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Abstract: Brain-Computer Interface (BCI) is a computerized system that gathers, analyzes, and translates neural signals into 

commands, which are then transmitted to an output device to perform certain tasks. One of the most difficult parts of the BCI 

Motor Imagery-Electroencephalogram (MI-EEG) based system is the Classification Accuracy (CA). In order to get accurate 

classification, efficient and rapid features extraction is required for developing a successful MI-EEG classification model. In this 

article, the Motor Imagery (MI) of Left-Hand (LH) and Right-Hand (RH) actions is recognized using the Weight Features 

Function (WFF) that transforms initial features into more discriminant features to feed a Support Vector Machine (SVM) 

classifier. Appropriate weights were chosen by the Genetic Algorithm (GA) optimization method. Applying optimized WFF to 

four different datasets (IIIb from BCI competition III, III from BCI competition II, 2b from BCI competition IV, and Open Brain-

Machine Interface (OpenBMI) dataset) made significant improvements in the CA for all studied datasets. Before using the WFF 

technique, the initial CA for the four datasets was 90.1%, 95.71%, 86.73%, and 83.83%. After applying the WFF technique, the 

CA is improved and achieves 96.1%, 100%, 94.2%, and 88.70% respectively. 
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1. Introduction 

Prospective Brain-computer interfaces (BCIs) are 

assistive technologies that enable users with disabilities 

to interact, communicate, and perform everyday tasks 

independently [3]. 

It is a computerized system that can be used to collect, 

analyze, and translate all aspects of mental activities and 

then convert them into commands that are sent to an 

output device to perform specific actions. Generally, we 

measure electrical activity using an 

Electroencephalogram (EEG), which uses electrodes 

placed on the scalp surface to collect the electrical 

activity resulting from activated neurons in the brain [39]. 

EEG is a non-invasive, portable, low-cost technique with 

high temporal resolution and easy-to-use [27]. Electrical 

current flows between neurons and generates wave 

patterns, commonly referred to as brain waves. Brain 

waves are classified into five distinct types: Delta [0.5-4 

Hz], Theta [4-8 Hz], Alpha [8-12 Hz], Beta [12-30 Hz], 

and Gamma [>30 Hz]. Historically, these bands were 

classified through their unique characteristics such as 

morphology, topography, amplitude, frequency, 

reactivity, etc., [37]. 

Motor Imagery-Electroencephalography (MI-EEG) is 

one of the patterns used in BCI systems EEG based. MI-

EEG involves imagining a movement, such as 

performing the action of waving a hand or stepping with 

a foot, without physically carrying out the movement and 

then measuring the brain activity associated with that  

 
movement [42]. This pattern of BCI can be used to 

control a computer or other electronic appliances, such 

as a robotic arm [28] or a wheelchair [34]. 

Interpreting brain activity from EEG signals is a 

major challenge for BCI systems because it requires 

sophisticated algorithms to accurately identify brain 

tasks from arrays of EEG signals. Furthermore, the 

identification of such tasks is often subjective, as 

different subjects might have different EEG signal 

representations for the same task, in addition to 

nonstationary, nonlinear, and noisy EEG signals with 

low spatial resolution. To overcome these challenges, 

researchers have devised numerous techniques to 

enhance the accuracy and reliability of the BCI system 

EEG-based. It involves extracting and selecting features 

that describe the relevant information from the EEG 

signals and then feeding these features to a pre-trained 

classifier that can identify the mental task class [7]. Thus, 

the accuracy of a BCI system relies largely on the 

extraction/selection of used features as well as the 

classifier. 

Many techniques have been developed to extract 

features from MI-EEG signals. The most popular 

methods for extracting features from MI-EEG signals 

include Time-Frequency Representation (TFR), Fourier 

Transforms (FT) [12], Power Spectral Density (PSD) [9], 

Band-Power (BP) [2, 47], Wavelet Transform (WT) [18, 

27] Common Spatial Patterns (CSP) [29, 40] and auto-

regressive [32, 33]. Research has found that extracting 

the most relevant features for Motor Imagery (MI) tasks 
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from specific frequency bands is necessary to achieve 

better accuracy and efficiency [27, 32]. The rationale 

behind analyzing different frequency bands is that each 

band carries distinct types of information that can reveal 

specific patterns and aid in making predictions. For 

example, lower frequency bands such as Delta and Theta 

contain information related to sleep, memory 

consolidation, unconscious and meditative states [44]. In 

contrast, higher frequency bands such as Alpha and Beta 

are associated with wakefulness, attention, memory, and 

emotional states [8]. 

Extracting features from specific frequency bands 

allows more accurate and efficient identification of 

patterns and predictions relevant to MI tasks. 

Additionally, it can help for eliminating noise and 

irrelevant information that may be presented in the 

corresponding frequency band. 

Many researchers have used the WT to perform MI-

EEG classification [27, 36, 45]. The WT has been proven 

to be a powerful technique for the time-frequency 

analysis of non-stationary and quasi-stationary signals 

[36]. 

Most recent BCIs MI-EEG based are largely 

dependent on machine learning algorithms. A variety of 

classifiers are employed in this domain to recognize 

different MI tasks, such as Linear Discriminant Analysis 

(LDA), Support Vector Machine (SVM) with various 

kernel functions, decision tree (DT), and k-nearest 

neighbor (KNN), [3, 9, 12, 27, 30, 47]. 

