1140 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Enhancing Motor Imagery EEG Classification
Accuracy Using Weight Features Function

Abdel Fateh Doudou
Department of Electrotechnics, Setif 1
University-Ferhat Abbas, Algeria
abdelfateh.doudou@univ-setif.dz

Aicha Reffad
Department of Electrotechnics, Setif 1
University-Ferhat Abbas, Algeria
reffada@univ-setif.dz

Kamel Mebarkia
Department of Electronics, Setif 1
University-Ferhat Abbas, Algeria
kamel.mebarkia@rwth-aachen.de

Abstract: Brain-Computer Interface (BCI) is a computerized system that gathers, analyzes, and translates neural signals into
commands, which are then transmitted to an output device to perform certain tasks. One of the most difficult parts of the BCI
Motor Imagery-Electroencephalogram (MI-EEG) based system is the Classification Accuracy (CA). In order to get accurate
classification, efficient and rapid features extraction is required for developing a successful MI-EEG classification model. In this
article, the Motor Imagery (MI) of Left-Hand (LH) and Right-Hand (RH) actions is recognized using the Weight Features
Function (WFF) that transforms initial features into more discriminant features to feed a Support Vector Machine (SVM)
classifier. Appropriate weights were chosen by the Genetic Algorithm (GA) optimization method. Applying optimized WFF to
four different datasets (111b from BCI competition 11, /11 from BCI competition II, 2b from BCI competition 1V, and Open Brain-
Machine Interface (OpenBMI) dataset) made significant improvements in the CA for all studied datasets. Before using the WFF
technique, the initial CA for the four datasets was 90.1%, 95.71%, 86.73%, and 83.83%. After applying the WFF technique, the
CA is improved and achieves 96.1%, 100%, 94.2%, and 88.70% respectively.
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1. Introduction

Prospective Brain-computer interfaces (BCls) are
assistive technologies that enable users with disabilities
to interact, communicate, and perform everyday tasks
independently [3].

It is a computerized system that can be used to collect,
analyze, and translate all aspects of mental activities and
then convert them into commands that are sent to an
output device to perform specific actions. Generally, we
measure electrical activity using an
Electroencephalogram (EEG), which uses electrodes
placed on the scalp surface to collect the electrical

activity resulting from activated neurons in the brain [39].

EEG is a non-invasive, portable, low-cost technique with
high temporal resolution and easy-to-use [27]. Electrical
current flows between neurons and generates wave
patterns, commonly referred to as brain waves. Brain
waves are classified into five distinct types: Delta [0.5-4
Hz], Theta [4-8 Hz], Alpha [8-12 Hz], Beta [12-30 Hz],
and Gamma [>30 Hz]. Historically, these bands were
classified through their unique characteristics such as
morphology, topography, amplitude, frequency,
reactivity, etc., [37].

Motor Imagery-Electroencephalography (MI-EEG) is
one of the patterns used in BCI systems EEG based. MI-
EEG involves imagining a movement, such as
performing the action of waving a hand or stepping with
a foot, without physically carrying out the movement and
then measuring the brain activity associated with that

movement [42]. This pattern of BCI can be used to
control a computer or other electronic appliances, such
as a robotic arm [28] or a wheelchair [34].

Interpreting brain activity from EEG signals is a
major challenge for BCI systems because it requires
sophisticated algorithms to accurately identify brain
tasks from arrays of EEG signals. Furthermore, the
identification of such tasks is often subjective, as
different subjects might have different EEG signal
representations for the same task, in addition to
nonstationary, nonlinear, and noisy EEG signals with
low spatial resolution. To overcome these challenges,
researchers have devised numerous techniques to
enhance the accuracy and reliability of the BCI system
EEG-based. It involves extracting and selecting features
that describe the relevant information from the EEG
signals and then feeding these features to a pre-trained
classifier that can identify the mental task class [7]. Thus,
the accuracy of a BCI system relies largely on the
extraction/selection of used features as well as the
classifier.

Many techniques have been developed to extract
features from MI-EEG signals. The most popular
methods for extracting features from MI-EEG signals
include Time-Frequency Representation (TFR), Fourier
Transforms (FT) [12], Power Spectral Density (PSD) [9],
Band-Power (BP) [2, 47], Wavelet Transform (WT) [18,
27] Common Spatial Patterns (CSP) [29, 40] and auto-
regressive [32, 33]. Research has found that extracting
the most relevant features for Motor Imagery (M) tasks
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from specific frequency bands is necessary to achieve
better accuracy and efficiency [27, 32]. The rationale
behind analyzing different frequency bands is that each
band carries distinct types of information that can reveal
specific patterns and aid in making predictions. For
example, lower frequency bands such as Delta and Theta
contain information related to sleep, memory
consolidation, unconscious and meditative states [44]. In
contrast, higher frequency bands such as Alpha and Beta
are associated with wakefulness, attention, memory, and
emotional states [8].

Extracting features from specific frequency bands
allows more accurate and efficient identification of
patterns and predictions relevant to MI tasks.
Additionally, it can help for eliminating noise and
irrelevant information that may be presented in the
corresponding frequency band.

Many researchers have used the WT to perform MI-
EEG classification [27, 36, 45]. The WT has been proven
to be a powerful technique for the time-frequency
analysis of non-stationary and quasi-stationary signals
[36].

Most recent BCls MI-EEG based are largely
dependent on machine learning algorithms. A variety of
classifiers are employed in this domain to recognize
different M1 tasks, such as Linear Discriminant Analysis
(LDA), Support Vector Machine (SVM) with various
kernel functions, decision tree (DT), and k-nearest
neighbor (KNN), [3, 9, 12, 27, 30, 47].

You et al. [45] propose a novel method that combines
Flexible Analytic Wavelet Transform (FAWT) and LDA
to classify the MI-EEG signals as Left-Hand (LH) or
Right-Hand (RH) movements on BCI competition 11
dataset Illb and BCI competition Il dataset Il
Bashashati et al. [2] used a logistic regression algorithm
as a classification method and employed wavelet
features based on the mother wavelet morlet (BCI
competition Il dataset I11b). Brodu et al. [7] used LDA
to classify the MI-EEG signals and combined three kinds
of features: BP, multifractal cumulants, and predictive
complexity.

Deep learning models have become quite popular in
BCl applications. They include Recurrent Neural
Networks (RNNs) [11], Convolutional Neural Networks
(CNNs) [23, 38], and Deep Belief Networks (DBNs)
[35]. These models are known for their ability to extract
intricate features from raw brain signals and their
capacity to learn from vast amounts of data.

Salimpour et al. [38] propose a new approach to
enhance the accuracy of classifying LH and RH in MI-
EEG signals using Stockwell transform and CNN
models on BCI competition Il dataset 1l1 and BCI
competition IV dataset 2b. Liu et al. [23] propose an end-
to-end network called Compact Multi-Branch One-
Dimensional Convolutional Neural Network (CMO-
CNN) (BCI competition 1V dataset 2b).

This work aims to improve the Classification
Accuracy (CA) in BCI system MI-EEG signals. It uses a

novel Weight Feature Function (WFF) to transform the
proposed features into more discriminant features; so,
the classifier identifies the MI of the LH and RH
movements with higher accuracy. The WFF technique
works by assigning a nonlinear function to polynomial
weighted features extracted from the dataset. This
double nonlinearity resulting from the WFF and the
polynomial transformation is responsible for the
discrimination of the resulting features. With the WFF,
important features would be enhanced with higher
weights contrary to less relevant features, which would
be diminished by assigning lower weights. Overall, the
WEFF acts as pushing the classes to be more separable.
The process of determining the suitable weights for each
feature is performed by optimization using a Genetic
Algorithm (GA). This study applies the WFF approach
to four different datasets from the Open Brain-Machine
Interface (OpenBMI) and BCI competition (dataset 111b,
dataset 11, dataset 2b) and compares the results with the
existing methods working for the same datasets to
recognize hand movement either right or left.

