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Abstract: An Archery human pose estimation system based on Deep Feature Prior Deblurring Generative Adversarial Network
(DFPDeblur GAN) is proposed. The system incorporates dynamic convolution, a technique that can adaptively adjust the
parameters of the convolution kernel to extract multidimensional features, and a bidirectional Feature Pyramid Network (FPN),
which effectively improves the image deblurring effect and multiscale feature fusion capability. Subsequently, the Improved
High-Resolution Network (IHRNet), combined with the Coordinate Attention (CA)-mechanism, a mechanism that improves the
accuracy of key point detection by focusing on the spatial location, is used to realize the precise localization of the key joints of
the Archery action. The experimental results show that the proposed model achieves 94.3% key point localization accuracy,
9.1% Peak Signal-to-Noise Ratio (PSNR) improvement compared with the traditional method, up to 0.92 Structural Similarity
Index (SSIM), and less than 2 seconds running time, which exhibits good real-time performance and robustness. The results
show that the model performs well in a variety of lighting conditions and action phases, providing effective technical support for
action analysis and training in Archery.
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1. Introduction

1.1. Background and Motivation

As a competitive sport with a long history and high
technical content, Archery requires athletes to complete
precise, coordinated and complex movements in a very
short time. During the key stages of drawing the bow,
aiming and releasing the arrow, all the joints of the
athlete’s body need to be highly coordinated, and the
subtle changes in the movements directly affect the
accuracy and stability of the shooting. Traditional
Archery training mainly relies on the coach’s
experience guidance and visual observation, which is
difficult to objectively and real-time capture the details
of the athlete’s movements, resulting in a limited
training effect [7, 29]. With the rapid development of
computer vision and artificial intelligence technology,
the intelligent Archery motion analysis system based on
human posture estimation has gradually become a key
technology to improve training science and efficiency.
The system automatically captures athletes’ body
postures through video data, and combines machine
learning models to achieve high-precision action
recognition and evaluation, which greatly facilitates the
guantitative analysis of sports performance and
personalized training guidance.

However, in practical applications, the high-speed
and complex dynamic scenes of Archery movements
often lead to problems such as image blurring and low-
lighting, which seriously affect the accuracy and

stability of pose estimation [22, 23]. Image blurring not
only reduces the recognition rate of the athlete’s key
points, but also makes it difficult to retain the detail
information, which increases the difficulty of stance
estimation. In addition, the Archery environment is
variable and the lighting conditions are complex, which
puts higher requirements on the robustness of the
algorithm. Therefore, how to design a set of efficient
and stable joint model of image deblurring and pose
estimation has become a hot and difficult point in the
current research, which is directly related to the
practical effect and application promotion value of the
Archery intelligent training system.

1.2. Related Work in Pose Estimation and
Deblurring

Anvari et al. [3] proposed a new method inspired by
classical regression models and trained on 3D motion
capture data to achieve less parameter count in Archer
Pose Estimation (APE) using virtual reality technology.
The virtual reality simulation effect of pose estimation
under this method is more realistic. Romero et al. [24]
proposed a semi-automatic mechanism to enhance the
training effectiveness of APE models, allowing
synthetic humans to perform various actions to generate
and edit visual scenes. The effectiveness of APE under
this mechanism training was significantly improved,
with shorter iteration times. Liu et al. [18] developed a
method of inter-frame and intra-frame data
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synchronization to lower the cost of pose estimation and
enhance training efficiency. Compared to other
methods, this method has improved the accuracy of
action frame extraction by up to 8.3%. Abhishek and
Tahir [2] proposed an adaptive boosting model to
enhance the accuracy of context-based Archery action
feature extraction. The average accuracy of this model
for detecting ordinary sports datasets was 92.15%. Siaw
et al. [27] proposed a marker-based optical Archery
motion capture system. The system used a smartphone
camera to capture the motion of the red marker, then
tracked the coordinates of the marker, and calculated the
angle. When the distance between the camera and the
marker was 120 centimeters, the system had a low
average root mean square error of 0.83°. Chen and Hu
[6] concluded that the effectiveness of machine learning
and deep learning techniques for activity recognition in
sports such as swimming still needs to be improved, for
this reason, the researchers proposed a new human
swimming pose recognition model after combining
reinforcement learning and inertial measurement units.
Experimental results show that the new model has a
balanced accuracy of 96.27% for human back, waist,
and upper and lower limbs pose recognition. Tong and
Wang [30] proposed a pose recognition model based on
the combination of augmented Graph Convolutional
Network (GCN) and Spatio-Temporal GCN (ST-GCN)
for basketball player pose recognition. The model is
able to handle graph-structured data with time series
relationship, and extract the spatio-temporal features of
human pose sequences by convolution operation. The
results show that the ST-GCN model achieves 95.58%
accuracy in basketball pose recognition.