You et al. [45] propose a novel method that combines 

Flexible Analytic Wavelet Transform (FAWT) and LDA 

to classify the MI-EEG signals as Left-Hand (LH) or 

Right-Hand (RH) movements on BCI competition III 

dataset IIIb and BCI competition II dataset III. 

Bashashati et al. [2] used a logistic regression algorithm 

as a classification method and employed wavelet 

features based on the mother wavelet morlet (BCI 

competition III dataset IIIb). Brodu et al. [7] used LDA 

to classify the MI-EEG signals and combined three kinds 

of features: BP, multifractal cumulants, and predictive 

complexity. 

Deep learning models have become quite popular in 

BCI applications. They include Recurrent Neural 

Networks (RNNs) [11], Convolutional Neural Networks 

(CNNs) [23, 38], and Deep Belief Networks (DBNs) 

[35]. These models are known for their ability to extract 

intricate features from raw brain signals and their 

capacity to learn from vast amounts of data. 

Salimpour et al. [38] propose a new approach to 

enhance the accuracy of classifying LH and RH in MI-

EEG signals using Stockwell transform and CNN 

models on BCI competition II dataset III and BCI 

competition IV dataset 2b. Liu et al. [23] propose an end-

to-end network called Compact Multi-Branch One-

Dimensional Convolutional Neural Network (CMO-

CNN) (BCI competition IV dataset 2b). 

This work aims to improve the Classification 

Accuracy (CA) in BCI system MI-EEG signals. It uses a 

novel Weight Feature Function (WFF) to transform the 

proposed features into more discriminant features; so, 

the classifier identifies the MI of the LH and RH 

movements with higher accuracy. The WFF technique 

works by assigning a nonlinear function to polynomial 

weighted features extracted from the dataset. This 

double nonlinearity resulting from the WFF and the 

polynomial transformation is responsible for the 

discrimination of the resulting features. With the WFF, 

important features would be enhanced with higher 

weights contrary to less relevant features, which would 

be diminished by assigning lower weights. Overall, the 

WFF acts as pushing the classes to be more separable. 

The process of determining the suitable weights for each 

feature is performed by optimization using a Genetic 

Algorithm (GA). This study applies the WFF approach 

to four different datasets from the Open Brain-Machine 

Interface (OpenBMI) and BCI competition (dataset IIIb, 

dataset III, dataset 2b) and compares the results with the 

existing methods working for the same datasets to 

recognize hand movement either right or left. 

2. Methodology 

2.1. BCI System 

The main purpose of the BCI technology is to accurately 

identify the subject’s intended movements from their 

brain activity [1]. Figure 1 illustrates a block diagram of 

the BCI system. A subject imagines performing a motor 

action without carrying out any physical activity. The 

resulting EEG signals accompanying the action are 

firstly preprocessed and then reduced to features by 

extraction. Using a classifier, the MI action can be 

identified to control a variety of technological devices 

like computers, robotic arms, and wheelchairs via 

electronic interfaces. 

 

Figure 1. The general concept of a BCI system. 

2.2. Dataset Description 

Four publicly available datasets: the BCI competition III 

dataset IIIb (dataset 1) [5], the BCI competition II dataset 

III (dataset 2) [4], the BCI competition IV dataset 2b 

(dataset 3) [20], and the OpenBMI dataset (dataset 4) 

[19], were used in this study to evaluate the effectiveness 
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of the suggested approach. Table 1 contains details of the 

four datasets utilized in this work. 

Table 1. A summary of the datasets utilized in this work. 

Dataset No. of subjects No. of channels No. of classes No. of trials 

Dataset 1 3 3 2 2480 

Dataset 2 1 3 2 280 

Dataset 3 9 3 2 6520 

Dataset 4 54 (12) 62 (2) 2 10800 

 

 

a) The timing scheme of dataset 1. 

 
b) The timing scheme of dataset 2. 

 

c) The timing scheme of dataset 3. 

 

d) The timing scheme of dataset 4. 

Figure 2. Timing scheme of the paradigm. 

The details of these four datasets are described below. 

• Datasets 1: this data set consists of two classes of MI-

EEG data (LH and RH movements) from three 

subjects (O3, S4, X11). The experiment consists of 

three sessions for each participant and each session 

consists of four to nine runs. The number of trials is 

320, 1080, and 1080 for participants O3, S4, and X11 

respectively. The dataset was recorded over channels 

C3 and C4 using a bipolar EEG amplifier from G.tec. 

The EEG signals were sampled with 125 Hz, and 

filtered between 0.5 and 30Hz with a notch filter at 50 

Hz. In this experiment, participants were instructed to 

imagine performing hand movements after hearing a 

beep sound. The instructions were to imagine moving 

either their LH or RH depending on randomly 

assigned cues. A graphical cue was displayed to the 

participant to provide feedback on his imagined 

action. The timing scheme for each trial is illustrated 

in Figure 2-a). 

• Datasets 2: it contains two classes (LH/RH) of MI-

EEG signals from a normal subject (25-year-old 

female referred to S1). During the recordings, the 

subject settled into a comfortable armchair and the 

cues for left and right were arranged randomly. In this 

experiment, there are a total of 7 runs, each 

comprising 40 trials (140 train trials and 140 test 

trials), lasting 9 seconds each. The timing scheme is 

shown in Figure 2-b). The recorded dataset was 

collected from three channels: C3, Cz, and C4 using 

a G.tec amplifier. The EEG signals were sampled 

with 128Hz, and filtered with a notch filter at 50 Hz, 

as well as a bandpass filter between 0.5 and 30 Hz. 

