data fusion model.

The data fusion of UAV and wearable devices is a
weighted sum as follows:

Fusion Data (t) = a - Dyyp(t) + (1 — @) * Dyparapie(t) (9)
Where a\alphaa and (1—a) are the weights of UAV and
wearable data respectively.

o Step 1.1: Fusion data: predictive modelling.

The fused data is fed into the machine learning model
for prediction. To simplify we define fj; as a supervised
machine learning model:

fur(X) =9 (10)

Where X is the concatenated feature set and ¥ is an
output prediction (e.g., environmental risk, health
status).

o Step 1.2: Integration of XAI (LIME and SHAP).

Using LIME and SHAP, explanations are provided for
predictions made by the machine learning model. We
describe fuz, output using both:

LIME Explanation
LIME (fy;, X) = arg mein Exp [L(fur(x),6)] (11)
Where L is a loss function based on the distance between

the original model output and that of the interpretable
one.

SHAP Explanation

ISIL(N] = 1S| = 1)!
IN|!

¢; = [F(S Ui = £(S)] (12)

SEN\{i}

Where ¢; is the Shapley value corresponding to feature
i or contribution of each feature to prediction and f{S) is
model output where subset S of features are considered.

e Step 1.3: Unified model output.

To obtain a mixture of both explainable components, we
create a unified output y"explainable that includes the
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machine learning prediction with its explanations from
LIME and SHAP:

Yesplamaie = fan (X) + 4 <L1ME(fML. B+ ¢z> (13)
i=1
Where:

A is a scaling factor (a value that weighs the strength
of the contributions of the interpretable components).
The sum of SHAP wvalues calculates the feature
contributions, which combines and makes sure of is
explainable in prediction.

e Step 1.4: Final decisions.

Given that, the decision is made on top of the
explainable prediction Y, sinapie- This helps us to be
transparent and interpretable in our actions:

Action 1 if Yegptainasie > Threshold

Decision = (Action 2 if Yewplainavie < Threshold

) (9
The Threshold is a constant that provides the basis for
making decisions based on the integrated prediction.

4.1. Proposed Algorithm

Algorithm (1) processes UAV and wearable data by
validating, uploading, and fusing them to generate a
predicted outcome using a trained model. It then applies
LIME and SHAP for interpretability, combines their
explanations, and securely stores the data on a
blockchain.

Algorithm 1: Proposed Multimodal Algorithm for processes UAV
and wearable data.

Input:

U, W (“UAV and wearable data files )

Output:

P (“Predicted outcome”), E (“Explanation of prediction” )
STEP

C U, C_W<"ValidateFiles” (U,W)

“If “C_U=0"or “C_W=0,” return error."
H U< “UploadToIPFS” (U)

H W« “UploadTolPFS” (W)

“If “H U” or “H_W” is invalid,return.”
F= “FuseData” (U,W)

Y=M(F)

“LIME” (Y’ F)

“SHAP” (Y F)

E= “LIME” (Y,F)U “SHAP” (Y F)

B= “UploadToBlockchain” (U,W)
“Return” P=Y,

4.2. Synergistic Integration of UAVs, Wearable
Devices, and Explainable Al

Visualization representing an ecosystem of UAVs
(drones), wearable devices, and Al components. It
consists of six interconnected components at its core:
Drones fitted with sensors gather data on the
environment which helps provide monitoring and aerial
surveillance [14]. Wearable devices are personal health

monitoring equipment that can be worn or carried by the
consumer to continuously track real-time data of various
physiological attributes [15], user well-being status. To
ensure the transparency of decision-making processes,
XAI makes artificial intelligence reasoning intelligible
for users. AI Models use algorithms to make predictions
and draw inferences from data that has been collected.
Data Synchronization [6] provides temporal consistency
by aligning timestamps between various data sources.
Data Fusion, aggregates all information on a single
analysis (UAVs, wearables and Al systems).

Explainable Al UAVs

Provides transparency in
Al decision-making

Equipped with sensors
for environmental data
collection

Al Models

Jse algorithms for
ctions and insight

Wearable Device:

Monitor health metri
for user well-being

Data
Synchronization

Aligns data timestamps
for accurate fusion

Data Fusion

Combines data for
unified analysis

Figure 3. Synergistic integration of UAVs, wearable devices, and
XAL

In the Figure 3 shows the synergistic integration of
UAVs, wearable devices [1], and XAI It is where drone-
based surveillance meets personal health tracking via
wearables together powered by Al, monitoring all data
streams and deciding on actions. The focus on XAl and
data synchronization, guarantees that its transparency
and fairness of the system stays. This kind of system
would be useful in multiple scenarios, including
individualized health monitoring and environmental or
emergency surveillance applications.

