1094 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Malware Detection through Memory Forensics and
Windows Event Log Analysis

Dinesh Patil Akshaya Prabhu

Department of Computer Engineering, Vidyavardhini’s
College of Engineering and Technology, India
dinesh9371@gmail.com

Department of Artificial Intelligence and Machine Learning
Dwarkadas Jivanlal Sanghvi College of Engineering, India
akshaya.prabhu@djsce.ac.in

Abstract: With the increasing reliance of human society on computer systems in daily life, cybercrime is also on the rise.
Malware is increasingly used by cybercriminals to attack, compromise, and steal sensitive information, and more critically, to
demand ransom from users of infected systems. Existing antivirus solutions often fall short in detecting and alerting users to
attacks carried out by newly developed or evolving malware strains. This highlights the need for a more robust and proactive
strategy for malware detection. This paper presents a hybrid approach for advanced malware detection, integrating the
identification of suspicious code executing in main memory with the analysis of malware-related events in Windows Event Logs.
Experiments were conducted using a code injection technique on Windows 7 and Windows 10 systems, and the corresponding
memory images and Event Logs were analyzed to validate the effectiveness of the proposed approach. Training and testing were
performed on both code-based and event-based datasets to evaluate detection accuracy. For the detection of suspicious code,
we employed the Canadian Institute for Cybersecurity-Malware in Memory 2023 (CIC-MalMem 2023) dataset. For event-based
analysis, we utilized the EVIX-ATTACK-SAMPLES and the Windows Event Log dataset. Experimental results using the Random
Forest (RF)classifier demonstrate a detection accuracy of 99% based on suspicious code and 95% based on Event Log data.

Keywords: Malware, windows event logs, code section, main memory analysis, main memory structures, VAD, volatile memory.

Received March 10, 2025, accepted July 18, 2025
https://doi.org/10.34028/iajit/22/6/5

1. Introduction

Malicious actors develop and deploy software designed
to compromise computers and mobile devices in order
to steal sensitive information. The first computer-based
malware attack occurred in 1986 with a virus known as
‘Brain’, which infected floppy disks. The first reported
ransomware attack was in 1989, involving the AIDS
Trojan, which was also distributed via floppy disk.
Victims were required to pay a ransom to regain access
to their systems [6]. According to recent reports,
malware attacks particularly ransomware have surged
by over 105% [7], leading to significant financial losses
and data breaches.

The modus operandi of malware often varies between
developers. Typically, malware infiltrates a system
through phishing emails or watering hole attacks,
deceiving users into downloading and executing
malicious code. Once loaded into main memory, the
malware is scheduled for execution by the Operating
System (OS). Each type of malware employs a distinct
infection and execution strategy. For example,
ransomware begins encrypting the system’s hard disk
once granted execution privileges. Cybercriminals
commonly use encryption algorithms such as Rivest-
Shamir-Adleman (RSA) and Advanced Encryption
Standard (AES) for this purpose.

A typical ransomware infection follows these steps:

o Collecting system information: the malware gathers

details about the host system such as computer name,
0S8, location, and whether it is running in a virtual
environment. If a virtual environment is detected, the
ransomware may terminate to avoid analysis.

e FEncryption keys: the malware retrieves encryption
keys from a remote server, depending on its
implementation.

o FEncryption: files on the hard disk are encrypted, often
renamed or given new extensions. The encryption
commonly uses RSA, AES, or a hybrid of both.

e File deletion: original files are deleted post-
encryption.

o Network scanning: the malware scans for system
vulnerabilities and login credentials.

e Ransom message preparation: the ransomware
displays a message often as a README file, altered
wallpaper, or popup informing the user of the
encryption and demanding payment. These messages
typically mention the encryption algorithm used and
payment instructions.

Ransomware requires appropriate OS permissions to
access and modify files. While Windows allows this to
a greater extent, macintosh Operating System (macOS)
is comparatively more restrictive, which is why most
ransomware incidents target Windows systems.
Malware is now also developed for mobile and
handheld devices. Developers continuously innovate
new techniques to evade detection by antivirus software.

Malware Detection through Memory Forensics and Windows Event Log Analysis 1095

Signature-based detection mechanisms are only
effective if the malware signature has already been
recorded in the antivirus database. Newly created
malware strains often go undetected by traditional
antivirus solutions. Previous studies [9, 13, 28] have
shown that malware execution triggers identifiable
system events in Windows. For instance, [28] presents a
comprehensive list of events linked to malware
execution. Detection of unknown code running in main
memory, when correlated with suspicious or malicious
events recorded in system logs, can strongly indicate the
presence of malware. Prior studies [20, 22, 26] have
predominantly focused on main memory analysis using
arange of techniques. However, they often lack depth in
locating and analyzing executable malware code within
memory an essential step for identifying newly
developed threats. It is evident that execution of
malwares triggers distinct system events logged by
Windows. This underscores the need to analyze both
executable code and the resulting system events for
accurate detection.

While previous researches [14, 16] have focused on
Windows Event Log analysis to trace malware activity,
these efforts often overlook the identification of
unknown or suspicious code present in main memory.
Our research addresses this gap by locating the
executable code in memory and detecting its
maliciousness through code comparison and correlated
system events.

Given the increasing sophistication of malware and
the limitations of traditional signature-based antivirus
tools in detecting newly developed or unknown threats,
there is a pressing need for more effective detection
mechanisms. Previous research has largely focused on
main memory or Event Log analysis in isolation, with
limited success in identifying novel malware strains.
However, when malware executes, it leaves identifiable
traces in both memory and system logs. Therefore, we
hypothesize that an integrated approach combining
memory code analysis with Windows Event Log
correlation significantly improves the detection of
unknown or new malware.

The primary objective of this research work is to
develop a hybrid malware detection approach that
integrates main memory analysis with Windows Event
Log correlation to identify sophisticated malware
attacks. This work aims to enhance detection accuracy
by combining main memory inspection techniques with
behavioral indicators derived from system logs.

This paper makes the following key contributions:

a) Establishes the relationship between various memory
structures to locate the code section of executing
programs.

b) Proposes a software architecture for malware
detection based on memory code and associated
malicious events.

¢) Demonstrates improved malware detection using a

hybrid approach on the Canadian Institute for
Cybersecurity Malware in Memory dataset (CIC-
MalMem-2022) dataset [31], EVTX-ATTACK-
SAMPLES for malicious events [24], and Windows
Event Log dataset [15] for non-malicious events.

This research presents a hybrid approach to detect and
alert users about malware presence on Windows-based
systems. The proposed method involves two key
components:

1. Main memory analysis to locate and evaluate the
code of running executables.

2. Event Log analysis to identify correlated malicious
system behavior.

The structure of the paper is as follows: Section 1
introduces the threats posed by malware and their
societal and financial impacts. Section 2 surveys related
work on malware detection based on main memory
analysis and Windows Event Logs. Section 3 details the
proposed malware detection approach, along with the
legal implication of live main memory analysis.
Experiments and evaluations conducted, including
training and testing, system resource utilization and
performance overhead are detailed in section 4. Section
5 presents the conclusions and future work to be carried
out.

2. Related Work

This section discusses about the work carried out to
detect the malware.

Ahlegren [1] highlights the differences between host-
based and network-level ransomware detection,
showing that local monitoring of processes and memory
often provides faster detection compared to network
traffic inspection.

General overviews such as Baker [5] classify
malware detection techniques into static, dynamic, and
hybrid approaches, providing a foundation for
understanding the limitations that motivate more
advanced memory and event-based analysis.

Damodaran et al. [10] conducted a comparative study
of malware detection techniques based on static,
dynamic, and hybrid analysis. Their approach involved
training Hidden Markov Models (HMM) using both
static and dynamic features, primarily Application
Programming Interface (API) call sequences and
opcode patterns across various malware families. While
combining these features showed improved detection
capability, the narrow feature scope may fail to capture
the full behavioural spectrum of modern malware,
thereby limiting generalizability. The dataset used in
this study was constructed by combining samples from
various malware families along with benign programs.
The final dataset comprises a total of 785 samples,
including 745 malware instances and 40 benign
samples. Evaluation was primarily based on the Area
Under the Receiver Operating Characteristic (ROC)

1096 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Curve (AUC); however, the inclusion of metrics such as
precision, recall, and F1-score would have provided a
more comprehensive assessment, particularly for
imbalanced datasets.

Moskovitch et al. [19] adopted a static analysis
approach that utilizes opcode n-grams extracted from
disassembled binaries for malware classification. The
method assumes consistent opcode patterns across
malware families; however, polymorphic and
metamorphic variants often generate diverse opcode
sequences even within the same family, leading to
potential detection failures. The dataset comprises over
30,000 files sourced from Virus Exchange (VX) Heaven
and benign campus systems but lacks evaluation against
modern, adaptive malware, including Advanced
Persistent Threat (APT)-level threats. Furthermore, the
study does not incorporate dynamic behaviour analysis
such as system calls or runtime behaviour’s, which are
essential for detecting evasive malware. While some
feature selection was applied, issues of computational
efficiency and real-time scalability remain unaddressed.

Ucci et al. [30] provided a comprehensive survey of
machine learning techniques applied to the analysis of
Portable Executable (PE) files in Windows. The study
systematically reviewed the objectives, data types, and
machine learning models employed in prior research. As
a survey, it does not conduct empirical benchmarking or
propose new models. Although it discusses emerging
deep learning architectures (e.g., Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs),
Generative Adversarial Networks (GANs)
transformers), the discussion is not exhaustive,
particularly considering the rapid advancements in
malware representation techniques like graph
embeddings. The paper also highlights inconsistencies
and closed nature of datasets in malware research,
contributing to challenges in reproducibility and
benchmarking.

