
1094 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Malware Detection through Memory Forensics and

Windows Event Log Analysis

Dinesh Patil

Department of Computer Engineering, Vidyavardhini’s

College of Engineering and Technology, India

dinesh9371@gmail.com

Akshaya Prabhu

Department of Artificial Intelligence and Machine Learning

Dwarkadas Jivanlal Sanghvi College of Engineering, India

akshaya.prabhu@djsce.ac.in

Abstract: With the increasing reliance of human society on computer systems in daily life, cybercrime is also on the rise.

Malware is increasingly used by cybercriminals to attack, compromise, and steal sensitive information, and more critically, to

demand ransom from users of infected systems. Existing antivirus solutions often fall short in detecting and alerting users to

attacks carried out by newly developed or evolving malware strains. This highlights the need for a more robust and proactive

strategy for malware detection. This paper presents a hybrid approach for advanced malware detection, integrating the

identification of suspicious code executing in main memory with the analysis of malware-related events in Windows Event Logs.

Experiments were conducted using a code injection technique on Windows 7 and Windows 10 systems, and the corresponding

memory images and Event Logs were analyzed to validate the effectiveness of the proposed approach. Training and testing were

performed on both code-based and event-based datasets to evaluate detection accuracy. For the detection of suspicious code,

we employed the Canadian Institute for Cybersecurity-Malware in Memory 2023 (CIC-MalMem 2023) dataset. For event-based

analysis, we utilized the EVTX-ATTACK-SAMPLES and the Windows Event Log dataset. Experimental results using the Random

Forest (RF)classifier demonstrate a detection accuracy of 99% based on suspicious code and 95% based on Event Log data.

Keywords: Malware, windows event logs, code section, main memory analysis, main memory structures, VAD, volatile memory.

Received March 10, 2025; accepted July 18, 2025

https://doi.org/10.34028/iajit/22/6/5

1. Introduction

Malicious actors develop and deploy software designed

to compromise computers and mobile devices in order

to steal sensitive information. The first computer-based

malware attack occurred in 1986 with a virus known as

‘Brain’, which infected floppy disks. The first reported

ransomware attack was in 1989, involving the AIDS

Trojan, which was also distributed via floppy disk.

Victims were required to pay a ransom to regain access

to their systems [6]. According to recent reports,

malware attacks particularly ransomware have surged

by over 105% [7], leading to significant financial losses

and data breaches.

The modus operandi of malware often varies between

developers. Typically, malware infiltrates a system

through phishing emails or watering hole attacks,

deceiving users into downloading and executing

malicious code. Once loaded into main memory, the

malware is scheduled for execution by the Operating

System (OS). Each type of malware employs a distinct

infection and execution strategy. For example,

ransomware begins encrypting the system’s hard disk

once granted execution privileges. Cybercriminals

commonly use encryption algorithms such as Rivest-

Shamir-Adleman (RSA) and Advanced Encryption

Standard (AES) for this purpose.

A typical ransomware infection follows these steps:

• Collecting system information: the malware gathers

details about the host system such as computer name,

OS, location, and whether it is running in a virtual

environment. If a virtual environment is detected, the

ransomware may terminate to avoid analysis.

• Encryption keys: the malware retrieves encryption

keys from a remote server, depending on its

implementation.

• Encryption: files on the hard disk are encrypted, often

renamed or given new extensions. The encryption

commonly uses RSA, AES, or a hybrid of both.

• File deletion: original files are deleted post-

encryption.

• Network scanning: the malware scans for system

vulnerabilities and login credentials.

• Ransom message preparation: the ransomware

displays a message often as a README file, altered

wallpaper, or popup informing the user of the

encryption and demanding payment. These messages

typically mention the encryption algorithm used and

payment instructions.

Ransomware requires appropriate OS permissions to

access and modify files. While Windows allows this to

a greater extent, macintosh Operating System (macOS)

is comparatively more restrictive, which is why most

ransomware incidents target Windows systems.

Malware is now also developed for mobile and

handheld devices. Developers continuously innovate

new techniques to evade detection by antivirus software.

Malware Detection through Memory Forensics and Windows Event Log Analysis 1095

Signature-based detection mechanisms are only

effective if the malware signature has already been

recorded in the antivirus database. Newly created

malware strains often go undetected by traditional

antivirus solutions. Previous studies [9, 13, 28] have

shown that malware execution triggers identifiable

system events in Windows. For instance, [28] presents a

comprehensive list of events linked to malware

execution. Detection of unknown code running in main

memory, when correlated with suspicious or malicious

events recorded in system logs, can strongly indicate the

presence of malware. Prior studies [20, 22, 26] have

predominantly focused on main memory analysis using

a range of techniques. However, they often lack depth in

locating and analyzing executable malware code within

memory an essential step for identifying newly

developed threats. It is evident that execution of

malwares triggers distinct system events logged by

Windows. This underscores the need to analyze both

executable code and the resulting system events for

accurate detection.

While previous researches [14, 16] have focused on

Windows Event Log analysis to trace malware activity,

these efforts often overlook the identification of

unknown or suspicious code present in main memory.

Our research addresses this gap by locating the

executable code in memory and detecting its

maliciousness through code comparison and correlated

system events.

Given the increasing sophistication of malware and

the limitations of traditional signature-based antivirus

tools in detecting newly developed or unknown threats,

there is a pressing need for more effective detection

mechanisms. Previous research has largely focused on

main memory or Event Log analysis in isolation, with

limited success in identifying novel malware strains.

However, when malware executes, it leaves identifiable

traces in both memory and system logs. Therefore, we

hypothesize that an integrated approach combining

memory code analysis with Windows Event Log

correlation significantly improves the detection of

unknown or new malware.

The primary objective of this research work is to

develop a hybrid malware detection approach that

integrates main memory analysis with Windows Event

Log correlation to identify sophisticated malware

attacks. This work aims to enhance detection accuracy

by combining main memory inspection techniques with

behavioral indicators derived from system logs.

This paper makes the following key contributions:

a) Establishes the relationship between various memory

structures to locate the code section of executing

programs.

b) Proposes a software architecture for malware

detection based on memory code and associated

malicious events.

c) Demonstrates improved malware detection using a

hybrid approach on the Canadian Institute for

Cybersecurity Malware in Memory dataset (CIC-

MalMem-2022) dataset [31], EVTX-ATTACK-

SAMPLES for malicious events [24], and Windows

Event Log dataset [15] for non-malicious events.

This research presents a hybrid approach to detect and

alert users about malware presence on Windows-based

systems. The proposed method involves two key

components:

1. Main memory analysis to locate and evaluate the

code of running executables.

2. Event Log analysis to identify correlated malicious

system behavior.

The structure of the paper is as follows: Section 1

introduces the threats posed by malware and their

societal and financial impacts. Section 2 surveys related

work on malware detection based on main memory

analysis and Windows Event Logs. Section 3 details the

proposed malware detection approach, along with the

legal implication of live main memory analysis.

Experiments and evaluations conducted, including

training and testing, system resource utilization and

performance overhead are detailed in section 4. Section

5 presents the conclusions and future work to be carried

out.

2. Related Work

This section discusses about the work carried out to

detect the malware.

Ahlegren [1] highlights the differences between host-

based and network-level ransomware detection,

showing that local monitoring of processes and memory

often provides faster detection compared to network

traffic inspection.

General overviews such as Baker [5] classify

malware detection techniques into static, dynamic, and

hybrid approaches, providing a foundation for

understanding the limitations that motivate more

advanced memory and event-based analysis.

Damodaran et al. [10] conducted a comparative study

of malware detection techniques based on static,

dynamic, and hybrid analysis. Their approach involved

training Hidden Markov Models (HMM) using both

static and dynamic features, primarily Application

Programming Interface (API) call sequences and

opcode patterns across various malware families. While

combining these features showed improved detection

capability, the narrow feature scope may fail to capture

the full behavioural spectrum of modern malware,

thereby limiting generalizability. The dataset used in

this study was constructed by combining samples from

various malware families along with benign programs.

The final dataset comprises a total of 785 samples,

including 745 malware instances and 40 benign

samples. Evaluation was primarily based on the Area

Under the Receiver Operating Characteristic (ROC)

1096 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Curve (AUC); however, the inclusion of metrics such as

precision, recall, and F1-score would have provided a

more comprehensive assessment, particularly for

imbalanced datasets.