During the experiment, the subject was instructed to 

move a bar (on a screen) in the direction indicated by 

a given cue (left or right arrow) by feedback. 

• Dataset 3: the dataset comprises information from a 

total of nine healthy subjects. EEG signals were 

recorded from three bipolar channels (C3, Cz, and C4) 

with a sampling frequency of 250 Hz. A bandpass 

filter ranging from 0.5 Hz to 100 Hz was applied to 

filter the signals, with an additional notch filter at 50 

Hz. This dataset includes two types of MI paradigms, 

specifically focusing on the LH and RH movements. 

Each subject completed a total of five sessions, with 

the first two sessions consisting of training data 

obtained without feedback and including 120 trials 

per session. The remaining three sessions were 

recorded with feedback and included 160 trials per 

session. The experiment began with a gray smiley 

face appearing in the center of the screen at 0s. After 

2s, a warning beep (1 kHz, 70 ms) was played, and 

between [3s, 7.5s] the subjects were instructed to 

imagine the movement of their LH or RH to move the 

smiley face to the left or to the right. The smiley face 

symbol on the screen would turn green if the subject 

imagined moving their LH or RH in the correct 

direction, but if they were incorrect, it would turn red. 

After 7.5s, the screen would turn blank, and a short 

break of 1s to 2s would be taken before continuing 

with the next trial. All trials followed the same pattern, 

as shown in Figure 2-c). In this study, the subjects of 

this dataset are referred to B01, B02… and B09. 

• Dataset 4: the dataset consists of 54 subjects, 

recorded at a 1000 Hz sampling rate with 62 Ag/AgCl 

electrodes. It encompasses two MI classes, 

specifically LH and RH movements. The subjects 

were seated in a comfortable chair with armrests. 

Each subject underwent two sessions, each 
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comprising a training phase with 100 trials and testing 

phases with 100 trials, with balanced RH and LH 

imagery tasks. The timing scheme is depicted in 

Figure 2-d). in this study, we have selected only 12 

subjects, specifically ‘S04, S11, S20, S24, S25, S27, 

S34, S35, S40, S42, S46, S47,’ based on their low 

accuracy in Lee et al. [19] to challenge our WFF 

method. To treat all datasets, the same way 

concerning features extraction, the channels C3 and 

C4 are also used for this dataset. 

2.3. Pre-Processing 

Pre-processing the dataset is an essential step in 

enhancing classification because it prepares the data for 

detailed analysis in the most effective and meaningful 

manner. First, because ‘NaN’ appears in the subjects O3, 

S4, X11, and B06, we deleted all trials that have missing 

data represented by ‘NaN’. After this process, the size of 

the datasets became 160 examples for O3, 536 for S4, 

539 for X11, and 318 examples for subject B06. By 

doing so, all datasets used in the analysis were valid 

without missing data that could influence the results. 

Furthermore, two second-order Butterworth band pass 

filters were used to enhance the chances of discovering 

distinctive features in signals SC3 and SC4 which are 

from the channels C3 and C4 respectively. The 

frequency bands selected for this analysis are B1 ([7-24] 

Hz), and B2 ([25-29] Hz). Thereby, four distinct signals 

are obtained for each trial. These signals are named SC31, 

SC32, SC41, and SC42 (See Figure 4). 

2.4. Features Extraction 

The process of extracting information from a given set 

of data is known as feature extraction. It is a critical step 

in making the data more understandable for the machine 

learning algorithm. In fact, features extraction can be 

accomplished in three ways: frequency domain, time 

domain, and frequency-time domain. The features used 

in this work are very diversified. In fact, features from 

the frequency domain, time domain, and time-frequency 

domain (Continuous Wavelet Transform (CWT) and 

Discrete Wavelet Transform (DWT)) for MI-EEG 

signals are extracted in order to identify the RH/LH 

movement that will be used in the BCI system. 

2.4.1. Wavelet Transform 

Due to the non-stationary nature of the EEG signals [27], 

the WT approach is a good option, for the reason that it 

handles the time-frequency domain aspect. WT is very 

important in signal processing and is often used in two 

ways: 

a) CWT: it measures the similarity between a signal and 

an analytical function called a mother wavelet using 

inner products. The CWT formula for a signal x(t) is 

given by: 

𝐶𝑥(𝑎, 𝑏) =
1

𝑎
∫ 𝑥(𝑡)𝛹 (

𝑡 − 𝑏

𝑎
) 𝑑𝑡

∞

−∞

 

Where ɑ is a scale parameter and ƅ is a parameter for the 

position of the mother wavelet Ψ in time. 

b) DWT: the DWT requires two filters to split the signal 

into different levels: a low-pass filter and a high-pass 

filter. The low-pass filter returns the Approximation 

coefficient (A1), while the high-pass filter returns the 

Detailed coefficient (D1). The approximation signal 

is divided again into several levels of lower-resolution 

components. Figure 3 illustrates the DWT 

decomposition of the digital signal x[n] till the third 

level. 

 

Figure 3. Wavelet decomposition of DWT till the third level. 