Mohamed and Azher [18] reviewed classical
malware detection techniques, including signature-
based, heuristic-based, and specification-based
approaches. Their analysis highlighted the strengths and
limitations of each method but remained largely
descriptive. The study did not involve any
implementation, experimental validation, or dataset-
based comparison. Emerging research trends such as
adversarial machine learning and deep learning
architectures (e.g., CNNs, RNNs, transformers) were
not discussed, despite their relevance in current malware
detection. Furthermore, standard performance metrics
such as accuracy, precision, recall, F1-score, and latency
were absent, impeding any quantitative comparison
between techniques.

Singh et al. [27] introduced a malware detection
framework using machine learning classifiers,
specifically decision trees and Random Forests (RFs).
The model with the highest accuracy was selected for
deployment. Evaluation involved analysing False

Positives (FPs) and False Negatives (FNs) using a
confusion matrix. However, the model was not tested
against obfuscated, packed, or adversarial malware
samples common in real-world attacks. The study relies
solely on the Microsoft Malware Classification
Challenge dataset from Kaggle, which may lead to
overfitting or dataset bias. Additionally, it lacks
consideration of dynamic behavioural features like API
calls and runtime logs, which are crucial for detecting
advanced malware. The literature review is also limited,
omitting modern approaches such as deep neural
networks.

Akbanov et al. [3] presented a case-specific analysis
of the WannaCry ransomware, proposing a Software
Defined Networking (SDN) based method for its
detection and mitigation. The approach identifies key
system features exploited by WannaCry to encrypt files.
However, the proposed solution is highly tailored and
may not extend to other ransomware families with
distinct propagation or encryption techniques. Detection
relies heavily on static and dynamic blacklists (e.g., IP
addresses, domains, and ports), with no incorporation of
machine learning, behavioural analysis, or anomaly
detection. Moreover, standard evaluation metrics such
as FP rate, detection delay, throughput, and scalability
are not reported.

Vehabovic et al. [32] conducted a detailed survey of
ransomware detection techniques, focusing on host-
based, network-based, forensic characterization, and
authorship attribution methods. While many of these
strategies utilize machine learning, the paper does not
propose new models, datasets, or implementation
frameworks. Instead, it synthesizes existing literature
without standardized comparisons or unified
performance metrics. As a result, its practical
contribution is limited, and it does not address the
reproducibility or benchmarking challenges prevalent in
malware research.

Santangelo et al. [23] analyzed ransomware threats
targeting Industrial Control Systems (ICS), particularly
Ekans and MegaCortex, and proposed a protocol-based
detection solution leveraging Windows Management
Instrumentation (WMI) and Distributed Computing
Environment/Remote Procedure Call (DCE/RPC)
tracing. Although the study identifies unique lateral
movement behaviour’s used by ransomware in ICS
environments, it does not explore machine learning or
adaptive learning techniques for enhanced detection.
Furthermore, the solution has not been benchmarked
against industry-standard tools such as Suricata, Snort,
or commercial endpoint detection systems.

Subedi et al. [29] utilized digital forensic techniques
to investigate Dynamic Link Library (DLL)
dependencies in ransomware samples, using static
reverse engineering. The study included only 450
malware samples, limiting its generalizability. The
proposed method does not account for common evasion
tactics such as sandbox detection, code injection,

Malware Detection through Memory Forensics and Windows Event Log Analysis

process hollowing, or encrypted payloads. Additionally,
it lacks comparative benchmarking with established
malware analysis platforms like VirusTotal, Snort, or
Suricata. The approach is dependent on manually
defined rule sets and DLL-function mappings, which
may hinder scalability.

Amanowicz and Jankowski [4] proposed a data
mining-based framework for detecting and classifying
malicious network flows in SDN. The system utilizes
native SDN features and machine learning models (e.g.,
Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP)), focusing on automated flow rule
generation and classification. Experiments were
conducted using synthetic traffic generated by tools like
Metasploit, Hydra, and Hping3. Although the classifiers
demonstrated high detection accuracy, especially in lab
settings, models like MLP incurred significant
execution time, raising concerns about real-time
performance and scalability.

Hossain and Islam [12] developed a framework to
detect obfuscated malware in memory dumps. The
process includes data normalization, feature encoding,
Synthetic ~ Minority ~ Over-sampling Technique
(SMOTE)-based class balancing, and feature selection
using statistical methods (e.g., Chi-square, mutual
information). Although the framework is effective for
selected obfuscation techniques, it has not been
validated against hybrid or multi-layered threats,
limiting its adaptability.

Nguyen et al. [20] proposed a hybrid malware
detection system tailored for cloud environments,
combining static features (e.g., opcodes, file metadata)
with dynamic features (e.g., API call traces, behavioral
logs) using deep learning models. While the approach
enhances detection coverage, it relies on specific
datasets that may not generalize well to broader

1097

malware ecosystems. Additionally, the integration of
multiple feature sets and complex models results in high
computational overhead, potentially limiting real-time
deployment.

Maniriho et al. [17] introduced an innovative
malware detection framework, MeMalDet, which
directly leverages memory dump data (RAM images)
for analysis. The framework employs deep
autoencoders to perform unsupervised feature
extraction by reducing the dimensionality of raw
memory features, enabling the automatic identification
of significant patterns. Although MeMalDet
demonstrates impressive performance, achieving an
accuracy of 98.82% and an F1-score of 98.72%, the
study does not extensively evaluate its robustness
against adversarial evasion tactics such as memory
injection, obfuscation, or anti-forensic techniques.

A study by Mahanta and Kumar [16] explores
malware detection using Windows Event Logs
transformed into structured datasets for machine
learning analysis. While the method is capable of
identifying attack patterns, it focuses on limited
malware types and lacks generalization across diverse
threat vectors. The framework’s effectiveness is
therefore constrained in broader applications.

Kalinkin et al. [14] investigated the use of Event
Tracing for Windows (ETW) data in conjunction with
machine learning models to detect ransomware. ETW
enables detailed tracking of system and application
behavior, facilitating anomaly detection. However, the
framework’s success is highly dependent on the quality
and completeness of the collected ETW data. In
addition, implementing the system at scale presents
challenges related to real-time processing and
performance overhead.

Table 1. A Summary of the existing work.

Ref Authors Method

Dataset used Accuracy/ Evaluation metric

HMMs on static and dynamic features (API,

[10] | Damodaran et al. opcode sequences)

A mix of malware family and benign| AUC is obtained for separate malware family

Static n-gram opcode representation for

[19] | Moskovitch et al. classification

VX Heaven+campus machine benign

99% accuracy was observed for 15% of

files (~30,000) malicious files

ML classifiers (decision tree, RF); confusion

[27] Singh et al. matrix analysis

Kaggle Microsoft malware

0 . i
classification challenge 99% accuracy (potential overfitting)

Static+dynamic analysis with SDN detection

(3] Akbanov et al. (WannaCry ransomware)

WannaCry instance Not reported

Static analysis+reverse engineering of DLL-

[29] Subedi et al. function mappings

450 ransomware samples 70% accuracy

Amanowicz and
Jankowski

ML classifiers (SVM, MLP) on SDN
malicious flow detection

(4]

Lab-generated traffic (Metasploit,

Hydra, Hping3) S7%TPR

Memory dump

12] | Hossain and Islam normalization+SMOTE+feature selection+ML|

Obfuscated-MalMem?2022 dataset

More than 99% accuracy

Static+dynamic features (e.g., API logs,

[20] Nguyen et al. opcodes)+deep learning

Cloud-based Malware Dataset 2024

99.42% accuracy for Dynamic and Deep
Malware Detection (D2MD) model, 86.97%

(CMD_2024 dataset) accuracy for multi-class classification

multiple machine learning classifiers (like RF,

(17] | Maniriho et al. XGBoost, LightGBM) in a stacked ensemble

accuracy of 98.82% and an F1-score of

MemMal-d2024 98.72%

[14] | Kalinkin et al. ETW+ML for ransomware detection

2 ransomware, 4 benign Highest precision of 0.98

[8] Celdran et al.

event monitoring+machine learning classifiers

Device behavioral fingerprinting+kernel-level |10 distinct malware samples (botnets,
rootkits, backdoors, ransomware,

Achieved up to 99.99% accuracy with
Artificial Neural Network. (ANN) classifiers
in supervised settings

Celdran et al. [8] introduced a modular detection

framework that integrates device behavioral

1098 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

fingerprinting with machine learning techniques to
identify malware in IoT spectrum sensors. The
framework was empirically evaluated using the
ElectroSense platform, a practical and widely adopted
crowdsensing environment. Although the proposed
system demonstrated effective performance on
ElectroSense devices, its generalizability to other loT
hardware and environments remains an area for future
exploration. The anomaly detection component, aimed
at identifying zero-day threats, achieved a True Positive
Rate (TPR) ranging from 88% to 90%, while the
malware classification module, focused on known
attacks, attained an F1-score between 94% and 96%.

Shamshirsaz et al. [25] propose a process
supervision/control-based malware detection
mechanism that forces activation of latent code paths
and monitors sensitive OS function calls, reporting
~98% accuracy.

Most existing research emphasizes main memory
analysis for malware detection but often overlooks the
impact of malware on system-level indicators such as
Windows Event Logs.

Table 1 presents a summary of earlier work,
categorized based on the methodology employed,
datasets utilized, and evaluation metrics reported.

It has been observed that the majority of existing
malware detection approaches are primarily based on
memory analysis. In contrast, relatively few studies
focus on utilizing Windows Event Log analysis for
malware detection. Moreover, none of the reviewed
works have attempted to precisely locate and analyze
the code sections of running processes. Given that
malware execution often results in artifacts within the
Windows Event Logs, there is a critical need to integrate
both code-level analysis and Event Log analysis to
enhance the effectiveness and reliability of malware
detection.

