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Abstract: This Internet of Things (IoT)-based real-time data collection and analysis system enhances the productivity of
agriculture. The use of IoT sensors in monitoring soil conditions optimizes the agricultural methods to resolve problems such as
wasteful resource consumption and high operating costs resulting from the lack of accurate, current data and the manual
interventions made in the entire process. These data are subjected to pre-processing, including normalization, which normalizes
the data scale, and noise filtering to eliminate inaccuracies. Statistical measures are used to calculate the mean, median,
skewness, and kurtosis of the data. Feature extraction is applied to derive meaningful insights from the data. Fused Red Piranha
Grey Wolf Optimization (FRPGW) algorithm determines the relevant features that can be applied to the accurate models. Crop
productivity and drought conditions are predicted by the Hybrid Artificial Long Short-Term Memory (HALSTM) model. It
improves resource management, decision-making, and productivity in farms.
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1. Introduction

Agriculture has been the backbone of human
civilization, providing basic resources for survival and
economic development. However, traditional farming is
confronted with numerous challenges in a world where
issues related to climate change, resource scarcity, and
growing population pressure all demand more efficient
and sustainable agricultural methods [1]. The highest
obstacles to optimal farming are the mismanagement of
resources, lack of timely observation, and lower
predictive accuracy besides having a high cost of
operations; these occur because the realistic continuous
data is not yet available and it calls for human
interventions [4, 5]. The inclusion of Internet of Things
(IoT) in farmlands marks an extremely revolutionary
step that can beat those problems besides upgrading
farm productivity and efficiency in relation to
sustainability [12]. Smart loT-based farming systems
use these advanced sensors with connectivity in relation
to continually sensing critical parameters for soil
moisture and temperature across farms [6, 7]. This real-
time data will give farmers unmatched insight into their
environment, improved decision-making capabilities,
resource optimization, and effective farm management
[9].

IoT technology makes resource efficiency in
agriculture much better because it uses optimal water.
Conventional farming wastes a lot of water; however,
IoT sensors can measure the right moisture levels in the
soil to create proper irrigation strategies [10, 13]. This
optimization does not waste water and prevents

problems such as soil erosion and plant stress. In
addition, temperature and humidity sensors monitor
microclimatic conditions and provide crop protection
against the adverse effects of bad weather and disease
attacks [15, 16]. Pre-processing ensures accuracy and
relevance by standardizing scales for normalized values
and eliminating inaccuracies from noise before
uploading into databases for use in data-driven analytics
[18, 19]. Then it proceeds with extracting subsequent
features and computes mean, median, skewness, and
kurtosis of data, so as to infer data patterns required for
predicting the crop productivity as well as other issues
like drought [20, 21].

One of the most important processes that can
improve the accuracy of the above-mentioned models of
prediction is feature selection. For the purpose of
selecting most relevant characteristics, it uses state-of-
the-art optimization techniques [22, 23]. For efficient
and robust feature selection, the algorithms introduce
numerous optimization strategies. The models will
obtain higher accuracy and reliability by concentrating
on the most relevant elements. This is where the final
stage of the intelligent agricultural system comes in
place for classification and prediction with advanced
predictive models [25, 32]. These models combine
various neural network topologies for discovering
complex patterns in data. These components, combined
in neural networks, give the ability to handle sequential
data, long-term dependencies, and learn from history.
Integration of all of them offers very powerful
equipment in predicting crop yield, anomaly detection,
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and useful insights in gaining [28]. One important
advance in making smart agricultural systems for
agriculture is the integration of IoT sensors. Such
systems would thus have the capacities to enhance
decision-making, resource  management, and
agricultural productivity, using real-time data, advanced
analytics, and predictive modeling [30]. Thus, IoT-
based smart farming will be of utmost importance due
to the need to have an increase in food production that
can only ensure an environment-friendly productive
agricultural future.

The following benefits will result from integrating
the suggested approach into the farms’ present
workflow:

1.1. Advantages

e Better decision making: with accurate crop
productivity and drought conditions prediction, the
farmer can better make informed decisions to allocate
his resources rationally.

e Efficiency: manual intervention interference is
reduced, thus saving time and labor with predictive
automation.

e Optimized use of resources: better predictions ensure
that waste is minimized through proper irrigation and
fertilizer application.

e Long-term sustainability: better data-driven insights
result in practices which lead to sustainable farming
and yield over the long term.

1.2. Disadvantages

e Data dependence: this model requires strong,
coherent, and reliable data from IoT sensors that may
not always be available or credible in a rural
environment.

e Complexity: introducing such a model into
traditional workflows could also require a lot of
training on farmers’ part.

e Cost of implementation: initial setup costs for loT
sensors, data infrastructure, and model deployment
may be high.

1.3. Study Limitations

While the proposed Fused Red Piranha Grey Wolf
Optimization (FRPGW) model demonstrates superior
performance in weed detection using the Indian states
dataset on agricultural crop yield, several limitations
should be acknowledged to provide context for the
scope and applicability of the findings:

e Geographical scope: the dataset primarily covers
Indian states from 1997 to 2020. Thus, the model’s
performance and conclusions may not generalize
well to other countries or regions with different
climatic conditions, soil types, agricultural practices,
or crop management systems.

e Crop diversity: although multiple crops are included
in the dataset, the model has not been explicitly tested
across a broad variety of crop types or weed species
outside those represented. Therefore, the adaptability
of the model to other crop-weed ecosystems remains
uncertain.

e Temporal constraints: the data spans over two
decades but does not account for potential recent
changes in farming technologies or environmental
shifts post-2020, which might affect model accuracy
if applied in current or future scenarios without
retraining.

e Environmental and agronomic variables: the model
relies on available agronomic and environmental
features such as rainfall, fertilizer use, and pesticide
application, but may not capture other influential
factors like soil microbiome dynamics or pest
pressures, limiting comprehensive generalization.

e Computational constraints: the implementation and
validation were performed on a specific
computational platform and using a particular feature
set, which may impact replicability and performance
under different hardware or data conditions.