The first level is expressed mathematically as: 

𝐴[𝑘] = ∑ 𝑥[𝑛]. 𝐿[2𝑘 − 𝑛]

𝑛

 

𝐷[𝑘] = ∑ 𝑥[𝑛]. 𝐻[2𝑘 − 𝑛]

𝑛

 

Where x[n] is the signal, A[k] and D[k] are the 

approximation and the detailed coefficients respectively. 

The functions L[n] and H[n] represent the filter 

coefficients, and n represents the sampling point of the 

signal. In this work, EEG signals were decomposed to 

the third level using biorthogonal 3.3 filters. 

2.4.2. Other Diversified Features 

The distribution of a signal’s power content over 

frequencies is called the PSD. The following formula is 

used to calculate the PSD of a signal x(t): 

𝑃𝑥(𝑓) = |𝑓𝑓𝑡(𝑥2)| 

Where f is the frequency, while Fast Fourier Transform 

(FFT) stands for the fast TF algorithm. 

The variance of EEG signal (var) is useful for 

determining signal power and can be stated as: 

𝑣𝑎𝑟 =
1

𝑁 − 1
∑(𝑥𝑖)2

𝑁

𝑖=1

 

Where x is the signal and N is the length of the signal. 

Skewness measures the asymmetrical distribution of 

a signal around its mean or median value. Kurtosis is 

defined as the average fourth power of a signal’s 

deviation from its mean value divided by the standard 

deviation’s fourth power. The skewness and Kurtosis are 

given by Equations (6) and (7). 

(2) 

(3) 

(4) 

(5) 

(1) 
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𝑠𝑘𝑒𝑤 =
1

𝑁𝜎3
∑(𝑥𝑛 − 𝜇)3

𝑁

𝑛=1

 

𝑘𝑢𝑟𝑡 =
1

𝑁𝜎2 ∑(𝑥𝑛 − 𝜇)4

𝑁

𝑛=1

 

Where σ is the standard derivation of the random 

variable x and µ represents its mean. 

Root Mean Square (RMS) is calculated by the 

following equation: 

𝑅𝑀𝑆 = √
1

𝑁
∑(𝑥𝑖)2

𝑁

𝑖=1

 

Enhanced Wave-Length (EWL) and Enhanced Mean 

Absolute Value (EMAV) are calculated by Equations (9) 

and (10).  

𝐸𝑊𝐿 = ∑|(𝑥𝑖 − 𝑥𝑖−1)𝑃|

𝑁

𝑖=2

 

𝐸𝑀𝐴𝑉 =
1

𝑁
∑|(𝑥𝑖)𝑃|

𝑁

𝑖=1

 

𝑃 = {
0.80, 𝑖𝑓 0.3𝑁 ≤ 𝑖 ≤ 0.7𝑁

0.50, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 

The parameter P in Equation (11) is utilized to determine 

the effect of the sample within the signal, as shown in 

Equations (9) and (10). A higher number of P is used in 

30% to 70% of areas in EMAV and EWL [43]. 

Mean Curve Length (MCL) measures signal 

complexity and irregularity and is given by Equation 

(12). 

𝑀𝐶𝐿 =
1

𝑁
∑|𝑥𝑖 − 𝑥𝑖−1|

𝑁

𝑖=2

 

Mean Energy (ME) is useful for determining signal 

power and is given by Equation (13) 

𝑀𝐸 = 𝑚𝑒𝑎𝑛(𝑥2) 

First Difference (FD) helps in the analysis of signal 

patterns and trends and is given by Equation (14). 

𝐹𝐷 =
1

𝑁 − 1
∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁−1

𝑖

 

In the present study, we extract relevant features from 

specific frequency bands. Once the features have been 

extracted, they are combined to form a single features 

vector. This vector contains information from time and 

frequency and conjoint time-frequency domains. This 

diversity from different domains aims to improve the CA 

of the MI brain tasks. 

A flowchart of the signal processing steps and the 

corresponding extracted features is shown in Figure 4. 

Using two pass-band filters, with the indicated pass 

bands, the two EEG signals of the two channels C3 and 

C4 generate four signals (SC31, SC32, SC41, SC42). To 

take the spatial information into account, all proposed 

features were a ratio between features of signals obtained 

from channel C3 (SC3i; i=1, 2) and features of signals 

obtained from channel C4 (SC4i; i=1, 2). In fact, 84 

features were proposed. The first 42 features are 

indicated and defined in Table 2. The remaining 42 

features are exactly the reverse of the first 42 features. 

For example, f43 is f1
-1 and f44 is f2

-1and so on. 

 

Figure 4. Flowchart of the signal processing with features extraction. 

The reverse approach, as a nonlinear transformation, 

permits more diversity in features so the MI-EEG brain 

tasks can be represented differently; consequently, their 

identification could be more accurate. 

(9) 

(13) 

(14) 

(8) 

(6) 

(7) 

(10) 

(11) 

(12) 
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Table 2. Proposed features and their expressions. 

