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Abstract: With the increasing reliance of human society on computer systems in daily life, cybercrime is also on the rise. 

Malware is increasingly used by cybercriminals to attack, compromise, and steal sensitive information, and more critically, to 

demand ransom from users of infected systems. Existing antivirus solutions often fall short in detecting and alerting users to 

attacks carried out by newly developed or evolving malware strains. This highlights the need for a more robust and proactive 

strategy for malware detection. This paper presents a hybrid approach for advanced malware detection, integrating the 

identification of suspicious code executing in main memory with the analysis of malware-related events in Windows Event Logs. 

Experiments were conducted using a code injection technique on Windows 7 and Windows 10 systems, and the corresponding 

memory images and Event Logs were analyzed to validate the effectiveness of the proposed approach. Training and testing were 

performed on both code-based and event-based datasets to evaluate detection accuracy. For the detection of suspicious code, 

we employed the Canadian Institute for Cybersecurity-Malware in Memory 2023 (CIC-MalMem 2023) dataset. For event-based 

analysis, we utilized the EVTX-ATTACK-SAMPLES and the Windows Event Log dataset. Experimental results using the Random 

Forest (RF)classifier demonstrate a detection accuracy of 99% based on suspicious code and 95% based on Event Log data. 
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1. Introduction 

Malicious actors develop and deploy software designed 

to compromise computers and mobile devices in order 

to steal sensitive information. The first computer-based 

malware attack occurred in 1986 with a virus known as 

‘Brain’, which infected floppy disks. The first reported 

ransomware attack was in 1989, involving the AIDS 

Trojan, which was also distributed via floppy disk. 

Victims were required to pay a ransom to regain access 

to their systems [6]. According to recent reports, 

malware attacks particularly ransomware have surged 

by over 105% [7], leading to significant financial losses 

and data breaches. 

The modus operandi of malware often varies between 

developers. Typically, malware infiltrates a system 

through phishing emails or watering hole attacks, 

deceiving users into downloading and executing 

malicious code. Once loaded into main memory, the 

malware is scheduled for execution by the Operating 

System (OS). Each type of malware employs a distinct 

infection and execution strategy. For example, 

ransomware begins encrypting the system’s hard disk 

once granted execution privileges. Cybercriminals 

commonly use encryption algorithms such as Rivest-

Shamir-Adleman (RSA) and Advanced Encryption 

Standard (AES) for this purpose. 

A typical ransomware infection follows these steps: 

• Collecting system information: the malware gathers 

 
details about the host system such as computer name, 

OS, location, and whether it is running in a virtual 

environment. If a virtual environment is detected, the 

ransomware may terminate to avoid analysis. 

• Encryption keys: the malware retrieves encryption 

keys from a remote server, depending on its 

implementation. 

• Encryption: files on the hard disk are encrypted, often 

renamed or given new extensions. The encryption 

commonly uses RSA, AES, or a hybrid of both. 

• File deletion: original files are deleted post-

encryption. 

• Network scanning: the malware scans for system 

vulnerabilities and login credentials. 

• Ransom message preparation: the ransomware 

displays a message often as a README file, altered 

wallpaper, or popup informing the user of the 

encryption and demanding payment. These messages 

typically mention the encryption algorithm used and 

payment instructions. 

Ransomware requires appropriate OS permissions to 

access and modify files. While Windows allows this to 

a greater extent, macintosh Operating System (macOS) 

is comparatively more restrictive, which is why most 

ransomware incidents target Windows systems. 

Malware is now also developed for mobile and 

handheld devices. Developers continuously innovate 

new techniques to evade detection by antivirus software. 
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Signature-based detection mechanisms are only 

effective if the malware signature has already been 

recorded in the antivirus database. Newly created 

malware strains often go undetected by traditional 

antivirus solutions. Previous studies [9, 13, 28] have 

shown that malware execution triggers identifiable 

system events in Windows. For instance, [28] presents a 

comprehensive list of events linked to malware 

execution. Detection of unknown code running in main 

memory, when correlated with suspicious or malicious 

events recorded in system logs, can strongly indicate the 

presence of malware. Prior studies [20, 22, 26] have 

predominantly focused on main memory analysis using 

a range of techniques. However, they often lack depth in 

locating and analyzing executable malware code within 

memory an essential step for identifying newly 

developed threats. It is evident that execution of 

malwares triggers distinct system events logged by 

Windows. This underscores the need to analyze both 

executable code and the resulting system events for 

accurate detection. 

While previous researches [14, 16] have focused on 

Windows Event Log analysis to trace malware activity, 

these efforts often overlook the identification of 

unknown or suspicious code present in main memory. 

Our research addresses this gap by locating the 

executable code in memory and detecting its 

maliciousness through code comparison and correlated 

system events. 

Given the increasing sophistication of malware and 

the limitations of traditional signature-based antivirus 

tools in detecting newly developed or unknown threats, 

there is a pressing need for more effective detection 

mechanisms. Previous research has largely focused on 

main memory or Event Log analysis in isolation, with 

limited success in identifying novel malware strains. 

However, when malware executes, it leaves identifiable 

traces in both memory and system logs. Therefore, we 

hypothesize that an integrated approach combining 

memory code analysis with Windows Event Log 

correlation significantly improves the detection of 

unknown or new malware. 

The primary objective of this research work is to 

develop a hybrid malware detection approach that 

integrates main memory analysis with Windows Event 

Log correlation to identify sophisticated malware 

attacks. This work aims to enhance detection accuracy 

by combining main memory inspection techniques with 

behavioral indicators derived from system logs. 

This paper makes the following key contributions: 

a) Establishes the relationship between various memory 

structures to locate the code section of executing 

programs. 

b) Proposes a software architecture for malware 

detection based on memory code and associated 

malicious events. 

c) Demonstrates improved malware detection using a 

hybrid approach on the Canadian Institute for 

Cybersecurity Malware in Memory dataset (CIC-

MalMem-2022) dataset [31], EVTX-ATTACK-

SAMPLES for malicious events [24], and Windows 

Event Log dataset [15] for non-malicious events. 

This research presents a hybrid approach to detect and 

alert users about malware presence on Windows-based 

systems. The proposed method involves two key 

components: 

1. Main memory analysis to locate and evaluate the 

code of running executables. 

2. Event Log analysis to identify correlated malicious 

system behavior. 

The structure of the paper is as follows: Section 1 

introduces the threats posed by malware and their 

societal and financial impacts. Section 2 surveys related 

work on malware detection based on main memory 

analysis and Windows Event Logs. Section 3 details the 

proposed malware detection approach, along with the 

legal implication of live main memory analysis. 

Experiments and evaluations conducted, including 

training and testing, system resource utilization and 

performance overhead are detailed in section 4. Section 

5 presents the conclusions and future work to be carried 

out. 

2. Related Work 

This section discusses about the work carried out to 

detect the malware. 

Ahlegren [1] highlights the differences between host-

based and network-level ransomware detection, 

showing that local monitoring of processes and memory 

often provides faster detection compared to network 

traffic inspection. 

General overviews such as Baker [5] classify 

malware detection techniques into static, dynamic, and 

hybrid approaches, providing a foundation for 

understanding the limitations that motivate more 

advanced memory and event-based analysis. 