Addressing these limitations in future work through the
inclusion of more diverse datasets, real-time data
incorporation, and cross-regional validations would
enhance the robustness and generalizability of the
model.

The following represents this paper’s contributions,

e This work presents an loT-based smart farming
system that boosts agricultural efficiency with real-
time data, improving resource management and
prediction accuracy.

e This work uses IoT sensors for real-time data
collection and employs pre-processing techniques
like normalization and noise filtering to ensure
accuracy.

e This work leverages FRPGW optimization algorithm
for feature selection, effectively identifying the most
relevant features to improve the accuracy of
predictive models.

e This work applies Hybrid Artificial Long Short-Term
Memory (HALSTM) model for precise prediction
and classification, combining Artificial Neural
Network (ANN) with Long Short-Term Memory
(LSTM) to capture complex patterns, ultimately
optimizing resource management and boosting farm
productivity and sustainability.

This paper is structured as follows for the remainder of
it. In section 2, a list of relevant works and an
explanation of the issue are provided. The suggested
methodology is shown and described in section 3.
Section 4 presents the findings and discussion, and
section 5 presents the conclusion.
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2. Literature Review

Alzubi and Galyna [2] used Artificial Intelligent (Al)
and IoT technologies in farming alongside advanced
computer science applications. Recently, there’s been a
shift towards effectively utilizing these technologies.
Agriculture, essential for millennia, is now integrating
IoT for ecosystem monitoring and high-quality
production. However, Smart Sustainable Agriculture
(SSA) encounters challenges in IoT/Al deployment,
data sharing, interoperability, and managing vast data.

In the work of Kethineni and Gera [ 14], this attention
mechanism is integrated into a Gated Recurrent Unit
(GRU) neural network, hence resulting in an Attention-
based GRU (AGRU). This mechanism will enable the
model to concentrate on the most relevant parts of the
input sequence, thereby allowing it to identify and
highlight important temporal patterns in the data. The
AGRU model will improve the detection of anomalies
or intrusions for loT-based farming systems, thanks to
the fact that different weights are given to attention at
different time steps or features. In this way, the network
will be able to select the most relevant information when
it tries to decide what to do in order to determine
anomalies. This results in better general performance
and a higher accuracy of the intrusion detection process.

Attention mechanism is not discussed in the work by
Mahajan et al. [17], but it has been focused on how to
improve the efficiency of [oT in smart farming using the
Cross-Layer Internet of Things (CL-1oT) protocol. The
proposed protocol enhances energy efficiency,
computational efficiency, and Quality of Service (QoS)
using CL clustering and optimal cluster head selection.
Delays and energy consumption are reduced in this
system with the aid of a nature-inspired algorithm for
routing. The attention in this context can be viewed as
the ability of the protocol to concentrate its efforts on
those key parameters through the selection of optimal
cluster heads and paths to route with priority to the most
important elements of the system, that is, energy
efficiency and computational efficiency, such that
maximum final performance is achieved.

Faid et al. [8] presented a flexible loT framework for
Al-powered smart farming. This low-cost, hybrid multi-
agent system offers real-time data and Al-based
forecasts while continuously monitoring agricultural
metrics. It has quick deployment and maintenance, a
user-friendly ~ online  interface, and  strong
communication.

Patrizi et al. [24] developed a Wireless Sensor
Network (WSN) using low-cost, low-power Photvoltaic
(PV)-powered sensor nodes to collect environmental
and soil data. They tackled soil moisture sensor
challenges by proposing an LSTM-based deep learning
approach for a virtual soil moisture sensor, validated
through performance comparisons with other learning-
based methods.

Bouali et al. [3] proposed an integral Smart

Agriculture (SA) solution addressing water scarcity and
environmental impact due to unmonitored control and
extensive fossil fuel use in irrigation. Along with the
rapid population growth and increased food demand,
optimal water-table and energy usage are essential for
sustainable agriculture. The economical SA solution
emphasizes intelligent irrigation, renewable energy
integration, and smart water metering.

Gebresenbet ef al. [11] presented a concept for fully
integrating digital technologies to improve future smart
agricultural systems. The concept integrates smart data
collection tools, Al analysis, edge/cloud computing,
Blockchain, and data security systems. This approach
promises increased data value, productivity, and
innovative farm models, supporting the sector’s
competitiveness and digital transformation. Future
research directions are also outlined.

Sengupta et al. [26] proposed loT-enhanced device
FarmFox, designed to merge traditional farming with
advanced technology for sustainable agriculture.
FarmFox is excellent at remote control, actual analysis
for soil health monitoring, and real-time data collecting.
Utilizing Arduino-based hardware, it offers a cost-
effective  alternative to existing devices. The
incorporation of turbidity and pH parameters into
FarmFox has proven successful in monitoring soil
health. Its real-life implementation is anticipated to
provide a budget-friendly, smart solution for advancing
sustainable agriculture.

Sharma et al. [27] highlighted innovations such as
high-throughput phenotyping, remote sensing, and
AgroBots for automating harvesting, sorting, and weed
detection, reducing costs and environmental impact.
Advanced image segmentation aids accurate plant and
fruit detection, while Differential Global Positioning
System (DGPS) and sensing tools monitor soil and crop
health. Case studies like Pacman and Pantheon
showcase transformative impacts. Future
advancements, including 5G/6G integration, must
address scalability, real-time decision-making, and data
privacy challenges.