3. Proposed Approach

The proposed malware detection approach adopts a
dual-pronged strategy. The first component focuses on
identifying malicious code executing within the system
by performing code analysis on executable files mapped
into the system’s main memory. The second component
involves monitoring and identifying events indicative of
suspicious activity, such as unauthorized file access,
changes in file permissions, and previously flagged
malware-related behaviors. These two detection
mechanisms are integrated to generate alerts that notify
the user of a potential malware attack.

This section elaborates on the methodology for
locating the code section of executables associated with
active processes from the system’s main memory. It also
discusses the correlation of suspicious system events
and the overall system architecture designed to trigger
user alerts. Specifically, once the executable code is
located and extracted from the memory-resident image

of the process, it is compared against a database of
verified legitimate code and existing malware code. A
match with the existing malware code strongly indicates
the presence of malware. But if none of the code in the
database is matched then it suggests the presence of
potentially malicious or unauthorized code in memory.
Following this, system Event Logs particularly those
accessed via the Windows Event Viewer are examined
for activities consistent with malware behavior. If both
suspicious memory-resident code and corroborating
system events are identified, the system generates a
warning to inform the user of a possible malware
intrusion.

3.1. Detecting Code Section

Traditional antivirus software relies on known
signatures to detect malicious programs. However, this
approach fails when the malware’s signature is absent
from the antivirus database, allowing novel or
obfuscated threats to evade detection. To overcome this
limitation, it is essential to analyze the code section of
executable programs directly within the system’s main
memory. When an executable is loaded, the OS
generates multiple kernel-level data structures
associated with the process, such as the EPROCESS
block, Virtual Address Descriptors (VADs), and the
Page Table. These structures store critical information,
including virtual memory addresses and other attributes
necessary for identifying and locating process-specific
components in memory. Accessing these memory
structures requires translating virtual addresses into
corresponding physical addresses, enabling accurate
inspection of the data held in main memory and
supporting advanced malware detection techniques
beyond signature matching.

a) Key Data structures and their roles.

1. EPROCESS structure. The EPROCESS structure
plays a pivotal role in identifying the code section
of a PE file during memory analysis. In a dumped
memory image, this structure can typically be
located by searching for the American Standard
Code for Information Interchange (ASCII) string
“pro” or its hexadecimal representation
0x50726FE3. One of the key attributes within the
EPROCESS structure is VadRoot, which stores the
virtual address of the VAD tree. This tree structure
is essential for mapping the memory regions
allocated to a process, including those
corresponding to the code section of the loaded
executable. By traversing the VAD tree, forensic
tools can pinpoint the location of the PE code in
memory, enabling in-depth analysis for potential
malware.

2. VAD tree structure. The VAD tree is an essential
data structure used to identify memory-mapped files
associated with an active process in main memory.

Malware Detection through Memory Forensics and Windows Event Log Analysis 1099

Each node in the VAD tree contains several
attributes that facilitate the interpretation and
traversal of process memory regions. Among these
attributes,

e StartVpn and EndVpn: StartVpn attribute identify
the starting address of the first frame of a memory-
mapped file. EndVpn attributes identify the
starting address of the last frames of a memory-
mapped file.

o FirstProtoPte: this attribute holds the virtual
address of the Page Table associated with the
process.

e Subsection: this attribute points to the first
subsection structure, which represents a section of
the executable file mapped in memory.

3. Page Table. The Page Table holds the mapping
between virtual and physical memory addresses and
is responsible for storing the starting physical
address of the first memory frame associated with a
memory-mapped file. This address is crucial for
accessing and analyzing the physical memory
content corresponding to a specific virtual address
range.

4. Subsection structures. Each section of an executable
file that is mapped into memory is associated with a
corresponding subsection structure. These
subsection structures are integral to understanding
how the executable’s sections are organized and
managed in memory. Key fields within a subsection
include NextSubsection and PteInSubsection.

e NextSubsection: points to the next subsection
structure, thereby forming a linked sequence of
memory sections

o PteInSubsection: indicates the number of Page
Table Entries (PTEs) for the section. This value
reflects the number of memory frames allocated to
that section where one PTE corresponds to one
frame, two PTEs to two frames, and so forth.
These structures are essential for reconstructing
the memory layout of an executable during
memory forensics and for detecting anomalies
associated with malicious code injections.

b) Executable file sections in memory.

An executable file is composed of multiple sections,
each serving a distinct function in the execution and
management of the program. Among these, the Header
Section contains critical metadata about the file, such as
the file type, entry point, and section layout. In a 32-bit
Windows environment, this section typically occupies a
single memory frame, equivalent to 4 KB. Another
crucial component following header section is the code
section, which holds the actual machine-level
instructions that the microprocessor executes.
Identifying this section in main memory is essential for
performing code analysis, particularly in the context of

malware detection and reverse engineering. Accurate
extraction and interpretation of the code section enable
analysts to detect wunauthorized modifications,

embedded malicious routines, or obfuscated
instructions within a potentially compromised
executable.

¢) Relationship between memory structures.

Figure 1 illustrates the hierarchical relationship among
the EPROCESS, VAD, and Page Table structures in the
context of memory management for a running process.
When an executable is loaded, its code is mapped into
the frames in main memory. The EPROCESS structure,
contains the VadRoot attribute a pointer to the root of
the VAD tree. This tree is used to track the memory
regions allocated to the process. Each VAD node in the
tree represents a specific memory space allocated to a
file associated with a running process. Each VAD
contains attributes that assist in identifying the starting
and ending frames of the memory-mapped file. Through
these interconnected structures, it becomes possible to
locate and analyze the code section of an executable.

Main Memory Main Memory
structures Layout

EPROCESS (Pro)

frame0
T

> - <
framel Header Execute-
table file of a
Code Process and

VadRoot

.......................... its section

>
VAD (Vad)
StartVpn
EndVpn
firstProtoPte framen
Subsection

Page Table (Mm5t)
Based address [|

Subsection [Header] 4,—) Subsection [Code]
NextSubsection —»

NextSubsection
PtelnSubsection PtelnSubsection

Figure 1. Relationship between various main memory structures.

d) Extracting executable code.

After identifying the number of memory frames that
contain the executable code and determining the
corresponding physical addresses of these frames, the
code within the code section can be extracted from
memory for detailed analysis.

3.2. Windows Events

Windows Event Logs maintain a comprehensive record
of system, security, and application-related events
generated by the Windows OS and the applications
running on it. These logs provide investigators with
critical information, such as the applications involved,
user login timestamps, and various system events
relevant for forensic analysis. Notably, even if antivirus
software fails to detect malware present on the system,
evidence of malicious activity can often be inferred
from specific Event Log entries.

Microsoft Windows registers certain events triggered

1100 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

by malware infections, which are recorded in the Event
Logs. These recorded events serve as valuable
indicators for detecting malware presence. Timely
monitoring and analysis of these events can
significantly mitigate the impact of malware by
enabling early detection and response. Table 2
enumerates some common Event IDs and descriptions
associated with malware activity.

Table 2. Malware related events.

Event ID Event
7045 Creation of a new service which enables remote access to the
target.
4670 Permission on any object changed.
1116 The anti-malware platform detected malware.
1006 The anti-malware engine detected malware.

The anti-malware platform has attempted to perform an action to
1008 |protect your system from malicious software or other potentially
harmful software.

4798 APT actors have compromised local accounts on the system.

Digital forensic investigators must scrutinize these
events to identify suspicious behavior indicative of
compromise. When an event associated with malware is
detected, its presence can be corroborated by correlating
it with suspicious code extracted from the executable
file mapped in the running process’s memory, as
described in section 3.1. If both suspicious code and
malware-related events are identified, the presence of
malware actively running in main memory can be
confidently confirmed.

3.3. Software Architecture

To alert users of potential malware attacks on Windows-
based systems, a software architecture has been
proposed that integrates two primary detection
mechanisms: identification of suspicious code from the
executable program in main memory and detection of
malware-related events from the Windows Event Logs.
The architecture of the proposed system, illustrated in
Figure 2, comprises several functional modules,
including code extraction, code comparison, event
detection, and an alert generation module.

After 10 minutes

After 10 minutes l l

1 Extract Code

Dump Memory

Check for
Suspicious Event |¢——— “““‘h

Dumped W
Memory

Compare Code

Figure 2. Software architecture of the proposed system.

In addition to these modules, the architecture
incorporates two databases: one for storing the known
legitimate code of running processes and code of the
existing malwares, and another for storing dumped

memory images for forensic analysis. This modular
design enables the system to perform real-time
correlation between memory-resident code anomalies
and Event Log patterns indicative of malware activity.
A description of each module in the architecture is
provided below.

a. Dump memory

This module of the proposed system is responsible for
periodically dumping the Windows main memory at
regular intervals, specifically every 10 minutes. The
resulting memory dump is then stored in the dumped
memory image database for subsequent analysis. Tools
such as Dumplt are utilized for this task, generating
memory images in the raw format, which preserves the
entire physical memory content of the system at the time
of capture. These memory dumps are essential for
enabling offline analysis of running processes, code
sections, and potential malware residing in memory.

b. Extract code.

The executable code of the file associated with a
running process is identified using the methodology
outlined in the relevant subsection on code detection.
Once the code section has been successfully located in
main memory, this module proceeds to extract the
corresponding code for further analysis. The extracted
code serves as a critical input for comparison against
known legitimate and malicious code patterns stored in
the code database, thereby facilitating the detection of
anomalies indicative of potential malware.

¢. Compare code.

The extracted code is subsequently compared against
entries in the code database, which contains both the
original code of legitimate running processes and the
known code of existing malware. If the extracted code
matches that of a legitimate process, the system resumes
monitoring and initiates the next memory dump after a
10-minute interval, continuing the periodic analysis
cycle. This routine ensures ongoing surveillance of the
system’s memory state, enabling timely detection of any
deviations that may indicate malicious activity. If the
extracted code matches that of a malware code, then it
triggers alarm.

d. Check for suspicious event.