Moskovitch et al. [19] adopted a static analysis

approach that utilizes opcode n-grams extracted from

disassembled binaries for malware classification. The

method assumes consistent opcode patterns across

malware families; however, polymorphic and

metamorphic variants often generate diverse opcode

sequences even within the same family, leading to

potential detection failures. The dataset comprises over

30,000 files sourced from Virus Exchange (VX) Heaven

and benign campus systems but lacks evaluation against

modern, adaptive malware, including Advanced

Persistent Threat (APT)-level threats. Furthermore, the

study does not incorporate dynamic behaviour analysis

such as system calls or runtime behaviour’s, which are

essential for detecting evasive malware. While some

feature selection was applied, issues of computational

efficiency and real-time scalability remain unaddressed.

Ucci et al. [30] provided a comprehensive survey of

machine learning techniques applied to the analysis of

Portable Executable (PE) files in Windows. The study

systematically reviewed the objectives, data types, and

machine learning models employed in prior research. As

a survey, it does not conduct empirical benchmarking or

propose new models. Although it discusses emerging

deep learning architectures (e.g., Convolutional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs),

Generative Adversarial Networks (GANs)

transformers), the discussion is not exhaustive,

particularly considering the rapid advancements in

malware representation techniques like graph

embeddings. The paper also highlights inconsistencies

and closed nature of datasets in malware research,

contributing to challenges in reproducibility and

benchmarking.

Mohamed and Azher [18] reviewed classical

malware detection techniques, including signature-

based, heuristic-based, and specification-based

approaches. Their analysis highlighted the strengths and

limitations of each method but remained largely

descriptive. The study did not involve any

implementation, experimental validation, or dataset-

based comparison. Emerging research trends such as

adversarial machine learning and deep learning

architectures (e.g., CNNs, RNNs, transformers) were

not discussed, despite their relevance in current malware

detection. Furthermore, standard performance metrics

such as accuracy, precision, recall, F1-score, and latency

were absent, impeding any quantitative comparison

between techniques.

Singh et al. [27] introduced a malware detection

framework using machine learning classifiers,

specifically decision trees and Random Forests (RFs).

The model with the highest accuracy was selected for

deployment. Evaluation involved analysing False

Positives (FPs) and False Negatives (FNs) using a

confusion matrix. However, the model was not tested

against obfuscated, packed, or adversarial malware

samples common in real-world attacks. The study relies

solely on the Microsoft Malware Classification

Challenge dataset from Kaggle, which may lead to

overfitting or dataset bias. Additionally, it lacks

consideration of dynamic behavioural features like API

calls and runtime logs, which are crucial for detecting

advanced malware. The literature review is also limited,

omitting modern approaches such as deep neural

networks.

Akbanov et al. [3] presented a case-specific analysis

of the WannaCry ransomware, proposing a Software

Defined Networking (SDN) based method for its

detection and mitigation. The approach identifies key

system features exploited by WannaCry to encrypt files.

However, the proposed solution is highly tailored and

may not extend to other ransomware families with

distinct propagation or encryption techniques. Detection

relies heavily on static and dynamic blacklists (e.g., IP

addresses, domains, and ports), with no incorporation of

machine learning, behavioural analysis, or anomaly

detection. Moreover, standard evaluation metrics such

as FP rate, detection delay, throughput, and scalability

are not reported.

Vehabovic et al. [32] conducted a detailed survey of

ransomware detection techniques, focusing on host-

based, network-based, forensic characterization, and

authorship attribution methods. While many of these

strategies utilize machine learning, the paper does not

propose new models, datasets, or implementation

frameworks. Instead, it synthesizes existing literature

without standardized comparisons or unified

performance metrics. As a result, its practical

contribution is limited, and it does not address the

reproducibility or benchmarking challenges prevalent in

malware research.

Santangelo et al. [23] analyzed ransomware threats

targeting Industrial Control Systems (ICS), particularly

Ekans and MegaCortex, and proposed a protocol-based

detection solution leveraging Windows Management

Instrumentation (WMI) and Distributed Computing

Environment/Remote Procedure Call (DCE/RPC)

tracing. Although the study identifies unique lateral

movement behaviour’s used by ransomware in ICS

environments, it does not explore machine learning or

adaptive learning techniques for enhanced detection.

Furthermore, the solution has not been benchmarked

against industry-standard tools such as Suricata, Snort,

or commercial endpoint detection systems.

Subedi et al. [29] utilized digital forensic techniques

to investigate Dynamic Link Library (DLL)

dependencies in ransomware samples, using static

reverse engineering. The study included only 450

malware samples, limiting its generalizability. The

proposed method does not account for common evasion

tactics such as sandbox detection, code injection,

Malware Detection through Memory Forensics and Windows Event Log Analysis 1097

process hollowing, or encrypted payloads. Additionally,

it lacks comparative benchmarking with established

malware analysis platforms like VirusTotal, Snort, or

Suricata. The approach is dependent on manually

defined rule sets and DLL-function mappings, which

may hinder scalability.

Amanowicz and Jankowski [4] proposed a data

mining-based framework for detecting and classifying

malicious network flows in SDN. The system utilizes

native SDN features and machine learning models (e.g.,

Support Vector Machine (SVM), Multi-Layer

Perceptron (MLP)), focusing on automated flow rule

generation and classification. Experiments were

conducted using synthetic traffic generated by tools like

Metasploit, Hydra, and Hping3. Although the classifiers

demonstrated high detection accuracy, especially in lab

settings, models like MLP incurred significant

execution time, raising concerns about real-time

performance and scalability.

Hossain and Islam [12] developed a framework to

detect obfuscated malware in memory dumps. The

process includes data normalization, feature encoding,

Synthetic Minority Over-sampling Technique

(SMOTE)-based class balancing, and feature selection

using statistical methods (e.g., Chi-square, mutual

information). Although the framework is effective for

selected obfuscation techniques, it has not been

validated against hybrid or multi-layered threats,

limiting its adaptability.

Nguyen et al. [20] proposed a hybrid malware

detection system tailored for cloud environments,

combining static features (e.g., opcodes, file metadata)

with dynamic features (e.g., API call traces, behavioral

logs) using deep learning models. While the approach

enhances detection coverage, it relies on specific

datasets that may not generalize well to broader

malware ecosystems. Additionally, the integration of

multiple feature sets and complex models results in high

computational overhead, potentially limiting real-time

deployment.

Maniriho et al. [17] introduced an innovative

malware detection framework, MeMalDet, which

directly leverages memory dump data (RAM images)

for analysis. The framework employs deep

autoencoders to perform unsupervised feature

extraction by reducing the dimensionality of raw

memory features, enabling the automatic identification

of significant patterns. Although MeMalDet

demonstrates impressive performance, achieving an

accuracy of 98.82% and an F1-score of 98.72%, the

study does not extensively evaluate its robustness

against adversarial evasion tactics such as memory

injection, obfuscation, or anti-forensic techniques.

A study by Mahanta and Kumar [16] explores

malware detection using Windows Event Logs

transformed into structured datasets for machine

learning analysis. While the method is capable of

identifying attack patterns, it focuses on limited

malware types and lacks generalization across diverse

threat vectors. The framework’s effectiveness is

therefore constrained in broader applications.

Kalinkin et al. [14] investigated the use of Event

Tracing for Windows (ETW) data in conjunction with

machine learning models to detect ransomware. ETW

enables detailed tracking of system and application

behavior, facilitating anomaly detection. However, the

framework’s success is highly dependent on the quality

and completeness of the collected ETW data. In

addition, implementing the system at scale presents

challenges related to real-time processing and

performance overhead.

Table 1. A Summary of the existing work.