Vasudevan and Ekambaram [31] proposed a Hybrid
Air Quality Prediction (HYAQP) system combining k-
means clustering with the Sine Cosine Algorithm
(SCA). The integrated approach optimizes cluster
centroids to classify air quality into three categories
good, moderate, and poor enabling timely interventions
and effective pollution management.

2.1. Problem Statement

A major problem in traditional farming practices is
inefficient resource management, limited real-time
monitoring, poor predictive accuracy, and high
operational costs. These problems arise mainly from the
lack of accurate, continuous data and the dependence on
manual intervention processes. Inefficient use of water
leads to wastage and a possibility of soil erosion,
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whereas the lack of monitoring of environmental
conditions such as temperature and humidity can cause
damage due to diseases or unfavourable weather
conditions. Moreover, the inability to accurately predict
crop productivity and issues such as drought conditions
exacerbates the inefficiencies. These problems thus
hinder optimization in agricultural practice, making it
difficult to reach sustainable and productive farming
outcomes.

3. Proposed Methodology

An loT-based smart farming system collects, monitors,
and analyses data in real time for efficient agriculture.
Traditional farming faces a lot of issues in resource
management, insufficient real-time monitoring, low
accuracy in prediction, and high operating costs. The
main reasons for these issues are the dependency on
manual intervention approaches and also the lack of
accurate and continuous data. An loT-based smart
farming solution is proposed herein to solve the
aforementioned issues in a multi-phase manner.

3.1. Pre-Processing
3.1.1. Normalization

The data collected requires pre-processing to ensure it is
suitable for analysis. One crucial stage in this process is
normalization, which standardizes the scale of the
collected data, allowing for consistent comparisons
across features measured on different scales (see Figure
1 for the overall proposed architecture).

.= | IoT Sensors in Field
# Soil conditions, moisture,
temperature, etc.,

v

Data Acquisition
* Normalization
® Noise Filtering

v

'
[ Feature Extraction

* Meaningful teachers
>

“
Fused Red Piranha Gray
Wolf Optimization
.

v

Hybrid LSTM Model |
% ® Orop Productivity
® Drought condition )

Decision Support

* Optimized resource
management and farm
productivity

A

Figure 1. Overall proposed architecture.

It thus allows each feature to have equal
contributions through standardizing the values
measured in different scales into a common one. This
also helps prevent any particular feature from

overwhelmingly influencing the model, thereby
ensuring data integrity. In this context, data
standardization was critical, as the input originated from
multiple sensors using different units. Standardizing it
enables meaningful and accurate comparisons based on
factual values.

3.1.2. Noise Filtering

Noise filtering helps in improving data quality by
removing those data points, which are either not
accurate or contain errors in the dataset. It therefore
involves finding and removal of noise and outliers that
may distort the study and result in invalid conclusions.
In IoT-based smart farming, such aberrations may be
witnessed in data coming from sensors due to either
environmental conditions or sensor malfunction. Noise
filtering ensures that the dataset going through further
analysis is clean and reliable, hence improving the
accuracy of predictive models and general decision-
making processes.

3.2. Feature Extraction

The next step is feature extraction; whereby useful
information is extracted from the pre-processed data.
The following statistical metrics are involved:

3.2.1. Mean

The mean, or average, describes central tendency by
sum total divided by count, but it is skewed by outliers,
so it’s always important to consider other measures like
the median and mode for a complete analysis. The mean
of a set of data is denoted by X and is given using
Equation (1).

iz i (1)

n

X =
3.2.2. Median

The median is the middle value of a sorted dataset,
which is insensitive to outliers. For odd-numbered
observations, it’s the value at position (n+1)/2. For even-
numbered datasets, it’s the average of the two central
values, based on ascending or descending order.

3.2.3. Skewness

Skewness is a metric used to quantify how
asymmetrically values are distributed within a
collection. The following is the formula to determine

skewness:

Sk _ 3 x (mean — median) )
ewness = standard deviation

Equation (2) multiplies the mean-median difference by
three and divides by the standard deviation.

3.2.4. Kurtosis

One can compute kurtosis, a measure of a distribution’s
tailedness, by dividing the fourth-order moment by the
population’s raised-to-fourth power standard deviation.
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It reflects how often outliers occur, with excess kurtosis
indicating tailedness relative to a normal distribution.
The formula for calculating kurtosis (K) is given as per
Equation (3).

1 on _

SN — 0t

=0 - (3)

o

3.3. Features Election

By identifying the most pertinent elements of the
dataset, it is crucial to increase the prediction models’
accuracy.

3.3.1. FRPGW

Grey wolves follow a strict social hierarchy in their
packs. Alphas are the dominant pair that leads in
decision-making. Betas assist and possibly become
alphas. Gamma submits to all and serve as scapegoats,
crucial for pack harmony. Subordinates include scouts,
sentinels, elders, hunters, and caretakers, each with
specific roles. Group hunting is when they track, chase,
and attack their prey collaboratively. This hierarchical
structure ensures effective pack functioning and
exemplifies the importance of cooperation and
discipline in wolf societies. Red Piranha Optimization
(RPO) is inspired from the hunting behavior of red
piranha fish and has three phases: Encircling, searching,
and attacking. With “prey encircling” and “frenzy”
signals to make a synchronized frenzy for capturing the
prey, scouts guide the swarm.