Damodaran et al. [10] conducted a comparative study 

of malware detection techniques based on static, 

dynamic, and hybrid analysis. Their approach involved 

training Hidden Markov Models (HMM) using both 

static and dynamic features, primarily Application 

Programming Interface (API) call sequences and 

opcode patterns across various malware families. While 

combining these features showed improved detection 

capability, the narrow feature scope may fail to capture 

the full behavioural spectrum of modern malware, 

thereby limiting generalizability. The dataset used in 

this study was constructed by combining samples from 

various malware families along with benign programs. 

The final dataset comprises a total of 785 samples, 

including 745 malware instances and 40 benign 

samples. Evaluation was primarily based on the Area 

Under the Receiver Operating Characteristic (ROC) 
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Curve (AUC); however, the inclusion of metrics such as 

precision, recall, and F1-score would have provided a 

more comprehensive assessment, particularly for 

imbalanced datasets. 

Moskovitch et al. [19] adopted a static analysis 

approach that utilizes opcode n-grams extracted from 

disassembled binaries for malware classification. The 

method assumes consistent opcode patterns across 

malware families; however, polymorphic and 

metamorphic variants often generate diverse opcode 

sequences even within the same family, leading to 

potential detection failures. The dataset comprises over 

30,000 files sourced from Virus Exchange (VX) Heaven 

and benign campus systems but lacks evaluation against 

modern, adaptive malware, including Advanced 

Persistent Threat (APT)-level threats. Furthermore, the 

study does not incorporate dynamic behaviour analysis 

such as system calls or runtime behaviour’s, which are 

essential for detecting evasive malware. While some 

feature selection was applied, issues of computational 

efficiency and real-time scalability remain unaddressed. 

Ucci et al. [30] provided a comprehensive survey of 

machine learning techniques applied to the analysis of 

Portable Executable (PE) files in Windows. The study 

systematically reviewed the objectives, data types, and 

machine learning models employed in prior research. As 

a survey, it does not conduct empirical benchmarking or 

propose new models. Although it discusses emerging 

deep learning architectures (e.g., Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), 

Generative Adversarial Networks (GANs) 

transformers), the discussion is not exhaustive, 

particularly considering the rapid advancements in 

malware representation techniques like graph 

embeddings. The paper also highlights inconsistencies 

and closed nature of datasets in malware research, 

contributing to challenges in reproducibility and 

benchmarking. 

Mohamed and Azher [18] reviewed classical 

malware detection techniques, including signature-

based, heuristic-based, and specification-based 

approaches. Their analysis highlighted the strengths and 

limitations of each method but remained largely 

descriptive. The study did not involve any 

implementation, experimental validation, or dataset-

based comparison. Emerging research trends such as 

adversarial machine learning and deep learning 

architectures (e.g., CNNs, RNNs, transformers) were 

not discussed, despite their relevance in current malware 

detection. Furthermore, standard performance metrics 

such as accuracy, precision, recall, F1-score, and latency 

were absent, impeding any quantitative comparison 

between techniques. 

Singh et al. [27] introduced a malware detection 

framework using machine learning classifiers, 

specifically decision trees and Random Forests (RFs). 

The model with the highest accuracy was selected for 

deployment. Evaluation involved analysing False 

Positives (FPs) and False Negatives (FNs) using a 

confusion matrix. However, the model was not tested 

against obfuscated, packed, or adversarial malware 

samples common in real-world attacks. The study relies 

solely on the Microsoft Malware Classification 

Challenge dataset from Kaggle, which may lead to 

overfitting or dataset bias. Additionally, it lacks 

consideration of dynamic behavioural features like API 

calls and runtime logs, which are crucial for detecting 

advanced malware. The literature review is also limited, 

omitting modern approaches such as deep neural 

networks. 

Akbanov et al. [3] presented a case-specific analysis 

of the WannaCry ransomware, proposing a Software 

Defined Networking (SDN) based method for its 

detection and mitigation. The approach identifies key 

system features exploited by WannaCry to encrypt files. 

However, the proposed solution is highly tailored and 

may not extend to other ransomware families with 

distinct propagation or encryption techniques. Detection 

relies heavily on static and dynamic blacklists (e.g., IP 

addresses, domains, and ports), with no incorporation of 

machine learning, behavioural analysis, or anomaly 

detection. Moreover, standard evaluation metrics such 

as FP rate, detection delay, throughput, and scalability 

are not reported. 

Vehabovic et al. [32] conducted a detailed survey of 

ransomware detection techniques, focusing on host-

based, network-based, forensic characterization, and 

authorship attribution methods. While many of these 

strategies utilize machine learning, the paper does not 

propose new models, datasets, or implementation 

frameworks. Instead, it synthesizes existing literature 

without standardized comparisons or unified 

performance metrics. As a result, its practical 

contribution is limited, and it does not address the 

reproducibility or benchmarking challenges prevalent in 

malware research. 

Santangelo et al. [23] analyzed ransomware threats 

targeting Industrial Control Systems (ICS), particularly 

Ekans and MegaCortex, and proposed a protocol-based 

detection solution leveraging Windows Management 

Instrumentation (WMI) and Distributed Computing 

Environment/Remote Procedure Call (DCE/RPC) 

tracing. Although the study identifies unique lateral 

movement behaviour’s used by ransomware in ICS 

environments, it does not explore machine learning or 

adaptive learning techniques for enhanced detection. 

Furthermore, the solution has not been benchmarked 

against industry-standard tools such as Suricata, Snort, 

or commercial endpoint detection systems. 

Subedi et al. [29] utilized digital forensic techniques 

to investigate Dynamic Link Library (DLL) 

dependencies in ransomware samples, using static 

reverse engineering. The study included only 450 

malware samples, limiting its generalizability. The 

proposed method does not account for common evasion 

tactics such as sandbox detection, code injection, 
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process hollowing, or encrypted payloads. Additionally, 

it lacks comparative benchmarking with established 

malware analysis platforms like VirusTotal, Snort, or 

Suricata. The approach is dependent on manually 

defined rule sets and DLL-function mappings, which 

may hinder scalability. 

Amanowicz and Jankowski [4] proposed a data 

mining-based framework for detecting and classifying 

malicious network flows in SDN. The system utilizes 

native SDN features and machine learning models (e.g., 

Support Vector Machine (SVM), Multi-Layer 

Perceptron (MLP)), focusing on automated flow rule 

generation and classification. Experiments were 

conducted using synthetic traffic generated by tools like 

Metasploit, Hydra, and Hping3. Although the classifiers 

demonstrated high detection accuracy, especially in lab 

settings, models like MLP incurred significant 

execution time, raising concerns about real-time 

performance and scalability. 

Hossain and Islam [12] developed a framework to 

detect obfuscated malware in memory dumps. The 

process includes data normalization, feature encoding, 

Synthetic Minority Over-sampling Technique 

(SMOTE)-based class balancing, and feature selection 

using statistical methods (e.g., Chi-square, mutual 

information). Although the framework is effective for 

selected obfuscation techniques, it has not been 

validated against hybrid or multi-layered threats, 

limiting its adaptability. 

Nguyen et al. [20] proposed a hybrid malware 

detection system tailored for cloud environments, 

combining static features (e.g., opcodes, file metadata) 

with dynamic features (e.g., API call traces, behavioral 

logs) using deep learning models. While the approach 

enhances detection coverage, it relies on specific 

datasets that may not generalize well to broader 

malware ecosystems. Additionally, the integration of 

multiple feature sets and complex models results in high 

computational overhead, potentially limiting real-time 

deployment. 