Ref Authors Method Dataset used Accuracy/ Evaluation metric

[10] Damodaran et al.
HMMs on static and dynamic features (API,

opcode sequences)
A mix of malware family and benign AUC is obtained for separate malware family

[19] Moskovitch et al.
Static n-gram opcode representation for

classification

VX Heaven+campus machine benign

files (~30,000)

99% accuracy was observed for 15% of

malicious files

[27] Singh et al.
ML classifiers (decision tree, RF); confusion

matrix analysis

Kaggle Microsoft malware

classification challenge
99% accuracy (potential overfitting)

[3] Akbanov et al.
Static+dynamic analysis with SDN detection

(WannaCry ransomware)
WannaCry instance Not reported

[29] Subedi et al.
Static analysis+reverse engineering of DLL-

function mappings
450 ransomware samples 70% accuracy

[4]
Amanowicz and

Jankowski
ML classifiers (SVM, MLP) on SDN

malicious flow detection
Lab-generated traffic (Metasploit,

Hydra, Hping3)
97% TPR

[12] Hossain and Islam
Memory dump

normalization+SMOTE+feature selection+ML
Obfuscated-MalMem2022 dataset More than 99% accuracy

[20] Nguyen et al.
Static+dynamic features (e.g., API logs,

opcodes)+deep learning
Cloud-based Malware Dataset 2024

(CMD_2024 dataset)

99.42% accuracy for Dynamic and Deep

Malware Detection (D2MD) model, 86.97%

accuracy for multi-class classification

[17] Maniriho et al.
multiple machine learning classifiers (like RF,
XGBoost, LightGBM) in a stacked ensemble

MemMal-d2024
accuracy of 98.82% and an F1-score of

98.72%

[14] Kalinkin et al. ETW+ML for ransomware detection 2 ransomware, 4 benign Highest precision of 0.98

[8] Celdran et al.
Device behavioral fingerprinting+kernel-level

event monitoring+machine learning classifiers

10 distinct malware samples (botnets,

rootkits, backdoors, ransomware,

Achieved up to 99.99% accuracy with

Artificial Neural Network. (ANN) classifiers

in supervised settings

Celdran et al. [8] introduced a modular detection framework that integrates device behavioral

1098 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

fingerprinting with machine learning techniques to

identify malware in IoT spectrum sensors. The

framework was empirically evaluated using the

ElectroSense platform, a practical and widely adopted

crowdsensing environment. Although the proposed

system demonstrated effective performance on

ElectroSense devices, its generalizability to other IoT

hardware and environments remains an area for future

exploration. The anomaly detection component, aimed

at identifying zero-day threats, achieved a True Positive

Rate (TPR) ranging from 88% to 90%, while the

malware classification module, focused on known

attacks, attained an F1-score between 94% and 96%.

Shamshirsaz et al. [25] propose a process

supervision/control-based malware detection

mechanism that forces activation of latent code paths

and monitors sensitive OS function calls, reporting

~98% accuracy.

Most existing research emphasizes main memory

analysis for malware detection but often overlooks the

impact of malware on system-level indicators such as

Windows Event Logs.

Table 1 presents a summary of earlier work,

categorized based on the methodology employed,

datasets utilized, and evaluation metrics reported.

It has been observed that the majority of existing

malware detection approaches are primarily based on

memory analysis. In contrast, relatively few studies

focus on utilizing Windows Event Log analysis for

malware detection. Moreover, none of the reviewed

works have attempted to precisely locate and analyze

the code sections of running processes. Given that

malware execution often results in artifacts within the

Windows Event Logs, there is a critical need to integrate

both code-level analysis and Event Log analysis to

enhance the effectiveness and reliability of malware

detection.

3. Proposed Approach

The proposed malware detection approach adopts a

dual-pronged strategy. The first component focuses on

identifying malicious code executing within the system

by performing code analysis on executable files mapped

into the system’s main memory. The second component

involves monitoring and identifying events indicative of

suspicious activity, such as unauthorized file access,

changes in file permissions, and previously flagged

malware-related behaviors. These two detection

mechanisms are integrated to generate alerts that notify

the user of a potential malware attack.

This section elaborates on the methodology for

locating the code section of executables associated with

active processes from the system’s main memory. It also

discusses the correlation of suspicious system events

and the overall system architecture designed to trigger

user alerts. Specifically, once the executable code is

located and extracted from the memory-resident image

of the process, it is compared against a database of

verified legitimate code and existing malware code. A

match with the existing malware code strongly indicates

the presence of malware. But if none of the code in the

database is matched then it suggests the presence of

potentially malicious or unauthorized code in memory.

Following this, system Event Logs particularly those

accessed via the Windows Event Viewer are examined

for activities consistent with malware behavior. If both

suspicious memory-resident code and corroborating

system events are identified, the system generates a

warning to inform the user of a possible malware

intrusion.

3.1. Detecting Code Section

Traditional antivirus software relies on known

signatures to detect malicious programs. However, this

approach fails when the malware’s signature is absent

from the antivirus database, allowing novel or

obfuscated threats to evade detection. To overcome this

limitation, it is essential to analyze the code section of

executable programs directly within the system’s main

memory. When an executable is loaded, the OS

generates multiple kernel-level data structures

associated with the process, such as the EPROCESS

block, Virtual Address Descriptors (VADs), and the

Page Table. These structures store critical information,

including virtual memory addresses and other attributes

necessary for identifying and locating process-specific

components in memory. Accessing these memory

structures requires translating virtual addresses into

corresponding physical addresses, enabling accurate

inspection of the data held in main memory and

supporting advanced malware detection techniques

beyond signature matching.

a) Key Data structures and their roles.

1. EPROCESS structure. The EPROCESS structure

plays a pivotal role in identifying the code section

of a PE file during memory analysis. In a dumped

memory image, this structure can typically be

located by searching for the American Standard

Code for Information Interchange (ASCII) string

“pro” or its hexadecimal representation

0x50726FE3. One of the key attributes within the

EPROCESS structure is VadRoot, which stores the

virtual address of the VAD tree. This tree structure

is essential for mapping the memory regions

allocated to a process, including those

corresponding to the code section of the loaded

executable. By traversing the VAD tree, forensic

tools can pinpoint the location of the PE code in

memory, enabling in-depth analysis for potential

malware.

2. VAD tree structure. The VAD tree is an essential

data structure used to identify memory-mapped files

associated with an active process in main memory.

Malware Detection through Memory Forensics and Windows Event Log Analysis 1099

Each node in the VAD tree contains several

attributes that facilitate the interpretation and

traversal of process memory regions. Among these

attributes,

• StartVpn and EndVpn: StartVpn attribute identify

the starting address of the first frame of a memory-

mapped file. EndVpn attributes identify the

starting address of the last frames of a memory-

mapped file.

• FirstProtoPte: this attribute holds the virtual

address of the Page Table associated with the

process.

• Subsection: this attribute points to the first

subsection structure, which represents a section of

the executable file mapped in memory.

3. Page Table. The Page Table holds the mapping

between virtual and physical memory addresses and

is responsible for storing the starting physical

address of the first memory frame associated with a

memory-mapped file. This address is crucial for

accessing and analyzing the physical memory

content corresponding to a specific virtual address

range.

4. Subsection structures. Each section of an executable

file that is mapped into memory is associated with a

corresponding subsection structure. These

subsection structures are integral to understanding

how the executable’s sections are organized and

managed in memory. Key fields within a subsection

include NextSubsection and PteInSubsection.

• NextSubsection: points to the next subsection

structure, thereby forming a linked sequence of

memory sections

• PteInSubsection: indicates the number of Page

Table Entries (PTEs) for the section. This value

reflects the number of memory frames allocated to

that section where one PTE corresponds to one

frame, two PTEs to two frames, and so forth.

These structures are essential for reconstructing

the memory layout of an executable during

memory forensics and for detecting anomalies

associated with malicious code injections.

b) Executable file sections in memory.

An executable file is composed of multiple sections,

each serving a distinct function in the execution and

management of the program. Among these, the Header

Section contains critical metadata about the file, such as

the file type, entry point, and section layout. In a 32-bit

Windows environment, this section typically occupies a

single memory frame, equivalent to 4 KB. Another

crucial component following header section is the code

section, which holds the actual machine-level

instructions that the microprocessor executes.

Identifying this section in main memory is essential for

performing code analysis, particularly in the context of

malware detection and reverse engineering. Accurate

extraction and interpretation of the code section enable

analysts to detect unauthorized modifications,

embedded malicious routines, or obfuscated

instructions within a potentially compromised

executable.

c) Relationship between memory structures.

Figure 1 illustrates the hierarchical relationship among

the EPROCESS, VAD, and Page Table structures in the

context of memory management for a running process.

When an executable is loaded, its code is mapped into

the frames in main memory. The EPROCESS structure,

contains the VadRoot attribute a pointer to the root of

the VAD tree. This tree is used to track the memory

regions allocated to the process. Each VAD node in the

tree represents a specific memory space allocated to a

file associated with a running process. Each VAD

contains attributes that assist in identifying the starting

and ending frames of the memory-mapped file. Through

these interconnected structures, it becomes possible to

locate and analyze the code section of an executable.

Figure 1. Relationship between various main memory structures.

d) Extracting executable code.

After identifying the number of memory frames that

contain the executable code and determining the

corresponding physical addresses of these frames, the

code within the code section can be extracted from

memory for detailed analysis.