3.3.1.1. Prey Searching

A protected flock of red piranha fish is formed in the
search phase, with weaker individuals in the centre and
more powerful scouts on the outside. Scouts keep an eye
on the environment in search of prey, guiding the group
to surround that prey. The group then follows an attack-
then-escape strategy. Integrating the hunting behavior of
grey wolves improves the algorithm by combining the
searching technique of the piranha with coordinated
wolf tactics. In nature, wolves hunt in groups where
alpha, beta, and delta wolves lead the way and the rest
of the pack follows them. Similarly, in RPO, scouts are
guiding the search in order to enhance exploration,
which also helps avoid getting stuck in a local optimum.
Combination of the above strategies gives a more robust
optimization algorithm that results in better solutions.
According to the proposed Equations (4) to (6), RPO
makes advantage of this collective intelligence to
improve its capacity for exploration, enabling it to move
around the search space more effectively and stay out of
local optima.

dpmg = |51)?,1 —mL dpmg = |Ez)?[; —m|,dpmy (@)
= |&X, — Xpm|

Xpmy =X, — d; - dpmg, Xpm, = )?ﬁ — dy - dpmg, Xpm;

()

=X, —dz - dpm,

Xpmy + Xpm, + Xpm;

: (6)

Xpm(t+1) =

3.3.1.2. Prey Encircling

The search region is randomly searched by scouts in
RPO, and when a prey is found, alpha fish emit a Prey
Encircling Signal (PES) to initiate encirclement. A
logarithmic spiral is employed during the encircling
phase to guide the movement in the direction of the prey.
In order to improve RPO performance, position update
will be dependent on the distance from the predicted
prey and optimize exploitation utilizing Equations (7) to

(10).

Z{=1 X1i

BN 1
Xprey(t) = ? Zlexzi (7)
2{=;xui
d = |Xprey(t) — Xpm(t)| (8)
Xpm(t + 1) = d - e?'s cos(2nls) + Xprey(t) €)]
2t
Is=1- o (10)

3.3.1.3. Prey Attacking

When the encircling phase is completed, the victim is
fully surrounded. The herd now struggles to reach the
prey in the assault phase initiated by alpha fish. Search
agents’ positions are updated according to distance and
the estimated position of prey.

dpm = |eXprey(t) — Xpm(t)| (11)
Xpm(t + 1) = Xprey(t) — d - dpm (12)
d=2g-7i g (13)
¢=2-17, (14)
2
=2—tx 15
g tr— (15)

3.4. Prediction and Classification

In this research work, there are prediction and
classification as the major elements for analyzing and
predicting agricultural metrics. This includes the
following method:

3.4.1. HALSTM

This is the HALSTM model applied in this research
work for prediction and classification tasks. The
proposed HALSTM model has combined strengths in
both the ANN and LSTM networks, in capturing
complex patterns within the data. The ANN is very
effective at modeling complex nonlinear relationships,
while the LSTM is good at handling sequential data and
thus making it suitable for time-series prediction. By
fusing these two models, HALSTM can manage loT
data complexities for an accurate prediction. The model
significantly improves the prediction accuracy and
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stability of the smart farming system, thus guaranteeing
better resource management and decision-making.

e Input Layer

This layer receives raw data or features and passes it to
hidden layers for computation, and it contains one
neuron for every feature. No computation occurs in this
layer.

e Hidden Layers

Hidden layers are those that perform core computations
in a neural network and process inputs with weights,
activation functions, and outputs depending on the
complexity, as calculated using Equation (16).

= (16)
a;=f (Z Wik Qi + bij>
=1

The output of each neuron in a hidden layer is calculated
using a weighted sum of inputs and a bias term.

e Output Layer

The neural network’s final output is determined by the
output layer, with neurons tailored to the problem type.

LSTM-based Recurrent Neural Networks (RNNs)
excel at capturing long-term dependencies in sequences,
making them ideal for time-series and NLP tasks due to
their memory blocks.

e Input layer: receives sequential-data input.

e Hidden layer: contains LSTM units responsible for
processing and retaining information.

e Output layer: creates the final product using the
information that has been processed.

LSTM replaces the basic units of regular RNNs with
memory cells, which allow them to retain information
over long sequences. LSTM units have three main gates:
input gate, forget gate, and output gate.

e Input gate: regulates how fresh data enters the
memory cell.

o Forget gate: selects the data from the memory cell to
remove.

e Output gate: adjusts the output according to the
input’s previous state and present value.

The activation of each LSTM unit at time /, is calculated
using Equation (17):

lp = a(wmy; - x, + wmy, - l,_q + bi) a7

Where, [, and /. represent the activation at time
respectively, o is a non-linear activation function, wm;,
is the input-hidden weight matrix, wmy,; is the hidden-
hidden weight matrix, bi is the hidden bias vector, and
x; is the input at time z. LSTM networks excel at
capturing long-term dependencies in sequential data.
They mitigate the problem of gradient vanishing,
allowing for more effective learning over longer
sequences.

4. Result and Discussion

4.1. Experimental Setup

The proposed model is implemented using the Python
platform. After that, it is compared to other models that
are already in use, such Particle Swarm Optimization
(PSO), Grey Wolf Optimization (GWO), and RPO. The
efficacy of the suggested model in weed identification
may be assessed by contrasting performance measures
including accuracy, precision, Fl-score, and recall,
which will reveal why it is better than existing
techniques.

The proposed FRPGW model was implemented
using Python with TensorFlow and Keras libraries. The
model combines feature-rich preprocessing with an
optimized deep learning framework for weed detection.
The training process and architecture configuration are
detailed below:

4.1.1. Model Architecture

Input Layer: Accepts time-series input windows of size
10 (i.e., data from 10 consecutive time steps).

e LSTM layers: two stacked LSTM layers with 128
and 64 units, respectively, used to capture long-term
dependencies in the temporal data.

e Dense layers: two fully connected layers with 64 and
32 neurons, followed by a final output layer.