Events related to malware activity are identified and
extracted from the Windows Event Logs database.
When the extracted code from memory is determined to
be suspicious that is, it does not match any known
legitimate process or matches known malware the
system proceeds to analyze the Windows Event Logs for
any associated suspicious events. This correlation
between anomalous code and relevant system events
enhances the reliability of malware detection by
providing both behavioral and memory-based evidence
of compromise.

Malware Detection through Memory Forensics and Windows Event Log Analysis 1101

e. Give alarm.

This module is responsible for alerting the user of the
Windows-based computer system in the event of a
potential malware attack. If the extracted code is
determined to be malicious matching known malware
code the system immediately triggers an alarm to notify
the user. In cases where the code is suspicious, i.e., it
does not match either known legitimate processes or
known malware the system conducts a further analysis
by checking the Windows Event Log database for
malware-related events. If such events are detected in
conjunction with the suspicious code, the system raises
an alert, indicating a high likelihood of an active
malware presence in the main memory.

The pseudocode of the proposed approach is
presented in Algorithm (1).

Algorithm 1: Proposed approach to detect malware.

Initialize:
Set memory_dump _interval = 10 minutes
Load legitimate _code_db
Load malware_code_db
Load Windows_event log_db
Loop:
For each memory_dump _interval do:
1. Dump main memory—memory_dump.raw
2. Extract code section
memory_dump.raw—extracted_code
3. Compare extracted_code with legitimate_code_db
If match_found:
Continue to next interval
Else:
4. Compare extracted_code with malware _code_db
If malware_match_found:
Trigger ALARM: "Malicious code detected!”
Continue to next interval
Else:

5. Analyze Windows event log db for malware-related
events.

If suspicious_events_found:

Trigger ALARM: "Suspicious code+malicious events
detected!"

Else:
Log "Suspicious code, no associated events"
Continue to next interval

Key Function Descriptions of the pseudocode are as
follows:

o Dump main memory:. uses tools like Dumplt to
capture system memory.

e Extract code section: identifies and isolates the code
section using EPROCESS, VAD, and Page Table
structures.

o Compare extracted code: matches binary patterns or
hashes with entries in legitimate and malware code
databases.

o Analyze Windows event log db: looks for Event IDs
typically associated with malware activity (e.g.,
privilege escalation, unauthorized file access, etc.).

o Trigger ALARM: notifies the user of potential
malware based on detection criteria.

The flowchart of the proposed approach is shown in
Figure 3.

Dump Main Memory

Extract Code Section of
running process

Compare extracted code
with code database

Malicious/Suspicious
code found

Malicious Code Found Suspicious Code Found

Tigger A]arm Analyze Windows event log
+ Malicious Code database for malware related
Detected event

No Suspicious

Event
Found?

Tigger Alarm “Suspicious
47 Code™ Malicious Event
Detected

Figure 3. Flowchart of the proposed approach.

3.4. Legal Implications of Live Memory
Acquisition and Analysis

Live memory acquisition and analysis, while crucial for
modern digital forensics and malware detection, present
several ethical issues most notably concerning privacy
and legal implications. During memory acquisition,
analysts can inadvertently access sensitive personal data
such as login credentials, open communications,
cryptographic keys, and private browsing sessions that
reside temporarily in main memory. This raises
significant privacy concerns, especially when such data
pertains to individuals not under investigation or when
consent has not been explicitly obtained. Furthermore,
the process may conflict with legal rights related to data
protection and unauthorized access, particularly under
regulations such as the General Data Protection
Regulation (GDPR) or the Computer Fraud and Abuse
Act (CFAA), Digital Personal Data Protection Act, 2023
(DPDP Act). In some jurisdictions, even well-
intentioned forensic investigations might be deemed
unlawful if proper legal authorization is not secured
beforehand. Thus, it is imperative for practitioners to
balance investigative objectives with strict adherence to
legal standards and ethical guidelines to ensure that
memory acquisition is performed responsibly,
transparently, and within the bounds of the law.

1102 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

4. Result

This section presents the experiments conducted to
detect the code sections of executable programs mapped
in main memory, as well as the events triggered by
malware activity. It also details the training and testing
performed to evaluate the accuracy of the proposed
approach, employing various classifiers.

4.1. Experimentation

Experiments were conducted on 32-bit Windows 7 and
64-bit Windows 10 systems the most widely used OSs,
as identified in the survey presented by Pot [21] to
validate the proposed approach. The objective of these
experiments was to acquire memory dump images
containing both malicious and benign code, and to
detect events associated with the execution of malicious
code. As Ahmed and Aslam [2] have discussed memory
dumps were obtained using the Dumplt tool, which was
selected for its ability to reliably and completely capture
main memory content to disk. The resulting memory
dump files were saved with a raw extension.

To validate the technique for detecting code sections
of malware executing on Windows-based systems,
experiments were carried out using a sample process
hollowing executable, ProcessHollowing.exe, available
at [11]. This executable performs a process hollowing
attack by hollowing out the code section of the
legitimate svchost.exe process and replacing its memory
space with the image of helloworld.exe.

The following steps outline the experimental
procedure for detecting code sections:

1. ProcessHollowing.exe was executed on a Windows
system with several application programs open.

2. A memory dump was created using the Dumplt tool.

3. At the time of dumping, live memory analysis was
performed using Windows Debugger (WinDbg).

4. The physical address of memory structures such as
the VAD for the running svchost.exe process was
extracted using WinDbg.

5. The memory dump image was loaded into the
OSForensics tool for offline analysis.

6. The physical address of the VAD obtained from
WinDbg was used to locate the corresponding code
section within the dumped main memory.

As part of the evaluation, 10 memory dump images were
analyzed for each OS (Windows 7 and Windows 10) to
establish a correlation between process-specific
memory structures and the detection of code sections.
Additionally, during the execution of the hollowing
process (ProcessHollowing.exe), Windows Event Logs
were monitored for any security-relevant events. Table
3 provides the specifications of the test machine used in
the experiments.

The Dumplt tool was used to acquire a complete
snapshot of the Windows main memory. For live
memory analysis during execution, the WinDbg tool

was utilized. The acquired memory dumps were further
examined using the OSForensics tool.

Table 3. Test system.

0OS Windows 7, 32-bit | Windows 10, 64-bit | Windows 10, 64-bit
Main 2GB 8GB 16GB
memory
Intel(R) Core(TM) i3-Intel(R) Core(TM) i3-
Processor ngrggﬁio 6006U CPU @ 6006U CPU @
: 2.00GHz 2.00GHz

Figure 4 presents the VadRoot virtual address of the
svchost.exe process, extracted using WinDbg
commands. This address serves as the root of the VAD
tree, which represents the memory layout of a running
process. Each VAD node corresponds to a memory
region allocated to a file or module associated with the
process.

0: kd> Iprocess 84c62030

PROCESS 84c62030 Sessionld: 1 Cid: 0948 Peb: 7££df000 ParentCid: 0224
DirBase: 7cdc9660 ObjectTable: b13860f0 HandleCount: 31.
Image: svchost.exe

VadRoot 8586b0c0]Vads 40 Clone 0 Private 150. Modified 21. Locked 0.
DeviceMap 89568650

Token b136c030
ElapsedTime 01:28:22:227
UserTime 00:00:00:000
KernelTime 00:00:00:000
QuotaPoolUsage[PagedPool] 0

QuotaPoolUsage[NonPagedPool] 0
Working Set Sizes (now,min,max) (745, 50, 345) (2980KB, 200KB, 1380KB)
PeakVorkingSetSize 770

VirtualSize 35 Mb
PeakVirtualSize 39 Mb
PageFaultCount 809
MemoryPriority BACKGROUND
BaseFrCority 8
CommitCharge 182

Tah R424R2a0

Figure 4. WinDbg snapshot of svchost.exe showing VadRoot.

Figure 5 illustrates the VAD entries for the
svchost.exe process. The highlighted entry indicates the
VAD corresponding to the executable file associated
with svchost.exe, which was hollowed out and
overwritten by the malicious ProcessHollowing.exe.
The memory protection for this region was modified to
EXECUTE _READWRITE by the hollowing process to
allow code injection.

0: kd> 'vad 8586b0c0 0

VAD level start end commi t

86547298 (S) 10 1f 0 Mapped READWRITE
84523fb8 (4) 20 20 1 Private READWRITE
8497a8d0 (S) 30 33 0 Mapped READONLY
84cd66eld (3) 40 40 0 Mapped READORLY
84b0ebd0 (4) 50 50 1 Private READWRITE
84927e10 (2) 60 cb 0 Mappate READONLY
8669bc88 (5) do 197 0 Mapped READONLY
865¢c6710 (4) 1a0 1a0 1 Private READWRITE
849df5a0 (4) 1b0 1bf 3 Private READWRITE
86686b60 (3) 1c0 1f £ 6 Private READWRITE
84c984c8 (4) 200 300 0 Mapped READONLY
4247458 (1) 330 42f 26 Private READVR
[8495e668 (4) 480 48d 14 Private READWRITE]
4c556¢8 (4) 4d0 S0f 1 Private READWVRITE
RAQAFEIN (4) c4an anf 2% Privata RFANWRTTR

Figure 5. WinDbg snapshot of svchost.exe VAD tree structure.

Figure 6 shows a snapshot of ProcessHollowing.exe
writing to various sections of the svchost.exe executable
in main memory. The address of the hollowed-out VAD
region was validated through comparative analysis, as
demonstrated in Figures 7 and 8.

The physical address range corresponding to the
specific VAD for the svchost.exe executable is
determined to be from 0x00480000 to 0x0048D000,
which matches the address range shown in Figure 6.
This range is derived by appending four 0000 to the

Malware Detection through Memory Forensics and Windows Event Log Analysis

values of the ‘start’ and ‘end’ fields highlighted in
Figure 5. The address 0x00480000 marks the beginning
of the first memory frame containing the svchost.exe
file, while 0x0048D000 indicates the starting address of
the last frame associated with the same file. On a 32-bit
OS, the first page of a VAD typically consists of a 4KB
header section. Consequently, the code section (i.e., the
.text section) begins at address 0x00481000. During
process hollowing, this original code section is
overwritten with malicious code.

