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Abstract: This Internet of Things (IoT)-based real-time data collection and analysis system enhances the productivity of 

agriculture. The use of IoT sensors in monitoring soil conditions optimizes the agricultural methods to resolve problems such as 

wasteful resource consumption and high operating costs resulting from the lack of accurate, current data and the manual 

interventions made in the entire process. These data are subjected to pre-processing, including normalization, which normalizes 

the data scale, and noise filtering to eliminate inaccuracies. Statistical measures are used to calculate the mean, median, 

skewness, and kurtosis of the data. Feature extraction is applied to derive meaningful insights from the data. Fused Red Piranha 

Grey Wolf Optimization (FRPGW) algorithm determines the relevant features that can be applied to the accurate models. Crop 

productivity and drought conditions are predicted by the Hybrid Artificial Long Short-Term Memory (HALSTM) model. It 

improves resource management, decision-making, and productivity in farms. 
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1. Introduction 

Agriculture has been the backbone of human 

civilization, providing basic resources for survival and 

economic development. However, traditional farming is 

confronted with numerous challenges in a world where 

issues related to climate change, resource scarcity, and 

growing population pressure all demand more efficient 

and sustainable agricultural methods [1]. The highest 

obstacles to optimal farming are the mismanagement of 

resources, lack of timely observation, and lower 

predictive accuracy besides having a high cost of 

operations; these occur because the realistic continuous 

data is not yet available and it calls for human 

interventions [4, 5]. The inclusion of Internet of Things 

(IoT) in farmlands marks an extremely revolutionary 

step that can beat those problems besides upgrading 

farm productivity and efficiency in relation to 

sustainability [12]. Smart IoT-based farming systems 

use these advanced sensors with connectivity in relation 

to continually sensing critical parameters for soil 

moisture and temperature across farms [6, 7]. This real-

time data will give farmers unmatched insight into their 

environment, improved decision-making capabilities, 

resource optimization, and effective farm management 

[9]. 

IoT technology makes resource efficiency in 

agriculture much better because it uses optimal water. 

Conventional farming wastes a lot of water; however, 

IoT sensors can measure the right moisture levels in the 

soil to create proper irrigation strategies [10, 13]. This 

optimization does not waste water and prevents  

 
problems such as soil erosion and plant stress. In 

addition, temperature and humidity sensors monitor 

microclimatic conditions and provide crop protection 

against the adverse effects of bad weather and disease 

attacks [15, 16]. Pre-processing ensures accuracy and 

relevance by standardizing scales for normalized values 

and eliminating inaccuracies from noise before 

uploading into databases for use in data-driven analytics 

[18, 19]. Then it proceeds with extracting subsequent 

features and computes mean, median, skewness, and 

kurtosis of data, so as to infer data patterns required for 

predicting the crop productivity as well as other issues 

like drought [20, 21]. 

One of the most important processes that can 

improve the accuracy of the above-mentioned models of 

prediction is feature selection. For the purpose of 

selecting most relevant characteristics, it uses state-of-

the-art optimization techniques [22, 23]. For efficient 

and robust feature selection, the algorithms introduce 

numerous optimization strategies. The models will 

obtain higher accuracy and reliability by concentrating 

on the most relevant elements. This is where the final 

stage of the intelligent agricultural system comes in 

place for classification and prediction with advanced 

predictive models [25, 32]. These models combine 

various neural network topologies for discovering 

complex patterns in data. These components, combined 

in neural networks, give the ability to handle sequential 

data, long-term dependencies, and learn from history. 

Integration of all of them offers very powerful 

equipment in predicting crop yield, anomaly detection, 
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and useful insights in gaining [28]. One important 

advance in making smart agricultural systems for 

agriculture is the integration of IoT sensors. Such 

systems would thus have the capacities to enhance 

decision-making, resource management, and 

agricultural productivity, using real-time data, advanced 

analytics, and predictive modeling [30]. Thus, IoT-

based smart farming will be of utmost importance due 

to the need to have an increase in food production that 

can only ensure an environment-friendly productive 

agricultural future. 