2. Methodology
2.1. BCI System

The main purpose of the BCI technology is to accurately
identify the subject’s intended movements from their
brain activity [1]. Figure 1 illustrates a block diagram of
the BCI system. A subject imagines performing a motor
action without carrying out any physical activity. The
resulting EEG signals accompanying the action are
firstly preprocessed and then reduced to features by
extraction. Using a classifier, the MI action can be
identified to control a variety of technological devices
like computers, robotic arms, and wheelchairs via
electronic interfaces.
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Figure 1. The general concept of a BCI system.

2.2. Dataset Description

Four publicly available datasets: the BCI competition 111
dataset I11b (dataset 1) [5], the BCI competition Il dataset
Il (dataset 2) [4], the BCI competition IV dataset 2b
(dataset 3) [20], and the OpenBMI dataset (dataset 4)
[19], were used in this study to evaluate the effectiveness



1142

of the suggested approach. Table 1 contains details of the
four datasets utilized in this work.

Table 1. A summary of the datasets utilized in this work.

Dataset | No. of subjects |No. of channels|No. of classes|No. of trials
Dataset 1 3 3 2 2480
Dataset 2 1 3 2 280
Dataset 3 9 3 2 6520
Dataset 4 54 (12) 62 (2) 2 10800
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Figure 2. Timing scheme of the paradigm.

The details of these four datasets are described below.

Datasets 1: this data set consists of two classes of MI-
EEG data (LH and RH movements) from three
subjects (03, S4, X11). The experiment consists of
three sessions for each participant and each session
consists of four to nine runs. The number of trials is
320, 1080, and 1080 for participants O3, S4, and X11
respectively. The dataset was recorded over channels
C3 and C4 using a bipolar EEG amplifier from G.tec.
The EEG signals were sampled with 125 Hz, and
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filtered between 0.5 and 30Hz with a notch filter at 50
Hz. In this experiment, participants were instructed to
imagine performing hand movements after hearing a
beep sound. The instructions were to imagine moving
either their LH or RH depending on randomly
assigned cues. A graphical cue was displayed to the
participant to provide feedback on his imagined
action. The timing scheme for each trial is illustrated
in Figure 2-a).

Datasets 2: it contains two classes (LH/RH) of M-
EEG signals from a normal subject (25-year-old
female referred to S1). During the recordings, the
subject settled into a comfortable armchair and the
cues for left and right were arranged randomly. In this
experiment, there are a total of 7 runs, each
comprising 40 trials (140 train trials and 140 test
trials), lasting 9 seconds each. The timing scheme is
shown in Figure 2-b). The recorded dataset was
collected from three channels: C3, Cz, and C4 using
a G.tec amplifier. The EEG signals were sampled
with 128Hz, and filtered with a notch filter at 50 Hz,
as well as a bandpass filter between 0.5 and 30 Hz.
During the experiment, the subject was instructed to
move a bar (on a screen) in the direction indicated by
a given cue (left or right arrow) by feedback.

Dataset 3: the dataset comprises information from a
total of nine healthy subjects. EEG signals were
recorded from three bipolar channels (C3, Cz, and C4)
with a sampling frequency of 250 Hz. A bandpass
filter ranging from 0.5 Hz to 100 Hz was applied to
filter the signals, with an additional notch filter at 50
Hz. This dataset includes two types of MI paradigms,
specifically focusing on the LH and RH movements.
Each subject completed a total of five sessions, with
the first two sessions consisting of training data
obtained without feedback and including 120 trials
per session. The remaining three sessions were
recorded with feedback and included 160 trials per
session. The experiment began with a gray smiley
face appearing in the center of the screen at 0s. After
2s, a warning beep (1 kHz, 70 ms) was played, and
between [3s, 7.5s] the subjects were instructed to
imagine the movement of their LH or RH to move the
smiley face to the left or to the right. The smiley face
symbol on the screen would turn green if the subject
imagined moving their LH or RH in the correct
direction, but if they were incorrect, it would turn red.
After 7.5s, the screen would turn blank, and a short
break of 1s to 2s would be taken before continuing
with the next trial. All trials followed the same pattern,
as shown in Figure 2-c). In this study, the subjects of
this dataset are referred to BO1, B02... and B09.
Dataset 4: the dataset consists of 54 subjects,
recorded at a 1000 Hz sampling rate with 62 Ag/AgCl
electrodes. It encompasses two MI classes,
specifically LH and RH movements. The subjects
were seated in a comfortable chair with armrests.
Each subject underwent two sessions, each
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comprising a training phase with 100 trials and testing
phases with 100 trials, with balanced RH and LH
imagery tasks. The timing scheme is depicted in
Figure 2-d). in this study, we have selected only 12
subjects, specifically ‘S04, S11, S20, S24, S25, S27,
S34, S35, S40, S42, S46, S47,” based on their low
accuracy in Lee et al. [19] to challenge our WFF
method. To treat all datasets, the same way
concerning features extraction, the channels C3 and
C4 are also used for this dataset.

2.3. Pre-Processing

Pre-processing the dataset is an essential step in
enhancing classification because it prepares the data for
detailed analysis in the most effective and meaningful
manner. First, because ‘NaN’ appears in the subjects O3,
S4, X11, and B06, we deleted all trials that have missing
data represented by ‘NaN’. After this process, the size of
the datasets became 160 examples for O3, 536 for S4,
539 for X11, and 318 examples for subject B06. By
doing so, all datasets used in the analysis were valid
without missing data that could influence the results.
Furthermore, two second-order Butterworth band pass
filters were used to enhance the chances of discovering
distinctive features in signals SC3 and SC4 which are
from the channels C3 and C4 respectively. The
frequency bands selected for this analysis are B1 ([7-24]
Hz), and B2 ([25-29] Hz). Thereby, four distinct signals
are obtained for each trial. These signals are named SCs,
SCs2, SCa1, and SCa2 (See Figure 4).

2.4. Features Extraction

The process of extracting information from a given set
of data is known as feature extraction. It is a critical step
in making the data more understandable for the machine
learning algorithm. In fact, features extraction can be
accomplished in three ways: frequency domain, time
domain, and frequency-time domain. The features used
in this work are very diversified. In fact, features from
the frequency domain, time domain, and time-frequency
domain (Continuous Wavelet Transform (CWT) and
Discrete Wavelet Transform (DWT)) for MI-EEG
signals are extracted in order to identify the RH/LH
movement that will be used in the BCI system.

2.4.1. Wavelet Transform

Due to the non-stationary nature of the EEG signals [27],
the WT approach is a good option, for the reason that it
handles the time-frequency domain aspect. WT is very
important in signal processing and is often used in two
ways:

a) CWT: it measures the similarity between a signal and
an analytical function called a mother wavelet using
inner products. The CWT formula for a signal x(t) is
given by:

o5}

C.(a,b) =%f_wx(t)‘lf(%> dt (1)

Where q is a scale parameter and 5 is a parameter for the
position of the mother wavelet ¥ in time.

b) DWT: the DWT requires two filters to split the signal
into different levels: a low-pass filter and a high-pass
filter. The low-pass filter returns the Approximation
coefficient (A1), while the high-pass filter returns the
Detailed coefficient (D1). The approximation signal
is divided again into several levels of lower-resolution
components. Figure 3 illustrates the DWT
decomposition of the digital signal x[n] till the third
level.
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Figure 3. Wavelet decomposition of DWT till the third level.
The first level is expressed mathematically as:

AlK] :zx[n].L[Zk —n] 2)

n

DIK] =Zx[n].H[2k—n] 3)
Where x[n] is the signal, A[k] and D[k] are the
approximation and the detailed coefficients respectively.
The functions L[n] and H[n] represent the filter
coefficients, and n represents the sampling point of the
signal. In this work, EEG signals were decomposed to
the third level using biorthogonal 3.3 filters.