3.2. Windows Events

Windows Event Logs maintain a comprehensive record

of system, security, and application-related events

generated by the Windows OS and the applications

running on it. These logs provide investigators with

critical information, such as the applications involved,

user login timestamps, and various system events

relevant for forensic analysis. Notably, even if antivirus

software fails to detect malware present on the system,

evidence of malicious activity can often be inferred

from specific Event Log entries.

Microsoft Windows registers certain events triggered

1100 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

by malware infections, which are recorded in the Event

Logs. These recorded events serve as valuable

indicators for detecting malware presence. Timely

monitoring and analysis of these events can

significantly mitigate the impact of malware by

enabling early detection and response. Table 2

enumerates some common Event IDs and descriptions

associated with malware activity.

Table 2. Malware related events.

Event ID Event

7045
Creation of a new service which enables remote access to the

target.

4670 Permission on any object changed.

1116 The anti-malware platform detected malware.

1006 The anti-malware engine detected malware.

1008

The anti-malware platform has attempted to perform an action to

protect your system from malicious software or other potentially

harmful software.

4798 APT actors have compromised local accounts on the system.

Digital forensic investigators must scrutinize these

events to identify suspicious behavior indicative of

compromise. When an event associated with malware is

detected, its presence can be corroborated by correlating

it with suspicious code extracted from the executable

file mapped in the running process’s memory, as

described in section 3.1. If both suspicious code and

malware-related events are identified, the presence of

malware actively running in main memory can be

confidently confirmed.

3.3. Software Architecture

To alert users of potential malware attacks on Windows-

based systems, a software architecture has been

proposed that integrates two primary detection

mechanisms: identification of suspicious code from the

executable program in main memory and detection of

malware-related events from the Windows Event Logs.

The architecture of the proposed system, illustrated in

Figure 2, comprises several functional modules,

including code extraction, code comparison, event

detection, and an alert generation module.

Figure 2. Software architecture of the proposed system.

In addition to these modules, the architecture

incorporates two databases: one for storing the known

legitimate code of running processes and code of the

existing malwares, and another for storing dumped

memory images for forensic analysis. This modular

design enables the system to perform real-time

correlation between memory-resident code anomalies

and Event Log patterns indicative of malware activity.

A description of each module in the architecture is

provided below.

a. Dump memory

This module of the proposed system is responsible for

periodically dumping the Windows main memory at

regular intervals, specifically every 10 minutes. The

resulting memory dump is then stored in the dumped

memory image database for subsequent analysis. Tools

such as DumpIt are utilized for this task, generating

memory images in the raw format, which preserves the

entire physical memory content of the system at the time

of capture. These memory dumps are essential for

enabling offline analysis of running processes, code

sections, and potential malware residing in memory.

b. Extract code.

The executable code of the file associated with a

running process is identified using the methodology

outlined in the relevant subsection on code detection.

Once the code section has been successfully located in

main memory, this module proceeds to extract the

corresponding code for further analysis. The extracted

code serves as a critical input for comparison against

known legitimate and malicious code patterns stored in

the code database, thereby facilitating the detection of

anomalies indicative of potential malware.

c. Compare code.

The extracted code is subsequently compared against

entries in the code database, which contains both the

original code of legitimate running processes and the

known code of existing malware. If the extracted code

matches that of a legitimate process, the system resumes

monitoring and initiates the next memory dump after a

10-minute interval, continuing the periodic analysis

cycle. This routine ensures ongoing surveillance of the

system’s memory state, enabling timely detection of any

deviations that may indicate malicious activity. If the

extracted code matches that of a malware code, then it

triggers alarm.

d. Check for suspicious event.

Events related to malware activity are identified and

extracted from the Windows Event Logs database.

When the extracted code from memory is determined to

be suspicious that is, it does not match any known

legitimate process or matches known malware the

system proceeds to analyze the Windows Event Logs for

any associated suspicious events. This correlation

between anomalous code and relevant system events

enhances the reliability of malware detection by

providing both behavioral and memory-based evidence

of compromise.

Malware Detection through Memory Forensics and Windows Event Log Analysis 1101

e. Give alarm.

This module is responsible for alerting the user of the

Windows-based computer system in the event of a

potential malware attack. If the extracted code is

determined to be malicious matching known malware

code the system immediately triggers an alarm to notify

the user. In cases where the code is suspicious, i.e., it

does not match either known legitimate processes or

known malware the system conducts a further analysis

by checking the Windows Event Log database for

malware-related events. If such events are detected in

conjunction with the suspicious code, the system raises

an alert, indicating a high likelihood of an active

malware presence in the main memory.

The pseudocode of the proposed approach is

presented in Algorithm (1).

Algorithm 1: Proposed approach to detect malware.

Initialize:

Set memory_dump_interval = 10 minutes

Load legitimate_code_db

Load malware_code_db

Load Windows_event_log_db

Loop:

For each memory_dump_interval do:

1. Dump main memory→memory_dump.raw

2. Extract code section

memory_dump.raw→extracted_code

3. Compare extracted_code with legitimate_code_db

If match_found:

Continue to next interval

Else:

4. Compare extracted_code with malware_code_db

If malware_match_found:

Trigger ALARM: "Malicious code detected!"

Continue to next interval

Else:

5. Analyze Windows_event_log_db for malware-related

events.

If suspicious_events_found:

Trigger ALARM: "Suspicious code+malicious events

detected!"

Else:

Log "Suspicious code, no associated events"

Continue to next interval

Key Function Descriptions of the pseudocode are as

follows:

• Dump main memory: uses tools like DumpIt to

capture system memory.

• Extract code section: identifies and isolates the code

section using EPROCESS, VAD, and Page Table

structures.

• Compare extracted_code: matches binary patterns or

hashes with entries in legitimate and malware code

databases.

• Analyze Windows_event_log_db: looks for Event IDs

typically associated with malware activity (e.g.,

privilege escalation, unauthorized file access, etc.).

• Trigger ALARM: notifies the user of potential

malware based on detection criteria.

The flowchart of the proposed approach is shown in

Figure 3.

Figure 3. Flowchart of the proposed approach.

3.4. Legal Implications of Live Memory

Acquisition and Analysis

Live memory acquisition and analysis, while crucial for

modern digital forensics and malware detection, present

several ethical issues most notably concerning privacy

and legal implications. During memory acquisition,

analysts can inadvertently access sensitive personal data

such as login credentials, open communications,

cryptographic keys, and private browsing sessions that

reside temporarily in main memory. This raises

significant privacy concerns, especially when such data

pertains to individuals not under investigation or when

consent has not been explicitly obtained. Furthermore,

the process may conflict with legal rights related to data

protection and unauthorized access, particularly under

regulations such as the General Data Protection

Regulation (GDPR) or the Computer Fraud and Abuse

Act (CFAA), Digital Personal Data Protection Act, 2023

(DPDP Act). In some jurisdictions, even well-

intentioned forensic investigations might be deemed

unlawful if proper legal authorization is not secured

beforehand. Thus, it is imperative for practitioners to

balance investigative objectives with strict adherence to

legal standards and ethical guidelines to ensure that

memory acquisition is performed responsibly,

transparently, and within the bounds of the law.

1102 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

4. Result

This section presents the experiments conducted to

detect the code sections of executable programs mapped

in main memory, as well as the events triggered by

malware activity. It also details the training and testing

performed to evaluate the accuracy of the proposed

approach, employing various classifiers.

4.1. Experimentation

Experiments were conducted on 32-bit Windows 7 and

64-bit Windows 10 systems the most widely used OSs,

as identified in the survey presented by Pot [21] to

validate the proposed approach. The objective of these

experiments was to acquire memory dump images

containing both malicious and benign code, and to

detect events associated with the execution of malicious

code. As Ahmed and Aslam [2] have discussed memory

dumps were obtained using the DumpIt tool, which was

selected for its ability to reliably and completely capture

main memory content to disk. The resulting memory

dump files were saved with a raw extension.

To validate the technique for detecting code sections

of malware executing on Windows-based systems,

experiments were carried out using a sample process

hollowing executable, ProcessHollowing.exe, available

at [11]. This executable performs a process hollowing

attack by hollowing out the code section of the

legitimate svchost.exe process and replacing its memory

space with the image of helloworld.exe.

The following steps outline the experimental

procedure for detecting code sections:

1. ProcessHollowing.exe was executed on a Windows

system with several application programs open.

2. A memory dump was created using the DumpIt tool.

3. At the time of dumping, live memory analysis was

performed using Windows Debugger (WinDbg).

4. The physical address of memory structures such as

the VAD for the running svchost.exe process was

extracted using WinDbg.