Maniriho et al. [17] introduced an innovative 

malware detection framework, MeMalDet, which 

directly leverages memory dump data (RAM images) 

for analysis. The framework employs deep 

autoencoders to perform unsupervised feature 

extraction by reducing the dimensionality of raw 

memory features, enabling the automatic identification 

of significant patterns. Although MeMalDet 

demonstrates impressive performance, achieving an 

accuracy of 98.82% and an F1-score of 98.72%, the 

study does not extensively evaluate its robustness 

against adversarial evasion tactics such as memory 

injection, obfuscation, or anti-forensic techniques. 

A study by Mahanta and Kumar [16] explores 

malware detection using Windows Event Logs 

transformed into structured datasets for machine 

learning analysis. While the method is capable of 

identifying attack patterns, it focuses on limited 

malware types and lacks generalization across diverse 

threat vectors. The framework’s effectiveness is 

therefore constrained in broader applications. 

Kalinkin et al. [14] investigated the use of Event 

Tracing for Windows (ETW) data in conjunction with 

machine learning models to detect ransomware. ETW 

enables detailed tracking of system and application 

behavior, facilitating anomaly detection. However, the 

framework’s success is highly dependent on the quality 

and completeness of the collected ETW data. In 

addition, implementing the system at scale presents 

challenges related to real-time processing and 

performance overhead. 

Table 1. A Summary of the existing work. 

Ref Authors Method Dataset used Accuracy/ Evaluation metric 

[10] Damodaran et al. 
HMMs on static and dynamic features (API, 

opcode sequences) 
A mix of malware family and benign AUC is obtained for separate malware family 

[19] Moskovitch et al. 
Static n-gram opcode representation for 

classification 

VX Heaven+campus machine benign 

files (~30,000) 

99% accuracy was observed for 15% of 

malicious files 

[27] Singh et al. 
ML classifiers (decision tree, RF); confusion 

matrix analysis 

Kaggle Microsoft malware 

classification challenge 
99% accuracy (potential overfitting) 

[3] Akbanov et al. 
Static+dynamic analysis with SDN detection 

(WannaCry ransomware) 
WannaCry instance Not reported 

[29] Subedi et al. 
Static analysis+reverse engineering of DLL-

function mappings 
450 ransomware samples 70% accuracy 

[4] 
Amanowicz and 

Jankowski 
ML classifiers (SVM, MLP) on SDN 

malicious flow detection 
Lab-generated traffic (Metasploit, 

Hydra, Hping3) 
97% TPR 

[12] Hossain and Islam 
Memory dump 

normalization+SMOTE+feature selection+ML 
Obfuscated-MalMem2022 dataset More than 99% accuracy 

[20] Nguyen et al. 
Static+dynamic features (e.g., API logs, 

opcodes)+deep learning 
Cloud-based Malware Dataset 2024 

(CMD_2024 dataset) 

99.42% accuracy for Dynamic and Deep 

Malware Detection (D2MD) model, 86.97% 

accuracy for multi-class classification 

[17] Maniriho et al. 
multiple machine learning classifiers (like RF, 
XGBoost, LightGBM) in a stacked ensemble  

MemMal-d2024 
accuracy of 98.82% and an F1-score of 

98.72% 

[14] Kalinkin et al. ETW+ML for ransomware detection 2 ransomware, 4 benign Highest precision of 0.98  

[8] Celdran et al. 
Device behavioral fingerprinting+kernel-level 

event monitoring+machine learning classifiers  

10 distinct malware samples (botnets, 

rootkits, backdoors, ransomware, 

Achieved up to 99.99% accuracy with 

Artificial Neural Network. (ANN) classifiers 

in supervised settings 

 

Celdran et al. [8] introduced a modular detection framework that integrates device behavioral 
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fingerprinting with machine learning techniques to 

identify malware in IoT spectrum sensors. The 

framework was empirically evaluated using the 

ElectroSense platform, a practical and widely adopted 

crowdsensing environment. Although the proposed 

system demonstrated effective performance on 

ElectroSense devices, its generalizability to other IoT 

hardware and environments remains an area for future 

exploration. The anomaly detection component, aimed 

at identifying zero-day threats, achieved a True Positive 

Rate (TPR) ranging from 88% to 90%, while the 

malware classification module, focused on known 

attacks, attained an F1-score between 94% and 96%. 

Shamshirsaz et al. [25] propose a process 

supervision/control-based malware detection 

mechanism that forces activation of latent code paths 

and monitors sensitive OS function calls, reporting 

~98% accuracy. 

Most existing research emphasizes main memory 

analysis for malware detection but often overlooks the 

impact of malware on system-level indicators such as 

Windows Event Logs. 

Table 1 presents a summary of earlier work, 

categorized based on the methodology employed, 

datasets utilized, and evaluation metrics reported. 

It has been observed that the majority of existing 

malware detection approaches are primarily based on 

memory analysis. In contrast, relatively few studies 

focus on utilizing Windows Event Log analysis for 

malware detection. Moreover, none of the reviewed 

works have attempted to precisely locate and analyze 

the code sections of running processes. Given that 

malware execution often results in artifacts within the 

Windows Event Logs, there is a critical need to integrate 

both code-level analysis and Event Log analysis to 

enhance the effectiveness and reliability of malware 

detection. 

3. Proposed Approach 

The proposed malware detection approach adopts a 

dual-pronged strategy. The first component focuses on 

identifying malicious code executing within the system 

by performing code analysis on executable files mapped 

into the system’s main memory. The second component 

involves monitoring and identifying events indicative of 

suspicious activity, such as unauthorized file access, 

changes in file permissions, and previously flagged 

malware-related behaviors. These two detection 

mechanisms are integrated to generate alerts that notify 

the user of a potential malware attack. 

This section elaborates on the methodology for 

locating the code section of executables associated with 

active processes from the system’s main memory. It also 

discusses the correlation of suspicious system events 

and the overall system architecture designed to trigger 

user alerts. Specifically, once the executable code is 

located and extracted from the memory-resident image 

of the process, it is compared against a database of 

verified legitimate code and existing malware code. A 

match with the existing malware code strongly indicates 

the presence of malware. But if none of the code in the 

database is matched then it suggests the presence of 

potentially malicious or unauthorized code in memory. 

Following this, system Event Logs particularly those 

accessed via the Windows Event Viewer are examined 

for activities consistent with malware behavior. If both 

suspicious memory-resident code and corroborating 

system events are identified, the system generates a 

warning to inform the user of a possible malware 

intrusion. 

3.1. Detecting Code Section 

Traditional antivirus software relies on known 

signatures to detect malicious programs. However, this 

approach fails when the malware’s signature is absent 

from the antivirus database, allowing novel or 

obfuscated threats to evade detection. To overcome this 

limitation, it is essential to analyze the code section of 

executable programs directly within the system’s main 

memory. When an executable is loaded, the OS 

generates multiple kernel-level data structures 

associated with the process, such as the EPROCESS 

block, Virtual Address Descriptors (VADs), and the 

Page Table. These structures store critical information, 

including virtual memory addresses and other attributes 

necessary for identifying and locating process-specific 

components in memory. Accessing these memory 

structures requires translating virtual addresses into 

corresponding physical addresses, enabling accurate 

inspection of the data held in main memory and 

supporting advanced malware detection techniques 

beyond signature matching. 

a) Key Data structures and their roles. 