The following benefits will result from integrating 

the suggested approach into the farms’ present 

workflow: 

1.1. Advantages 

• Better decision making: with accurate crop 

productivity and drought conditions prediction, the 

farmer can better make informed decisions to allocate 

his resources rationally. 

• Efficiency: manual intervention interference is 

reduced, thus saving time and labor with predictive 

automation. 

• Optimized use of resources: better predictions ensure 

that waste is minimized through proper irrigation and 

fertilizer application. 

• Long-term sustainability: better data-driven insights 

result in practices which lead to sustainable farming 

and yield over the long term. 

1.2. Disadvantages 

• Data dependence: this model requires strong, 

coherent, and reliable data from IoT sensors that may 

not always be available or credible in a rural 

environment. 

• Complexity: introducing such a model into 

traditional workflows could also require a lot of 

training on farmers’ part. 

• Cost of implementation: initial setup costs for IoT 

sensors, data infrastructure, and model deployment 

may be high. 

1.3. Study Limitations 

While the proposed Fused Red Piranha Grey Wolf 

Optimization (FRPGW) model demonstrates superior 

performance in weed detection using the Indian states 

dataset on agricultural crop yield, several limitations 

should be acknowledged to provide context for the 

scope and applicability of the findings: 

• Geographical scope: the dataset primarily covers 

Indian states from 1997 to 2020. Thus, the model’s 

performance and conclusions may not generalize 

well to other countries or regions with different 

climatic conditions, soil types, agricultural practices, 

or crop management systems. 

• Crop diversity: although multiple crops are included 

in the dataset, the model has not been explicitly tested 

across a broad variety of crop types or weed species 

outside those represented. Therefore, the adaptability 

of the model to other crop-weed ecosystems remains 

uncertain. 

• Temporal constraints: the data spans over two 

decades but does not account for potential recent 

changes in farming technologies or environmental 

shifts post-2020, which might affect model accuracy 

if applied in current or future scenarios without 

retraining. 

• Environmental and agronomic variables: the model 

relies on available agronomic and environmental 

features such as rainfall, fertilizer use, and pesticide 

application, but may not capture other influential 

factors like soil microbiome dynamics or pest 

pressures, limiting comprehensive generalization. 

• Computational constraints: the implementation and 

validation were performed on a specific 

computational platform and using a particular feature 

set, which may impact replicability and performance 

under different hardware or data conditions. 

Addressing these limitations in future work through the 

inclusion of more diverse datasets, real-time data 

incorporation, and cross-regional validations would 

enhance the robustness and generalizability of the 

model. 

The following represents this paper’s contributions, 

• This work presents an IoT-based smart farming 

system that boosts agricultural efficiency with real-

time data, improving resource management and 

prediction accuracy. 

• This work uses IoT sensors for real-time data 

collection and employs pre-processing techniques 

like normalization and noise filtering to ensure 

accuracy. 

• This work leverages FRPGW optimization algorithm 

for feature selection, effectively identifying the most 

relevant features to improve the accuracy of 

predictive models. 

• This work applies Hybrid Artificial Long Short-Term 

Memory (HALSTM) model for precise prediction 

and classification, combining Artificial Neural 

Network (ANN) with Long Short-Term Memory 

(LSTM) to capture complex patterns, ultimately 

optimizing resource management and boosting farm 

productivity and sustainability. 

This paper is structured as follows for the remainder of 

it. In section 2, a list of relevant works and an 

explanation of the issue are provided. The suggested 

methodology is shown and described in section 3. 

Section 4 presents the findings and discussion, and 

section 5 presents the conclusion. 
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2. Literature Review 

Alzubi and Galyna [2] used Artificial Intelligent (AI) 

and IoT technologies in farming alongside advanced 

computer science applications. Recently, there’s been a 

shift towards effectively utilizing these technologies. 

Agriculture, essential for millennia, is now integrating 

IoT for ecosystem monitoring and high-quality 

production. However, Smart Sustainable Agriculture 

(SSA) encounters challenges in IoT/AI deployment, 

data sharing, interoperability, and managing vast data. 