2.4.2. Other Diversified Features

The distribution of a signal’s power content over
frequencies is called the PSD. The following formula is
used to calculate the PSD of a signal x(t):

B.(f) = Ifft(x?)] “4)

Where f is the frequency, while Fast Fourier Transform
(FFT) stands for the fast TF algorithm.

The variance of EEG signal (var) is useful for
determining signal power and can be stated as:

N
1
var = mZ(xi)z )

Where x is the signal and N is the length of the signal.

Skewness measures the asymmetrical distribution of
a signal around its mean or median value. Kurtosis is
defined as the average fourth power of a signal’s
deviation from its mean value divided by the standard
deviation’s fourth power. The skewness and Kurtosis are
given by Equations (6) and (7).
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N
1

skew = mzl(xn -u)? (6)
L&

kurt = anl(x71 - (7)

Where ¢ is the standard derivation of the random
variable x and [ represents its mean.

Root Mean Square (RMS) is calculated by the
following equation:

(8)

Enhanced Wave-Length (EWL) and Enhanced Mean
Absolute Value (EMAYV) are calculated by Equations (9)
and (10).

N
EWL = 1(xi = ;1) ©)

i=2

1 N
— P

EMAV = N;KxJ | (10)
_ (080, if 03N <i<O0JN 1
P_{ 0.50, otherwise an

The parameter P in Equation (11) is utilized to determine
the effect of the sample within the signal, as shown in
Equations (9) and (10). A higher number of P is used in
30% to 70% of areas in EMAV and EWL [43].

Mean Curve Length (MCL) measures signal
complexity and irregularity and is given by Equation
(12).
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N
1
MCL=N;|xi—xi_1| (12)
Mean Energy (ME) is useful for determining signal
power and is given by Equation (13)

(13)

First Difference (FD) helps in the analysis of signal
patterns and trends and is given by Equation (14).

=
FD = mzmﬂ - xil
L

In the present study, we extract relevant features from
specific frequency bands. Once the features have been
extracted, they are combined to form a single features
vector. This vector contains information from time and
frequency and conjoint time-frequency domains. This
diversity from different domains aims to improve the CA
of the MI brain tasks.

A flowchart of the signal processing steps and the
corresponding extracted features is shown in Figure 4.
Using two pass-band filters, with the indicated pass
bands, the two EEG signals of the two channels C3 and
C4 generate four signals (SCai, SCsz, SCa1, SCs). TO
take the spatial information into account, all proposed
features were a ratio between features of signals obtained
from channel C3 (SCs;; i=1, 2) and features of signals
obtained from channel C4 (SCs; i=1, 2). In fact, 84
features were proposed. The first 42 features are
indicated and defined in Table 2. The remaining 42
features are exactly the reverse of the first 42 features.
For example, fss is f1 and fu4 is f2*and so on.

ME = mean(x?)

(14)
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Figure 4. Flowchart of the signal processing with features extraction.

The reverse approach, as a nonlinear transformation,
permits more diversity in features so the MI-EEG brain

tasks can be represented differently; consequently, their
identification could be more accurate.
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Table 2. Proposed features and their expressions.

Features Expressions
f1 MCL(SC31)/MCL(SC41)
f, sum(SCs)/sum(SC,)
fs mad(SCs;)/mad(SCa1)
f4 ME(SC31)/M E(SC41)
fs FD(SC3,)/FD(SC4,)
fo kurt(SCs)/kurt(SCy)
¢ sum(SC3Z) sum(SCf)
! (length(SC3))/ (length(SC4)>
. mean(SC3Z) mean(SC42)
s <length(SC3)) (length(SC4)>
. mean(SC3j2) mean(SCMZ) =12
e <length(SC3 j)> / (length(SC4 j)> o
2 2
fono ( rms(SC3] ) )/(rms(SC“ ) )j 12
length(SCs;)) " \length(SC,;)
fi3 var(Ps)/var(Ps+Ps)
fia max(Ps)/max(Ps)
fis kurt(Psy)/var(Pa;)
f15 ku rt(P31)/median(P41)
fiz STD(D33,)/STD(D342)
le SkCW(D 1 32)/SkCW(D 1 42)
fi+17 kuIT(D_] 32)/kUI‘t(Dj42) j:2,3
f21 sum(D3 322)/sum(D3422)
fis20 MCL(Dj3)/MCL(Djs ) j=2,3
f24 mad(D332)/mad(D3 42)
fj+24 EWL(D_]H)/EWL(D_]Q ) j:1 .3
fos EMAV(D23,)/EMAV(D24,)
fae sum(A1;%)/sum(A142)
f30 mean(|A13|)/mean(|Als))
fa rms(|Als|)/rms(|Al4])
f32 medlan(\Al32|)/MCL(|A142\)
fa3 EWL(AL;)/EWL(ALL)
fisas EWL(ALl3)/EWL(ALly) j=1,2
fas EMAV(AL;)/EMAV(AlL)
fa7 EMAV(Als,)/ EMAV(Aly,)
fas max(Alsz)/max(Als)
i)2
fiaar umlCoesa (b)) ;5 s
sum(Cscar (4,:)%)

The diversification of features depends on the
frequency content of the signals from which they are
extracted, with distinct allocations for different
frequency ranges: 20 features are designated for
frequencies spanning from 0.5 to 30 Hz, 18 features are
specified for frequencies ranging between 7 and 24 Hz,
and a larger set of 46 features is designated for
frequencies between 25 and 29 Hz.

2.5. Features Selection

Due to the diversity of the proposed features, the carried
information about the brain tasks can be redundant or
shared between a group of features. Efficient BCI system
needs relevant features with fewer numbers to speed up
the identification phase. To this end, the feature selection
is performed by optimization using GA [31].

2.6. Weight Features Function (WFF)

The problem of the brain tasks identification is very
difficult due to the complicated nature of the EEG
signals carrying the task information. In fact, they are
nonlinear, non-stationary, and undergo variations not
just for extra-subjects but also for intra-subjects. To get
better classification, classes should be distinguishable by
features.

Selected Discriminan
Features features

EEG DATA (Right hand MI)

EEG DATA (Left hand MI) Features

— O3

— C4
b >
v L =
A\ ,"‘
. A J J

Figure 5. EEG signals illustration for LH/RH actions with
discriminant features extracted by WFF.

For this purpose, Selected Features (SF), in the first
phase, need further processing to be more discriminant.
In this work, SF were transformed by a double
nonlinearity performed by the following WFF:

X| = WFF(X;) = tan(wy; + wyiX; + w3, X?)