5. Result Analysis

The toolstack tool is used to simulate next CEs and
integrating UAVs, wearables, and XAlIPreliminary
simulation platforms (MATLAB/Simulink and Gazebo)
[10] allow for modelling the dynamics of UAVs as well
as flight path planning, while also enabling sensor
modelling/integration requirements to test analysis on
potential performance characteristics for different UAV
wearable coordination schemes. Network Simulator-3
(NS-3) and Objective Modular Network Testbed in C++
(OMNeT++) are useful tool to simulate IoT network
protocols and communication between devices
effectively; researchers can therefore evaluate data
transfer rates, latency, and reliability of their design in a
realistic environment. TensorFlow and PyTorch are
essential for XAI algorithms implementation by
providing built-in methods to implement explainability
features such as SHAP or LIME while training DL
models. Used in consumer settings, these platforms
enable developers and data analysts to visualize the
decision processes of a model and make it more
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transparent [7]. Finally, both unity3D and unreal engine
provides a Virtual Reality (VR) simulation to verify
real-world interactions among the UAVs, wearables and
users allowing an experience assessment. Combined,
these tools offer a broad simulation framework for the
development and validation of UAV, wearable, and XAl
integration.

For network simulation and data generation, we used
NS-3 to model the communication infrastructure and
evaluate the performance of data transmission between
UAVs and wearable devices. The platform allowed us to
simulate IoT network protocols such as Message

Queuing Telemetry Transport (MQTT) and HyperText
Transfer Protocol/Representational State Transfer
(HTTP/REST) and analyze system latency, data transfer
rates, and reliability metrics under realistic smart city
scenarios. Although OMNeT++ was mentioned as a
potential tool, it was not employed in the actual
implementation.

Table 2 shows the parameter summary for simulative
integration of UAV, Wearable, and XAI simulation in
subsequent generation of CEs. These parameters also set
the boundaries to enable realistic and measurable output
for system performance evaluation

Table 2. Simulation parameters.

Parameter Description Value
Number of UAVs Total UAVs used in the simulation 10
Number of wearable devices Total wearable devices connected in the system 50

Communication protocol

Protocol used for data exchange between UAVs and wearable’s

MQTT, HTTP/REST

Data transfer rate Rate of data transmission in the system 1 Gbps
Simulation area Area covered by UAVs and wearable’s 500mx500m
Battery capacity (UAVs) Maximum energy capacity of UAVs 5,000 mAh
Battery capacity (wearable’s) Maximum energy capacity of wearable’s 500 mAh
XAI model XAI model used in the simulation SHAP, LIME
Latency threshold Maximum allowable latency for communication 100 ms

Data processing framework

Framework for processing and analyzing data

Federated learning

Simulation duration Total time for running the simulation 1 hour
Energy efficiency metric Metric for evaluating energy efficiency Joules/Task
Accuracy of XAI models Precision of XAl-based explanations 85%

UAV speed Average speed of UAVs 10 m/s
Wearable sampling rate Data collection rate from wearable devices 10 Hz
System reliability Expected uptime of the integrated system 98%

User satisfaction metric

Metric for measuring transparency and trust

User Satisfaction index (scale: 1-10)

Table 3. Results analysis.

Evaluation Metric Proposed multi-model| LIME | SHAP L2X | Anchors | Decision trees
Prediction accuracy 92% 85% 88% 90% 87% 84%
Explanation fidelity (clarity) 95% 90% 92% 89% 91% 85%
Feature importance interpretation 90% 87% 93% 86% 89% 88%
Model robustness 93% 86% 89% 91% 85% 82%
Time complexity (seconds) 45s 30s 50s 40s 42s 35s
User understanding 91% 85% 88% 84% 89% 87%
Scalability 90% 80% 85% 83% 78% 75%
Deployment flexibility 92% 88% 85% 90% 84% 80%

To evaluate the effectiveness of the proposed multi-
model architecture, we used several metrics beyond
standard accuracy and fidelity, including model
robustness, user understanding, scalability, and
deployment flexibility. Model robustness was assessed
by testing prediction consistency under data
perturbations, while user understanding was measured
through a controlled user study using interpretability
scoring. Scalability was evaluated based on system
performance as the number of UAV and wearable nodes
increased, and deployment flexibility was determined
by assessing the ease of integration across edge and
cloud environments. Furthermore, we compared our
model shown in Table 3 with widely recognized
explainability techniques LIME, SHAP, L2X, Anchors
and decision trees. These models were selected for their
representativeness in the domain of XAl, spanning both
model-agnostic and inherently interpretable methods,
and providing a robust benchmark to highlight the
advantages of our integrated system.