In the work of Kethineni and Gera [14], this attention 

mechanism is integrated into a Gated Recurrent Unit 

(GRU) neural network, hence resulting in an Attention-

based GRU (AGRU). This mechanism will enable the 

model to concentrate on the most relevant parts of the 

input sequence, thereby allowing it to identify and 

highlight important temporal patterns in the data. The 

AGRU model will improve the detection of anomalies 

or intrusions for IoT-based farming systems, thanks to 

the fact that different weights are given to attention at 

different time steps or features. In this way, the network 

will be able to select the most relevant information when 

it tries to decide what to do in order to determine 

anomalies. This results in better general performance 

and a higher accuracy of the intrusion detection process. 

Attention mechanism is not discussed in the work by 

Mahajan et al. [17], but it has been focused on how to 

improve the efficiency of IoT in smart farming using the 

Cross-Layer Internet of Things (CL-IoT) protocol. The 

proposed protocol enhances energy efficiency, 

computational efficiency, and Quality of Service (QoS) 

using CL clustering and optimal cluster head selection. 

Delays and energy consumption are reduced in this 

system with the aid of a nature-inspired algorithm for 

routing. The attention in this context can be viewed as 

the ability of the protocol to concentrate its efforts on 

those key parameters through the selection of optimal 

cluster heads and paths to route with priority to the most 

important elements of the system, that is, energy 

efficiency and computational efficiency, such that 

maximum final performance is achieved. 

Faid et al. [8] presented a flexible IoT framework for 

AI-powered smart farming. This low-cost, hybrid multi-

agent system offers real-time data and AI-based 

forecasts while continuously monitoring agricultural 

metrics. It has quick deployment and maintenance, a 

user-friendly online interface, and strong 

communication. 

Patrizi et al. [24] developed a Wireless Sensor 

Network (WSN) using low-cost, low-power Photvoltaic 

(PV)-powered sensor nodes to collect environmental 

and soil data. They tackled soil moisture sensor 

challenges by proposing an LSTM-based deep learning 

approach for a virtual soil moisture sensor, validated 

through performance comparisons with other learning-

based methods. 

Bouali et al. [3] proposed an integral Smart 

Agriculture (SA) solution addressing water scarcity and 

environmental impact due to unmonitored control and 

extensive fossil fuel use in irrigation. Along with the 

rapid population growth and increased food demand, 

optimal water-table and energy usage are essential for 

sustainable agriculture. The economical SA solution 

emphasizes intelligent irrigation, renewable energy 

integration, and smart water metering. 

Gebresenbet et al. [11] presented a concept for fully 

integrating digital technologies to improve future smart 

agricultural systems. The concept integrates smart data 

collection tools, AI analysis, edge/cloud computing, 

Blockchain, and data security systems. This approach 

promises increased data value, productivity, and 

innovative farm models, supporting the sector’s 

competitiveness and digital transformation. Future 

research directions are also outlined. 

Sengupta et al. [26] proposed IoT-enhanced device 

FarmFox, designed to merge traditional farming with 

advanced technology for sustainable agriculture. 

FarmFox is excellent at remote control, actual analysis 

for soil health monitoring, and real-time data collecting. 

Utilizing Arduino-based hardware, it offers a cost-

effective alternative to existing devices. The 

incorporation of turbidity and pH parameters into 

FarmFox has proven successful in monitoring soil 

health. Its real-life implementation is anticipated to 

provide a budget-friendly, smart solution for advancing 

sustainable agriculture. 

Sharma et al. [27] highlighted innovations such as 

high-throughput phenotyping, remote sensing, and 

AgroBots for automating harvesting, sorting, and weed 

detection, reducing costs and environmental impact. 

Advanced image segmentation aids accurate plant and 

fruit detection, while Differential Global Positioning 

System (DGPS) and sensing tools monitor soil and crop 

health. Case studies like Pacman and Pantheon 

showcase transformative impacts. Future 

advancements, including 5G/6G integration, must 

address scalability, real-time decision-making, and data 

privacy challenges. 

Vasudevan and Ekambaram [31] proposed a Hybrid 

Air Quality Prediction (HYAQP) system combining k-

means clustering with the Sine Cosine Algorithm 

(SCA). The integrated approach optimizes cluster 

centroids to classify air quality into three categories 

good, moderate, and poor enabling timely interventions 

and effective pollution management. 