Where i=1...SF. For each feature Xi among the SF, three
weights (w1, Wai, Wsi) should be tuned in a way the
resulting feature Xi' by the tangent function ‘tan’ would
be discriminant. The weights tuning is performed by GA
optimization  subject to minimization of the
misclassification rate. The periodicity of the ‘tan’
function permits to transform non-linearly sub-regions
of the learning examples not necessarily equilateral due
to the polynomial nonlinearity. This WFF acts as the
kernel function of the SVM classifier, but it keeps the
same dimension. So, this WFF tries to make classes more
separable, making the SVM classifier function easier
afterward. Figure 5 illustrates the EEG signal for LH/RH
movements highlighting discriminant features extracted
through WFF.

2.7. SVM Classifier

Due to its high accuracy in predicting the class of a given
dataset, SVM has become one of the most popular
discriminative classification models for nonlinear and
linear classifications. It’s a supervised learning
algorithm that helps classify data points by finding a
hyperplane in a high-dimensional space that best
separates different classes in a dataset [43, 46, 47]. The
hyperplane is chosen to maximize the margin between
the two closest data points of different classes, which
leads to a highly accurate classification of new data
points. The data points nearest to the hyperplane are
known as support vectors, and they play an important
role in the determination of the decision boundary. The
SVM classifier is a powerful tool for classification and
regression tasks and is being employed to identify
various MI-EEG signals [27, 47].

3. Results

In this study, four different datasets were used to perform



1146 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

LH/RH movement recognition. The dataset 1 (Dataset
I11b) has three subjects. The dataset 4 has 12 subjects.
The CA for these two datasets is performed by a 10-fold
cross-validation technique to avoid biased evaluation.
The CA for the dataset 2 (dataset Ill) that has one
subjects and the dataset 3 (dataset 2b) that has 9 subjects
is performed by the holdout evaluation technique that is
imposed by the datasets i.e., datasets are already divided
into two parts: train part and test part. The results for all
datasets are presented in many stages as follows:

1. The classification is performed with all 84 features
using three kinds of classifiers (SVM, KNN, LDA).

2. Using the best classifier from the last results Linear
SVM (LSVM), firefly optimization is performed to
find the best processing duration for each subject.

3. The classification is performed by suitable features
selected by GA for each subject.

4. The SF are subject to weighting using the proposed
WEFF technique to improve the CA. The best weights
for SF are optimized also by GA. At the end, we
evaluate our approach by comparing them to existing
methods that have used the same databases ‘dataset 1,
dataset 2, dataset 3, and dataset 4.’

3.1. CA with All Features

Table 3 represents the CA of the four datasets and the
corresponding mean with respect to different classifiers
(SVM, KNN, and LDA). By trial and error, the
beginning time is set to 3.85s and the processing duration
issettols.

Table 3. CA using indicated classifiers for all datasets.

. Classifiers
Datasets | Subjects [SYM | KNN | LDA
03 75.8 744 | 719
S4 76.7 74.1 | 737
Datasets1 511 | 769 | 742 | 738
Mean (%) 76.47 | 742 | 73.1
Datasets 2 S1 82.1 80.7 | 82.1

BO1 68.1 65.6 65
B02 52.2 51.8 52
B03 59.4 55 52
B04 91.4 90.5 91
B05 81.4 81.6 80
B06 71.3 66.3 | 68.8
Datasets 3 BO7 66.3 619 | 64.1
B08 77.4 732 | 753
B09 72.8 74.2 | 753

Mean (%) 71.14 | 68.9 | 69.49
S04 75 73 75
S11 75 743 | 745
S20 75 713 | 748
S24 75.8 74 75
S25 76 75 75

S27 77.3 778 | 76.3
S34 76.5 74.3 75
S35 85 78 79.5

Datasets 4
S40 79.5 75 79.3
S42 79.8 77.8 78
S46 75 74.3 75
S47 75 76.8 | 75.3
Mean (%) 77.07 | 75.13 | 76.05

From Table 3, the LSVM classifier is the best one for
all datasets with a CA mean of 76.5%, 82.1%, 71.14%,
and 77.07% for dataset 1, dataset 2, dataset 3, and dataset
4  respectively.  Consequently, the remaining
classification results are performed by the LSVM
classifier.

3.2. CA with Tuned Processing Durations

Due to the non-stationary nature of the EEG signals,
features that carried the LH/RH movement information
are very sensitive to the processing duration i.e., the
duration of the segment by which the features are
calculated. For this reason, processing durations for each
subject are tuned by the firefly optimization technique
[21]. Using the best classifier found previously LSVM
while maintaining the start time position unchanged
(3.85s). Table 4, lists the CA for all subjects with respect
to the best processing duration found by the firefly
algorithm.

As we can see, from Table 4, most processing
durations are longer than 1.5s. These processing
durations will be used for the coming results.

Table 4. CA (%) for all subjects with respect to the best processing
duration found by the firefly optimization algorithm.

Datasets | Subjects | Processing duration (s) | CA (%)
03 1.8720 76.13
Datasets 1 S4 3.5047 84.29
X11 3.4420 80.43
Datasets 2 S1 3.6056 90
B01 0.5981 68.43
B02 2.8743 60.71
B03 0.8054 64.68
B04 1.8122 95
Datasets 3 B05 2.2322 90.29
B06 3.4624 84.27
B07 0.7429 72.18
B08 2.2914 91.87
B09 3.2189 90.93
S04 0.4187 79.25
S11 0.7440 78.5
S20 1.5449 80.5
S24 0.6414 79.5
S25 0.8355 78.75
S27 3.7015 80
Datasets 4 g3, 1.7820 79.75
S35 0.5322 88.75
S40 2.1925 79.5
S42 2.0043 79.75
S46 0.3359 79.25
S47 0.8034 79.5

3.3. CA with Selected Features

Arriving now, at the selection of features to choose the
most relevant ones. To do so, GA optimization is used to
minimize the misclassification rate (classification error).
The GA should select a suitable group of features among
284 possible groups. Table 5, represents the CA of the
four datasets before and after the features selection with
their number (SF). Overall, the number of the SF is
reduced by about 60%. The average CA is improved by
about 10% for dataset 1 and about 5% for the remaining
datasets. Features selection discards redundant features
and non-discriminant ones.
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Figure 6 demonstrates the GA optimization for
choosing suitable features for some subjects (one subject

from each dataset). A CA of 92.53% (100-7.46), 95.71 %,
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98.23 %, and 92 % is reached using 35, 42, 35, and 21

features for the indicated subjects respectively.

Table 5. CA (%) for the four datasets before and after features selection with indicated SF number.

Datasets | Subjects |All features (84)Mean (%0) SF Mean (%)
03 76.13 92.53 (35)
Datasets 1]  S4 84.30 80.29 [90.32(37)| 90.1
X11 80.44 87.45 (35)
Datasets 2|~ S1 90 90 95.71 (42) | 95.71
BO1 68.43 75.5 (30)
B02 60.71 71.78 (30)
B03 64.68 75 (44)
B04 95 98.23 (35)
Datasets 3 B05 90.29 79.82 |94.41(39)| 86.73
B06 84.27 89.3 (34)
BO7 72.18 82.5 (31)
B08 91.87 96.25 (21)
B09 90.93 95.62 (21)
S04 79.25 82 (29)
S11 78.5 81.5(31)
S20 80.5 84.5 (38)
S24 79.5 85.75 (27)
S25 78.75 84.25 (22)
S27 80 82.5 (38)
S34 79.75 83.5(21)
S35 88.75 92 (21)
Datasets 4540 79.5 83.5(32)
S42 79.75 80.25 83 (36) 83.83
S46 79.25 82.25 (21)
S47 79.5 81.25 (36)
Best: 7.46667 Mean: 8.414 Best: 428571 Mean: 480714
25 15
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Figure 6. Features selection using GA optimization for the indicated subjects.