4.1.2. Activation Functions

LSTM layers: tanh (default)

Dense layers: ReLU

Output layer: sigmoid (for binary classification)
Dropout: dropout layers with a rate of 0.3 were
applied after each LSTM layer to prevent overfitting,

4.1.3. Training Configuration

e Optimizer: Adam optimizer with an initial learning

rate of 0.001.

Loss function: binary Cross-Entropy.

Epochs: the model was trained for 100 epochs.

Batch size: 64.

Early stopping: implemented with a patience of 10 to

halt training if no improvement in validation loss is

observed.

e Windowing technique: a sliding time-series window
of size 10 with a stride of 1 was applied to transform
sequential data into input samples.

e Evaluation metrics: accuracy, precision, recall, and
F1-score were used to evaluate and compare model
performance.

4.2. Data Collection

Indian states dataset on agricultural crop yield [29].
Data on agricultural yields for several Indian states from
1997 to 2020 are included in this collection. In addition
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to key agronomic variables including area under
cultivation, production volume, yearly rainfall, fertilizer
and pesticide use, and crop type, year, season, and state,
it includes data for several crops. Crop year, crop, state,
season, area, annual rainfall, production, fertilizer,
pesticides, and yield are the ten characteristics that make
up the data set. Researchers may examine how various
agricultural and environmental practices have caused
differences in crop yields by using this data set to assess
agriculture for yield prediction. Therefore, it may be
even more beneficial to create machine learning models
and comprehend how India’s agricultural production
vary between regions and time periods.

4.3. Proposed and Existing Model Overall
Performance Analysis

A detailed comparison of the performance of the
proposed FRPGW model with the RPO, GWO, and PSO
models is represented in Table 1.

Table 1. Proposed and existing model performance analysis.

Methods Accuracy | Recall | Precision | Fl-score
RPO 0.80 0.80 0.86 0.84
GWO 0.81 0.82 0.85 0.81
PSO 0.83 0.81 0.87 0.82
Proposed FRPGW 0.94 0.90 0.95 0.87

The comparison is mainly based on four leading
performance measures: Accuracy, recall, precision, and
F1-score.

e The number of precise forecasts, encompassing true
positives and true negatives, as a percentage of all
instances examined is known as accuracy. It is in the
accuracy of the proposed FRPGW model, with a
higher value of 0.94, surpassing RPO’s 0.80, GWQO’s
0.81, and PSO’s 0.83, showing the better ability to
classify instances in the right classes and thus high
improvement in generalization ability.

e Precision is the ratio of correctly identified positive
instances to the total positive instances predicted.
The proposed FRPGW model outperforms with a
precision of 0.95 compared to RPO’s 0.86, GWO’s
0.85, and PSO’s 0.87. Higher the precision rate,
better the FRPGW model is at reducing false positive
rates.

e Recall is the percentage of true positives that were
predicted correctly. In this regard, by having a recall
value equal to 0.90, FRPGW has better performance
compared to the RPO, GWO, and PSO models. This
improvement shows the greater ability of the
FRPGW model in recognizing actual positive
instances and decreasing false negatives.

e The Fl-score provides the harmonic mean for the
precision and recall trade-off. Our FRPGW model
provides an Fl-score of 0.87, which is only slightly
less than the obtained precision and recall and higher
compared to RPO with a 0.84, GWO with a 0.81, and
PSO with a 0.82. It shows that the model performs

very well in accurately predicting the number of
genuine positives, hence reducing the number of
false positives and false negatives.

The proposed FRPGW model has considerably raised
performance on all metrics evaluated and hence proved
effective and reliable in the task of weed detection.
From the detailed analysis above, this model is more
effective in delivering more accurate and dependable
results compared to the approaches.

4.4. Graphical Representation

Figure 2 shows the comparison between the proposed
model and the already existing models, namely, GWO,
RPO, and PSO, based on four metrics:

a) Accuracy: the proposed model outperforms others
with a score of 0.94.

b) Precision: the proposed model has the highest
precision at 0.95.

c) Recall: the proposed model leads with a score of
0.90.

d) Fl-score: the proposed model maintains a balanced
performance with a score of 0.87.

4.5. Justification for Model Selection

The choice of baseline models (PSO, GWO, RPO) was
motivated by their widespread use and proven
effectiveness in optimization-based classification and
feature selection tasks in agricultural and image-
processing domains. These metaheuristic algorithms are
known for their balance between exploration and
exploitation, yet each has limitations:

1. PSO may converge prematurely in complex, high-
dimensional search spaces.

2. GWO often struggles with local optima due to
limited diversity in later iterations.

3. RPO, although more recent, lacks adaptive guidance
for dynamic input conditions like crop variability and
environmental features.

To overcome these challenges, the FRPGW model was
proposed. This hybrid leverages the adaptive
intelligence of RPO and the strong leadership hierarchy
of GWO to enhance search efficiency and convergence
accuracy, especially for identifying subtle patterns in
agricultural datasets like weed presence.

4.6. Statistical Significance of Improvements

While performance metrics (accuracy: 0.94, precision:
0.95, recall: 0.90, Fl-score: 0.87) indicate the
superiority of the FRPGW model, statistical
significance testing is essential to confirm that these
improvements are not due to random variation.

The higher precision (0.95) and recall (0.90) of the
FRPGW model imply that it effectively balances
minimizing false positives and false negatives-a critical
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requirement in weed detection, where both under- and
over-identification can harm yield and resource
allocation. The F1-score of 0.87 confirms this balance.

performance

Moreover, the consistent across
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multiple metrics and visual graphs in Figure 2 supports
the model’s generalization ability across different
subsets of the dataset.