2.1. Problem Statement 

A major problem in traditional farming practices is 

inefficient resource management, limited real-time 

monitoring, poor predictive accuracy, and high 

operational costs. These problems arise mainly from the 

lack of accurate, continuous data and the dependence on 

manual intervention processes. Inefficient use of water 

leads to wastage and a possibility of soil erosion, 
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whereas the lack of monitoring of environmental 

conditions such as temperature and humidity can cause 

damage due to diseases or unfavourable weather 

conditions. Moreover, the inability to accurately predict 

crop productivity and issues such as drought conditions 

exacerbates the inefficiencies. These problems thus 

hinder optimization in agricultural practice, making it 

difficult to reach sustainable and productive farming 

outcomes. 

3. Proposed Methodology 

An IoT-based smart farming system collects, monitors, 

and analyses data in real time for efficient agriculture. 

Traditional farming faces a lot of issues in resource 

management, insufficient real-time monitoring, low 

accuracy in prediction, and high operating costs. The 

main reasons for these issues are the dependency on 

manual intervention approaches and also the lack of 

accurate and continuous data. An IoT-based smart 

farming solution is proposed herein to solve the 

aforementioned issues in a multi-phase manner. 

3.1. Pre-Processing 

3.1.1. Normalization 

The data collected requires pre-processing to ensure it is 

suitable for analysis. One crucial stage in this process is 

normalization, which standardizes the scale of the 

collected data, allowing for consistent comparisons 

across features measured on different scales (see Figure 

1 for the overall proposed architecture). 

 

Figure 1. Overall proposed architecture. 

It thus allows each feature to have equal 

contributions through standardizing the values 

measured in different scales into a common one. This 

also helps prevent any particular feature from 

overwhelmingly influencing the model, thereby 

ensuring data integrity. In this context, data 

standardization was critical, as the input originated from 

multiple sensors using different units. Standardizing it 

enables meaningful and accurate comparisons based on 

factual values. 

3.1.2. Noise Filtering 

Noise filtering helps in improving data quality by 

removing those data points, which are either not 

accurate or contain errors in the dataset. It therefore 

involves finding and removal of noise and outliers that 

may distort the study and result in invalid conclusions. 

In IoT-based smart farming, such aberrations may be 

witnessed in data coming from sensors due to either 

environmental conditions or sensor malfunction. Noise 

filtering ensures that the dataset going through further 

analysis is clean and reliable, hence improving the 

accuracy of predictive models and general decision-

making processes. 

3.2. Feature Extraction 

The next step is feature extraction; whereby useful 

information is extracted from the pre-processed data. 

The following statistical metrics are involved: 

3.2.1. Mean 

The mean, or average, describes central tendency by 

sum total divided by count, but it is skewed by outliers, 

so it’s always important to consider other measures like 

the median and mode for a complete analysis. The mean 

of a set of data is denoted by 𝑥̅ and is given using 

Equation (1). 

𝑥̅ =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 

3.2.2. Median 

The median is the middle value of a sorted dataset, 

which is insensitive to outliers. For odd-numbered 

observations, it’s the value at position (n+1)/2. For even-

numbered datasets, it’s the average of the two central 

values, based on ascending or descending order. 

3.2.3. Skewness 

Skewness is a metric used to quantify how 

asymmetrically values are distributed within a 

collection. The following is the formula to determine 

skewness: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
3 × (𝑚𝑒𝑎𝑛 − 𝑚𝑒𝑑𝑖𝑎𝑛)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

Equation (2) multiplies the mean-median difference by 

three and divides by the standard deviation. 

3.2.4. Kurtosis 

One can compute kurtosis, a measure of a distribution’s 

tailedness, by dividing the fourth-order moment by the 

population’s raised-to-fourth power standard deviation. 

(1) 

(2) 



Enhancing Smart Farming with IoT Sensors Using FRPGW and HALSTM for Accurate Predictions                                    1087 

It reflects how often outliers occur, with excess kurtosis 

indicating tailedness relative to a normal distribution. 