Creating process

Opening source image
Unmapping destination section
Allocating memory

Source image base: BxB0400000
Destination image base: BxB88480000
Relocation delta: BxABA8AAAA

Writing headers

Writing .text section to BxBB481000
Writing .rdata section to BxBB4880800
Writing .data section to BxBB48ABHAA
Writing .rsrc section to BxB0848CABO
Writing .reloc section to BxB648DBAA
Rebasing image

Getting thread context

Setting thread context

Resuming thread

Process hollowing complete

Press ant to continue

Figure 6. Process hollow snap injecting code in svchost.exe image
on Window 7.

Figure 7 presents a snapshot of the first page of the
original code section of the svchost.exe executable,
starting at address 0x00481000, as captured using the
OSForensics tool. In contrast, Figure 8 displays the
corresponding snapshot after the code section has been
modified through process hollowing. A comparative
analysis of the two snapshots reveals clear
discrepancies, confirming that the code within the code
section of svchost.exe differs significantly before and

1103

after the hollowing process. This observation validates
the effectiveness of identifying malicious activity
through code comparison techniques.

0283C40485C383FB OF762083ECOCBA44
Z41CBDBCZ4AACO000 00BB442404897424 » s D% té

FFEBZ1899C24B000 $.ID)..1..9

91CZ4E2494429

0BDB424A00000
0283C40CC6841CA0 00C 5 8D 8
B424A00000008D44 2
DAZBFFBB44240C3B
COF57COBR0OF 00000
0000F29442460
0 0000CE442474
S0898CZ45000 00008D4C2410 D
0CO0006AG0ESR 3C40488
20F104C2418 F
2410C7442420 00(¢
000000C6442410 00

SE6B37028

1919733234x3xem1
200008R00008R000
D00BAOCROZ441CAR
BEBSBBA1ALALB6B6

666567646
39555€6561¢
] SAFLIFYS¥B2

Z0000737000033000 c-6
405F8FEBS1BF i3

5363333C 4.0
6FAF70401000 0110000110000110 o.%

Figure 8. OSForensic snap of hollowed svchost.exe code section.

Wl Bvent Ve e Properties - Event 4798, Microsoft Windows secusity auditing
¥ Custon
v & Wistol General Detals
5] Aog
ElSed e - —
& set Security ID DESKTOP-TOGUPTI/admin A
s | Account Name admin
= F" Account Domain DESKTOP-TOGUPTI
; ory
Appiicd |Process information
Subtony Process ID 0/1210
Process Name: C\WindowsSystem32 (schost eve v
Log Name: Security
Source Microscft Windows security Logged 3/15/2024121323 PM
EventID ans Task Coggory: User Account Management
Level Information Keywords Audit Success
User NA Computer. DEXTOP-TOGUPTI
OpCode Info
More information: - Event Log Oniine Help
Copy [Close
1 Log Name: Security

R s

EventID Task Catgerry ~| | Security
m securi.. 4758 User Account Management Open Saved Log... A
it securi 4738 User Account Management ¥ Create Custom View.
Y%
nt securi. 4578 User Account Management Import Custom View
it securi 55§78 User Account Management
it securi 5579 User Account Management Clent Log.
It securi 5678 User AccountManagement | | ¥ Fiker Custent Log
F Propertie:
= operties
I & Find
A4 b Ste All Eveent As.

Attach a Teke To This Log...
View
§| Refresh
| @ Hew
| Event 4798, Microust Wandons seurt.
| Event Properties
[E) Attach Task To This Event
Copy
[Seve Selected Fuerte B

Figure 9. Event detected in event viewer.

Following the execution of ProcessHollowing.exe,
an event with Event ID 4798 is recorded in the Windows
Event Viewer, as shown in Figure 9. This event is
triggered when a process enumerates the local group
memberships associated with a specific user account on
the system. The logging of this event is critical in
detecting APT actors, as it indicates attempts to
investigate compromised user accounts an activity often

associated with lateral movement within a target
environment.

The ProcessHollowing.exe process has overwritten
the code section of the svchost.exe executable
associated with an active process in memory by
injecting the code of HelloWorld.exe. To facilitate this
modification, ProcessHollowing.exe altered the
underlying security principles that govern resource

1104

access and protection for services and users on the
system. Specifically, the memory protection attributes
of the physical frames holding the code section of the
svchost.exe process were modified to permit write

The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

operations. This change in memory protection enabled
the injection of the malicious code into the previously
protected .text section of the executable.

1244 . ¥ svchostexe 1028 £ RegQpenKey HKLM SUCCESS

12:44 . & svchostexe 1028 £ RegQueryValue HKLM\SOFTWARE\Mcrosoft\Window... BUFFER OVERFL .. Lengh: 12

12:44 ¥ svchost exe 1028 £ RegQuenyValue HKLM\SOFTWARE\Mcrosoft\Window... SUCCESS Type: REG_SZ. Le
12:44 . ¥ svchostexe 1028 £f RegOpenKey HKLM\SOFTWARE'\Mcrosoft\Window... SUCCESS

12:44. . ¥ svchostexe 1028 ¥ RegOpenKey HKLM BUFFER OVERFL... Deswed Access: M
12244 ¥ svchost exe 1028 £ RegQuenKey HKLM\Satwura\Microsoft \Windows\C... SUCCESS Query: Handle Too

12:44 . % svchostexe 1028 §f RegSeriefoKey HKLM\SOFTWARE\Mcrosoft\Window... SUCCESS Kaydet Momaton

12:44 . ¥ svchost.exe 1028 £ RegOpenKey HKLM SUCCESS

12:44 ¥ svchostexe 1028 £ RegQuenNValue C\ProgramData\Microsoft\Y. Window.. BUFFER OVERFL .. Type: RSG_SZ: G

12:44

12:44 1028 C\ProgramData\Microsoft\Windows\A... SUCCESS AlocationSize: 16
12:44 .. ¥ svchost.exe 1028 4, CreateFlleMapp... QueryStanData\Microsoft\Windows\A... SUCCESS SyncType: Syn S nc Type: Sype eCrat
12:44 ¥ svchost exe 1028 CloseFie C\ProgramData\Mirosoft\Windows\A... SUCCESS PageProtection: PAGE t N I
e e e e
 svchost exe +: RegUoseKey Uesred Accens: K
12244 . ¥ svchostexe 1028 £ RegOpenKey \REGISTRY\WC\Sloc71Blocd 62136... SUCCESS Duery: Handle Tag
12:44 . ¥ svchostexe 1028 £f RegOpenKey REGISTRY\WC\Sloc 71Bloc4 62136... NAME NOT FOUND Desired Access: R

1244
12:44
1244
12.44
1244
12:44

¥ svchost exe

¥ svchost.exe

svchost. exe

¥ svchost. exe

¥ svchost exe
¥ svchost exe
¥ svchost exe
¥ svchost.exe
¥ svchost.exe
¥ svchost exe

1028 £ RegOpenKey
1028 ‘4 CreateFile

CreayStendardl

1028 §¥ RegQuenKey
1028 £ RegOpenKey
1028 ¥ RegOpenKey
1028 £ RegCloseKey
1028 £ RegCloseKey
1028 £ RegCloseKey

C\Pag SOFTWARE \Mcrosoft\Window
C\ProgramData\Microsoft\Windows\A
C\ProgramData\Microsoft \Windows\A

\REGISTRY\WC\Sloc 71Bloc4 62136
REGISTRY\WC\Sloc 71Blocd 6213.6
REGISTRY\WC\Sloc 71Bloc4 62136
HKCU\Sutaure\Clemes
HKCR\Package\Con
HKCR\Package\Con

SUCCESS
SUCCESS
FILE LOCKED WH

SUCCESS

Desired Access: G
Typ

Rutsu Rasd Flize: 16

NAME NOT FOUND Langh: 16

SUCCESS

Query: Handles: R

SUCCESS
SUCCESS Deswed Access: R
SUCCESS Duery. Randle Tep

Figure 10. A screenshot of process monitor showing svchost.exe memory protection flags altered on 64-bit Window 10.

Experiments were also conducted on a 64-bit
Windows 10 systems equipped with an Intel i3
processor (2 cores) and 8GB/16 GB of RAM. The
ProcessHollowing.exe was executed on this setup to
evaluate its impact. To monitor system behavior during
execution, Process Monitor part of the Sysinternals suite
was utilized for real-time observation of active
processes. As shown in Figure 10, the svchost.exe
process was compromised during the execution of
ProcessHollowing.exe. Notably, the memory protection
flags associated with the code section of svchost.exe
were altered to PAGE EXECUTE READWRITE,
enabling unauthorized modification and execution of
injected code within the previously protected memory
region.

4.2. System Resource Utilization and
Performance Overhead

We evaluated the impact and feasibility of memory
dumping and Event Log analysis for detecting malicious
activity across 3 different system configurations. The
systems included:

1. 32-bit Windows 7 with 2 GB RAM and Celeron 440
processor.

2. 64-bit Windows 10 with 8 GB RAM and an Intel i3
dual-core processor.

3. 64-bit Windows 10 with 16 GB RAM and an Intel i3
dual-core processor.

Memory acquisition was performed using the Dumplt
tool, which captured the entire contents of main memory
into a binary dump file. The size of the memory dump
varied according to the system’s physical RAM, ranging
from approximately 1.8 GB on the Windows 7 system
to 16 GB on the higher-end Windows 10 machine.
Following acquisition, analysis was carried out using
forensic tools such as WinDbg, and OSForensics to
examine the contents of the dump, particularly focusing
on the code section of the svchost.exe process to detect
signs of process hollowing. Additionally, Windows
Event Viewer was employed to analyze security and
system logs, capturing relevant Event IDs that correlate
with suspicious behavior. Resource consumption,
including Central Processing Unit (CPU) usage,
memory overhead, and storage impact, was monitored
throughout the process to assess system performance.