Features Expressions 

f1 MCL(SC31)/MCL(SC41) 

f2 sum(SC3)/sum(SC4) 

f3 mad(SC31)/mad(SC41) 

f4 ME(SC31)/ME(SC41) 

f5 FD(SC32)/FD(SC42) 

f6 kurt(SC3)/kurt(SC4) 

f7 (
𝑠𝑢𝑚(𝑆𝐶3

2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐶3)
) / (

𝑠𝑢𝑚(𝑆𝐶4
2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐶4)
) 

f8 (
𝑚𝑒𝑎𝑛(𝑆𝐶3

2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐶3)
) / (

𝑚𝑒𝑎𝑛(𝑆𝐶4
2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐶4)
) 

fj+8 (
𝑚𝑒𝑎𝑛(𝑆𝐶3𝑗

2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐶3𝑗)
) / (

𝑚𝑒𝑎𝑛(𝑆𝐶4𝑗
2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐶4𝑗)
)  𝑗 = 1 … 2 

fj+10 (
𝑟𝑚𝑠(𝑆𝐶3𝑗

2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐶3𝑗)
) / (

𝑟𝑚𝑠(𝑆𝐶4𝑗
2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐶4𝑗)
) 𝑗 = 1 … 2 

f13 var(P3)/var(P3+P4) 

f14 max(P3)/max(P4) 

f15 kurt(P31)/var(P41) 

f16 kurt(P31)/median(P41) 

f17 STD(D332)/STD(D342) 

f18 skew(D132)/skew(D142) 

fj+17 kurt(Dj32)/kurt(Dj42)    j=2,3 

f21 sum(D332
2)/sum(D342

2) 

fj+20 MCL(Dj32)/MCL(Dj42 )    j=2,3 

f24 mad(D332)/mad(D342) 

fj+24 EWL(Dj32)/EWL(Dj42 )    j=1…3 

f28 EMAV(D232)/EMAV(D242) 

f29 sum(A13
2)/sum(A14

2) 

f30 mean(|A132|)/mean(|A142|) 

f31 rms(|A131|)/rms(|A141|) 

f32 median(|A132|)/MCL(|A142|) 

f33 EWL(A13)/EWL(A14) 

fj+33 EWL(A13j)/EWL(A14j)    j=1,2 

f36 EMAV(A13)/EMAV(A14) 

f37 EMAV(A132)/EMAV(A142) 

f38 max(A13)/max(A14) 

fi+37 
𝑠𝑢𝑚(𝐶𝑆𝐶32(𝑖, : )2)

𝑠𝑢𝑚(𝐶𝑆𝐶42(𝑖, : )2)
 𝑖 = 2 … 5 

The diversification of features depends on the 

frequency content of the signals from which they are 

extracted, with distinct allocations for different 

frequency ranges: 20 features are designated for 

frequencies spanning from 0.5 to 30 Hz, 18 features are 

specified for frequencies ranging between 7 and 24 Hz, 

and a larger set of 46 features is designated for 

frequencies between 25 and 29 Hz. 

2.5. Features Selection 

Due to the diversity of the proposed features, the carried 

information about the brain tasks can be redundant or 

shared between a group of features. Efficient BCI system 

needs relevant features with fewer numbers to speed up 

the identification phase. To this end, the feature selection 

is performed by optimization using GA [31]. 

2.6. Weight Features Function (WFF) 

The problem of the brain tasks identification is very 

difficult due to the complicated nature of the EEG 

signals carrying the task information. In fact, they are 

nonlinear, non-stationary, and undergo variations not 

just for extra-subjects but also for intra-subjects. To get 

better classification, classes should be distinguishable by 

features. 

 

Figure 5. EEG signals illustration for LH/RH actions with 

discriminant features extracted by WFF. 

For this purpose, Selected Features (SF), in the first 

phase, need further processing to be more discriminant. 

In this work, SF were transformed by a double 

nonlinearity performed by the following WFF: 

𝑋𝑖
′ = 𝑊𝐹𝐹(𝑋𝑖) = 𝑡𝑎𝑛(𝑤1𝑖 + 𝑤2𝑖𝑋𝑖 + 𝑤3𝑖𝑋𝑖

2) 

Where i=1…SF. For each feature Xi among the SF, three 

weights (w1i, w2i, w3i) should be tuned in a way the 

resulting feature Xi' by the tangent function ‘tan’ would 

be discriminant. The weights tuning is performed by GA 

optimization subject to minimization of the 

misclassification rate. The periodicity of the ‘tan’ 

function permits to transform non-linearly sub-regions 

of the learning examples not necessarily equilateral due 

to the polynomial nonlinearity. This WFF acts as the 

kernel function of the SVM classifier, but it keeps the 

same dimension. So, this WFF tries to make classes more 

separable, making the SVM classifier function easier 

afterward. Figure 5 illustrates the EEG signal for LH/RH 

movements highlighting discriminant features extracted 

through WFF. 

2.7. SVM Classifier 

Due to its high accuracy in predicting the class of a given 

dataset, SVM has become one of the most popular 

discriminative classification models for nonlinear and 

linear classifications. It’s a supervised learning 

algorithm that helps classify data points by finding a 

hyperplane in a high-dimensional space that best 

separates different classes in a dataset [43, 46, 47]. The 

hyperplane is chosen to maximize the margin between 

the two closest data points of different classes, which 

leads to a highly accurate classification of new data 

points. The data points nearest to the hyperplane are 

known as support vectors, and they play an important 

role in the determination of the decision boundary. The 

SVM classifier is a powerful tool for classification and 

regression tasks and is being employed to identify 

various MI-EEG signals [27, 47]. 

3. Results 

In this study, four different datasets were used to perform 
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LH/RH movement recognition. The dataset 1 (Dataset 

IIIb) has three subjects. The dataset 4 has 12 subjects. 

The CA for these two datasets is performed by a 10-fold 

cross-validation technique to avoid biased evaluation. 