1. EPROCESS structure. The EPROCESS structure 

plays a pivotal role in identifying the code section 

of a PE file during memory analysis. In a dumped 

memory image, this structure can typically be 

located by searching for the American Standard 

Code for Information Interchange (ASCII) string 

“pro” or its hexadecimal representation 

0x50726FE3. One of the key attributes within the 

EPROCESS structure is VadRoot, which stores the 

virtual address of the VAD tree. This tree structure 

is essential for mapping the memory regions 

allocated to a process, including those 

corresponding to the code section of the loaded 

executable. By traversing the VAD tree, forensic 

tools can pinpoint the location of the PE code in 

memory, enabling in-depth analysis for potential 

malware. 

2. VAD tree structure. The VAD tree is an essential 

data structure used to identify memory-mapped files 

associated with an active process in main memory. 
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Each node in the VAD tree contains several 

attributes that facilitate the interpretation and 

traversal of process memory regions. Among these 

attributes, 

• StartVpn and EndVpn: StartVpn attribute identify 

the starting address of the first frame of a memory-

mapped file. EndVpn attributes identify the 

starting address of the last frames of a memory-

mapped file. 

• FirstProtoPte: this attribute holds the virtual 

address of the Page Table associated with the 

process. 

• Subsection: this attribute points to the first 

subsection structure, which represents a section of 

the executable file mapped in memory. 

3. Page Table. The Page Table holds the mapping 

between virtual and physical memory addresses and 

is responsible for storing the starting physical 

address of the first memory frame associated with a 

memory-mapped file. This address is crucial for 

accessing and analyzing the physical memory 

content corresponding to a specific virtual address 

range. 

4. Subsection structures. Each section of an executable 

file that is mapped into memory is associated with a 

corresponding subsection structure. These 

subsection structures are integral to understanding 

how the executable’s sections are organized and 

managed in memory. Key fields within a subsection 

include NextSubsection and PteInSubsection. 

• NextSubsection: points to the next subsection 

structure, thereby forming a linked sequence of 

memory sections 

• PteInSubsection: indicates the number of Page 

Table Entries (PTEs) for the section. This value 

reflects the number of memory frames allocated to 

that section where one PTE corresponds to one 

frame, two PTEs to two frames, and so forth. 

These structures are essential for reconstructing 

the memory layout of an executable during 

memory forensics and for detecting anomalies 

associated with malicious code injections. 

b) Executable file sections in memory. 

An executable file is composed of multiple sections, 

each serving a distinct function in the execution and 

management of the program. Among these, the Header 

Section contains critical metadata about the file, such as 

the file type, entry point, and section layout. In a 32-bit 

Windows environment, this section typically occupies a 

single memory frame, equivalent to 4 KB. Another 

crucial component following header section is the code 

section, which holds the actual machine-level 

instructions that the microprocessor executes. 

Identifying this section in main memory is essential for 

performing code analysis, particularly in the context of 

malware detection and reverse engineering. Accurate 

extraction and interpretation of the code section enable 

analysts to detect unauthorized modifications, 

embedded malicious routines, or obfuscated 

instructions within a potentially compromised 

executable. 

c) Relationship between memory structures. 

Figure 1 illustrates the hierarchical relationship among 

the EPROCESS, VAD, and Page Table structures in the 

context of memory management for a running process. 

When an executable is loaded, its code is mapped into 

the frames in main memory. The EPROCESS structure, 

contains the VadRoot attribute a pointer to the root of 

the VAD tree. This tree is used to track the memory 

regions allocated to the process. Each VAD node in the 

tree represents a specific memory space allocated to a 

file associated with a running process. Each VAD 

contains attributes that assist in identifying the starting 

and ending frames of the memory-mapped file. Through 

these interconnected structures, it becomes possible to 

locate and analyze the code section of an executable. 

 

Figure 1. Relationship between various main memory structures. 

d) Extracting executable code. 

After identifying the number of memory frames that 

contain the executable code and determining the 

corresponding physical addresses of these frames, the 

code within the code section can be extracted from 

memory for detailed analysis. 

3.2. Windows Events 

Windows Event Logs maintain a comprehensive record 

of system, security, and application-related events 

generated by the Windows OS and the applications 

running on it. These logs provide investigators with 

critical information, such as the applications involved, 

user login timestamps, and various system events 

relevant for forensic analysis. Notably, even if antivirus 

software fails to detect malware present on the system, 

evidence of malicious activity can often be inferred 

from specific Event Log entries. 

Microsoft Windows registers certain events triggered 
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by malware infections, which are recorded in the Event 

Logs. These recorded events serve as valuable 

indicators for detecting malware presence. Timely 

monitoring and analysis of these events can 

significantly mitigate the impact of malware by 

enabling early detection and response. Table 2 

enumerates some common Event IDs and descriptions 

associated with malware activity. 

Table 2. Malware related events. 

Event ID Event  

7045 
Creation of a new service which enables remote access to the 

target. 

4670 Permission on any object changed. 

1116 The anti-malware platform detected malware. 

1006 The anti-malware engine detected malware. 

1008 

The anti-malware platform has attempted to perform an action to 

protect your system from malicious software or other potentially 

harmful software. 

4798 APT actors have compromised local accounts on the system. 

Digital forensic investigators must scrutinize these 

events to identify suspicious behavior indicative of 

compromise. When an event associated with malware is 

detected, its presence can be corroborated by correlating 

it with suspicious code extracted from the executable 

file mapped in the running process’s memory, as 

described in section 3.1. If both suspicious code and 

malware-related events are identified, the presence of 

malware actively running in main memory can be 

confidently confirmed. 

3.3. Software Architecture 

To alert users of potential malware attacks on Windows-

based systems, a software architecture has been 

proposed that integrates two primary detection 

mechanisms: identification of suspicious code from the 

executable program in main memory and detection of 

malware-related events from the Windows Event Logs. 

The architecture of the proposed system, illustrated in 

Figure 2, comprises several functional modules, 

including code extraction, code comparison, event 

detection, and an alert generation module. 

 

Figure 2. Software architecture of the proposed system. 

In addition to these modules, the architecture 

incorporates two databases: one for storing the known 

legitimate code of running processes and code of the 

existing malwares, and another for storing dumped 

memory images for forensic analysis. This modular 

design enables the system to perform real-time 

correlation between memory-resident code anomalies 

and Event Log patterns indicative of malware activity. 

A description of each module in the architecture is 

provided below. 

a. Dump memory 

This module of the proposed system is responsible for 

periodically dumping the Windows main memory at 

regular intervals, specifically every 10 minutes. The 

resulting memory dump is then stored in the dumped 

memory image database for subsequent analysis. Tools 

such as DumpIt are utilized for this task, generating 

memory images in the raw format, which preserves the 

entire physical memory content of the system at the time 

of capture. These memory dumps are essential for 

enabling offline analysis of running processes, code 

sections, and potential malware residing in memory. 

b. Extract code. 

The executable code of the file associated with a 

running process is identified using the methodology 

outlined in the relevant subsection on code detection. 