5. The memory dump image was loaded into the

OSForensics tool for offline analysis.

6. The physical address of the VAD obtained from

WinDbg was used to locate the corresponding code

section within the dumped main memory.

As part of the evaluation, 10 memory dump images were

analyzed for each OS (Windows 7 and Windows 10) to

establish a correlation between process-specific

memory structures and the detection of code sections.

Additionally, during the execution of the hollowing

process (ProcessHollowing.exe), Windows Event Logs

were monitored for any security-relevant events. Table

3 provides the specifications of the test machine used in

the experiments.

The DumpIt tool was used to acquire a complete

snapshot of the Windows main memory. For live

memory analysis during execution, the WinDbg tool

was utilized. The acquired memory dumps were further

examined using the OSForensics tool.

Table 3. Test system.

OS Windows 7, 32-bit Windows 10, 64-bit Windows 10, 64-bit

Main

memory
2GB 8GB 16GB

Processor
Celeron 440
@2.0GHz

Intel(R) Core(TM) i3-

6006U CPU @

2.00GHz

Intel(R) Core(TM) i3-

6006U CPU @

2.00GHz

Figure 4 presents the VadRoot virtual address of the

svchost.exe process, extracted using WinDbg

commands. This address serves as the root of the VAD

tree, which represents the memory layout of a running

process. Each VAD node corresponds to a memory

region allocated to a file or module associated with the

process.

Figure 4. WinDbg snapshot of svchost.exe showing VadRoot.

Figure 5 illustrates the VAD entries for the

svchost.exe process. The highlighted entry indicates the

VAD corresponding to the executable file associated

with svchost.exe, which was hollowed out and

overwritten by the malicious ProcessHollowing.exe.

The memory protection for this region was modified to

EXECUTE_READWRITE by the hollowing process to

allow code injection.

Figure 5. WinDbg snapshot of svchost.exe VAD tree structure.

Figure 6 shows a snapshot of ProcessHollowing.exe

writing to various sections of the svchost.exe executable

in main memory. The address of the hollowed-out VAD

region was validated through comparative analysis, as

demonstrated in Figures 7 and 8.

The physical address range corresponding to the

specific VAD for the svchost.exe executable is

determined to be from 0x00480000 to 0x0048D000,

which matches the address range shown in Figure 6.

This range is derived by appending four 0000 to the

Malware Detection through Memory Forensics and Windows Event Log Analysis 1103

values of the ‘start’ and ‘end’ fields highlighted in

Figure 5. The address 0x00480000 marks the beginning

of the first memory frame containing the svchost.exe

file, while 0x0048D000 indicates the starting address of

the last frame associated with the same file. On a 32-bit

OS, the first page of a VAD typically consists of a 4KB

header section. Consequently, the code section (i.e., the

.text section) begins at address 0x00481000. During

process hollowing, this original code section is

overwritten with malicious code.

Figure 6. Process hollow snap injecting code in svchost.exe image

on Window 7.

Figure 7 presents a snapshot of the first page of the

original code section of the svchost.exe executable,

starting at address 0x00481000, as captured using the

OSForensics tool. In contrast, Figure 8 displays the

corresponding snapshot after the code section has been

modified through process hollowing. A comparative

analysis of the two snapshots reveals clear

discrepancies, confirming that the code within the code

section of svchost.exe differs significantly before and

after the hollowing process. This observation validates

the effectiveness of identifying malicious activity

through code comparison techniques.

Figure 7. OSForensic snap of original svchost.exe code section.

Figure 8. OSForensic snap of hollowed svchost.exe code section.

Figure 9. Event detected in event viewer.

Following the execution of ProcessHollowing.exe,

an event with Event ID 4798 is recorded in the Windows

Event Viewer, as shown in Figure 9. This event is

triggered when a process enumerates the local group

memberships associated with a specific user account on

the system. The logging of this event is critical in

detecting APT actors, as it indicates attempts to

investigate compromised user accounts an activity often

associated with lateral movement within a target

environment.

The ProcessHollowing.exe process has overwritten

the code section of the svchost.exe executable

associated with an active process in memory by

injecting the code of HelloWorld.exe. To facilitate this

modification, ProcessHollowing.exe altered the

underlying security principles that govern resource

1104 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

access and protection for services and users on the

system. Specifically, the memory protection attributes

of the physical frames holding the code section of the

svchost.exe process were modified to permit write

operations. This change in memory protection enabled

the injection of the malicious code into the previously

protected .text section of the executable.

Figure 10. A screenshot of process monitor showing svchost.exe memory protection flags altered on 64-bit Window 10.

Experiments were also conducted on a 64-bit

Windows 10 systems equipped with an Intel i3

processor (2 cores) and 8GB/16 GB of RAM. The

ProcessHollowing.exe was executed on this setup to

evaluate its impact. To monitor system behavior during

execution, Process Monitor part of the Sysinternals suite

was utilized for real-time observation of active

processes. As shown in Figure 10, the svchost.exe

process was compromised during the execution of

ProcessHollowing.exe. Notably, the memory protection

flags associated with the code section of svchost.exe

were altered to PAGE_EXECUTE_READWRITE,

enabling unauthorized modification and execution of

injected code within the previously protected memory

region.

4.2. System Resource Utilization and

Performance Overhead

We evaluated the impact and feasibility of memory

dumping and Event Log analysis for detecting malicious

activity across 3 different system configurations. The

systems included:

1. 32-bit Windows 7 with 2 GB RAM and Celeron 440

processor.

2. 64-bit Windows 10 with 8 GB RAM and an Intel i3

dual-core processor.

3. 64-bit Windows 10 with 16 GB RAM and an Intel i3

dual-core processor.

Memory acquisition was performed using the DumpIt

tool, which captured the entire contents of main memory

into a binary dump file. The size of the memory dump

varied according to the system’s physical RAM, ranging

from approximately 1.8 GB on the Windows 7 system

to 16 GB on the higher-end Windows 10 machine.

Following acquisition, analysis was carried out using

forensic tools such as WinDbg, and OSForensics to

examine the contents of the dump, particularly focusing

on the code section of the svchost.exe process to detect

signs of process hollowing. Additionally, Windows

Event Viewer was employed to analyze security and

system logs, capturing relevant Event IDs that correlate

with suspicious behavior. Resource consumption,

including Central Processing Unit (CPU) usage,

memory overhead, and storage impact, was monitored

throughout the process to assess system performance.

Table 4. Performance of different system configurations.

Parameter 32-bit Win 7, 2GB RAM, Celeron 440 64-bit Win 10, 8GB RAM, i3 (2-core) 64-bit Win 10, 16GB RAM, i3 (2-core)

Memory dump tool used DumpIt DumpIt DumpIt

Avg. CPU usage (dumping) 20–25% 15–30% 10–20%

Memory overhead (dumping) ~100–150 MB ~200–400 MB ~300–500 MB

Dump file size ~1.5–1.8 GB ~7.5–8.0 GB ~15–16 GB

Analysis tool used WinDbg/OSForensics/Process monitor WinDbg/OSForensics/Process monitor WinDbg/OSForensics/Process monitor

Avg. CPU usage (analysis) 30–40% 25–35% 20–30%

Memory usage (analysis) ~1.2 GB ~1.5–2.0 GB ~2.0–2.5 GB

Event Log tool used Event Viewer Event Viewer Event Viewer

CPU usage (event analysis) 10–15% 10–20% 10–20%

Storage usage (logs) ~100–200 MB ~300–400 MB ~400–600 MB

System responsiveness Moderate-Low Moderate High (minimal lag)

The results confirmed that while lower-end systems

experienced noticeable slowdowns and higher CPU

loads, mid and high-end configurations maintained

stable performance during the memory forensic and log

Malware Detection through Memory Forensics and Windows Event Log Analysis 1105

analysis operations. Table 4 shows the comparative

performance of 3 different system configurations.

High system responsiveness was observed on the 64-

bit Windows 10 system equipped with 16 GB RAM and

an Intel i3 dual-core processor. In contrast, the 32-bit

Windows 7 system with 2 GB RAM and a Celeron 440

processor exhibited moderate to low responsiveness,

while the 64-bit Windows 10 system with 8 GB RAM

and an i3 dual-core processor showed moderate

performance. These results suggest that the proposed

approach is best suited for higher-end system

configurations, where adequate memory and processing

power ensure smooth execution of memory acquisition

and analysis tasks.