Table 4. Performance of different system configurations.

Parameter 32-bit Win 7, 2GB RAM, Celeron 440 | 64-bit Win 10, 8GB RAM, i3 (2-core) |64-bit Win 10, 16GB RAM, i3 (2-core)
Memory dump tool used Dumplt Dumplt Dumplt
Avg. CPU usage (dumping) 20-25% 15-30% 10-20%
Memory overhead (dumping) ~100-150 MB ~200-400 MB ~300-500 MB
Dump file size ~1.5-1.8 GB ~7.5-8.0 GB ~15-16 GB
Analysis tool used WinDbg/OSForensics/Process monitor | WinDbg/OSForensics/Process monitor | WinDbg/OSForensics/Process monitor
Avg. CPU usage (analysis) 30-40% 25-35% 20-30%
Memory usage (analysis) ~1.2 GB ~1.5-2.0 GB ~2.0-2.5 GB
Event Log tool used Event Viewer Event Viewer Event Viewer
CPU usage (event analysis) 10-15% 10-20% 10-20%
Storage usage (logs) ~100-200 MB ~300-400 MB ~400-600 MB
System responsiveness Moderate-Low Moderate High (minimal lag)

The results confirmed that while lower-end systems
experienced noticeable slowdowns and higher CPU

loads, mid and high-end configurations maintained
stable performance during the memory forensic and log

Malware Detection through Memory Forensics and Windows Event Log Analysis 1105

analysis operations. Table 4 shows the comparative
performance of 3 different system configurations.

High system responsiveness was observed on the 64-
bit Windows 10 system equipped with 16 GB RAM and
an Intel i3 dual-core processor. In contrast, the 32-bit
Windows 7 system with 2 GB RAM and a Celeron 440
processor exhibited moderate to low responsiveness,
while the 64-bit Windows 10 system with § GB RAM
and an i3 dual-core processor showed moderate
performance. These results suggest that the proposed
approach is best suited for higher-end system
configurations, where adequate memory and processing
power ensure smooth execution of memory acquisition
and analysis tasks.

4.3. Testing and Training

To validate the effectiveness of the proposed approach,
we trained several machine learning models, including
SVM, RF, Gaussian naive bayes, and decision tree
classifier. The performance of these models was
assessed using two key evaluation metrics: Accuracy
and F-measure. The primary objective was to identify
the most suitable model for malware classification
based on these performance indicators.

For experimentation, two datasets were utilized: the
CIC-MalMem-2022 dataset [31], which contains
labeled malware samples, and a combination of the
EVTX-ATTACK-SAMPLES dataset [24] (representing
malicious events) and a publicly available Windows
Event Log dataset [15] (representing non-malicious
events).

The CIC-MalMem-2022 dataset comprises 58,596
instances across 57 features, including 29,231 benign
and 28,831 malicious samples. The malicious samples
are further categorized into three major classes:
Ransomware, Spyware, and Trojan horse, making it a
comprehensive resource for malware -classification
research.

a. Data pre-processing.

Standard pre-processing procedures were applied prior
to model training. Invariant features those that did not
contribute meaningful information to the classification
task were eliminated. The remaining numerical features
were normalized using min-max scaling to ensure a
consistent value range across all inputs. Additionally,
the categorical class labels were label-encoded,
assigning ‘0’ to benign samples and ‘1’ to malicious
samples. The dataset was complete and free of missing
values, eliminating the need for imputation.

b. Evaluation criteria.

To evaluate the effectiveness of the classifiers, a set of
standard performance metrics was employed, including
the confusion matrix, accuracy, precision, recall, and
Fl-score. Each of these metrics provides a unique
perspective on different aspects of model performance

and is defined as follows:

e Confusion matrix: a tabular representation that
summarizes the predicted outcomes versus the actual
outcomes for a binary classification task. It
comprises four categories:

o True Positives (TPs): malware instances correctly
classified as malware.

o True Negatives (TNs): benign instances correctly
classified as benign.

e FPs: benign instances incorrectly classified as
malware.

e FNs: malware instances incorrectly classified as
benign.

e Accuracy: represents the ratio of correctly predicted
instances (both benign and malicious) to the total
number of instances. It is a general measure of
overall model performance.

p _ TP+TN |
CUrAY = TP ¥ TN + FP + FN (1

e Precision: indicates the proportion of correctly
identified malware samples among all instances that
were predicted as malware. It reflects the model’s
ability to avoid FPs.

Precision = = 2
recision = o——p 2)
e Recall (sensitivity): measures the model’s ability to
correctly identify actual malware instances. It is the
proportion of true malware samples correctly

classified as such.

Recall = — 3
T TP EN 3)

e Fl-score: a harmonic mean of precision and recall,
providing a balanced measure of the classifier’s
ability to detect malware, particularly when the
dataset has imbalanced class distributions.

Precision X Recall

F1— =2X
Score Precision + Recall (4)

Table 5 presents a detailed comparative evaluation of
each classifier, reporting the values for accuracy,
precision, recall, and F1-score. All performance metrics
range from O to 1, with values closer to 1 indicating a
higher degree of predictive accuracy and reliability.
These metrics collectively demonstrate each model’s
capability to distinguish between benign and malicious
instances effectively. Figures 11 and 12 shows the
confusion matrix and ROC curve obtained from the
malware dataset, respectively.

Table 5. Evaluation of classifier on malware dataset.

Classifier name Accuracy| Precision | Fl-score | Recall

SVM 0.9956 0.99 1.00 1.00

RF classifier 0.9999 1.00 1.00 1.00
Naive bayes classifier | 0.9919 0.99 1.00 1.00
Decision tree classifier | 0.9992 0.99 1.00 1.00

1106 The Inte rnational Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Confusion Matrix

5000

Benign

4000

3000

True Labels

- 2000

Malicious

- 1000

'
Benign Malicious,
Predicted Labels

Figure 11. Confusion matrix for malware dataset.

Q\ —— Train Loss
0.06 1 \ Test Loss
0.05 4
2 0.04
a e
T
~o—
0.03 4 g
0.02
2 4 6 8 10
Epochs
a) Training and testing losses.
99.5
99.0 4
F
9
® 98.5
E]
5]
]
<
98.0
97.5 4 —e— Train Accuracy
—— Test Accuracy

2 3 6 8 10
Epochs

b) Training and testing accuracies.

—e— Train AUC
= Test AUC

0.995 4

0.990 4

0.985 1

AUC Score

0.980

0.9751

0.970 1

2 3 6 8 10
Epochs
¢) Training and testing AUC scores.

Figure 12. ROC curve on malware dataset.

The results of this study demonstrate the superior
performance of the RF classifier in accurately detecting
and classifying malware within the CIC-MalMem-2022
dataset. This finding underscores the potential of RF as
areliable model for enhancing cybersecurity systems by
facilitating the development of more effective and
resilient malware detection mechanisms.

Table 6. Statistics of evtx_attack samples dataset.

Malicious Event In % of dataset
Execution 13
Persistence 9
DefenseEvasion, execution 7
DefenseEvasion 12
Initial Access 1
NA 1
Discovery 1
Privilege escalation 21
Credential access 11
Lateral movement 16
Command and control 4

Additionally, the EVTX-ATTACK-SAMPLES
dataset, comprising 4,633 rows and 326 columns,
contains a wide range of Event Log entries associated
with malicious activities. These entries capture evidence
of various attack behaviors recorded during system
execution. Table 6 presents the statistical distribution of
key malicious event types identified within this dataset.

precision recall fil-score support

benign 2.79 0.86 .82 137
malicious 0.98 0.96 0.97 821
accuracy 0.95 958
macro avg 8.88 B8.91 0.9 958
weighted avg 9.95 9.95 9.95 958

Figure 13. Accuracy of RF classifier.

System Time
EventRecordID

Feature

RelativeTargetName
fileVersion
ProceessID

Hashes

Image
ParentProcessGuid.
SubjectLogonGuid
LogonGuid

Level

0.00 0.02 0.04 0.06 0.08 o0.10 0.12

importance

Figure 14. Feature importance.

For effective model training and evaluation, the
EVTX ATTACK SAMPLES dataset [24] was merged
with the Windows Event Log dataset [15], resulting in a
preprocessed combined dataset containing 6,960 rows
and 338 features. The merged dataset was then
partitioned into 60% for training and 40% for testing. A
RF classifier was employed to build the malware
detection model. The model was trained on the training
subset and subsequently evaluated on the test subset. To
assess the model’s performance comprehensively, key
evaluation metrics were utilized, including accuracy,
precision, recall, Fl-score, and the confusion matrix.
Figure 13 shows the accuracy of the RF classifier on
event dataset. Figure 14 shows the feature importance.

The RF classifier demonstrated strong overall
performance, achieving an accuracy of 95%, precision
of 88%, recall of 91%, and an F1-score of 90%. These

Malware Detection through Memory Forensics and Windows Event Log Analysis 1107

results indicate that RF is highly effective in
distinguishing between benign and malicious events
with a high degree of reliability. Its robust performance
can be attributed to its ensemble-based architecture,
which minimizes overfitting and enhances
generalization. The model also offers a well-balanced
trade-off between precision and recall, making it a

reliable choice for classification tasks where
computational cost is acceptable.
700
bengin 1ns 19 600

500

400

True label

300

malicious |

bengin malicious
Predicted Label
a) Confusion matrix (binary).

In comparison, the decision tree classifier, known for
its simplicity and interpretability, yielded slightly lower
performance metrics, with an accuracy of 93%,
precision of 86%, recall of 87%, and an Fl-score of
86%. These results highlight a modest decline in
detection capability, underscoring the trade-off between
model complexity and classification effectiveness.