The CA for the dataset 2 (dataset III) that has one 

subjects and the dataset 3 (dataset 2b) that has 9 subjects 

is performed by the holdout evaluation technique that is 

imposed by the datasets i.e., datasets are already divided 

into two parts: train part and test part. The results for all 

datasets are presented in many stages as follows: 

1. The classification is performed with all 84 features 

using three kinds of classifiers (SVM, KNN, LDA). 

2. Using the best classifier from the last results Linear 

SVM (LSVM), firefly optimization is performed to 

find the best processing duration for each subject. 

3. The classification is performed by suitable features 

selected by GA for each subject. 

4. The SF are subject to weighting using the proposed 

WFF technique to improve the CA. The best weights 

for SF are optimized also by GA. At the end, we 

evaluate our approach by comparing them to existing 

methods that have used the same databases ‘dataset 1, 

dataset 2, dataset 3, and dataset 4.’ 

3.1. CA with All Features 

Table 3 represents the CA of the four datasets and the 

corresponding mean with respect to different classifiers 

(SVM, KNN, and LDA). By trial and error, the 

beginning time is set to 3.85s and the processing duration 

is set to 1 s. 

Table 3. CA using indicated classifiers for all datasets. 

Datasets Subjects 
Classifiers 

LSVM KNN LDA 

Datasets 1 

O3 75.8 74.4 71.9 

S4 76.7 74.1 73.7 

X11 76.9 74.2 73.8 

Mean (%)  76.47 74.2 73.1 

Datasets 2 S1 82.1 80.7 82.1 

Datasets 3 

B01 68.1 65.6 65 

B02 52.2 51.8 52 

B03 59.4 55 52 

B04 91.4 90.5 91 

B05 81.4 81.6 80 

B06 71.3 66.3 68.8 

B07 66.3 61.9 64.1 

B08 77.4 73.2 75.3 

B09 72.8 74.2 75.3 

Mean (%)  71.14 68.9 69.49 

Datasets 4 

S04 75 73 75 

S11 75 74.3 74.5 

S20 75 71.3 74.8 

S24 75.8 74 75 

S25 76 75 75 

S27 77.3 77.8 76.3 

S34 76.5 74.3 75 

S35 85 78 79.5 

S40 79.5 75 79.3 

S42 79.8 77.8 78 

S46 75 74.3 75 

S47 75 76.8 75.3 

Mean (%)  77.07 75.13 76.05 

From Table 3, the LSVM classifier is the best one for 

all datasets with a CA mean of 76.5%, 82.1%, 71.14%, 

and 77.07% for dataset 1, dataset 2, dataset 3, and dataset 

4 respectively. Consequently, the remaining 

classification results are performed by the LSVM 

classifier. 

3.2. CA with Tuned Processing Durations 

Due to the non-stationary nature of the EEG signals, 

features that carried the LH/RH movement information 

are very sensitive to the processing duration i.e., the 

duration of the segment by which the features are 

calculated. For this reason, processing durations for each 

subject are tuned by the firefly optimization technique 

[21]. Using the best classifier found previously LSVM 

while maintaining the start time position unchanged 

(3.85s). Table 4, lists the CA for all subjects with respect 

to the best processing duration found by the firefly 

algorithm. 

As we can see, from Table 4, most processing 

durations are longer than 1.5s. These processing 

durations will be used for the coming results. 

Table 4. CA (%) for all subjects with respect to the best processing 

duration found by the firefly optimization algorithm. 

Datasets Subjects Processing duration (s) CA (%) 

Datasets 1 

O3 1.8720 76.13 

S4 3.5047 84.29 

X11 3.4420 80.43 

Datasets 2 S1 3.6056 90 

Datasets 3 

B01 0.5981 68.43 

B02 2.8743 60.71 

B03 0.8054 64.68 

B04 1.8122 95 

B05 2.2322 90.29 

B06 3.4624 84.27 

B07 0.7429 72.18 

B08 2.2914 91.87 

B09 3.2189 90.93 

Datasets 4 

S04 0.4187 79.25 

S11 0.7440 78.5 

S20 1.5449 80.5 

S24 0.6414 79.5 

S25 0.8355 78.75 

S27 3.7015 80 

S34 1.7820 79.75 

S35 0.5322 88.75 

S40 2.1925 79.5 

S42 2.0043 79.75 

S46 0.3359 79.25 

S47 0.8034 79.5 

3.3. CA with Selected Features 

Arriving now, at the selection of features to choose the 

most relevant ones. To do so, GA optimization is used to 

minimize the misclassification rate (classification error). 

The GA should select a suitable group of features among 

284 possible groups. Table 5, represents the CA of the 

four datasets before and after the features selection with 

their number (SF). Overall, the number of the SF is 

reduced by about 60%. The average CA is improved by 

about 10% for dataset 1 and about 5% for the remaining 

datasets. Features selection discards redundant features 

and non-discriminant ones. 
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Figure 6 demonstrates the GA optimization for 

choosing suitable features for some subjects (one subject 

from each dataset). A CA of 92.53% (100-7.46), 95.71 %, 

98.23 %, and 92 % is reached using 35, 42, 35, and 21 

features for the indicated subjects respectively. 

Table 5. CA (%) for the four datasets before and after features selection with indicated SF number. 