The formula for calculating kurtosis (K) is given as per 

Equation (3). 

𝑘 =

1
𝑛
∑ (𝑥𝑖 − 𝑥̅)

4𝑛
𝑖=1

𝜎4
 

3.3. Features Election 

By identifying the most pertinent elements of the 

dataset, it is crucial to increase the prediction models’ 

accuracy. 

3.3.1. FRPGW 

Grey wolves follow a strict social hierarchy in their 

packs. Alphas are the dominant pair that leads in 

decision-making. Betas assist and possibly become 

alphas. Gamma submits to all and serve as scapegoats, 

crucial for pack harmony. Subordinates include scouts, 

sentinels, elders, hunters, and caretakers, each with 

specific roles. Group hunting is when they track, chase, 

and attack their prey collaboratively. This hierarchical 

structure ensures effective pack functioning and 

exemplifies the importance of cooperation and 

discipline in wolf societies. Red Piranha Optimization 

(RPO) is inspired from the hunting behavior of red 

piranha fish and has three phases: Encircling, searching, 

and attacking. With “prey encircling” and “frenzy” 

signals to make a synchronized frenzy for capturing the 

prey, scouts guide the swarm. 

3.3.1.1. Prey Searching 

A protected flock of red piranha fish is formed in the 

search phase, with weaker individuals in the centre and 

more powerful scouts on the outside. Scouts keep an eye 

on the environment in search of prey, guiding the group 

to surround that prey. The group then follows an attack-

then-escape strategy. Integrating the hunting behavior of 

grey wolves improves the algorithm by combining the 

searching technique of the piranha with coordinated 

wolf tactics. In nature, wolves hunt in groups where 

alpha, beta, and delta wolves lead the way and the rest 

of the pack follows them. Similarly, in RPO, scouts are 

guiding the search in order to enhance exploration, 

which also helps avoid getting stuck in a local optimum. 

Combination of the above strategies gives a more robust 

optimization algorithm that results in better solutions. 

According to the proposed Equations (4) to (6), RPO 

makes advantage of this collective intelligence to 

improve its capacity for exploration, enabling it to move 

around the search space more effectively and stay out of 

local optima. 

𝑑𝑝𝑚𝛼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |𝑐 1𝑋 𝛼 − 𝑋𝑝𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗|,  𝑑𝑝𝑚𝛽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |𝑐 2𝑋 𝛽 − 𝑋𝑝𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗|, 𝑑𝑝𝑚𝛾⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

= |𝑐 3𝑋 𝛾 − 𝑋𝑝𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗| 

𝑋𝑝𝑚1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑋 𝛼 − 𝑎 1 ∙ 𝑑𝑝𝑚𝛼,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑋𝑝𝑚2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑋 𝛽 − 𝑎 2 ∙ 𝑑𝑝𝑚𝛽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑋𝑝𝑚3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

= 𝑋 𝛾 − 𝑎 3 ∙ 𝑑𝑝𝑚𝛾⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑋𝑝𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡 + 1) =
𝑋𝑝𝑚1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑋𝑝𝑚2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑋𝑝𝑚3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

3
 

3.3.1.2. Prey Encircling  

The search region is randomly searched by scouts in 

RPO, and when a prey is found, alpha fish emit a Prey 

Encircling Signal (PES) to initiate encirclement. A 

logarithmic spiral is employed during the encircling 

phase to guide the movement in the direction of the prey. 

In order to improve RPO performance, position update 

will be dependent on the distance from the predicted 

prey and optimize exploitation utilizing Equations (7) to 

(10). 

𝑋𝑝𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) =
1

𝑓

(

 
∑ 𝑥1𝑖
𝑓
𝑖=1

∑ 𝑥2𝑖
𝑓
𝑖=1…

∑ 𝑥𝑢𝑖
𝑓
𝑖=1 )

  

𝑑 = |𝑋𝑝𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑋𝑝𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡)| 

𝑋𝑝𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡 + 1) = 𝑑 ∙ 𝑒𝑏𝑙𝑠 𝑐𝑜𝑠(2𝜋𝑙𝑠) + 𝑋𝑝𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) 

𝑙𝑠 = 1 −
2𝑡

𝑧𝑒𝑛𝑐
 

3.3.1.3. Prey Attacking  

When the encircling phase is completed, the victim is 

fully surrounded. The herd now struggles to reach the 

prey in the assault phase initiated by alpha fish. Search 

agents’ positions are updated according to distance and 

the estimated position of prey. 