Once the code section has been successfully located in 

main memory, this module proceeds to extract the 

corresponding code for further analysis. The extracted 

code serves as a critical input for comparison against 

known legitimate and malicious code patterns stored in 

the code database, thereby facilitating the detection of 

anomalies indicative of potential malware. 

c. Compare code. 

The extracted code is subsequently compared against 

entries in the code database, which contains both the 

original code of legitimate running processes and the 

known code of existing malware. If the extracted code 

matches that of a legitimate process, the system resumes 

monitoring and initiates the next memory dump after a 

10-minute interval, continuing the periodic analysis 

cycle. This routine ensures ongoing surveillance of the 

system’s memory state, enabling timely detection of any 

deviations that may indicate malicious activity. If the 

extracted code matches that of a malware code, then it 

triggers alarm. 

d. Check for suspicious event. 

Events related to malware activity are identified and 

extracted from the Windows Event Logs database. 

When the extracted code from memory is determined to 

be suspicious that is, it does not match any known 

legitimate process or matches known malware the 

system proceeds to analyze the Windows Event Logs for 

any associated suspicious events. This correlation 

between anomalous code and relevant system events 

enhances the reliability of malware detection by 

providing both behavioral and memory-based evidence 

of compromise. 
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e. Give alarm. 

This module is responsible for alerting the user of the 

Windows-based computer system in the event of a 

potential malware attack. If the extracted code is 

determined to be malicious matching known malware 

code the system immediately triggers an alarm to notify 

the user. In cases where the code is suspicious, i.e., it 

does not match either known legitimate processes or 

known malware the system conducts a further analysis 

by checking the Windows Event Log database for 

malware-related events. If such events are detected in 

conjunction with the suspicious code, the system raises 

an alert, indicating a high likelihood of an active 

malware presence in the main memory. 

The pseudocode of the proposed approach is 

presented in Algorithm (1). 

Algorithm 1: Proposed approach to detect malware. 

Initialize: 

Set memory_dump_interval = 10 minutes 

Load legitimate_code_db 

Load malware_code_db 

Load Windows_event_log_db 

Loop: 

For each memory_dump_interval do: 

1. Dump main memory→memory_dump.raw 

2. Extract code section 

memory_dump.raw→extracted_code 

3. Compare extracted_code with legitimate_code_db 

If match_found: 

Continue to next interval 

Else: 

4. Compare extracted_code with malware_code_db 

If malware_match_found: 

Trigger ALARM: "Malicious code detected!" 

Continue to next interval 

Else: 

5. Analyze Windows_event_log_db for malware-related 

events. 

If suspicious_events_found: 

Trigger ALARM: "Suspicious code+malicious events 

detected!" 

Else: 

Log "Suspicious code, no associated events" 

Continue to next interval 

Key Function Descriptions of the pseudocode are as 

follows: 

• Dump main memory: uses tools like DumpIt to 

capture system memory. 

• Extract code section: identifies and isolates the code 

section using EPROCESS, VAD, and Page Table 

structures. 

• Compare extracted_code: matches binary patterns or 

hashes with entries in legitimate and malware code 

databases. 

• Analyze Windows_event_log_db: looks for Event IDs 

typically associated with malware activity (e.g., 

privilege escalation, unauthorized file access, etc.). 

• Trigger ALARM: notifies the user of potential 

malware based on detection criteria. 

The flowchart of the proposed approach is shown in 

Figure 3. 

 

Figure 3. Flowchart of the proposed approach. 

3.4. Legal Implications of Live Memory 

Acquisition and Analysis  

Live memory acquisition and analysis, while crucial for 

modern digital forensics and malware detection, present 

several ethical issues most notably concerning privacy 

and legal implications. During memory acquisition, 

analysts can inadvertently access sensitive personal data 

such as login credentials, open communications, 

cryptographic keys, and private browsing sessions that 

reside temporarily in main memory. This raises 

significant privacy concerns, especially when such data 

pertains to individuals not under investigation or when 

consent has not been explicitly obtained. Furthermore, 

the process may conflict with legal rights related to data 

protection and unauthorized access, particularly under 

regulations such as the General Data Protection 

Regulation (GDPR) or the Computer Fraud and Abuse 

Act (CFAA), Digital Personal Data Protection Act, 2023 

(DPDP Act). In some jurisdictions, even well-

intentioned forensic investigations might be deemed 

unlawful if proper legal authorization is not secured 

beforehand. Thus, it is imperative for practitioners to 

balance investigative objectives with strict adherence to 

legal standards and ethical guidelines to ensure that 

memory acquisition is performed responsibly, 

transparently, and within the bounds of the law. 
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4. Result 

This section presents the experiments conducted to 

detect the code sections of executable programs mapped 

in main memory, as well as the events triggered by 

malware activity. It also details the training and testing 

performed to evaluate the accuracy of the proposed 

approach, employing various classifiers. 

4.1. Experimentation 

Experiments were conducted on 32-bit Windows 7 and 

64-bit Windows 10 systems the most widely used OSs, 

as identified in the survey presented by Pot [21] to 

validate the proposed approach. The objective of these 

experiments was to acquire memory dump images 

containing both malicious and benign code, and to 

detect events associated with the execution of malicious 

code. As Ahmed and Aslam [2] have discussed memory 

dumps were obtained using the DumpIt tool, which was 

selected for its ability to reliably and completely capture 

main memory content to disk. The resulting memory 

dump files were saved with a raw extension. 

To validate the technique for detecting code sections 

of malware executing on Windows-based systems, 

experiments were carried out using a sample process 

hollowing executable, ProcessHollowing.exe, available 

at [11]. This executable performs a process hollowing 

attack by hollowing out the code section of the 

legitimate svchost.exe process and replacing its memory 

space with the image of helloworld.exe. 

The following steps outline the experimental 

procedure for detecting code sections: 

1. ProcessHollowing.exe was executed on a Windows 

system with several application programs open. 

2. A memory dump was created using the DumpIt tool. 

3. At the time of dumping, live memory analysis was 

performed using Windows Debugger (WinDbg). 

4. The physical address of memory structures such as 

the VAD for the running svchost.exe process was 

extracted using WinDbg. 

5. The memory dump image was loaded into the 

OSForensics tool for offline analysis. 

6. The physical address of the VAD obtained from 

WinDbg was used to locate the corresponding code 

section within the dumped main memory. 

As part of the evaluation, 10 memory dump images were 

analyzed for each OS (Windows 7 and Windows 10) to 

establish a correlation between process-specific 

memory structures and the detection of code sections. 

Additionally, during the execution of the hollowing 

process (ProcessHollowing.exe), Windows Event Logs 

were monitored for any security-relevant events. Table 

3 provides the specifications of the test machine used in 

the experiments. 

The DumpIt tool was used to acquire a complete 

snapshot of the Windows main memory. For live 

memory analysis during execution, the WinDbg tool 

was utilized. The acquired memory dumps were further 

examined using the OSForensics tool. 

Table 3. Test system. 

OS Windows 7, 32-bit Windows 10, 64-bit Windows 10, 64-bit 

Main 

memory 
2GB 8GB 16GB 

Processor 
Celeron 440 
@2.0GHz 

Intel(R) Core(TM) i3-

6006U CPU @ 

2.00GHz 

Intel(R) Core(TM) i3-

6006U CPU @ 

2.00GHz  

Figure 4 presents the VadRoot virtual address of the 

svchost.exe process, extracted using WinDbg 

commands. This address serves as the root of the VAD 

tree, which represents the memory layout of a running 

process. Each VAD node corresponds to a memory 

region allocated to a file or module associated with the 

process. 