3.4. CA Using the WFF Technique

To enhance further the CA of LH movement, the last SF
will undergo a weighting operation using the WFF
technique. The GA is used to find suitable weights for

each feature. According to the WFF expression
‘Equation (15)’, the GA should find three weights for
each feature i.e., the number of weights to be found is
three times the number of features.
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Table 6. CA (%) and their mean over the dataset after weighting by
the WFF techniques.

Datasets | Subjects | Using WFF | Mean (%)

03 100

Datasets 1 S4 95.48 96.1
X11 92.81

Datasets 2 S1 100 100
B01 84.68
B02 85
B03 87.81
B04 100

Datasets 3 B05 100 94.2
B06 99.05
B07 92.18
B08 100
B09 99.06
S04 86.25
S11 86.75
S20 88
S24 88.75
S25 88.5
S27 87.75

Datasets 4 s34 8775 88.70
S35 97
S40 88.25
S42 90
S46 88.25
S47 87.25

The CA of LH/RH movements for all subjects using
optimized weights in the WFF technique are presented
in Table 6. It is clear that the use of the WFF technique
has improved the CA accuracy in all subjects. To get a

Best: 0 Mean: 1 23267
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clear idea about the contribution of WFF techniques, the
average of CA for each dataset before and after using the
WFF technique is presented as a ‘bar’ plot in Figure 7.
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Figure 7. CA for the four datasets before and after applying the WFF
weighting.

It is clear from Figure 7 that the CA has been
significantly improved. In fact, the mean CA increases
from 90.10% to 96.10%, from 95.72 % to 100%, from
86.38% to 94.2%, and from 83.83% to 88.70% with and
without WFF technique for the four datasets respectively.
These results indicate an improvement of about 5% in all
datasets. Without a doubt, the WFF weighting is an
efficient technique to make features more discriminant
leading to a significant improvement in the LH/RH
movement identification.
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Figure 8. GA optimization of weights in WFF technique for the indicated subjects.

Figure 8 represents the GA optimization process for
some results of Table 6. It represents the GA
optimization of the weights in the WFF technique for
four subjects, one subject from each dataset.

We have to mention that other non-linear functions
were used in the WFF expression like ‘asin’, ‘sinc’, ‘cos’,
‘acos’, and ‘atan’ functions trying to find a better CA,
but we could not find a CA better than the CA given by

the ‘tan’ function which gives a mean CA of 96.1%,
100%, 94.2% and 88.70% for the four datasets
respectively.

To get a clear idea about the left/right classification
using the LSVM classifier, the confusion matrices of the
classification in four datasets are represented as mean in
Figure 9. As the datasets are not imbalanced data, the
confusion matrices indicate that there is no confusion in
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the recognition of the LH and the RH movement i.e.,
there is no difference in the LH and the RH movement
recognition. That means, the proposed technique WFF
produces more sensitive and discriminant unconfused

Confusion Matrix

596 24 96,1% 70 0 100%
48,3% 1,9% 3.9% 50,0% 0,0% 0,0%

] 70 100%
0,0% 50,0% 0,0%
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96,1% 100%% 100%% 100%
0,09% 0,0%
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a) Dataset. b) Dataset.
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features.
The GA parameters used in the optimization process
are indicated in the Table 7.

Confusion Matrix Confusion Matrix
1366 79 94.,5% o| 3074 526 85.4%
O 42500 2706 5. 505 64,0% 11,0 14,6%
87 1346 93,9% = 16 1184 98,7%
! 3.0% 46,8% 6,1% 4 0,3% 24,7% 1.3%
94.0% 94,5% 94.2% 99.5% 69,2% 88,7%
6.0% 5,5% 5,8% 0.5% 30.8% 11,3%
0 1 0 1
Target Class Target Class
c) Dataset. d) Dataset.

Figure 9. Confusion matrices for the four datasets.

Table 7. GA characteristics used in the optimization.

Parameters Definition or value
Population type Bit string / double victor
Population size 200
Scaling function Shift linear

Selection function Remainder
Mutation function Constraint dependent
Generations 2000/10000
Elite count 0.05*Population size
Crossover fraction 0.8
Crossover function Constraint dependent
Migration direction Forward
Migration fraction/interval 0.2/20
Termination Criteria Stall generations=5000

3.5. CA Comparison with Existing Methods

Due to the importance of the BCI technology, several
researches have been developed new techniques in order
to identify accurately brain tasks using MI-EEG signals.
To see how our method performs in LH/RH movement
classification with respect to the existing works while
using the same datasets (dataset 1, dataset 2, dataset 3,
and dataset 4), Table 8 summarizes the CA of the

existing works with their methods and their features with
respect to our work. As we can see, our method
outperforms all existing methods in all datasets. The best
CA for dataset 1 was 94.11% using multi-classification
of three optimized SVM classifiers [27]. Although multi-
classification boosts the CA, our method outperforms
this multi-classification using just one LSVM classifier
with a CA of 96.1%. Using the CNN classifier (deep
learning), the CA for the dataset 2 was 99.29% [38]. In
our work, the CA achieves 100%. Concerning the dataset
3, our method is more accurate than the one performed
by the CNN classifier (deep learning-based transfer
learning) which was 89.02% [38], with an improvement
of about 5% (94.2%). Although in the dataset 4 our
method achieves a CA of 88.70% which is more than the
one found by Lee et al. [19] with 51.98% CA,; in the later
method, they utilized CSSP features with 20 channels
and an LDA classifier. Using just two electrodes to find
such performance (36% more) is really a noteworthy
result.

Table 8. Summary of the CA (%) with indicated features and classifiers for works that used dataset 1, dataset 2, dataset 3, and dataset 4.

Datasets Works Features Classifiers Mean (%)
Lotte et al. [24] Band power SVM 79.36
Zhong et al. [47] Band power VB 78.96
Brodu et al. [6] Wavelet features (Morlet) LDA 80.95
Brodu et al. [7] BP, Multifractal, Complexity LDA 81.30
Dataset 1 Bashashati et al. [2] Wavelet features (Morlet) LR 81.47
Chen et al. [10] TQWT LDA 81.75
You et al. [45] FAWT LDA 86.66
Mebarkia and Reffad [27] 16 Diversified features Three optimized SVMs 94.11
This work 84 Diversified features with optimized WFF SVM 96.1
Liu etal. [22] SVM Common spatial pattern (CSP) SVM 82.86
Jang et al. [15] STFT KNN 83.57
Khasnobish and Bhattacharyya [17] Average band power of alpha and beta KNN 84.29
Chen et al. [10] TOWT LDA 88.11
Dataset 2 Tabar and Halici [41] STFT Deep learning 90
You et al. [45] FAWT LDA 94.29
Kant et al. [16] CWT Filter-bank Deep Transfer-learning 95.71
Salimpour et al. [38] CNN-based features from Stockwell TFM SVM 99.29
This work 84 Diversified features with optimized WFF SVM 100
Degdevir et al. [13] Hjorth algorithm SVM 82.58
Han et al. [14] STFT PCNN 83
Malan et al. [26] Dual-tree complex wavelet, NCA SVM 84.02
Dataset 3 Luetal. [25] Deep I;arning based on restricted 84.2
oltzmann machines
Liu et al. [23] CMO-CNN 87.19
Salimpour et al. [38] CNN-based features from Stockwell TFM SVM 89.02
This work 84 Diversified features with optimized WFF SVM 94.2
Dataset 4 Leeetal. [19] CSspP LDA 51.98
This work 84 Diversified features with optimized WFF SVM 88.70
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Our method dominates all existing methods for all
datasets. That means the WFF technique using ‘tan’
function is a good alternative to transfer the
classification problem to be more linearly separable with
the new transferred features.