𝑑𝑝𝑚⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗ = |𝑐 𝑋𝑝𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑋𝑝𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡)| 

𝑋𝑝𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡 + 1) = 𝑋𝑝𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑎 ∙ 𝑑𝑝𝑚⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗ 

𝑎 = 2𝑔 ∙ 𝑟𝑣1⃗⃗ ⃗⃗ ⃗⃗  − 𝑔  

𝑐 = 2 ∙ 𝑟𝑣2⃗⃗ ⃗⃗ ⃗⃗   

𝑔 = 2 − 𝑡 ∗
2

𝑧𝑎𝑡𝑡
 

3.4. Prediction and Classification 

In this research work, there are prediction and 

classification as the major elements for analyzing and 

predicting agricultural metrics. This includes the 

following method: 

3.4.1. HALSTM 

This is the HALSTM model applied in this research 

work for prediction and classification tasks. The 

proposed HALSTM model has combined strengths in 

both the ANN and LSTM networks, in capturing 

complex patterns within the data. The ANN is very 

effective at modeling complex nonlinear relationships, 

while the LSTM is good at handling sequential data and 

thus making it suitable for time-series prediction. By 

fusing these two models, HALSTM can manage IoT 

data complexities for an accurate prediction. The model 

significantly improves the prediction accuracy and 

(3) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(5) 

(4) 

(6) 
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stability of the smart farming system, thus guaranteeing 

better resource management and decision-making. 

• Input Layer 

This layer receives raw data or features and passes it to 

hidden layers for computation, and it contains one 

neuron for every feature. No computation occurs in this 

layer. 

• Hidden Layers 

Hidden layers are those that perform core computations 

in a neural network and process inputs with weights, 

activation functions, and outputs depending on the 

complexity, as calculated using Equation (16). 

𝑎𝑖𝑗 = 𝑓(∑𝑤𝑖𝑘𝑎𝑖𝑘 + 𝑏𝑖𝑗

𝑛𝑖−1

𝑘=1

) 

The output of each neuron in a hidden layer is calculated 

using a weighted sum of inputs and a bias term. 

• Output Layer 

The neural network’s final output is determined by the 

output layer, with neurons tailored to the problem type. 

LSTM-based Recurrent Neural Networks (RNNs) 

excel at capturing long-term dependencies in sequences, 

making them ideal for time-series and NLP tasks due to 

their memory blocks. 

• Input layer: receives sequential-data input.  

• Hidden layer: contains LSTM units responsible for 

processing and retaining information.  

• Output layer: creates the final product using the 

information that has been processed. 

LSTM replaces the basic units of regular RNNs with 

memory cells, which allow them to retain information 

over long sequences. LSTM units have three main gates: 

input gate, forget gate, and output gate. 

• Input gate: regulates how fresh data enters the 

memory cell. 

• Forget gate: selects the data from the memory cell to 

remove.  

• Output gate: adjusts the output according to the 

input’s previous state and present value. 

The activation of each LSTM unit at time lt is calculated 

using Equation (17): 

𝑙𝑡 = 𝜎(𝑤𝑚𝑖,𝑙 ∙ 𝑥𝑡 +𝑤𝑚ℎ,𝑙 ∙ 𝑙𝑡−1 + 𝑏𝑖) 

Where, lt and lt-1 represent the activation at time 

respectively, σ is a non-linear activation function, wmi,l 

is the input-hidden weight matrix, wmh,l is the hidden-

hidden weight matrix, bi is the hidden bias vector, and 

xt is the input at time t. LSTM networks excel at 

capturing long-term dependencies in sequential data. 

They mitigate the problem of gradient vanishing, 

allowing for more effective learning over longer 

sequences.  