 

Figure 4. WinDbg snapshot of svchost.exe showing VadRoot. 

Figure 5 illustrates the VAD entries for the 

svchost.exe process. The highlighted entry indicates the 

VAD corresponding to the executable file associated 

with svchost.exe, which was hollowed out and 

overwritten by the malicious ProcessHollowing.exe. 

The memory protection for this region was modified to 

EXECUTE_READWRITE by the hollowing process to 

allow code injection. 

 

Figure 5. WinDbg snapshot of svchost.exe VAD tree structure. 

Figure 6 shows a snapshot of ProcessHollowing.exe 

writing to various sections of the svchost.exe executable 

in main memory. The address of the hollowed-out VAD 

region was validated through comparative analysis, as 

demonstrated in Figures 7 and 8. 

The physical address range corresponding to the 

specific VAD for the svchost.exe executable is 

determined to be from 0x00480000 to 0x0048D000, 

which matches the address range shown in Figure 6. 

This range is derived by appending four 0000 to the 
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values of the ‘start’ and ‘end’ fields highlighted in 

Figure 5. The address 0x00480000 marks the beginning 

of the first memory frame containing the svchost.exe 

file, while 0x0048D000 indicates the starting address of 

the last frame associated with the same file. On a 32-bit 

OS, the first page of a VAD typically consists of a 4KB 

header section. Consequently, the code section (i.e., the 

.text section) begins at address 0x00481000. During 

process hollowing, this original code section is 

overwritten with malicious code. 

 

Figure 6. Process hollow snap injecting code in svchost.exe image 

on Window 7. 

Figure 7 presents a snapshot of the first page of the 

original code section of the svchost.exe executable, 

starting at address 0x00481000, as captured using the 

OSForensics tool. In contrast, Figure 8 displays the 

corresponding snapshot after the code section has been 

modified through process hollowing. A comparative 

analysis of the two snapshots reveals clear 

discrepancies, confirming that the code within the code 

section of svchost.exe differs significantly before and 

after the hollowing process. This observation validates 

the effectiveness of identifying malicious activity 

through code comparison techniques. 

 

Figure 7. OSForensic snap of original svchost.exe code section. 

 

Figure 8. OSForensic snap of hollowed svchost.exe code section. 

 

Figure 9. Event detected in event viewer. 

Following the execution of ProcessHollowing.exe, 

an event with Event ID 4798 is recorded in the Windows 

Event Viewer, as shown in Figure 9. This event is 

triggered when a process enumerates the local group 

memberships associated with a specific user account on 

the system. The logging of this event is critical in 

detecting APT actors, as it indicates attempts to 

investigate compromised user accounts an activity often 

associated with lateral movement within a target 

environment. 

The ProcessHollowing.exe process has overwritten 

the code section of the svchost.exe executable 

associated with an active process in memory by 

injecting the code of HelloWorld.exe. To facilitate this 

modification, ProcessHollowing.exe altered the 

underlying security principles that govern resource 
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access and protection for services and users on the 

system. Specifically, the memory protection attributes 

of the physical frames holding the code section of the 

svchost.exe process were modified to permit write 

operations. This change in memory protection enabled 

the injection of the malicious code into the previously 

protected .text section of the executable. 

 

 

Figure 10. A screenshot of process monitor showing svchost.exe memory protection flags altered on 64-bit Window 10. 

Experiments were also conducted on a 64-bit 

Windows 10 systems equipped with an Intel i3 

processor (2 cores) and 8GB/16 GB of RAM. The 

ProcessHollowing.exe was executed on this setup to 

evaluate its impact. To monitor system behavior during 

execution, Process Monitor part of the Sysinternals suite 

was utilized for real-time observation of active 

processes. As shown in Figure 10, the svchost.exe 

process was compromised during the execution of 

ProcessHollowing.exe. Notably, the memory protection 

flags associated with the code section of svchost.exe 

were altered to PAGE_EXECUTE_READWRITE, 

enabling unauthorized modification and execution of 

injected code within the previously protected memory 

region. 

4.2. System Resource Utilization and 

Performance Overhead 

We evaluated the impact and feasibility of memory 

dumping and Event Log analysis for detecting malicious 

activity across 3 different system configurations. The 

systems included: 

1. 32-bit Windows 7 with 2 GB RAM and Celeron 440 

processor. 

2. 64-bit Windows 10 with 8 GB RAM and an Intel i3 

dual-core processor. 

3. 64-bit Windows 10 with 16 GB RAM and an Intel i3 

dual-core processor. 

Memory acquisition was performed using the DumpIt 

tool, which captured the entire contents of main memory 

into a binary dump file. The size of the memory dump 

varied according to the system’s physical RAM, ranging 

from approximately 1.8 GB on the Windows 7 system 

to 16 GB on the higher-end Windows 10 machine. 

Following acquisition, analysis was carried out using 

forensic tools such as WinDbg, and OSForensics to 

examine the contents of the dump, particularly focusing 

on the code section of the svchost.exe process to detect 

signs of process hollowing. Additionally, Windows 

Event Viewer was employed to analyze security and 

system logs, capturing relevant Event IDs that correlate 

with suspicious behavior. Resource consumption, 

including Central Processing Unit (CPU) usage, 

memory overhead, and storage impact, was monitored 

throughout the process to assess system performance.  

Table 4. Performance of different system configurations. 

Parameter 32-bit Win 7, 2GB RAM, Celeron 440 64-bit Win 10, 8GB RAM, i3 (2-core) 64-bit Win 10, 16GB RAM, i3 (2-core) 

Memory dump tool used DumpIt DumpIt DumpIt 

Avg. CPU usage (dumping) 20–25% 15–30% 10–20% 

Memory overhead (dumping) ~100–150 MB ~200–400 MB ~300–500 MB 

Dump file size ~1.5–1.8 GB ~7.5–8.0 GB ~15–16 GB 

Analysis tool used WinDbg/OSForensics/Process monitor WinDbg/OSForensics/Process monitor WinDbg/OSForensics/Process monitor 

Avg. CPU usage (analysis) 30–40% 25–35% 20–30% 

Memory usage (analysis) ~1.2 GB ~1.5–2.0 GB ~2.0–2.5 GB 

Event Log tool used Event Viewer Event Viewer Event Viewer  

CPU usage (event analysis) 10–15% 10–20% 10–20% 

Storage usage (logs) ~100–200 MB ~300–400 MB ~400–600 MB 

System responsiveness Moderate-Low Moderate High (minimal lag) 

 

The results confirmed that while lower-end systems 

experienced noticeable slowdowns and higher CPU 

loads, mid and high-end configurations maintained 

stable performance during the memory forensic and log 
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analysis operations. Table 4 shows the comparative 

performance of 3 different system configurations. 

High system responsiveness was observed on the 64-

bit Windows 10 system equipped with 16 GB RAM and 

an Intel i3 dual-core processor. In contrast, the 32-bit 

Windows 7 system with 2 GB RAM and a Celeron 440 

processor exhibited moderate to low responsiveness, 

while the 64-bit Windows 10 system with 8 GB RAM 

and an i3 dual-core processor showed moderate 

performance. These results suggest that the proposed 

approach is best suited for higher-end system 

configurations, where adequate memory and processing 

power ensure smooth execution of memory acquisition 

and analysis tasks. 