4. Conclusions

The complex nature of the EEG signal, its variability
intra-subject and extra-subjects, and the synchronization
problem all make brain tasks identification hard for the
BCI system. In this paper, we have proposed 84
diversified novel features to identify the LH/RH
movement using a LSVM classifier from MI-EEG
signals. To enhance the CA, we selected relevant
features and weighted them using the GA optimization
algorithm. Using the WFF technique approach, which
transforms the SF into more discriminant ones, the CA
was improved significantly. After evaluating our
approach on public BCI competition databases and
OpenBMI, the best accuracy of 96.1%, 100%, 94.2%,
and 88.70% were achieved on dataset 1 (dataset Illb:
three subjects), dataset 2 (dataset Ill: one subject),
dataset 3 (dataset 2b: 9 subjects) and dataset 4
(OpenBMI dataset: 12 subjects) respectively.

The WFF technique shows high faculty to make
features more discriminate and could be a valuable and

worthwhile approach for the MI-EEG-based BCI system.

The experimental results corroborate that the suggested
method outperforms the existing methods and has the
benefit of enhanced classification performance.

These findings provide a new perspective on
developing BCI systems with superior performance and
efficiency. This study, which used the LSVM classifier,
reveals the possibility to transform classification
problems, with the WFF technique, into more linearly
separable ones while keeping the same data dimension
without using kernel functions commonly used in the
SVM classifier. The WFF technique used in this work
applies the ‘tan’ function, a nonlinear and periodical
function to features polynomial transformation. This
allows increasing the possibility to separate linearly
different regions in the classification problem domain. In
that sense, more functions can be studied to transform
features to a new domain more linearly separable. It is
worthful to note that using classical machine learning,
compared to deep learning, when using proper features
can give better results compared to the results given by
the deep learning. This claim is verified by this work.

This study reveals an important result. The
information about the M1 tasks can be gained from small
number of electrodes if we use proper features. Using
small electrodes, make the user more comfortable,
increase the response time leading to low power
consumption.

Acknowledgment

The authors would like to acknowledge the Institute for

Knowledge Discovery (Laboratory of Brain-Computer
Interfaces), Graz University of Technology, for
providing the dataset online.
(https://www.bbci.de/competition). The acknowledge
goes also to the GigaScience repository (GigaDB) that
makes datasets available
publicly(https://gigadb.org/dataset/100542).

References

[1] Altaheri H.,, Muhammad G., Alsulaiman M., Amin
S., and et al., “Deep Learning Techniques for
Classification of Electroencephalogram (EEG)
Motor Imagery (MI) Signals: A Review,” Neural
Computing and Applications, vol. 35, pp. 14681-
14722, 2023. https://doi.org/10.1007/s00521-021-
06352-5

[2] Bashashati H., Ward R., Birch G., and Bashashati
A., “Comparing Different Classifiers in Sensory
Motor Brain Computer Interfaces,” PLoS ONE,
vol. 10, mno. 6, pp. 1-17, 2015.
https://doi.org/10.1371/journal.pone.0129435

[3] Bhattacharyya S., Khasnobish A., Chatterjee S.,
Konar A., and Tibarewala D., “Performance
Analysis of LDA, QDA and KNN Algorithms in
Left-Right Limb Movement Classification from
EEG Data,” in Proceedings of the International
Conference on Systems in Medicine and Biology,
Kharagpur, pp- 126-131, 2010.
https://ieeexplore.ieee.org/document/5735358

[4] Blankertz B., Muller K., Curio G., Vaughan T., and
et al., “The BCI Competition 2003: Progress and
Perspectives in Detection and Discrimination of
EEG Single Trials,” [EEE Transactions on
Biomedical Engineering, vol. 51, no. 6, pp. 1044-
1051, 2004.
https://pubmed.ncbi.nlm.nih.gov/15188876/

[5] Blankertz B., Muller K., Krusienski D., Schalk G.,
and et al., “The BCI Competition III: Validating
Alternative Approaches to Actual BCI Problems,”
IEEE  Transactions on Neural Systems and
Rehabilitation Engineering, vol. 14, no. 2, pp.
153-159, 2006.
https://doi.org/10.1109/TNSRE.2006.875642

[6] BroduN., Lotte F., and Lecuyer A., “Comparative
Study of Band-Power Extraction Techniques for
Motor Imagery Classification,” in Proceedings of
the IEEE Symposium on Computational
Intelligence, Cognitive Algorithms, Mind, and
Brain, Paris, pp- 1-6, 2011.
https://ieeexplore.ieee.org/document/5952105

[7] Brodu N., Lotte F., and Lecuyer A., “Exploring
Two Novel Features for EEG-based Brain-
Computer Interfaces: Multifractal Cumulants and
Predictive Complexity,” Neurocomputing, vol. 79,
pp- 87-94, 2012.
https://doi.org/10.1016/j.neucom.2011.10.010

[8] Buskila Y., Bellot-Saez A., and Morley J.,


https://doi.org/10.1007/s00521-021-06352-5
https://doi.org/10.1007/s00521-021-06352-5
https://doi.org/10.1371/journal.pone.0129435
https://ieeexplore.ieee.org/document/5735358
https://pubmed.ncbi.nlm.nih.gov/15188876/
https://doi.org/10.1109/TNSRE.2006.875642
https://ieeexplore.ieee.org/document/5952105
https://doi.org/10.1016/j.neucom.2011.10.010

Enhancing Motor Imagery EEG Classification Accuracy Using Weight Features Function

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

“Generating Brain Waves, the Power of
Astrocytes,” Frontiers in Neuroscience, vol. 13,
pp. 1-10,2019. DOI: 10.3389/fnins.2019.01125
Chen C., Yu X., Belkacem A., Lu L., and et al.,
“EEG-based Anxious States Classification Using
Affective BCl-based Closed Neurofeedback
System,” Journal of Medical and Biological
Engineering, vol. 41, pp. 155-164, 2021.
https://doi.org/10.1007/s40846-020-00596-7
Chen W., Wang X., and Zhang T., “Research of
Discrimination between Left and Right Hand
Motor Imagery EEG Patterns Based on Tunable
Q-Factor Wavelet Transform,” Journal of
Electronics and Information Technology, vol. 41,
no. 3, pp- 530-536, 2019.
https://www.jeit.ac.cn/en/article/doi/10.11999/JEI
T171191

Chowdary M., Anitha J., and Hemanth D.,
“Emotion Recognition from EEG Signals Using
Recurrent Neural Networks,” Electronics, vol. 11,
no. 15, pp- 1-20, 2022.
https://doi.org/10.3390/electronics 11152387
Coyle D., Prasad G., and McGinnity T., “A Time-
Frequency Approach to Feature Extraction for a
Brain-Computer Interface with a Comparative
Analysis of Performance Measures,” EURASIP
Journal on Advances in Signal Processing, vol. 19,
pp- 3141-3151, 2005.
https://doi.org/10.1155/ASP.2005.3141

Dagdevir E. and Tokmakci M., “Optimization of
Preprocessing Stage in EEG Based BCI Systems
in Terms of Accuracy and Timing Cost,”
Biomedical Signal Processing and Control, vol.
67, pp- 102548, 2021.
https://doi.org/10.1016/j.bspc.2021.102548