1.0 4 2

0.8 -

0.6 e

0.4 e

True Positive Rate
\

0.2 s

s ROC curve (AUC = 0.98)
0.0 & v

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

b) ROC curve (binary).

Figure 15. Confusion matrix and ROC curve on event dataset.

The findings from the event-based analysis further
support the superior performance of the RF model in
accurately detecting both malicious and non-malicious
events within the combined dataset. Figure 15 shows the
confusion matrix and ROC curve obtained from the
merged event dataset. Table 7 provides a comprehensive
evaluation of each classifier based on key performance
metrics, including accuracy, precision, recall, and F1-
score, on the merged dataset comprising malicious and
benign Event Logs.

Table 7. Evaluation of classifier on event dataset.

Classifier name Accuracy | Precision | F1-score | Recall
SVM 0.91 0.83 0.81 0.79

RF classifier 0.95 0.88 0.90 091
Naive bayes classifier 0.81 0.75 0.76 0.84
Decision tree classifier 0.93 0.86 0.86 0.87

By analyzing and correlating the outcomes of
training and testing phases on both malware code
datasets and Windows Event Log datasets, the study
demonstrates that the RF classifier exhibits high
predictive accuracy in identifying the presence of
malware on a computer system.

4.4. Impact of False Positives and True
Negatives in Malware Detection

Accurate malware detection is paramount for
maintaining system security and preserving user trust.
Two critical performance outcomes FPs and TNs have
significant implications in practical deployment
scenarios.

a. Impact of FPs.

FPs occur when benign files or behaviours are

incorrectly classified as malicious. Although such errors
do not reflect a real threat, they can severely affect user
experience and system operations. High FP rates may
result in:

o Operational disruptions: legitimate applications may
be blocked or quarantined, affecting critical system
functions and user workflows.

o Decreased user trust: users may lose confidence in
the detection system, particularly when frequent
alerts turn out to be non-malicious, leading to alert
fatigue and the potential neglect of real threats.

e Resource wastage: investigating false alarms
consumes time and resources, both for automated
systems and human analysts.

In contrast, state-of-the-art tools like traditional
signature-based antivirus software often exhibit
relatively low FP rates due to their reliance on known
patterns. However, this comes at the cost of limited
detection capability for zero-day and obfuscated threats,
as such tools fail to generalize effectively to new
malware variants.

b. Importance of TNs.

TNs represent correctly identified non-malicious
instances. While often overlooked in performance
reporting, a high TN rate is essential for:

o FEnsuring system stability: allowing legitimate
processes to execute without interruption preserves
the integrity and usability of the system.

o Reinforcing user confidence: consistently correct
classifications build trust in the detection
mechanism.

1108 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

e Balancing sensitivity and specificity: high TN rates
indicate good specificity, a necessary balance to high
sensitivity TPR to prevent overwhelming the system
with false alarms.

State-of-the-art machine learning-based malware
detectors often aim to increase sensitivity, sometimes at
the expense of specificity, leading to higher FP rates.
The proposed hybrid approach in this study, which
integrates memory-based evidence with Windows Event
Log analysis, aims to reduce FPs while maintaining high
TN and TPRs by leveraging contextual behavioural
information.

While maximizing detection accuracy is vital, the
balance between FPs and TNs determines the real-world
usability and reliability of a malware detection system.
Compared to existing tools, our proposed approach
offers a more nuanced and behaviour-aware detection
mechanism, potentially reducing FPs and improving
overall user trust without compromising detection
capability.

5. Conclusions

The paper described an approach to detect the code
section of the running process in the main memory. The
various memory structures to locate the code section is
identified and their relationship is established. An
approach to detect the presence of malware in the main
memory is proposed, which is based on the events
associated with the malware execution on the computer
system along with the suspicious code detected in the
main memory. A software architecture based on the
detection of the suspicious code in the main memory
and the event associated with the malware has been
proposed to detect malware presence in the main
memory

If the antivirus software is unable to detect malicious
code running in the main memory, then the presence of
malicious code can be detected by the hybrid approach.
The proposed approach has been validated by carrying
out the experimentation. The training and testing carried
out specified that the hybrid approach gives good
accuracy for the detection of the malware using RF
classifier.

Future Work Direction

The primary goal of the proposed approach is to
accurately detect the presence of malware by extracting
executable code from the system’s main memory,
comparing the code against a curated database of known
benign and malicious samples, and correlating it with
pertinent Event Log entries. To extend this research into
a practical tool, a modular development plan has been
envisioned. The development process of the proposed
tool will be executed in multiple structured phases, each
elaborated as follows.

a. The initial phase involves designing the system
architecture, selecting Windows as the target
platform for prototype implementation, and
identifying essential data sources namely memory
dumps and system-generated Event Logs. A critical
step in this phase is the creation of a comprehensive
code signature database. Malicious code samples are
to be sourced from open repositories such as
VirusShare and MalwareBazaar, while benign
software is collected from trusted platforms like
GitHub and SourceForge.

b. Next, the memory acquisition and analysis module
are to be developed. System memory will be captured
using forensic tools such as Dumplt or WinPMEM,
and analyzed using Volatility3. A custom Volatility3
plugin will be implemented to detect the code
sections of running processes and extract the
corresponding executable code. The code extracted is
then hashed using algorithms like SHA-256 to
generate unique hash for comparison.

c. In parallel, an Event Log analysis module is to be
implemented. Logs are to be collected using tools
such as wevtutil or the Windows Event Log API, with
a focus on security-relevant events including process
creation (Event ID 4688), user logon (4624),
PowerShell execution (4104), and service installation
(7045). These logs are filtered, normalized, and
structured to enable efficient querying and
correlation.

d. A correlation engine is to be built to link memory-
resident code artifacts specifically, the hash of
contents in code section from running processes with
relevant Event Log entries. This is achieved by
aligning shared metadata such as timestamps and
Process Identifiers (PIDs), enabling the
reconstruction of execution traces indicative of
malicious behavior. A comparison engine will
subsequently matche these hashes against the
precompiled code signature database. Optionally,
machine learning models trained on labeled datasets
of malicious and benign code may be integrated to
improve classification accuracy.

e. To improve usability, a web-based interface will be
developed using frameworks such as Flask (backend)
and React (frontend). This interface will enable
remote invocation of the memory acquisition and
analysis module, Event Log analysis, correlation
engine, and comparison engine in a sequential and
automated manner. Dashboards will present insights
on suspicious processes, memory-event correlations,
and detection outcomes. Reporting features will
support export in formats such as JSON and PDF,
facilitating integration with broader incident
response workflows.

f. The final phase will involve comprehensive testing in
controlled sandbox environments, using both known
malware samples and legitimate applications. This

Malware Detection through Memory Forensics and Windows Event Log Analysis

testing will assess detection accuracy, processing
efficiency, and the tool’s impact on system resources.

In order to minimize the latency between malware
execution and detection, the efficiency of key tasks such
as locating and extracting code sections from memory,
performing log analysis, and executing correlation
mechanisms must be improved. Techniques such as
multithreading can be employed to perform tasks in
parallel, including the detection of code sections from
running processes and the identification of malicious
events. This parallelization will significantly enhance
the responsiveness of the system, enabling more timely
alerts and improving the overall effectiveness of real-
time detection.

Individuals with malicious intent often deploy
malware to steal sensitive information, disrupt system
functionality, and conduct various other harmful
activities. Traditional antivirus solutions are limited in
their effectiveness against newly emerging malware
strains, as they rely on frequent updates to their
signature databases for detection. The proposed
approach aims to address this limitation by enabling the
detection of malware based on memory-based analysis
and event-based analysis, thereby providing a more
robust and proactive defense mechanism independent of
malware signature updates.

References

[1] Ahlegren F., Local and Network Ransomware
Detection Comparison, Bachelor Thesis, Blekinge
Institute of Technology, 2019. http://www.diva-
portal.org/smash/get/diva2:1333153/FULLTEXT
02.pdf

[2] Ahmed W. and Aslam B., “A Comparison of
Windows Physical Memory Acquisition Tools,” in
Proceedings of the IEEE Military
Communications Conference, Tampa, pp. 1292-
1297, 2015.
https://ieeexplore.ieee.org/document/7357623

[3] Akbanov M., Vassilakis V., and Logothetis M.,
“Ransomware Detection and Mitigation Using
Software-Defined Networking: The Case of

WannaCry,” Computers and Electrical
Engineering, vol. 76, pp. 111-121, 2019.
https://doi.org/10.1016/j.compeleceng.2019.03.0
12

[4] Amanowicz M. and Jankowski D., “Detection and
Classification of Malicious Flows in Software-
Defined Networks Using Data Mining
Techniques,” Sensors, vol. 21, no. 9, pp. 1-24,
2021. https://doi.org/10.3390/s21092972

[5] Baker K., CrowdStrike, 10 Malware Detection
Techniques, https://www.crowdstrike.com/en-
us/cybersecurity-101/malware/malware-
detection/, Last Visted, 2025.

[6] Baker K., CrowdStrike, History of Ransomware,
https://www.crowdstrike.com/cybersecurity-

[10]

[11]

[12]

[13]

[14]

[17]

[18]

1109

101/ransomware/history-of-ransomware, Last
Visited, 2025.

Beck C., Boumezoued A., Cherkaoui Y., Pradat E.,
and Fleisher B., “Modeling Financial Losses from
a Ransomware Attack Using a Causal Approach,”
Milliman White Paper, 2023.
https://www.milliman.com/en/insight/modeling-
financial-losses-from-ransomware-attack
Celdran A., Sanchez P., Castillo M., Bovet G., and
et al., “Intelligent and Behavioral-based Detection
of Malware in IoT Spectrum Sensors,”
International Journal of Information Security, vol.
22, no. 3, pp- 541-561, 2023.
https://doi.org/10.1007/s10207-022-00602-w
Cyber5w, Windows Event Log Analysis,
https://blog.cyberSw.com/eventlog-analysis, Last
Visited, 2025.