4.3. Testing and Training 

To validate the effectiveness of the proposed approach, 

we trained several machine learning models, including 

SVM, RF, Gaussian naive bayes, and decision tree 

classifier. The performance of these models was 

assessed using two key evaluation metrics: Accuracy 

and F-measure. The primary objective was to identify 

the most suitable model for malware classification 

based on these performance indicators. 

For experimentation, two datasets were utilized: the 

CIC-MalMem-2022 dataset [31], which contains 

labeled malware samples, and a combination of the 

EVTX-ATTACK-SAMPLES dataset [24] (representing 

malicious events) and a publicly available Windows 

Event Log dataset [15] (representing non-malicious 

events). 

The CIC-MalMem-2022 dataset comprises 58,596 

instances across 57 features, including 29,231 benign 

and 28,831 malicious samples. The malicious samples 

are further categorized into three major classes: 

Ransomware, Spyware, and Trojan horse, making it a 

comprehensive resource for malware classification 

research. 

a. Data pre-processing. 

Standard pre-processing procedures were applied prior 

to model training. Invariant features those that did not 

contribute meaningful information to the classification 

task were eliminated. The remaining numerical features 

were normalized using min-max scaling to ensure a 

consistent value range across all inputs. Additionally, 

the categorical class labels were label-encoded, 

assigning ‘0’ to benign samples and ‘1’ to malicious 

samples. The dataset was complete and free of missing 

values, eliminating the need for imputation. 

b. Evaluation criteria. 

To evaluate the effectiveness of the classifiers, a set of 

standard performance metrics was employed, including 

the confusion matrix, accuracy, precision, recall, and 

F1-score. Each of these metrics provides a unique 

perspective on different aspects of model performance 

and is defined as follows: 

• Confusion matrix: a tabular representation that 

summarizes the predicted outcomes versus the actual 

outcomes for a binary classification task. It 

comprises four categories: 

• True Positives (TPs): malware instances correctly 

classified as malware. 

• True Negatives (TNs): benign instances correctly 

classified as benign. 

• FPs: benign instances incorrectly classified as 

malware. 

• FNs: malware instances incorrectly classified as 

benign. 

• Accuracy: represents the ratio of correctly predicted 

instances (both benign and malicious) to the total 

number of instances. It is a general measure of 

overall model performance. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

• Precision: indicates the proportion of correctly 

identified malware samples among all instances that 

were predicted as malware. It reflects the model’s 

ability to avoid FPs. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall (sensitivity): measures the model’s ability to 

correctly identify actual malware instances. It is the 

proportion of true malware samples correctly 

classified as such. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• F1-score: a harmonic mean of precision and recall, 

providing a balanced measure of the classifier’s 

ability to detect malware, particularly when the 

dataset has imbalanced class distributions. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Table 5 presents a detailed comparative evaluation of 

each classifier, reporting the values for accuracy, 

precision, recall, and F1-score. All performance metrics 

range from 0 to 1, with values closer to 1 indicating a 

higher degree of predictive accuracy and reliability. 

These metrics collectively demonstrate each model’s 

capability to distinguish between benign and malicious 

instances effectively. Figures 11 and 12 shows the 

confusion matrix and ROC curve obtained from the 

malware dataset, respectively. 

Table 5. Evaluation of classifier on malware dataset. 

Classifier name Accuracy Precision F1-score Recall 

SVM 0.9956 0.99 1.00 1.00 

RF classifier 0.9999 1.00 1.00 1.00 

Naive bayes classifier 0.9919 0.99 1.00 1.00 

Decision tree classifier 0.9992 0.99 1.00 1.00 

(1) 

(2) 

(3) 

(4) 
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Figure 11. Confusion matrix for malware dataset. 

 

a) Training and testing losses. 

 

b) Training and testing accuracies. 

 

c) Training and testing AUC scores. 

Figure 12. ROC curve on malware dataset. 

The results of this study demonstrate the superior 

performance of the RF classifier in accurately detecting 

and classifying malware within the CIC-MalMem-2022 

dataset. This finding underscores the potential of RF as 

a reliable model for enhancing cybersecurity systems by 

facilitating the development of more effective and 

resilient malware detection mechanisms. 

Table 6. Statistics of evtx_attack_samples dataset. 

Malicious Event In % of dataset 

Execution 13 

Persistence 9 

DefenseEvasion, execution 7 

DefenseEvasion 12 

Initial Access 1 

NA 1 

Discovery 1 

Privilege escalation 21 

Credential access 11 

Lateral movement 16 

Command and control 4 

Additionally, the EVTX-ATTACK-SAMPLES 

dataset, comprising 4,633 rows and 326 columns, 

contains a wide range of Event Log entries associated 

with malicious activities. These entries capture evidence 

of various attack behaviors recorded during system 

execution. Table 6 presents the statistical distribution of 

key malicious event types identified within this dataset. 

 

Figure 13. Accuracy of RF classifier. 

 

Figure 14. Feature importance. 

For effective model training and evaluation, the 

EVTX_ATTACK_SAMPLES dataset [24] was merged 

with the Windows Event Log dataset [15], resulting in a 

preprocessed combined dataset containing 6,960 rows 

and 338 features. The merged dataset was then 

partitioned into 60% for training and 40% for testing. A 

RF classifier was employed to build the malware 

detection model. The model was trained on the training 

subset and subsequently evaluated on the test subset. To 

assess the model’s performance comprehensively, key 

evaluation metrics were utilized, including accuracy, 

precision, recall, F1-score, and the confusion matrix. 

Figure 13 shows the accuracy of the RF classifier on 

event dataset. Figure 14 shows the feature importance. 

The RF classifier demonstrated strong overall 

performance, achieving an accuracy of 95%, precision 

of 88%, recall of 91%, and an F1-score of 90%. These 
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results indicate that RF is highly effective in 

distinguishing between benign and malicious events 

with a high degree of reliability. Its robust performance 

can be attributed to its ensemble-based architecture, 

which minimizes overfitting and enhances 

generalization. The model also offers a well-balanced 

trade-off between precision and recall, making it a 

reliable choice for classification tasks where 

computational cost is acceptable. 

In comparison, the decision tree classifier, known for 

its simplicity and interpretability, yielded slightly lower 

performance metrics, with an accuracy of 93%, 

precision of 86%, recall of 87%, and an F1-score of 

86%. These results highlight a modest decline in 

detection capability, underscoring the trade-off between 

model complexity and classification effectiveness. 

 

  

a) Confusion matrix (binary). b) ROC curve (binary). 

Figure 15. Confusion matrix and ROC curve on event dataset. 

The findings from the event-based analysis further 

support the superior performance of the RF model in 

accurately detecting both malicious and non-malicious 

events within the combined dataset. Figure 15 shows the 

confusion matrix and ROC curve obtained from the 

merged event dataset. Table 7 provides a comprehensive 

evaluation of each classifier based on key performance 

metrics, including accuracy, precision, recall, and F1-

score, on the merged dataset comprising malicious and 

benign Event Logs. 

Table 7. Evaluation of classifier on event dataset. 