Datasets Subjects All features (84) Mean (%) SF Mean (%) 

Datasets 1 

O3 76.13 

80.29 

92.53 (35) 

90.1 S4 84.30 90.32 (37) 

X11 80.44 87.45 (35) 

Datasets 2 S1 90 90 95.71 (42) 95.71 

Datasets 3 

B01 68.43 

79.82 

75.5 (30) 

86.73 

B02 60.71 71.78 (30) 

B03 64.68 75 (44) 

B04 95 98.23 (35) 

B05 90.29 94.41 (39) 

B06 84.27 89.3 (34) 

B07 72.18 82.5 (31) 

B08 91.87 96.25 (21) 

B09 90.93 95.62 (21) 

Datasets 4 

S04 79.25 

80.25 

82 (29) 

83.83 

S11 78.5 81.5 (31) 

S20 80.5 84.5 (38) 

S24 79.5 85.75 (27) 

S25 78.75 84.25 (22) 

S27 80 82.5 (38) 

S34 79.75 83.5 (21) 

S35 88.75 92 (21) 

S40 79.5 83.5 (32) 

S42 79.75 83 (36) 

S46 79.25 82.25 (21) 

S47 79.5 81.25 (36) 

 

  

a) Subject O3. b) Subject S1. 

  

c) Subject B04. d) Subject S35. 

Figure 6. Features selection using GA optimization for the indicated subjects. 

3.4. CA Using the WFF Technique 

To enhance further the CA of LH movement, the last SF 

will undergo a weighting operation using the WFF 

technique. The GA is used to find suitable weights for 

each feature. According to the WFF expression 

‘Equation (15)’, the GA should find three weights for 

each feature i.e., the number of weights to be found is 

three times the number of features. 
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Table 6. CA (%) and their mean over the dataset after weighting by 

the WFF techniques. 

Datasets Subjects Using WFF Mean (%) 

Datasets 1 

O3 100 

96.1 S4 95.48 

X11 92.81 

Datasets 2 S1 100 100 

Datasets 3 

B01 84.68 

94.2 

B02 85 

B03 87.81 

B04 100 

B05 100 

B06 99.05 

B07 92.18 

B08 100 

B09 99.06 

Datasets 4 

S04 86.25 

88.70 

S11 86.75 

S20 88 

S24 88.75 

S25 88.5 

S27 87.75 

S34 87.75 

S35 97 

S40 88.25 

S42 90 

S46 88.25 

S47 87.25 

The CA of LH/RH movements for all subjects using 

optimized weights in the WFF technique are presented 

in Table 6. It is clear that the use of the WFF technique 

has improved the CA accuracy in all subjects. To get a 

clear idea about the contribution of WFF techniques, the 

average of CA for each dataset before and after using the 

WFF technique is presented as a ‘bar’ plot in Figure 7. 

 

Figure 7. CA for the four datasets before and after applying the WFF 

weighting. 

It is clear from Figure 7 that the CA has been 

significantly improved. In fact, the mean CA increases 

from 90.10% to 96.10%, from 95.72 % to 100%, from 

86.38% to 94.2%, and from 83.83% to 88.70% with and 

without WFF technique for the four datasets respectively. 

These results indicate an improvement of about 5% in all 

datasets. Without a doubt, the WFF weighting is an 

efficient technique to make features more discriminant 

leading to a significant improvement in the LH/RH 

movement identification. 

 

  

a) Subject O3. b) Subject S1. 

  

c) Subject B04. d) Subject S35. 

Figure 8. GA optimization of weights in WFF technique for the indicated subjects. 

Figure 8 represents the GA optimization process for 

some results of Table 6. It represents the GA 

optimization of the weights in the WFF technique for 

four subjects, one subject from each dataset. 

We have to mention that other non-linear functions 

were used in the WFF expression like ‘asin’, ‘sinc’, ‘cos’, 

‘acos’, and ‘atan’ functions trying to find a better CA, 

but we could not find a CA better than the CA given by 

the ‘tan’ function which gives a mean CA of 96.1%, 

100%, 94.2% and 88.70% for the four datasets 

respectively. 

To get a clear idea about the left/right classification 

using the LSVM classifier, the confusion matrices of the 

classification in four datasets are represented as mean in 

Figure 9. As the datasets are not imbalanced data, the 

confusion matrices indicate that there is no confusion in 
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the recognition of the LH and the RH movement i.e., 

there is no difference in the LH and the RH movement 

recognition. That means, the proposed technique WFF 

produces more sensitive and discriminant unconfused 

features. 

The GA parameters used in the optimization process 

are indicated in the Table 7. 

 

    
a) Dataset. b) Dataset. c) Dataset. d) Dataset. 

Figure 9. Confusion matrices for the four datasets. 

Table 7. GA characteristics used in the optimization. 

Parameters Definition or value 

Population type Bit string / double victor 

Population size 200 

Scaling function Shift linear 

Selection function Remainder 

Mutation function Constraint dependent 

Generations 2000/10000 

Elite count 0.05*Population size 

Crossover fraction 0.8 

Crossover function Constraint dependent 

Migration direction Forward 

Migration fraction/interval 0.2/20 

Termination Criteria  Stall generations=5000 

3.5. CA Comparison with Existing Methods 

Due to the importance of the BCI technology, several 

researches have been developed new techniques in order 

to identify accurately brain tasks using MI-EEG signals. 