4. Result and Discussion  

4.1. Experimental Setup 

The proposed model is implemented using the Python 

platform. After that, it is compared to other models that 

are already in use, such Particle Swarm Optimization 

(PSO), Grey Wolf Optimization (GWO), and RPO. The 

efficacy of the suggested model in weed identification 

may be assessed by contrasting performance measures 

including accuracy, precision, F1-score, and recall, 

which will reveal why it is better than existing 

techniques. 

The proposed FRPGW model was implemented 

using Python with TensorFlow and Keras libraries. The 

model combines feature-rich preprocessing with an 

optimized deep learning framework for weed detection. 

The training process and architecture configuration are 

detailed below: 

4.1.1. Model Architecture 

Input Layer: Accepts time-series input windows of size 

10 (i.e., data from 10 consecutive time steps). 

• LSTM layers: two stacked LSTM layers with 128 

and 64 units, respectively, used to capture long-term 

dependencies in the temporal data. 

• Dense layers: two fully connected layers with 64 and 

32 neurons, followed by a final output layer. 

4.1.2. Activation Functions 

• LSTM layers: tanh (default) 

• Dense layers: ReLU 

• Output layer: sigmoid (for binary classification) 

• Dropout: dropout layers with a rate of 0.3 were 

applied after each LSTM layer to prevent overfitting. 

4.1.3. Training Configuration 

• Optimizer: Adam optimizer with an initial learning 

rate of 0.001. 

• Loss function: binary Cross-Entropy. 

• Epochs: the model was trained for 100 epochs. 

• Batch size: 64. 

• Early stopping: implemented with a patience of 10 to 

halt training if no improvement in validation loss is 

observed. 

• Windowing technique: a sliding time-series window 

of size 10 with a stride of 1 was applied to transform 

sequential data into input samples. 

• Evaluation metrics: accuracy, precision, recall, and 

F1-score were used to evaluate and compare model 

performance. 

4.2. Data Collection 

Indian states dataset on agricultural crop yield [29]. 

Data on agricultural yields for several Indian states from 

1997 to 2020 are included in this collection. In addition 

(16) 

(17) 
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to key agronomic variables including area under 

cultivation, production volume, yearly rainfall, fertilizer 

and pesticide use, and crop type, year, season, and state, 

it includes data for several crops. Crop year, crop, state, 

season, area, annual rainfall, production, fertilizer, 

pesticides, and yield are the ten characteristics that make 

up the data set. Researchers may examine how various 

agricultural and environmental practices have caused 

differences in crop yields by using this data set to assess 

agriculture for yield prediction. Therefore, it may be 

even more beneficial to create machine learning models 

and comprehend how India’s agricultural production 

vary between regions and time periods. 

4.3. Proposed and Existing Model Overall 

Performance Analysis 

A detailed comparison of the performance of the 

proposed FRPGW model with the RPO, GWO, and PSO 

models is represented in Table 1. 

Table 1. Proposed and existing model performance analysis. 

Methods Accuracy Recall Precision F1-score 

RPO 0.80 0.80 0.86 0.84 

GWO 0.81 0.82 0.85 0.81 

PSO 0.83 0.81 0.87 0.82 

Proposed FRPGW 0.94 0.90 0.95 0.87 

The comparison is mainly based on four leading 

performance measures: Accuracy, recall, precision, and 

F1-score. 

• The number of precise forecasts, encompassing true 

positives and true negatives, as a percentage of all 

instances examined is known as accuracy. It is in the 

accuracy of the proposed FRPGW model, with a 

higher value of 0.94, surpassing RPO’s 0.80, GWO’s 

0.81, and PSO’s 0.83, showing the better ability to 

classify instances in the right classes and thus high 

improvement in generalization ability. 

• Precision is the ratio of correctly identified positive 

instances to the total positive instances predicted. 

The proposed FRPGW model outperforms with a 

precision of 0.95 compared to RPO’s 0.86, GWO’s 

0.85, and PSO’s 0.87. Higher the precision rate, 

better the FRPGW model is at reducing false positive 

rates. 

• Recall is the percentage of true positives that were 

predicted correctly. In this regard, by having a recall 

value equal to 0.90, FRPGW has better performance 

compared to the RPO, GWO, and PSO models. This 

improvement shows the greater ability of the 

FRPGW model in recognizing actual positive 

instances and decreasing false negatives. 