Damodaran A., Troia F., Visaggio C., Austin T,
and Stamp M., “A Comparison of Static,
Dynamic, and Hybrid Analysis for Malware
Detection,” Journal of Computer Virology and
Hacking Techniques, vol. 13, pp. 1-12, 2017.
https://doi.org/10.1007/s11416-015-0261-z
GitHub, Process-Hollowing Executables, 2016,
https://github.com/mOnOph1/Process-
Hollowing/tree/master/executables, Last Visited,
2025.

Hossain M. and Islam M., “Enhanced Detection of
Obfuscated Malware in Memory Dumps: A
Machine Learning Approach for Advanced Cyber
Security” Cybersecurity, vol. 7, pp. 1-23, 2024.
https://doi.org/10.1186/s42400-024-00205-z
JPCERT, Event Log Talks a Lot: Identifying
Human-Operated Ransomware through Windows
Event Logs,
https://blogs.jpcert.or.jp/en/2024/09/windows.ht
ml, Last Visited, 2025.

Kalinkin A., Golub S., Korkin I., and Pyatovskiy
D., “Ransomware Detection Based on Machine
Learning Models and Event Tracing for
Windows,” IT Security, vol. 29, no. 3, pp. §2-93,
2024. DOI: 10.26583/bit.2022.3.07

Katara M., Kaggle, Windows Event Log Dataset,
https://www.kaggle.com/datasets/mehulkatara/wi
ndows-event-log, Last Visited, 2025.

Mahanta R. and Kumar R., “Utilizing Windows
Event Logs for Malware Detection Using Machine
Learning,” IET Conference Proceedings, vol.
2024, no. 23, pp- 19-27, 2024.
https://doi.org/10.1049/icp.2024.4396

Maniriho P., Mahmood A., and Chowdhury M.,
“MeMalDet: A Memory Analysis-based Malware
Detection Framework Using Deep Autoencoders
and Stacked Ensemble Under Temporal
Evaluations,” Computers and Security, vol. 142,
pp- 103864, 2024.
https://doi.org/10.1016/j.cose.2024.103864
Mohamed K. and Azher M., “Malware Detection

http://www.diva-portal.org/smash/get/diva2:1333153/FULLTEXT02.pdf
http://www.diva-portal.org/smash/get/diva2:1333153/FULLTEXT02.pdf
http://www.diva-portal.org/smash/get/diva2:1333153/FULLTEXT02.pdf
https://ieeexplore.ieee.org/document/7357623
https://doi.org/10.1016/j.compeleceng.2019.03.012
https://doi.org/10.1016/j.compeleceng.2019.03.012
https://doi.org/10.3390/s21092972
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/malware-detection/
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/malware-detection/
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/malware-detection/
https://www.crowdstrike.com/cybersecurity-101/ransomware/history-of-ransomware
https://www.crowdstrike.com/cybersecurity-101/ransomware/history-of-ransomware
https://www.milliman.com/en/insight/modeling-financial-losses-from-ransomware-attack
https://www.milliman.com/en/insight/modeling-financial-losses-from-ransomware-attack
https://doi.org/10.1007/s10207-022-00602-w
https://blog.cyber5w.com/eventlog-analysis
https://doi.org/10.1007/s11416-015-0261-z
https://github.com/m0n0ph1/Process-Hollowing/tree/master/executables
https://github.com/m0n0ph1/Process-Hollowing/tree/master/executables
https://doi.org/10.1186/s42400-024-00205-z
https://blogs.jpcert.or.jp/en/2024/09/windows.html
https://blogs.jpcert.or.jp/en/2024/09/windows.html
https://doi.org/10.26583/bit.2022.3.07
https://www.kaggle.com/datasets/mehulkatara/windows-event-log
https://www.kaggle.com/datasets/mehulkatara/windows-event-log
https://doi.org/10.1049/icp.2024.4396
https://doi.org/10.1016/j.cose.2024.103864

1110

[19]

[20]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Techniques,” in Proceedings of the 4™ Novel
Intelligent and Leading FEmerging Sciences
Conference, Giza, pp. 349-353, 2022.
https://ieeexplore.ieee.org/abstract/document/994
2395

Moskovitch R., Feher C., Tzachar N., and Berger
E., and et al.,, “Unknown Malcode Detection
Using OPCODE Representation,” in Proceedings
of the European Conference on Intelligence and
Security Informatics, Esbjerg, pp. 204-215, 2008.
https://doi.org/10.1016/j.cose.2018.11.001
Nguyen P., Huy T., Tuan T., Trung P., and Long H.,
“Hybrid Feature Extraction and Integrated Deep
Learning for Cloud-based Malware Detection,”
Computers and Security, vol. 150, pp. 104233,
2025. https://doi.org/10.1016/j.cose.2024.104233
Pot J., Digital Trends, Windows 10 Leaps Ahead
of 7 among Steam Gamers, 2016,
https://www.digitaltrends.com/computing/steam-
users-windows-10-market-share/, Last Visited,
2025.

Reshma Sri T. and Kumar Yogi M., “An
Investigative Study on Malware Signatures,”
Journal of Information Security System and Cyber
Criminology Research, vol. 1, no. 2, pp. 20-29,
2024.
https://matjournals.net/engineering/index.php/Jol
SSCCR/article/view/615

Santangelo G., Colacino V., and Marchetti M.,
“Analysis, Prevention and Detection of
Ransomware Attacks on Industrial Control
Systems,” in Proceedings of the International
Symposium on Network Computing and
Applications, Boston, pp. 1-5, 2021.
https://ieeexplore.ieee.org/document/9685713
Sbousseaden, GitHub, EVTX ATTACK SAMPLES,
https://github.com/sbousseaden/EVTX-
ATTACK-SAMPLES, Last Visited, 2025.
Shamshirsaz B., Asghari S., and Marvasti M., “An
Improved Process Supervision and Control
Method for Malware Detection,” The
International Arab Journal of Information
Technology, vol. 19, no. 4, pp. 652-659, 2022.
https://doi.org/10.34028/iajit/19/4/9

Shaukat K., Luo S., and Varadharajan V., “A Novel
Deep Learning-based Approach for Malware
Detection,” Engineering Applications of Artificial
Intelligence, vol. 122, pp. 106030, 2023.
https://doi.org/10.1016/j.engappai.2023.106030
Singh P., Kaur S., Sharma S., Sharma G., and et
al., “Malware Detection Using Machine
Learning,” in Proceedings of the International
Conference on Technological Advancements and
Innovations, Tashkent, pp. 11-14, 2021.
https://ieeexplore.ieee.org/abstract/document/967
3465

Sophos, Interesting Windows
Malware/General

Event IDs-
Investigation,

https://support.sophos.com/support/s/article/KBA
-000006797?language=en_US, Last Visited,
2025.

Subedi K., Budhathoki D., and Dasgupta D.,
“Forensic Analysis of Ransomware Families
Using Static and Dynamic Analysis,” in
Proceedings of the Security and Privacy
Workshops, San Francisco, pp. 180-185, 2018.
https://ieeexplore.ieee.org/document/8424649
Ucci D., Aniello L., and Baldoni R., “Survey of
Machine Learning Techniques for Malware
Analysis,” Computers and Security, vol. 81, pp.
123-147, 2019.
https://doi.org/10.1016/j.cose.2018.11.001

UNB, Malware Memory Analysis CIC-MalMem-
2022, https://www.unb.ca/cic/datasets/malmem-
2022. html, Last Visited, 2025.

Vehabovic A., Ghani N., Bou-Harb E., Crichigno
J., and Yayimli A., “Ransomware Detection and
Classification Strategies,” in Proceedings of the
IEEE International Black Sea Conference on
Communications and Networking, Sofia, pp. 316-
324, 2022.
https://ieeexplore.ieee.org/document/9858296

[29]

[30]

[31]

[32]

Dinesh Patil is an Associate
Professor of Computer Engineering at
Vidyavardhini’s College of
Engineering and Technology, Vasai.
He received his PhD in Computer
Engineering from Mumbai
University, Mumbai, India in 2020.
His research interests include: Digital Forensics and
Computer Security.
Akshaya Prabhu is an Assistant
g Professor in the Department of
= Artificial Intelligence and Machine
- 4 Learning at D. J. Sanghvi College of
Engineering, Mumbai. She received
her M.E. in Computer Engineering
from Savitribai Phule Pune
University (SPPU), Pune, in 2015. Her research
interests include: Medical Image Processing, Deep
Learning and Al.

https://ieeexplore.ieee.org/abstract/document/9942395
https://ieeexplore.ieee.org/abstract/document/9942395
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1016/j.cose.2024.104233
https://www.digitaltrends.com/computing/steam-users-windows-10-market-share/
https://www.digitaltrends.com/computing/steam-users-windows-10-market-share/
https://matjournals.net/engineering/index.php/JoISSCCR/article/view/615
https://matjournals.net/engineering/index.php/JoISSCCR/article/view/615
https://ieeexplore.ieee.org/document/9685713
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES
https://doi.org/10.34028/iajit/19/4/9
https://doi.org/10.1016/j.engappai.2023.106030
https://ieeexplore.ieee.org/abstract/document/9673465
https://ieeexplore.ieee.org/abstract/document/9673465
https://support.sophos.com/support/s/article/KBA-000006797?language=en_US
https://support.sophos.com/support/s/article/KBA-000006797?language=en_US
https://ieeexplore.ieee.org/document/8424649
https://doi.org/10.1016/j.cose.2018.11.001
https://www.unb.ca/cic/datasets/malmem-2022.%20html
https://www.unb.ca/cic/datasets/malmem-2022.%20html
https://ieeexplore.ieee.org/document/9858296