0.8
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0.0 d
GWO PSO
Methods
b) Precision.
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d) F1-Score.
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Figure 2. Graphical representation of existing and proposed model.

5. Conclusions

By continuously gathering, monitoring, and analyzing
data, an loT based smart farming system used IoT
technology to increase agricultural efficiency. Due to
the lack of accurate, continuous data and reliance on
manual procedures, traditional farming faced problems
with resource management, real-time monitoring,
prediction accuracy, and high operating expenses. The
proposed system employs a multi-phase approach, using
IoT sensors for real-time data on soil pH, temperature,
humidity, light, and moisture. After that, the data
underwent pre-processing, which involved noise
reduction to get rid of errors and normalization to
normalize scales. In order to extract useful insights,
feature extraction involves computing statistical metrics
including mean, median, skewness, and kurtosis. The
most pertinent characteristics were found using the
FRPGW optimization approach for feature selection in
order to improve the prediction model’s accuracy. In
order to detect intricate patterns and provide precise
predictions of agricultural yield and drought conditions,
the HALSTM model which combines ANN and LSTM
was employed for prediction and classification. This

comprehensive strategy improved decision-making,
improved resource management, and raised agricultural
output and sustainability.

Funding

On Behalf of all authors the corresponding author states
that they did not receive any funds for this project.

Data Availability Statement

All the data is collected from the simulation reports of
the software and tools used by the authors. Authors are
working on implementing the same using real world
data with appropriate permissions.

Author Contributions

All authors significantly contributed to the development
of the described tool, and are currently actively involved
in it. The first draft of the manuscript was written by
Corresponding Author and co-author improved on
previous versions of the manuscript. All authors read
and approved the final manuscript.



Enhancing Smart Farming with 10T Sensors Using FRPGW and HALSTM for Accurate Predictions

References

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

Almalki F., Soufiene B., Alsamhi S., and Sakli H.,
“A Low-Cost Platform for Environmental Smart
Farming Monitoring System Based on loT and
UAVs,” Sustainability, vol. 13, no. 11, pp. 1-26,
2021. https://www.mdpi.com/2071--
1050/13/11/5908

Alzubi A. and Galyna K., “Artificial Intelligence
and Internet of Things for Sustainable Farming
and Smart Agriculture,” IEEE Access, vol. 11, pp.
78686-78692, 2023.
https://ieeexplore.ieee.org/document/10190626
Bouali E., Abid M., Boufounas E., Abu Hamed T.,
and Benhaddou D., “Renewable Energy
Integration into Cloud and loT-based Smart
Agriculture,” IEEE Access, vol. 10, pp. 1175-
1191, 2021.
https://ieeexplore.ieee.org/document/9662338
Codeluppi G., Cilfone A., Davoli L., and Ferrari
G., “LoRaFarM: A LoRaWAN-based Smart
Farming Modular IoT Architecture,” Sensors, vol.
20, no. 7, pp. 1-24, 2020.
https://www.mdpi.com/1424-8220/20/7/2028
Dahane A., Benameur R., and Kechar B., “An [oT
Low-Cost Smart Farming for Enhancing Irrigation
Efficiency of Small Holders Farmers,” Wireless
Personal Communications, vol. 127, no. 4, pp.
3173-3210, 2022.
https://link.springer.com/article/10.1007/s11277-
022-09915-4

Dhanaraju M., Chenniappan P., Ramalingam K.,
Pazhanivelan S., and Kaliaperumal R., “Smart
Farming: Internet of Things (loT)-based
Sustainable Agriculture,” Agriculture, vol. 12, no.
10, pp. 1-26, 2022. https://www.mdpi.com/2077-
0472/12/10/1745

Duangsuwan S., Teekapakvisit C., and Maw M.,
“Development of Soil Moisture Monitoring by
Using loT and UAV-SC for Smart Farming
Application,” Advances in Science Technology
and Engineering Systems Journal, vol. 5, no. 4,
pp. 381-387, 2020.
https://www.astesj.com/publications/ASTESJ_05
0444.pdf

Faid A., Sadik M., and Sabir E., “An Agile Al and
loT-Augmented Smart Farming: A Cost-Effective
Cognitive Weather Station,” Agriculture, vol. 12,
no. 1, pp. 1-31, 2021.
https://www.mdpi.com/2077-0472/12/1/35
Fathallah K., Abid M., and Ben Hadj-Alouane N.,
“Enhancing Energy Saving in Smart Farming
through Aggregation and Partition Aware loT
Routing Protocol,” Sensors, vol. 20, no. 10, pp. 1-
28, 2020. https://www.mdpi.com/1424-
8220/20/10/2760

Gaikwad S., Vibhute A., Kale K., and Mehrotra
S., “An Innovative IoT Based System for

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

1091

Precision Farming,” Computers and Electronics
in Agriculture, vol. 187, pp. 106291, 2021.
https://doi.org/10.1016/j.compag.2021.106291
Gebresenbet G., Bosona T., Patterson D., Persson
H., and et al,, “A Concept for Application of
Integrated Digital Technologies to Enhance
Future Smart Agricultural Systems,” Smart
Agricultural Technology, vol. 5, pp. 100255,
2023.
https://doi.org/10.1016/j.atech.2023.100255
Gupta A., Dewedi A., and Saini A., Agricultural
Crop Yield in Indian States Dataset,
https://www.kaggle.com/datasets/akshatgupta7/cr
op-yield-in-indian-states-dataset, Last Visited,
2025.