4.3. Testing and Training

To validate the effectiveness of the proposed approach,

we trained several machine learning models, including

SVM, RF, Gaussian naive bayes, and decision tree

classifier. The performance of these models was

assessed using two key evaluation metrics: Accuracy

and F-measure. The primary objective was to identify

the most suitable model for malware classification

based on these performance indicators.

For experimentation, two datasets were utilized: the

CIC-MalMem-2022 dataset [31], which contains

labeled malware samples, and a combination of the

EVTX-ATTACK-SAMPLES dataset [24] (representing

malicious events) and a publicly available Windows

Event Log dataset [15] (representing non-malicious

events).

The CIC-MalMem-2022 dataset comprises 58,596

instances across 57 features, including 29,231 benign

and 28,831 malicious samples. The malicious samples

are further categorized into three major classes:

Ransomware, Spyware, and Trojan horse, making it a

comprehensive resource for malware classification

research.

a. Data pre-processing.

Standard pre-processing procedures were applied prior

to model training. Invariant features those that did not

contribute meaningful information to the classification

task were eliminated. The remaining numerical features

were normalized using min-max scaling to ensure a

consistent value range across all inputs. Additionally,

the categorical class labels were label-encoded,

assigning ‘0’ to benign samples and ‘1’ to malicious

samples. The dataset was complete and free of missing

values, eliminating the need for imputation.

b. Evaluation criteria.

To evaluate the effectiveness of the classifiers, a set of

standard performance metrics was employed, including

the confusion matrix, accuracy, precision, recall, and

F1-score. Each of these metrics provides a unique

perspective on different aspects of model performance

and is defined as follows:

• Confusion matrix: a tabular representation that

summarizes the predicted outcomes versus the actual

outcomes for a binary classification task. It

comprises four categories:

• True Positives (TPs): malware instances correctly

classified as malware.

• True Negatives (TNs): benign instances correctly

classified as benign.

• FPs: benign instances incorrectly classified as

malware.

• FNs: malware instances incorrectly classified as

benign.

• Accuracy: represents the ratio of correctly predicted

instances (both benign and malicious) to the total

number of instances. It is a general measure of

overall model performance.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

• Precision: indicates the proportion of correctly

identified malware samples among all instances that

were predicted as malware. It reflects the model’s

ability to avoid FPs.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

• Recall (sensitivity): measures the model’s ability to

correctly identify actual malware instances. It is the

proportion of true malware samples correctly

classified as such.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• F1-score: a harmonic mean of precision and recall,

providing a balanced measure of the classifier’s

ability to detect malware, particularly when the

dataset has imbalanced class distributions.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Table 5 presents a detailed comparative evaluation of

each classifier, reporting the values for accuracy,

precision, recall, and F1-score. All performance metrics

range from 0 to 1, with values closer to 1 indicating a

higher degree of predictive accuracy and reliability.

These metrics collectively demonstrate each model’s

capability to distinguish between benign and malicious

instances effectively. Figures 11 and 12 shows the

confusion matrix and ROC curve obtained from the

malware dataset, respectively.

Table 5. Evaluation of classifier on malware dataset.

Classifier name Accuracy Precision F1-score Recall

SVM 0.9956 0.99 1.00 1.00

RF classifier 0.9999 1.00 1.00 1.00

Naive bayes classifier 0.9919 0.99 1.00 1.00

Decision tree classifier 0.9992 0.99 1.00 1.00

(1)

(2)

(3)

(4)

1106 The Inte rnational Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Figure 11. Confusion matrix for malware dataset.

a) Training and testing losses.

b) Training and testing accuracies.

c) Training and testing AUC scores.

Figure 12. ROC curve on malware dataset.

The results of this study demonstrate the superior

performance of the RF classifier in accurately detecting

and classifying malware within the CIC-MalMem-2022

dataset. This finding underscores the potential of RF as

a reliable model for enhancing cybersecurity systems by

facilitating the development of more effective and

resilient malware detection mechanisms.

Table 6. Statistics of evtx_attack_samples dataset.

Malicious Event In % of dataset

Execution 13

Persistence 9

DefenseEvasion, execution 7

DefenseEvasion 12

Initial Access 1

NA 1

Discovery 1

Privilege escalation 21

Credential access 11

Lateral movement 16

Command and control 4

Additionally, the EVTX-ATTACK-SAMPLES

dataset, comprising 4,633 rows and 326 columns,

contains a wide range of Event Log entries associated

with malicious activities. These entries capture evidence

of various attack behaviors recorded during system

execution. Table 6 presents the statistical distribution of

key malicious event types identified within this dataset.

Figure 13. Accuracy of RF classifier.

Figure 14. Feature importance.

For effective model training and evaluation, the

EVTX_ATTACK_SAMPLES dataset [24] was merged

with the Windows Event Log dataset [15], resulting in a

preprocessed combined dataset containing 6,960 rows

and 338 features. The merged dataset was then

partitioned into 60% for training and 40% for testing. A

RF classifier was employed to build the malware

detection model. The model was trained on the training

subset and subsequently evaluated on the test subset. To

assess the model’s performance comprehensively, key

evaluation metrics were utilized, including accuracy,

precision, recall, F1-score, and the confusion matrix.

Figure 13 shows the accuracy of the RF classifier on

event dataset. Figure 14 shows the feature importance.

The RF classifier demonstrated strong overall

performance, achieving an accuracy of 95%, precision

of 88%, recall of 91%, and an F1-score of 90%. These

Malware Detection through Memory Forensics and Windows Event Log Analysis 1107

results indicate that RF is highly effective in

distinguishing between benign and malicious events

with a high degree of reliability. Its robust performance

can be attributed to its ensemble-based architecture,

which minimizes overfitting and enhances

generalization. The model also offers a well-balanced

trade-off between precision and recall, making it a

reliable choice for classification tasks where

computational cost is acceptable.

In comparison, the decision tree classifier, known for

its simplicity and interpretability, yielded slightly lower

performance metrics, with an accuracy of 93%,

precision of 86%, recall of 87%, and an F1-score of

86%. These results highlight a modest decline in

detection capability, underscoring the trade-off between

model complexity and classification effectiveness.

a) Confusion matrix (binary). b) ROC curve (binary).

Figure 15. Confusion matrix and ROC curve on event dataset.

The findings from the event-based analysis further

support the superior performance of the RF model in

accurately detecting both malicious and non-malicious

events within the combined dataset. Figure 15 shows the

confusion matrix and ROC curve obtained from the

merged event dataset. Table 7 provides a comprehensive

evaluation of each classifier based on key performance

metrics, including accuracy, precision, recall, and F1-

score, on the merged dataset comprising malicious and

benign Event Logs.

Table 7. Evaluation of classifier on event dataset.

Classifier name Accuracy Precision F1-score Recall

SVM 0.91 0.83 0.81 0.79

RF classifier 0.95 0.88 0.90 0.91

Naive bayes classifier 0.81 0.75 0.76 0.84

Decision tree classifier 0.93 0.86 0.86 0.87

By analyzing and correlating the outcomes of

training and testing phases on both malware code

datasets and Windows Event Log datasets, the study

demonstrates that the RF classifier exhibits high

predictive accuracy in identifying the presence of

malware on a computer system.

4.4. Impact of False Positives and True

Negatives in Malware Detection

Accurate malware detection is paramount for

maintaining system security and preserving user trust.

Two critical performance outcomes FPs and TNs have

significant implications in practical deployment

scenarios.

a. Impact of FPs.

FPs occur when benign files or behaviours are

incorrectly classified as malicious. Although such errors

do not reflect a real threat, they can severely affect user

experience and system operations. High FP rates may

result in:

• Operational disruptions: legitimate applications may

be blocked or quarantined, affecting critical system

functions and user workflows.

• Decreased user trust: users may lose confidence in

the detection system, particularly when frequent

alerts turn out to be non-malicious, leading to alert

fatigue and the potential neglect of real threats.

• Resource wastage: investigating false alarms

consumes time and resources, both for automated

systems and human analysts.

In contrast, state-of-the-art tools like traditional

signature-based antivirus software often exhibit

relatively low FP rates due to their reliance on known

patterns. However, this comes at the cost of limited

detection capability for zero-day and obfuscated threats,

as such tools fail to generalize effectively to new

malware variants.

b. Importance of TNs.

TNs represent correctly identified non-malicious

instances. While often overlooked in performance

reporting, a high TN rate is essential for:

• Ensuring system stability: allowing legitimate

processes to execute without interruption preserves

the integrity and usability of the system.

• Reinforcing user confidence: consistently correct

classifications build trust in the detection

mechanism.