To see how our method performs in LH/RH movement 

classification with respect to the existing works while 

using the same datasets (dataset 1, dataset 2, dataset 3, 

and dataset 4), Table 8 summarizes the CA of the 

existing works with their methods and their features with 

respect to our work. As we can see, our method 

outperforms all existing methods in all datasets. The best 

CA for dataset 1 was 94.11% using multi-classification 

of three optimized SVM classifiers [27]. Although multi-

classification boosts the CA, our method outperforms 

this multi-classification using just one LSVM classifier 

with a CA of 96.1%. Using the CNN classifier (deep 

learning), the CA for the dataset 2 was 99.29% [38]. In 

our work, the CA achieves 100%. Concerning the dataset 

3, our method is more accurate than the one performed 

by the CNN classifier (deep learning-based transfer 

learning) which was 89.02% [38], with an improvement 

of about 5% (94.2%). Although in the dataset 4 our 

method achieves a CA of 88.70% which is more than the 

one found by Lee et al. [19] with 51.98% CA; in the later 

method, they utilized CSSP features with 20 channels 

and an LDA classifier. Using just two electrodes to find 

such performance (36% more) is really a noteworthy 

result. 

Table 8. Summary of the CA (%) with indicated features and classifiers for works that used dataset 1, dataset 2, dataset 3, and dataset 4. 

Datasets Works Features Classifiers Mean (%) 

Dataset 1 

Lotte et al. [24] Band power SVM 79.36 

Zhong et al. [47] Band power VB 78.96 

Brodu et al. [6] Wavelet features (Morlet) LDA 80.95 

Brodu et al. [7] BP, Multifractal, Complexity LDA 81.30 

Bashashati et al. [2] Wavelet features (Morlet) LR 81.47 

Chen et al. [10] TQWT LDA 81.75 

You et al. [45] FAWT LDA 86.66 

Mebarkia and Reffad [27] 16 Diversified features Three optimized SVMs 94.11 

This work 84 Diversified features with optimized WFF SVM 96.1 

Dataset 2 

Liu et al. [22] SVM Common spatial pattern (CSP) SVM 82.86 

Jang et al. [15] STFT KNN 83.57 

Khasnobish and Bhattacharyya [17] Average band power of alpha and beta KNN 84.29 

Chen et al. [10] TQWT LDA 88.11 

Tabar and Halici [41] STFT Deep learning 90 

You et al. [45] FAWT LDA 94.29 

Kant et al. [16] CWT Filter-bank Deep Transfer-learning 95.71 

Salimpour et al. [38] CNN-based features from Stockwell TFM SVM 99.29 

This work 84 Diversified features with optimized WFF SVM 100 

Dataset 3 

Degdevir et al. [13] Hjorth algorithm SVM 82.58 

Han et al. [14] STFT PCNN 83 

Malan et al. [26] Dual-tree complex wavelet, NCA SVM 84.02 

Lu et al. [25]  
Deep learning based on restricted 

Boltzmann machines 
84.2 

Liu et al. [23]  CMO-CNN 87.19 

Salimpour et al. [38] CNN-based features from Stockwell TFM SVM 89.02 

This work 84 Diversified features with optimized WFF SVM 94.2 

Dataset 4 
Lee et al. [19] CSSP LDA 51.98 

This work 84 Diversified features with optimized WFF SVM 88.70 
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Our method dominates all existing methods for all 

datasets. That means the WFF technique using ‘tan’ 

function is a good alternative to transfer the 

classification problem to be more linearly separable with 

the new transferred features. 

4. Conclusions 

The complex nature of the EEG signal, its variability 

intra-subject and extra-subjects, and the synchronization 

problem all make brain tasks identification hard for the 

BCI system. In this paper, we have proposed 84 

diversified novel features to identify the LH/RH 

movement using a LSVM classifier from MI-EEG 

signals. To enhance the CA, we selected relevant 

features and weighted them using the GA optimization 

algorithm. Using the WFF technique approach, which 

transforms the SF into more discriminant ones, the CA 

was improved significantly. After evaluating our 

approach on public BCI competition databases and 

OpenBMI, the best accuracy of 96.1%, 100%, 94.2%, 

and 88.70% were achieved on dataset 1 (dataset IIIb: 

three subjects), dataset 2 (dataset III: one subject), 

dataset 3 (dataset 2b: 9 subjects) and dataset 4 

(OpenBMI dataset: 12 subjects) respectively.  

The WFF technique shows high faculty to make 

features more discriminate and could be a valuable and 

worthwhile approach for the MI-EEG-based BCI system. 

The experimental results corroborate that the suggested 

method outperforms the existing methods and has the 

benefit of enhanced classification performance. 

These findings provide a new perspective on 

developing BCI systems with superior performance and 

efficiency. This study, which used the LSVM classifier, 

reveals the possibility to transform classification 

problems, with the WFF technique, into more linearly 

separable ones while keeping the same data dimension 

without using kernel functions commonly used in the 

SVM classifier. The WFF technique used in this work 

applies the ‘tan’ function, a nonlinear and periodical 

function to features polynomial transformation. This 

allows increasing the possibility to separate linearly 

different regions in the classification problem domain. In 

that sense, more functions can be studied to transform 

features to a new domain more linearly separable. It is 

worthful to note that using classical machine learning, 

compared to deep learning, when using proper features 

can give better results compared to the results given by 

the deep learning. This claim is verified by this work. 

This study reveals an important result. The 

information about the MI tasks can be gained from small 

number of electrodes if we use proper features. Using 

small electrodes, make the user more comfortable, 

increase the response time leading to low power 

consumption. 
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