Classifier name Accuracy Precision F1-score Recall 

SVM 0.91 0.83 0.81 0.79 

RF classifier 0.95 0.88 0.90 0.91 

Naive bayes classifier 0.81 0.75 0.76 0.84 

Decision tree classifier 0.93 0.86 0.86 0.87 

By analyzing and correlating the outcomes of 

training and testing phases on both malware code 

datasets and Windows Event Log datasets, the study 

demonstrates that the RF classifier exhibits high 

predictive accuracy in identifying the presence of 

malware on a computer system. 

4.4. Impact of False Positives and True 

Negatives in Malware Detection 

Accurate malware detection is paramount for 

maintaining system security and preserving user trust. 

Two critical performance outcomes FPs and TNs have 

significant implications in practical deployment 

scenarios. 

a. Impact of FPs. 

FPs occur when benign files or behaviours are 

incorrectly classified as malicious. Although such errors 

do not reflect a real threat, they can severely affect user 

experience and system operations. High FP rates may 

result in: 

• Operational disruptions: legitimate applications may 

be blocked or quarantined, affecting critical system 

functions and user workflows. 

• Decreased user trust: users may lose confidence in 

the detection system, particularly when frequent 

alerts turn out to be non-malicious, leading to alert 

fatigue and the potential neglect of real threats. 

• Resource wastage: investigating false alarms 

consumes time and resources, both for automated 

systems and human analysts. 

In contrast, state-of-the-art tools like traditional 

signature-based antivirus software often exhibit 

relatively low FP rates due to their reliance on known 

patterns. However, this comes at the cost of limited 

detection capability for zero-day and obfuscated threats, 

as such tools fail to generalize effectively to new 

malware variants. 

b. Importance of TNs. 

TNs represent correctly identified non-malicious 

instances. While often overlooked in performance 

reporting, a high TN rate is essential for: 

• Ensuring system stability: allowing legitimate 

processes to execute without interruption preserves 

the integrity and usability of the system. 

• Reinforcing user confidence: consistently correct 

classifications build trust in the detection 

mechanism. 
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• Balancing sensitivity and specificity: high TN rates 

indicate good specificity, a necessary balance to high 

sensitivity TPR to prevent overwhelming the system 

with false alarms. 

State-of-the-art machine learning-based malware 

detectors often aim to increase sensitivity, sometimes at 

the expense of specificity, leading to higher FP rates. 

The proposed hybrid approach in this study, which 

integrates memory-based evidence with Windows Event 

Log analysis, aims to reduce FPs while maintaining high 

TN and TPRs by leveraging contextual behavioural 

information. 

While maximizing detection accuracy is vital, the 

balance between FPs and TNs determines the real-world 

usability and reliability of a malware detection system. 

Compared to existing tools, our proposed approach 

offers a more nuanced and behaviour-aware detection 

mechanism, potentially reducing FPs and improving 

overall user trust without compromising detection 

capability. 

5. Conclusions 

The paper described an approach to detect the code 

section of the running process in the main memory. The 

various memory structures to locate the code section is 

identified and their relationship is established. An 

approach to detect the presence of malware in the main 

memory is proposed, which is based on the events 

associated with the malware execution on the computer 

system along with the suspicious code detected in the 

main memory. A software architecture based on the 

detection of the suspicious code in the main memory 

and the event associated with the malware has been 

proposed to detect malware presence in the main 

memory  

If the antivirus software is unable to detect malicious 

code running in the main memory, then the presence of 

malicious code can be detected by the hybrid approach. 

The proposed approach has been validated by carrying 

out the experimentation. The training and testing carried 

out specified that the hybrid approach gives good 

accuracy for the detection of the malware using RF 

classifier. 

Future Work Direction 

The primary goal of the proposed approach is to 

accurately detect the presence of malware by extracting 

executable code from the system’s main memory, 

comparing the code against a curated database of known 

benign and malicious samples, and correlating it with 

pertinent Event Log entries. To extend this research into 

a practical tool, a modular development plan has been 

envisioned. The development process of the proposed 

tool will be executed in multiple structured phases, each 

elaborated as follows. 

a. The initial phase involves designing the system 

architecture, selecting Windows as the target 

platform for prototype implementation, and 

identifying essential data sources namely memory 

dumps and system-generated Event Logs. A critical 

step in this phase is the creation of a comprehensive 

code signature database. Malicious code samples are 

to be sourced from open repositories such as 

VirusShare and MalwareBazaar, while benign 

software is collected from trusted platforms like 

GitHub and SourceForge. 

b. Next, the memory acquisition and analysis module 

are to be developed. System memory will be captured 

using forensic tools such as DumpIt or WinPMEM, 

and analyzed using Volatility3. A custom Volatility3 

plugin will be implemented to detect the code 

sections of running processes and extract the 

corresponding executable code. The code extracted is 

then hashed using algorithms like SHA-256 to 

generate unique hash for comparison. 

c. In parallel, an Event Log analysis module is to be 

implemented. Logs are to be collected using tools 

such as wevtutil or the Windows Event Log API, with 

a focus on security-relevant events including process 

creation (Event ID 4688), user logon (4624), 

PowerShell execution (4104), and service installation 

(7045). These logs are filtered, normalized, and 

structured to enable efficient querying and 

correlation. 

d. A correlation engine is to be built to link memory-

resident code artifacts specifically, the hash of 

contents in code section from running processes with 

relevant Event Log entries. This is achieved by 

aligning shared metadata such as timestamps and 

Process Identifiers (PIDs), enabling the 

reconstruction of execution traces indicative of 

malicious behavior. A comparison engine will 

subsequently matche these hashes against the 

precompiled code signature database. Optionally, 

machine learning models trained on labeled datasets 

of malicious and benign code may be integrated to 

improve classification accuracy. 

e. To improve usability, a web-based interface will be 

developed using frameworks such as Flask (backend) 

and React (frontend). This interface will enable 

remote invocation of the memory acquisition and 

analysis module, Event Log analysis, correlation 

engine, and comparison engine in a sequential and 

automated manner. Dashboards will present insights 

on suspicious processes, memory-event correlations, 

and detection outcomes. Reporting features will 

support export in formats such as JSON and PDF, 

facilitating integration with broader incident 

response workflows. 

f. The final phase will involve comprehensive testing in 

controlled sandbox environments, using both known 

malware samples and legitimate applications. This 
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testing will assess detection accuracy, processing 

efficiency, and the tool’s impact on system resources. 

In order to minimize the latency between malware 

execution and detection, the efficiency of key tasks such 

as locating and extracting code sections from memory, 

performing log analysis, and executing correlation 

mechanisms must be improved. Techniques such as 

multithreading can be employed to perform tasks in 

parallel, including the detection of code sections from 

running processes and the identification of malicious 

events. This parallelization will significantly enhance 

the responsiveness of the system, enabling more timely 

alerts and improving the overall effectiveness of real-

time detection. 

Individuals with malicious intent often deploy 

malware to steal sensitive information, disrupt system 

functionality, and conduct various other harmful 

activities. Traditional antivirus solutions are limited in 

their effectiveness against newly emerging malware 

strains, as they rely on frequent updates to their 

signature databases for detection. The proposed 

approach aims to address this limitation by enabling the 

detection of malware based on memory-based analysis 

and event-based analysis, thereby providing a more 

robust and proactive defense mechanism independent of 

malware signature updates. 
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