1108 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

• Balancing sensitivity and specificity: high TN rates

indicate good specificity, a necessary balance to high

sensitivity TPR to prevent overwhelming the system

with false alarms.

State-of-the-art machine learning-based malware

detectors often aim to increase sensitivity, sometimes at

the expense of specificity, leading to higher FP rates.

The proposed hybrid approach in this study, which

integrates memory-based evidence with Windows Event

Log analysis, aims to reduce FPs while maintaining high

TN and TPRs by leveraging contextual behavioural

information.

While maximizing detection accuracy is vital, the

balance between FPs and TNs determines the real-world

usability and reliability of a malware detection system.

Compared to existing tools, our proposed approach

offers a more nuanced and behaviour-aware detection

mechanism, potentially reducing FPs and improving

overall user trust without compromising detection

capability.

5. Conclusions

The paper described an approach to detect the code

section of the running process in the main memory. The

various memory structures to locate the code section is

identified and their relationship is established. An

approach to detect the presence of malware in the main

memory is proposed, which is based on the events

associated with the malware execution on the computer

system along with the suspicious code detected in the

main memory. A software architecture based on the

detection of the suspicious code in the main memory

and the event associated with the malware has been

proposed to detect malware presence in the main

memory

If the antivirus software is unable to detect malicious

code running in the main memory, then the presence of

malicious code can be detected by the hybrid approach.

The proposed approach has been validated by carrying

out the experimentation. The training and testing carried

out specified that the hybrid approach gives good

accuracy for the detection of the malware using RF

classifier.

Future Work Direction

The primary goal of the proposed approach is to

accurately detect the presence of malware by extracting

executable code from the system’s main memory,

comparing the code against a curated database of known

benign and malicious samples, and correlating it with

pertinent Event Log entries. To extend this research into

a practical tool, a modular development plan has been

envisioned. The development process of the proposed

tool will be executed in multiple structured phases, each

elaborated as follows.

a. The initial phase involves designing the system

architecture, selecting Windows as the target

platform for prototype implementation, and

identifying essential data sources namely memory

dumps and system-generated Event Logs. A critical

step in this phase is the creation of a comprehensive

code signature database. Malicious code samples are

to be sourced from open repositories such as

VirusShare and MalwareBazaar, while benign

software is collected from trusted platforms like

GitHub and SourceForge.

b. Next, the memory acquisition and analysis module

are to be developed. System memory will be captured

using forensic tools such as DumpIt or WinPMEM,

and analyzed using Volatility3. A custom Volatility3

plugin will be implemented to detect the code

sections of running processes and extract the

corresponding executable code. The code extracted is

then hashed using algorithms like SHA-256 to

generate unique hash for comparison.

c. In parallel, an Event Log analysis module is to be

implemented. Logs are to be collected using tools

such as wevtutil or the Windows Event Log API, with

a focus on security-relevant events including process

creation (Event ID 4688), user logon (4624),

PowerShell execution (4104), and service installation

(7045). These logs are filtered, normalized, and

structured to enable efficient querying and

correlation.

d. A correlation engine is to be built to link memory-

resident code artifacts specifically, the hash of

contents in code section from running processes with

relevant Event Log entries. This is achieved by

aligning shared metadata such as timestamps and

Process Identifiers (PIDs), enabling the

reconstruction of execution traces indicative of

malicious behavior. A comparison engine will

subsequently matche these hashes against the

precompiled code signature database. Optionally,

machine learning models trained on labeled datasets

of malicious and benign code may be integrated to

improve classification accuracy.

e. To improve usability, a web-based interface will be

developed using frameworks such as Flask (backend)

and React (frontend). This interface will enable

remote invocation of the memory acquisition and

analysis module, Event Log analysis, correlation

engine, and comparison engine in a sequential and

automated manner. Dashboards will present insights

on suspicious processes, memory-event correlations,

and detection outcomes. Reporting features will

support export in formats such as JSON and PDF,

facilitating integration with broader incident

response workflows.

f. The final phase will involve comprehensive testing in

controlled sandbox environments, using both known

malware samples and legitimate applications. This

Malware Detection through Memory Forensics and Windows Event Log Analysis 1109

testing will assess detection accuracy, processing

efficiency, and the tool’s impact on system resources.

In order to minimize the latency between malware

execution and detection, the efficiency of key tasks such

as locating and extracting code sections from memory,

performing log analysis, and executing correlation

mechanisms must be improved. Techniques such as

multithreading can be employed to perform tasks in

parallel, including the detection of code sections from

running processes and the identification of malicious

events. This parallelization will significantly enhance

the responsiveness of the system, enabling more timely

alerts and improving the overall effectiveness of real-

time detection.

Individuals with malicious intent often deploy

malware to steal sensitive information, disrupt system

functionality, and conduct various other harmful

activities. Traditional antivirus solutions are limited in

their effectiveness against newly emerging malware

strains, as they rely on frequent updates to their

signature databases for detection. The proposed

approach aims to address this limitation by enabling the

detection of malware based on memory-based analysis

and event-based analysis, thereby providing a more

robust and proactive defense mechanism independent of

malware signature updates.

References

[1] Ahlegren F., Local and Network Ransomware

Detection Comparison, Bachelor Thesis, Blekinge

Institute of Technology, 2019. http://www.diva-

portal.org/smash/get/diva2:1333153/FULLTEXT

02.pdf

[2] Ahmed W. and Aslam B., “A Comparison of

Windows Physical Memory Acquisition Tools,” in

Proceedings of the IEEE Military

Communications Conference, Tampa, pp. 1292-

1297, 2015.

https://ieeexplore.ieee.org/document/7357623

[3] Akbanov M., Vassilakis V., and Logothetis M.,

“Ransomware Detection and Mitigation Using

Software-Defined Networking: The Case of

WannaCry,” Computers and Electrical

Engineering, vol. 76, pp. 111-121, 2019.

https://doi.org/10.1016/j.compeleceng.2019.03.0

12

[4] Amanowicz M. and Jankowski D., “Detection and

Classification of Malicious Flows in Software-

Defined Networks Using Data Mining

Techniques,” Sensors, vol. 21, no. 9, pp. 1-24,

2021. https://doi.org/10.3390/s21092972

[5] Baker K., CrowdStrike, 10 Malware Detection

Techniques, https://www.crowdstrike.com/en-

us/cybersecurity-101/malware/malware-

detection/, Last Visted, 2025.

[6] Baker K., CrowdStrike, History of Ransomware,

https://www.crowdstrike.com/cybersecurity-

101/ransomware/history-of-ransomware, Last

Visited, 2025.

[7] Beck C., Boumezoued A., Cherkaoui Y., Pradat E.,

and Fleisher B., “Modeling Financial Losses from

a Ransomware Attack Using a Causal Approach,”

Milliman White Paper, 2023.

https://www.milliman.com/en/insight/modeling-

financial-losses-from-ransomware-attack

[8] Celdran A., Sanchez P., Castillo M., Bovet G., and

et al., “Intelligent and Behavioral-based Detection

of Malware in IoT Spectrum Sensors,”

International Journal of Information Security, vol.

22, no. 3, pp. 541-561, 2023.

https://doi.org/10.1007/s10207-022-00602-w

[9] Cyber5w, Windows Event Log Analysis,

https://blog.cyber5w.com/eventlog-analysis, Last

Visited, 2025.

[10] Damodaran A., Troia F., Visaggio C., Austin T.,

and Stamp M., “A Comparison of Static,

Dynamic, and Hybrid Analysis for Malware

Detection,” Journal of Computer Virology and

Hacking Techniques, vol. 13, pp. 1-12, 2017.

https://doi.org/10.1007/s11416-015-0261-z

[11] GitHub, Process-Hollowing Executables, 2016,

https://github.com/m0n0ph1/Process-

Hollowing/tree/master/executables, Last Visited,

2025.

[12] Hossain M. and Islam M., “Enhanced Detection of

Obfuscated Malware in Memory Dumps: A

Machine Learning Approach for Advanced Cyber

Security” Cybersecurity, vol. 7, pp. 1-23, 2024.

https://doi.org/10.1186/s42400-024-00205-z

[13] JPCERT, Event Log Talks a Lot: Identifying

Human-Operated Ransomware through Windows

Event Logs,

https://blogs.jpcert.or.jp/en/2024/09/windows.ht

ml, Last Visited, 2025.

[14] Kalinkin A., Golub S., Korkin I., and Pyatovskiy

D., “Ransomware Detection Based on Machine

Learning Models and Event Tracing for

Windows,” IT Security, vol. 29, no. 3, pp. 82-93,

2024. DOI: 10.26583/bit.2022.3.07

[15] Katara M., Kaggle, Windows Event Log Dataset,

https://www.kaggle.com/datasets/mehulkatara/wi

ndows-event-log, Last Visited, 2025.