• The F1-score provides the harmonic mean for the 

precision and recall trade-off. Our FRPGW model 

provides an F1-score of 0.87, which is only slightly 

less than the obtained precision and recall and higher 

compared to RPO with a 0.84, GWO with a 0.81, and 

PSO with a 0.82. It shows that the model performs 

very well in accurately predicting the number of 

genuine positives, hence reducing the number of 

false positives and false negatives. 

The proposed FRPGW model has considerably raised 

performance on all metrics evaluated and hence proved 

effective and reliable in the task of weed detection. 

From the detailed analysis above, this model is more 

effective in delivering more accurate and dependable 

results compared to the approaches. 

4.4. Graphical Representation 

Figure 2 shows the comparison between the proposed 

model and the already existing models, namely, GWO, 

RPO, and PSO, based on four metrics: 

a) Accuracy: the proposed model outperforms others 

with a score of 0.94. 

b) Precision: the proposed model has the highest 

precision at 0.95. 

c) Recall: the proposed model leads with a score of 

0.90. 

d) F1-score: the proposed model maintains a balanced 

performance with a score of 0.87.  

4.5. Justification for Model Selection 

The choice of baseline models (PSO, GWO, RPO) was 

motivated by their widespread use and proven 

effectiveness in optimization-based classification and 

feature selection tasks in agricultural and image-

processing domains. These metaheuristic algorithms are 

known for their balance between exploration and 

exploitation, yet each has limitations: 

1. PSO may converge prematurely in complex, high-

dimensional search spaces. 

2. GWO often struggles with local optima due to 

limited diversity in later iterations. 

3. RPO, although more recent, lacks adaptive guidance 

for dynamic input conditions like crop variability and 

environmental features. 

To overcome these challenges, the FRPGW model was 

proposed. This hybrid leverages the adaptive 

intelligence of RPO and the strong leadership hierarchy 

of GWO to enhance search efficiency and convergence 

accuracy, especially for identifying subtle patterns in 

agricultural datasets like weed presence. 

4.6. Statistical Significance of Improvements 

While performance metrics (accuracy: 0.94, precision: 

0.95, recall: 0.90, F1-score: 0.87) indicate the 

superiority of the FRPGW model, statistical 

significance testing is essential to confirm that these 

improvements are not due to random variation. 

The higher precision (0.95) and recall (0.90) of the 

FRPGW model imply that it effectively balances 

minimizing false positives and false negatives-a critical 
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requirement in weed detection, where both under- and 

over-identification can harm yield and resource 

allocation. The F1-score of 0.87 confirms this balance. 

Moreover, the consistent performance across 

multiple metrics and visual graphs in Figure 2 supports 

the model’s generalization ability across different 

subsets of the dataset. 

 

  

a) Accuracy. b) Precision. 

  

c) Recall. d) F1-Score. 

Figure 2. Graphical representation of existing and proposed model. 

5. Conclusions 

By continuously gathering, monitoring, and analyzing 

data, an IoT based smart farming system used IoT 

technology to increase agricultural efficiency. Due to 

the lack of accurate, continuous data and reliance on 

manual procedures, traditional farming faced problems 

with resource management, real-time monitoring, 

prediction accuracy, and high operating expenses. The 

proposed system employs a multi-phase approach, using 

IoT sensors for real-time data on soil pH, temperature, 

humidity, light, and moisture. After that, the data 

underwent pre-processing, which involved noise 

reduction to get rid of errors and normalization to 

normalize scales. In order to extract useful insights, 

feature extraction involves computing statistical metrics 

including mean, median, skewness, and kurtosis. The 

most pertinent characteristics were found using the 

FRPGW optimization approach for feature selection in 

order to improve the prediction model’s accuracy. In 

order to detect intricate patterns and provide precise 

predictions of agricultural yield and drought conditions, 

the HALSTM model which combines ANN and LSTM 

was employed for prediction and classification. This 

comprehensive strategy improved decision-making, 

improved resource management, and raised agricultural 

output and sustainability. 
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