Figure 4-a), (b), (c¢), (d), and (e) shows five
comparative bar plots are depicted in the image
comparing various aspects of Al model performance
based on methods such as proposed multi-model, LIME,
SHAP, L2X, Anchors and decision trees. The proposed
multi-model yields the best results in terms of overall
accuracy standing at a 92% level of prediction accuracy,
explanation of understanding at 95%, and stability or
mode robustness at 93%. The graphs provided depict
results which indicate fairly consistently that with
decision trees and other conventional methods, the
performance usually tends to be moderate, at 80-85%. |
found out that in the area of model scalability, there is a
diminishing percentage from the proposed multi-model
at 90 % to decision trees which has 75 %. The
FEATURE IMPORTANCE INTERPRETATION
Translating remains relatively stable across the applied
methods and SHAP stands out showing high
performance 93%.



Integrating UAV Networks and Edge Computing for Smart Cities: Architecture ... 1161

96

94

92

(%)

90

88

86

98

96

94

92

(%)

90

88

86

Proposed Multi-WeightedSHAP LIME Anchors  Decision Trees  Proposed Multi-WeightedSHAP LIME Anchors  Decision Trees

Methods

a) Prediction accuracy.

94

92

(%)

881

Methods
b) Explanation clarity.

96

86
86 84
Proposed Multi-Weighted SHAP LIME Anchors  Decision Trees  prgpgsed Multi-Weighted SHAP LIME Anchors  Decision Trees
Methods Methods
c) Feature importance interpretation. d) Model robustness.
94
92+
90
881
g
861
84r
82
80
Proposed Multi-weightedSHAP LIME Anchors, Decision Trees

Methods

e) Model scalability

Figure 4. Results analysis.

80

70 1

Values

60

-&~ Proposed Multi-Model
-®- UME

—A~ SHAP

¢ L2x

30 4 = Anchors

e
o N P & s
& ) P ~d
& <& o 83
g %) < &
o N & <€
o & N
od g & N
& < i *
¢ < &
&

Figure 5. Comparison of the different evaluation metrics across models.

This Figure 5 plots eight different evaluation
measures for five different Al models (proposed multi-
model, LIME, SHAP, L2X and Anchors). The accuracy
of the proposed multi-model (in blue) stays above 90%
for prediction accuracy, explanation fidelity, and

deployment flexibility while being significantly higher
than the other methods. Speaking of time complexity, all
models indicate a severe drop, with LIME being the
most efficient at approximately 30 seconds. The above
graph reveals that, apart from the traditional techniques
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like LIME, and SHAP, the proposed multi-model yields
fairly reasonable performance but at the same time
yields more balanced and comparatively higher values
for most of the evaluation parameters, especially for
User Understanding as well as Model Robustness.

6. Conclusions

The integration of UAVs, wearable electronics, and XAl
gives birth to the next generation of CEs which will
allow consumers in healthcare, fitness, smart home
solutions, and entertainment industries to personalize
their experience. In our experiments, we showed that
described multi-model architecture yields 92% of the
accuracy for predictions, and 95% of the explanation’s
fidelity whenever compared to the traditional
approaches. The consumption of aerial information
from UAVs accompanied with the wearables’ data
processing guarantees an instant local health and
environment knowledge for making of right decisions.
XAI makes a system transparent and interpretable, help
users understand the recommendations and actions
provided by technology. This makes it to be coherent,
malleable and intelligent working environment which
targets user experience and data openness. With these
issues of privacy, security, as well as ethical use of data
still in the future we see great potential of such
integration. Over time, these advancements will not
only make improvements to the consumer experiences
but will also push the CEs industry forward in terms of
subsequent advancement in research studies. When
incorporated holistically, UAVs, wearables, XAl can be
seen as major strides toward implementing and creating
a more interconnected smart environment capable to
deliver different activities more personally with an eye
on ethical aspect as industries continue to progress in the
next decades.
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