Javaid M., Haleem A., Singh R., and Suman R.,
“Enhancing Smart Farming through the
Applications of Agriculture 4.0 Technologies,”
International Journal of Intelligent Networks, vol.
3, pp. 150-164. 2022.
https://doi.org/10.1016/].ijin.2022.09.004
Kethineni K. and Gera P., “IoT-based Privacy-
Preserving Anomaly Detection model for Smart
Agriculture,” Systems, vol. 11, no. 6, pp. 1-26,
2023. https://www.mdpi.com/2079-
8954/11/6/304

Kim S., Lee M., and Shin C., “IoT-based
Strawberry Disease Prediction System for Smart
Farming,” Sensors, vol. 18, no. 11, pp. 1-17, 2018.
https://www.mdpi.com/1424-8220/18/11/4051
Mahajan H. and Badarla A., “Cross-Layer
Protocol for WSN-Assisted 10T Smart Farming
Applications Using Nature Inspired Algorithm,”
Wireless Personal Communications, vol. 121, no.
4, pp. 3125-3149, 2021.
https://link.springer.com/article/10.1007/s11277-
021-08866-6

Mahajan H., Badarla A., and Junnarkar A., “CL-
loT: Cross-Layer Internet of Things Protocol for
Intelligent Manufacturing of Smart Farming,”
Journal of Ambient Intelligence and Humanized
Computing, vol. 12, no. 7, pp. 7777-7791, 2021.
https://link.springer.com/article/10.1007/s12652-
020-02502-0

Mahbub M., “A Smart Farming Concept Based on
Smart Embedded Electronics, Internet of Things
and Wireless Sensor Network,” Internet of Things,
vol. 9, pp. 100161, 2020.
https://doi.org/10.1016/j.i0t.2020.100161

Malik A., Ur Rahman A., Qayyum T., and Ravana
S., “Leveraging Fog Computing for Sustainable
Smart Farming Using Distributed Simulation,”
IEEE Internet of Things Journal, vol. 7, no. 4, pp.
3300-3309, 2020.
https://ieeexplore.ieee.org/document/8962317
Manikandan R., Ranganathan G., and Bindhu V.,
“Deep Learning Based IoT Module for Smart
Farming in Different Environmental Conditions,”


https://www.mdpi.com/2071-1050/13/11/5908
https://www.mdpi.com/2071-1050/13/11/5908
https://ieeexplore.ieee.org/document/10190626
https://ieeexplore.ieee.org/document/9662338
https://www.mdpi.com/1424-8220/20/7/2028
https://link.springer.com/article/10.1007/s11277-022-09915-4
https://link.springer.com/article/10.1007/s11277-022-09915-4
https://www.mdpi.com/2077-0472/12/10/1745
https://www.mdpi.com/2077-0472/12/10/1745
https://www.astesj.com/publications/ASTESJ_050444.pdf
https://www.astesj.com/publications/ASTESJ_050444.pdf
https://www.mdpi.com/2077-0472/12/1/35
https://www.mdpi.com/1424-8220/20/10/2760
https://www.mdpi.com/1424-8220/20/10/2760
https://doi.org/10.1016/j.compag.2021.106291
https://doi.org/10.1016/j.atech.2023.100255
https://www.kaggle.com/datasets/akshatgupta7/crop-yield-in-indian-states-dataset
https://www.kaggle.com/datasets/akshatgupta7/crop-yield-in-indian-states-dataset
https://doi.org/10.1016/j.ijin.2022.09.004
https://www.mdpi.com/2079-8954/11/6/304
https://www.mdpi.com/2079-8954/11/6/304
https://www.mdpi.com/1424-8220/18/11/4051
https://link.springer.com/article/10.1007/s11277-021-08866-6
https://link.springer.com/article/10.1007/s11277-021-08866-6
https://link.springer.com/article/10.1007/s12652-020-02502-0
https://link.springer.com/article/10.1007/s12652-020-02502-0
https://doi.org/10.1016/j.iot.2020.100161
https://ieeexplore.ieee.org/document/8962317

1092

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025

Wireless Personal Communications, vol. 128, no.
3, pp. 1715-1732, 2023.
https://link.springer.com/article/10.1007/s11277-
022-10016-5

Manogaran G., Alazab M., Muhammad K., and
De Albuquerque V., “Smart Sensing Based
Functional Control for Reducing Uncertainties in
Agricultural Farm Data Analysis,” IEEE Sensors
Journal, vol. 21, no. 16, pp. 17469-17478, 2021.
https://ieeexplore.ieee.org/document/9335607
Mohamed E., Belal A., Abd-Elmabod S., El-
Shirbeny M., and et al., “Smart Farming for
Improving  Agricultural Management,” The
Egyptian Journal of Remote Sensing and Space
Science, vol. 24, no. 3, pp. 971-981, 2021.
https://doi.org/10.1016/j.ejrs.2021.08.007
Muhammad K., Soomro T., Butt J., Saleem H.,
Khan M., and Saleem S., “IoT and Cloud Based
Smart Agriculture Framework to Improve Crop
Yield Meeting World’s Food Needs,”
International Journal of Computer Science and
Network Security, vol. 22, no. 6, pp. 7-14, 2022.
http://paper.ijcsns.org/07_book/202206/2022065
2.pdf

Patrizi G., Bartolini A., Ciani L., Gallo V., and et
al., “A Virtual Soil Moisture Sensor for Smart

Farming Using Deep Learning,” IEEE
Transactions on Instrumentation and
Measurement, vol. 71, pp. 1-11, 2022.