Han Y., Wang B., Luo J.,, Li L., and Li X., “A
Classification Method for EEG Motor Imagery
Signals Based on Parallel Convolutional Neural
Network,” Biomedical Signal Processing and
Control, vol. 71, pp. 103190, 202I.
https://doi.org/10.1016/j.bspc.2021.103190

Jang T., Kim B., Yang Y., Lim W., and Oh D.,
“Motor-Imagery EEG Signal Classification Using
Position Matching and Vector Quantisation,”
International Journal of Telemedicine and
Clinical Practices, vol. 1, no. 4, pp. 306-313, 2016.
https://doi.org/10.1504/IJTMCP.2016.078426
Kant P., Laskar S., Hazarika J., and Mahamune R.,
“CWT Based Transfer Learning for Motor
Imagery Classification for Brain Computer
Interfaces,” Journal of Neuroscience Methods, vol.
345, Pp- 108886, 2020.
https://doi.org/10.1016/j.jneumeth.2020.108886
Khasnobish A., Bhattacharyya S., Konar A., and
Tibarewala D., “K-Nearest Neighbor
Classification of Left-Right Limb Movement
Using EEG Data,”  in Proceedings of the 2™
International  Conference  on  Biomedical

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

1151

Engineering and Assistive Technologies, Punjab,
Pp- 1-6, 2010.
https://www.academia.edu/20886132/K Nearest
neighbor_classification of left right limb _move
ment_using EEG_data

Lee D., Park S., and Lee S., “Improving the
Accuracy and Training Speed of Motor Imagery
Brain-Computer Interfaces Using Wavelet-based
Combined Feature Vectors and Gaussian Mixture
Model-Supervectors,” Sensors, vol. 17, no. 10, pp.
1-18, 2017. https://doi.org/10.3390/s17102282
Lee M., Kwon O., Kim Y., Kim H., and et al.,
“Supporting Data for EEG Dataset and OpenBMI

Toolbox for three BCI Paradigms: An
Investigation into BCI Illiteracy,” GigaScience,
vol. 8, no. 5, pp- 1-16, 2019.

https://doi.org/10.1093/gigascience/giz002

Leeb R., Brunner C., Muller-Putz G., Schlogl A.,
and Pfurtscheller G., “BCI Competition 2008-
Graz Data Set B,” Graz University of Technology,
vol. 16, pp. 1-6, 2008.
https://www.bbci.de/competition/iv/desc 2b.pdf
LiuA., Chen K., Liu Q., Ai Q., and et al., “Feature
Selection for Motor Imagery EEG Classification
Based on Firefly Algorithm and Learning
Automata,” Sensors, vol. 17, no. 11, pp. 1-15,
2017. https://doi.org/10.3390/s17112576

Liu C., Zhao H., Li C., and Wang H., “CSP/SVM-
based EEG Classification of Imagined Hand
Movements,” Journal of Northeast University, vol.
31, no. 8, pp 1098-1101,  2010.
https://xuebao.neu.edu.cn/natural/EN/Y2010/V31
/18/1098

Liu X., Xiong S., Wang X., Liang T., and et al., “A
Compact Multi-Branch 1D Convolutional Neural
Network for EEG-based Motor Imagery
Classification,” Biomedical Signal Processing
and Control, vol. 81, pp. 104456, 2023.
https://doi.org/10.1016/j.bspc.2022.104456

Lotte F., Lecuyer A., Lamarche F., Arnaldi B..,
“Studying the Use of Fuzzy Inference Systems for
Motor Imagery Classification,” IEEE
Transactions  on  Neural  Systems  and
Rehabilitation Engineering, vol. 15, no. 2, pp.
322-324, 2007.
https://doi.org/10.1109/TNSRE.2007.897032

Lu N, Li T, Ren X., and Miao H., “A Deep
Learning  Scheme for motor imagery
Classification Based on Restricted Boltzmann
Machines,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 25, no. 6, pp.
566-576, 2017.
https://ieeexplore.ieee.org/document/7546909
Malan N. and Sharma S., “Motor Imagery EEG
Spectral-Spatial Feature Optimization Using
Dual-Tree Complex Wavelet and Neighbourhood
Component Analysis,” /IRBM, vol. 43, no. 3, pp.
198-209, 2021.


https://doi.org/10.1007/s40846-020-00596-7
https://www.jeit.ac.cn/en/article/doi/10.11999/JEIT171191
https://www.jeit.ac.cn/en/article/doi/10.11999/JEIT171191
https://doi.org/10.3390/electronics11152387
https://doi.org/10.1155/ASP.2005.3141
https://doi.org/10.1016/j.bspc.2021.102548
https://doi.org/10.1016/j.bspc.2021.103190
https://doi.org/10.1504/IJTMCP.2016.078426
https://doi.org/10.1016/j.jneumeth.2020.108886
https://www.academia.edu/20886132/K_Nearest_neighbor_classification_of_left_right_limb_movement_using_EEG_data
https://www.academia.edu/20886132/K_Nearest_neighbor_classification_of_left_right_limb_movement_using_EEG_data
https://www.academia.edu/20886132/K_Nearest_neighbor_classification_of_left_right_limb_movement_using_EEG_data
https://doi.org/10.3390/s17102282
https://doi.org/10.1093/gigascience/giz002
https://www.bbci.de/competition/iv/desc_2b.pdf
https://doi.org/10.3390/s17112576
https://xuebao.neu.edu.cn/natural/EN/Y2010/V31/I8/1098
https://xuebao.neu.edu.cn/natural/EN/Y2010/V31/I8/1098
https://doi.org/10.1016/j.bspc.2022.104456
https://doi.org/10.1109/TNSRE.2007.897032
https://ieeexplore.ieee.org/document/7546909

1152

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

https://doi.org/10.1016/j.irbm.2021.01.002
Mebarkia K. and Reffad A., “Multi Optimized
SVM Classifiers for Motor Imagery Left and
Right Hand  Movement Identification,”
Australasian Physical and Engineering Sciences
in Medicine, vol. 42, pp. 949-958, 2019.
https://doi.org/10.1007/s13246-019-00793-y
Meng J., Zhang S., Bekyo A., Olsoe J., and et al.,
“Noninvasive  Electroencephalogram  Based
Control of a Robotic Arm for Reach and Grasp
Tasks,” Scientific Reports, vol. 6, pp. 1-15, 2016.
https://doi.org/10.1038/srep38565

Mishuhina V. and Jiang X., “Feature Weighting
and Regularization of Common Spatial Patterns in
EEG-based Motor Imagery BCI,” IEEE Signal
Processing Letters, vol. 25, no. 6, pp. 783-787,
2018. https://doi.org/10.1109/LSP.2018.2823683
Mohammadi E., Daneshmand P., and Khorzooghi
S., “Electroencephalography-based  Brain-
Computer Interface Motor Imagery Classification,”
Journal of Medical Signals and Sensors, vol. 12,
no. 1, pp- 40-47, 2021.
https://doi.org/10.4103/jmss.JMSS 74 20

Ocak H., “Optimal Classification of Epileptic
Seizures in EEG Using Wavelet Analysis and
Genetic Algorithm,” Signal Processing, vol. 88,
no. 7, pp- 1858-1867, 2008.
https://doi.org/10.1016/j.sigpro.2008.01.026
Pfurtscheller G. and Neuper C., “Motor Imagery
and Direct Brain-Computer Communication,”
Proceedings of the IEEE, vol. 89, no. 7, pp. 1123-
1134, 2001. https://doi.org/10.1109/5.939829
Pfurtscheller G., Neuper C., Schlogl A., and
Lugger K., “Separability of EEG Signals
Recorded During Right and Left Motor Imagery
Using Adaptive Autoregressive Parameters,”
IEEFE Transactions on Rehabilitation Engineering,
vol. 6, mno. 3, pp. 316-325, 1998.
https://doi.org/10.1109/86.712230