[16] Mahanta R. and Kumar R., “Utilizing Windows

Event Logs for Malware Detection Using Machine

Learning,” IET Conference Proceedings, vol.

2024, no. 23, pp. 19-27, 2024.

https://doi.org/10.1049/icp.2024.4396

[17] Maniriho P., Mahmood A., and Chowdhury M.,

“MeMalDet: A Memory Analysis-based Malware

Detection Framework Using Deep Autoencoders

and Stacked Ensemble Under Temporal

Evaluations,” Computers and Security, vol. 142,

pp. 103864, 2024.

https://doi.org/10.1016/j.cose.2024.103864

[18] Mohamed K. and Azher M., “Malware Detection

http://www.diva-portal.org/smash/get/diva2:1333153/FULLTEXT02.pdf
http://www.diva-portal.org/smash/get/diva2:1333153/FULLTEXT02.pdf
http://www.diva-portal.org/smash/get/diva2:1333153/FULLTEXT02.pdf
https://ieeexplore.ieee.org/document/7357623
https://doi.org/10.1016/j.compeleceng.2019.03.012
https://doi.org/10.1016/j.compeleceng.2019.03.012
https://doi.org/10.3390/s21092972
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/malware-detection/
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/malware-detection/
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/malware-detection/
https://www.crowdstrike.com/cybersecurity-101/ransomware/history-of-ransomware
https://www.crowdstrike.com/cybersecurity-101/ransomware/history-of-ransomware
https://www.milliman.com/en/insight/modeling-financial-losses-from-ransomware-attack
https://www.milliman.com/en/insight/modeling-financial-losses-from-ransomware-attack
https://doi.org/10.1007/s10207-022-00602-w
https://blog.cyber5w.com/eventlog-analysis
https://doi.org/10.1007/s11416-015-0261-z
https://github.com/m0n0ph1/Process-Hollowing/tree/master/executables
https://github.com/m0n0ph1/Process-Hollowing/tree/master/executables
https://doi.org/10.1186/s42400-024-00205-z
https://blogs.jpcert.or.jp/en/2024/09/windows.html
https://blogs.jpcert.or.jp/en/2024/09/windows.html
https://doi.org/10.26583/bit.2022.3.07
https://www.kaggle.com/datasets/mehulkatara/windows-event-log
https://www.kaggle.com/datasets/mehulkatara/windows-event-log
https://doi.org/10.1049/icp.2024.4396
https://doi.org/10.1016/j.cose.2024.103864

1110 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Techniques,” in Proceedings of the 4th Novel

Intelligent and Leading Emerging Sciences

Conference, Giza, pp. 349-353, 2022.

https://ieeexplore.ieee.org/abstract/document/994

2395

[19] Moskovitch R., Feher C., Tzachar N., and Berger

E., and et al., “Unknown Malcode Detection

Using OPCODE Representation,” in Proceedings

of the European Conference on Intelligence and

Security Informatics, Esbjerg, pp. 204-215, 2008.

https://doi.org/10.1016/j.cose.2018.11.001

[20] Nguyen P., Huy T., Tuan T., Trung P., and Long H.,

“Hybrid Feature Extraction and Integrated Deep

Learning for Cloud-based Malware Detection,”

Computers and Security, vol. 150, pp. 104233,

2025. https://doi.org/10.1016/j.cose.2024.104233

[21] Pot J., Digital Trends, Windows 10 Leaps Ahead

of 7 among Steam Gamers, 2016,

https://www.digitaltrends.com/computing/steam-

users-windows-10-market-share/, Last Visited,

2025.

[22] Reshma Sri T. and Kumar Yogi M., “An

Investigative Study on Malware Signatures,”

Journal of Information Security System and Cyber

Criminology Research, vol. 1, no. 2, pp. 20-29,

2024.

https://matjournals.net/engineering/index.php/JoI

SSCCR/article/view/615

[23] Santangelo G., Colacino V., and Marchetti M.,

“Analysis, Prevention and Detection of

Ransomware Attacks on Industrial Control

Systems,” in Proceedings of the International

Symposium on Network Computing and

Applications, Boston, pp. 1-5, 2021.

https://ieeexplore.ieee.org/document/9685713

[24] Sbousseaden, GitHub, EVTX_ATTACK_SAMPLES,

https://github.com/sbousseaden/EVTX-

ATTACK-SAMPLES, Last Visited, 2025.

[25] Shamshirsaz B., Asghari S., and Marvasti M., “An

Improved Process Supervision and Control

Method for Malware Detection,” The

International Arab Journal of Information

Technology, vol. 19, no. 4, pp. 652-659, 2022.

https://doi.org/10.34028/iajit/19/4/9

[26] Shaukat K., Luo S., and Varadharajan V., “A Novel

Deep Learning-based Approach for Malware

Detection,” Engineering Applications of Artificial

Intelligence, vol. 122, pp. 106030, 2023.

https://doi.org/10.1016/j.engappai.2023.106030

[27] Singh P., Kaur S., Sharma S., Sharma G., and et

al., “Malware Detection Using Machine

Learning,” in Proceedings of the International

Conference on Technological Advancements and

Innovations, Tashkent, pp. 11-14, 2021.

https://ieeexplore.ieee.org/abstract/document/967

3465

[28] Sophos, Interesting Windows Event IDs-

Malware/General Investigation,

https://support.sophos.com/support/s/article/KBA

-000006797?language=en_US, Last Visited,

2025.

[29] Subedi K., Budhathoki D., and Dasgupta D.,

“Forensic Analysis of Ransomware Families

Using Static and Dynamic Analysis,” in

Proceedings of the Security and Privacy

Workshops, San Francisco, pp. 180-185, 2018.

https://ieeexplore.ieee.org/document/8424649

[30] Ucci D., Aniello L., and Baldoni R., “Survey of

Machine Learning Techniques for Malware

Analysis,” Computers and Security, vol. 81, pp.

123-147, 2019.

https://doi.org/10.1016/j.cose.2018.11.001

[31] UNB, Malware Memory Analysis CIC-MalMem-

2022, https://www.unb.ca/cic/datasets/malmem-

2022. html, Last Visited, 2025.

[32] Vehabovic A., Ghani N., Bou-Harb E., Crichigno

J., and Yayimli A., “Ransomware Detection and

Classification Strategies,” in Proceedings of the

IEEE International Black Sea Conference on

Communications and Networking, Sofia, pp. 316-

324, 2022.

https://ieeexplore.ieee.org/document/9858296

Dinesh Patil is an Associate

Professor of Computer Engineering at

Vidyavardhini’s College of

Engineering and Technology, Vasai.

He received his PhD in Computer

Engineering from Mumbai

University, Mumbai, India in 2020.

His research interests include: Digital Forensics and

Computer Security.

Akshaya Prabhu is an Assistant

Professor in the Department of

Artificial Intelligence and Machine

Learning at D. J. Sanghvi College of

Engineering, Mumbai. She received

her M.E. in Computer Engineering

from Savitribai Phule Pune

University (SPPU), Pune, in 2015. Her research

interests include: Medical Image Processing, Deep

Learning and AI.

https://ieeexplore.ieee.org/abstract/document/9942395
https://ieeexplore.ieee.org/abstract/document/9942395
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1016/j.cose.2024.104233
https://www.digitaltrends.com/computing/steam-users-windows-10-market-share/
https://www.digitaltrends.com/computing/steam-users-windows-10-market-share/
https://matjournals.net/engineering/index.php/JoISSCCR/article/view/615
https://matjournals.net/engineering/index.php/JoISSCCR/article/view/615
https://ieeexplore.ieee.org/document/9685713
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES
https://doi.org/10.34028/iajit/19/4/9
https://doi.org/10.1016/j.engappai.2023.106030
https://ieeexplore.ieee.org/abstract/document/9673465
https://ieeexplore.ieee.org/abstract/document/9673465
https://support.sophos.com/support/s/article/KBA-000006797?language=en_US
https://support.sophos.com/support/s/article/KBA-000006797?language=en_US
https://ieeexplore.ieee.org/document/8424649
https://doi.org/10.1016/j.cose.2018.11.001
https://www.unb.ca/cic/datasets/malmem-2022.%20html
https://www.unb.ca/cic/datasets/malmem-2022.%20html
https://ieeexplore.ieee.org/document/9858296