https://ieeexplore.ieee.org/document/9849699
Sarpal D., Sinha R., Jha M., and Padmini T.,
“AgriWealth: IoT Based Farming System,”
Microprocessors and Microsystems, vol. 89, pp.
104447, 2022.
https://doi.org/10.1016/j.micpro.2022.104447
Sengupta A., Debnath B., Das A., and De D.,
“FarmFox: A Quad-Sensor-based loT Box for
Precision  Agriculture,” IEEE  Consumer
Electronics Magazine, vol. 10, no. 4, pp. 63-68,
2021.
https://ieeexplore.ieee.org/document/9376995
Sharma A., Georgi M., Tregubenko M., Tselykh
A., and Tselykh A., “Enabling Smart Agriculture
by Implementing Artificial Intelligence and
Embedded Sensing,” Computers and Industrial
Engineering, vol. 165, pp. 107936, 2022.
https://doi.org/10.1016/j.cie.2022.107936

Shifna N. and Thaiyalnayaki S., “A Smart Survey
Analysis Using Wireless Sensor Networks in
Agriculture,” in  Proceedings of the 11"
International Conference on Computing for
Sustainable Global Development, New Delhi, pp.
478-482, 2024,
https://ieeexplore.ieee.org/document/10498239
Sivabalan K., Anandkumar V., and Balakrishnan
S., “IoT Based Smart Farming for Effective
Utilization of Water and Energy,” International
Journal of Advanced Science and Technology, vol.

[30]

[31]

[32]

29, no. 7s, pp. 2496-2500, 2020.
file:///C:/Users/HP/Downloads/IJAST-
I0TBasedSmartFarmingforEffectiveUtilizationof
WaterandEnergy%20(1).pdf

Trilles S., Gonzalez-Perez A., and Huerta J., “An
loT Platform Based on Microservices and
Serverless Paradigms for Smart Farming
Purposes,” Sensors, vol. 20, no. 8, pp. 1-26, 2020.
https://www.mdpi.com/1424-8220/20/8/2418
Vasudevan P. and Ekambaram C., “HYAQP: A
Hybrid Meta-Heuristic Optimization Model for
Air Quality Prediction Using Unsupervised
Machine Learning Paradigms,” The International
Arab Journal of Information Technology, vol. 21,
no. 5, pp. 953-966, 2024.
https://doi.org/10.34028/iajit/21/5/15

Venu N., Kumar A., and Rao A., “Smart
Agriculture  with Internet of Things and
Unmanned Aerial Vehicles,” NeuroQuantology,
vol. 20, no. 6, pp. 9904-9914, 2022. DOI:
10.14704/nq.2022.20.6.NQ22966


https://link.springer.com/article/10.1007/s11277-022-10016-5
https://link.springer.com/article/10.1007/s11277-022-10016-5
https://ieeexplore.ieee.org/document/9335607
https://doi.org/10.1016/j.ejrs.2021.08.007
http://paper.ijcsns.org/07_book/202206/20220652.pdf
http://paper.ijcsns.org/07_book/202206/20220652.pdf
https://ieeexplore.ieee.org/document/9849699
https://doi.org/10.1016/j.micpro.2022.104447
https://ieeexplore.ieee.org/document/9376995
https://doi.org/10.1016/j.cie.2022.107936
https://ieeexplore.ieee.org/document/10498239
file:///C:/Users/HP/Downloads/IJAST-IOTBasedSmartFarmingforEffectiveUtilizationofWaterandEnergy%20(1).pdf
file:///C:/Users/HP/Downloads/IJAST-IOTBasedSmartFarmingforEffectiveUtilizationofWaterandEnergy%20(1).pdf
file:///C:/Users/HP/Downloads/IJAST-IOTBasedSmartFarmingforEffectiveUtilizationofWaterandEnergy%20(1).pdf
https://www.mdpi.com/1424-8220/20/8/2418
https://doi.org/10.34028/iajit/21/5/15

Enhancing Smart Farming with 10T Sensors Using FRPGW and HALSTM for Accurate Predictions 1093

Fathima ShreneShifna received her
B.E. degree in Computer Science and
Engineering from Anna University,
Chennai, in 2012, and her M.E. in
Computer Science and Engineering
from Anna University in 2014. She is

: currently working as an Assistant
Professor in the Department of Computer Science and
Engineering at Bharath Institute of Higher Education
and Research, Chennai, and is pursuing her research as
a Computer Science scholar at the same institution.
With more than 12 years of teaching experience, she has
published 9 peer-reviewed international journal papers,
4 |EEE Xplore articles, and 3 patents. Her research
interests include Artificial Intelligence, Machine
Learning, Image Processing, and Deep Learning. She is
also a recipient of the Best Teacher Award for her
academic contributions and an active IEEE WIE
member, having organized and conducted various IEEE
events.

Baalaji Kadarkarai is an academic
and researcher in Computer Science
and Engineering. He earned his Ph.D.
in CSE from Bharath Institute of
Science and Technology in 2021,

: following his M.Tech from SRM
r i University and B.E. from Anna
University. With over 11 years of teaching experience,
he is currently serving as an Assistant Professor at
Bharath Institute of Higher Education and Research,
Chennai. His expertise spans Natural Language
Processing, Data Science, AI&ML, loT, Cryptography
and Big Data Analytics. Dr. Baalaji has published
multiple research papers in reputed journals, authored a
patent on “Cyber Security Technology for Teaching and
Education Sector” (2022), and completed certifications
in Big Data from institutions such as UC San Diego and
Duke University. He is also a recipient of the prestigious
Rajyapuraskar Award in Scouting. “The Best Teacher
Award was presented by Amizhtha Thamizh
Aivarangam in recognition of his contributions to
various performances, especially for the development of
the Tamil language in the field of Technical Education.