Pinheiro O., Alves L., and Souza J., “EEG Signals
Classification: Motor Imagery for Driving an
Intelligent Wheelchair,” [EEE Latin America
Transactions, vol. 16, no. 1, pp. 254-259, 2018.
https://doi.org/10.1109/TLA.2018.8291481
Reddy V. and Ravi Kumar A., “Multi-Channel
Neuro Signal Classification Using Adam-based
Coyote Optimization Enabled Deep Belief
Network,” Biomedical Signal Processing and
Control, vol. 77, pp. 103774, 2022.
https://doi.org/10.1016/j.bspc.2022.103774
Reffad A. and Mebarkia K., “Motor Imagery hand
Movements Recognition Using SVM Classifier
and Genetic Algorithm Optimization,” in
Proceedings of the 19" International Multi-
Conference on Systems, Signals and Devices, Setif,
pp- 1125-1129, 2022.
https://doi.org/10.1109/SSD54932.2022.9955863
Rossi E., Pereira Soares S., Prystauka Y.,

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Nakamura M., and Rothman J., “Riding the (Brain)
Waves! Using Neural Oscillations to Inform
Bilingualism Research,” Bilingualism: Language
and Cognition, vol. 26, no. 1, pp. 202-215, 2023.
https://doi.org/10.1017/S1366728922000451
Salimpour S., Kalbkhani H., Seyyedi S., and
Solouk V., “Stockwell Transform and Semi-
Supervised Feature Selection from Deep Features
for Classification of BCI Signals,” Scientific
Reports,  vol. 12,  pp. 1-19,  2022.
https://doi.org/10.1038/s41598-022-15813-3
Sidaoui B. and Sadouni K., “Epilepsy Seizure
Prediction from EEG Signal Using Machine
Learning Techniques,” Advances in Electrical and
Computer Engineering, vol. 23, no. 2, pp. 47-54,
2023. https://doi.org/10.4316/AECE.2023.02006
Smrdel A., “Use of Common Spatial Patterns for
Early Detection of Parkinson’s Disease,”
Scientific Reports, vol. 12, pp. 1-10, 2022.
https://doi.org/10.1038/s41598-022-23247-0
Tabar Y. and Halici U., “A Novel Deep Learning
Approach for Classification of EEG Motor
Imagery Signals,” Journal of Neural Engineering,
vol. 14, no. 1, pp. 016003, 2017.
https://doi.org/10.1088/1741-2560/14/1/016003
Tibrewal N., Leeuwis N., and Alimardani M.,
“Classification of Motor Imagery EEG Using
Deep Learning Increases Performance in
Inefficient BCI Users,” PLoS ONE, vol. 17, no. 7,
pp. 1-18, 2022.
https://doi.org/10.1371/journal.pone.0268880
Too J., Abdullah A., and Saad N., “Classification
of Hand Movements Based on Discrete Wavelet
Transform and Enhanced Feature Extraction,”
International Journal of Advanced Computer
Science and Applications, vol. 10, no. 6, pp. 83-89,
2019.
https://doi.org/10.14569/1JACSA.2019.0100612
Wan Ismail W., Hanif M., and Hamzah N.,
“Human Emotion Detection via Brain Waves
Study by Using Electroencephalogram (EEG),”
International Journal of Advanced Science,
Engineering and Information Technology, vol. 6,
no. o, pp- 1005-1011, 2016.
https://ijaseit.insightsociety.org/index.php/ijaseit/
article/view/1072/pdf 297

You Y., Chen W., and Zhang T., “Motor Imagery
EEG Classification Based on Flexible Analytic
Wavelet  Transform,”  Biomedical  Signal
Processing and Control, vol. 62, pp. 102069, 2020.
https://doi.org/10.1016/j.bspc.2020.102069
Zhang W., Huang R., and Ye L., “Evaluation of
Emission Reduction Performance of Power
Enterprises Based on Least Squares Support
Vector Machine,” The International Arab Journal
of Information Technology, vol. 21, no. 5, pp. 854-
865, 2024. https://doi.org/10.34028/iajit/21/5/7
Zhong M., Lotte F., Girolami M., and Lecuyer A.,


https://doi.org/10.1016/j.irbm.2021.01.002
https://doi.org/10.1007/s13246-019-00793-y
https://doi.org/10.1038/srep38565
https://doi.org/10.1109/LSP.2018.2823683
https://doi.org/10.4103/jmss.JMSS_74_20
https://doi.org/10.1016/j.sigpro.2008.01.026
https://doi.org/10.1109/5.939829
https://doi.org/10.1109/86.712230
https://doi.org/10.1109/TLA.2018.8291481
https://doi.org/10.1016/j.bspc.2022.103774
https://doi.org/10.1109/SSD54932.2022.9955863
https://doi.org/10.1017/S1366728922000451
https://doi.org/10.1038/s41598-022-15813-3
https://doi.org/10.4316/AECE.2023.02006
https://doi.org/10.1038/s41598-022-23247-0
https://doi.org/10.1088/1741-2560/14/1/016003
https://doi.org/10.1371/journal.pone.0268880
https://doi.org/10.14569/IJACSA.2019.0100612
https://ijaseit.insightsociety.org/index.php/ijaseit/article/view/1072/pdf_297
https://ijaseit.insightsociety.org/index.php/ijaseit/article/view/1072/pdf_297
https://doi.org/10.1016/j.bspc.2020.102069
https://doi.org/10.34028/iajit/21/5/7

Enhancing Motor Imagery EEG Classification Accuracy Using Weight Features Function

“Classifying EEG for Brain Computer Interfaces
Using Gaussian Processes,” Pattern Recognition
Letters, vol. 29, no. 3, pp. 354-359, 2008.
https://doi.org/10.1016/j.patrec.2007.10.009

Abdel Fateh Doudou is a doctoral
student in Automation and Industrial
Informatics at Setif 1 University-
Ferhat Abbas. In 2019, he received
his Master’s degree in Automation
and Industrial Informatics from the
same university. He joined the
Department of Electrotechnics in 2020 and has been a
member of the Automation Laboratory at Setif 1
University-Ferhat Abbas since then. His research
interests include signal processing, pattern recognition,
classification, and feature selection.

Aicha Reffad is a lecturer and
researcher at the Electrotechnics
Department, Setif 1 University,
Algeria. Received the Ph.D. degree in
collaboration with the Laboratory for
engineering of neuromuscular system
in Torino, Italy in 2009. During the
year 2012, she worked in collaboration at the
Department of Rehabilitation and Prevention
Engineering RPE in Germany. She is interested in
Signal and Image Processing for Biomedical
Engineering (diagnosis and rehabilitation); Brain
Computer Interface (BCI) and Control.

Kamel Mebarkia is a lecturer and
researcher at the  Electronics
Department, Setif 1 University,
Algeria. Received the Magister
diploma from the same Department in

2005. In 2014, he received Ph.D.
» " ‘ degree working on the EMG field in
collaboration with Helmholtz institute, Aachen
University. He is interested in Signal and Image
Processing in Biomedical Engineering (diagnosis and
rehabilitation); Signal Modeling, Analyses and
Parametrization; Brain Computer Interface (BCI) and
Control; Information Theory and Communications;
Artificial Intelligence and Machine Learning.

1153


https://doi.org/10.1016/j.patrec.2007.10.009