Currently, deep learning methods based on
Generative Adversarial Networks (GANSs), especially
the Deblur GAN algorithm, have provided a new
approach to solving the problems of image blur and pose
estimation accuracy [13]. The core of Deblur GAN is to
use the GAN model to deblurr blurry images and
generate clear high-quality images, thereby improving
the accuracy of pose estimation. Lee et al. [16] proposed
a deblurring network using

Deblur GAN to eliminate motion blur effectsin UAV
images. This method utilized a generative model to
correct blur artifacts and generate clear images. The
image quality evaluation under this model was higher
than traditional methods. Jun [11] proposed a suitable
method to eliminate blind blur caused by motion in
images. This method was used for end-to-end learning
of motion blur removal, describing the amount and type
of blur caused by point light source imaging. This
method provided the possibility of increasing real data
and had a high blur elimination rate. Xiao et al. [33]
considered the differences in feature abstraction levels
extracted by different perceptual layers and used Deblur
GAN based on weighted perceptual loss to deblur
Unmanned Aerial Vehicle (UAV) images, thereby
eliminating blur and restoring texture details of the

images well. Kong et al. [14] found that due to the rapid
movement between onboard cameras and fire targets,
captured fire images often become dull and blurry. To
this end, researchers have proposed a multiple input-
output Deblur GAN architecture that fuses spatial and
frequency domain message for image deblurring
models. This model achieved an image similarity of
0.955 on a self-built dataset. Varela et al. [32] proposed
a regression method using Deblur GAN to predict the
parameters, length, and direction of linear motion blur
kernels. In non-blind image deblurring methods, the
cumulative histogram value error of the sum of squared
differences of kernel parameters using this new method
was higher than that of traditional methods.

1.3. Identified GAPs

Although there have been studies that have achieved
certain results in the field of human pose estimation and
image deblurring, there are still obvious shortcomings
in the existing methods for highly dynamic and complex
scenarios such as Archery sports. First, traditional
deblurring algorithms rely on single-scale feature
extraction, which is difficult to take into account the
multi-scale dynamic changes of the moving objects,
resulting in insufficient recovery of key details. Second,
the existing pose estimation models are often difficult to
realize efficient fusion of multi-resolution features
when dealing with fast movements, and cannot
adequately  capture the coordinated  motion
characteristics of complex joints, which affects the
accuracy and continuity of estimation. Furthermore, for
the real-time tracking requirements in dynamic Archery
scenarios, the traditional models have limited
capabilities in target localization and time-series
information fusion, making it difficult to meet the dual
requirements of real-time and stability.

1.4. Suggested Contributions

To address these issues, the study proposes a joint model
that fuses a Deep Feature Prior Deblur Generative
Adversarial Network (DFPDeblur GAN) with an
Improved High-Resolution Network (IHRNet). High-
Resolution Network (IHRNet) as a joint model. Its
innovativeness is mainly reflected in the combination of
multi-dimensional ~ dynamic  convolution  and
bidirectional Feature Pyramid Network (FPN), which
proposes a DFPDeblur GAN for fast dynamic actions in
Archery, which significantly improves the clarity and
detail restoration of the image; meanwhile, the IHRNet
based on the Ghost module, the Sandglass module, and
the Coordinate Attention mechanism (CA-mechanism),
is designed, which effectively enhanced multi-scale
feature fusion and coordinated recognition of complex
joints; further introduced the target tracking module,
realizing the real-time accurate capture of key points in
dynamic scenes, so as to ensure the continuity and
robustness of attitude estimation. The main
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contributions of this study are that the proposed method
effectively improves the image deblurring effect and the
key point localization accuracy and robustness of stance
estimation in complex dynamic scenes in Archery,
realizes the efficient capture of complex joint
coordination in Archery movements, and provides a
more effective intelligent assistive method for Archery
training and competitions.

2. Methods and Materials

Aiming at the problems of image blurring and difficult
pose estimation caused by fast movements in Archery,
the study firstly constructs an image deblurring model
for Archery athletes based on the improved DFP Deblur
GAN. Multi-scale features are extracted by full-
dimensional dynamic convolution Omni-Dimensional
Dynamic Convolution (ODConv) and bi-directional
FPN, and combined with Iterative Attentionla Feature
Fusion (IAFF) module for detail optimization.
Secondly, the IHRNet for deblurring image input
extracts multi-resolution features through Ghost and
Sandglass modules as well as CA-mechanism, and
combines with the target tracking module to capture
dynamic targets and key joint features in real time.
Finally, a novel Archery, Motion, High-Precision,
Estimation (AMHPE) model is proposed that integrates
deblurring and high-resolution pose estimation.
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2.1. Image Deblurring Based on DFPDeblur
GAN

2.1.1. Generator Design and Feature Extraction
Path

Archery has unique characteristics compared to other
sports. The main challenge lies in the high-precision
requirements for athletes’ postures, especially in the
process of rapid and complex movements. How to
capture the subtle posture changes of athletes is a key
factor affecting Archery performance [28]. During the
Archery process, athletes move at high speed and
frequently during the moments of pulling the bow,
aiming, and releasing the arrow, resulting in blurry
images captured by the camera. The problem of image
blur not only affects image quality and reduces the
accessibility of detail information, but may also lead to
pose estimation errors, thereby affecting the accuracy of
training and competition [26]. Therefore, this paper
designs a DFPDeblur GAN built on Deblur GAN.
Unlike traditional GANs, DFPDeblur GAN introduces
deep feature priors between the generator and
discriminator. This prior information helps the
generator to fully utilize the contextual information of
the athlete’s posture when restoring blurred images,
ensuring that the image structure and details remain
consistent during the deblurring process. Figure 1 shows
the DFPDeblur GAN structure.

Generate

Discriminator .
image

Figure 1. DFPDeblur GAN structure.

In Figure 1, the entire DFPDeblur GAN consists of a
generator, discriminator, and attention mechanism
module. The process first utilizes ODConv to improve
the Mobilenetv2 network as the backbone network, and
extracts features layer by layer through downsampling
method to obtain five feature maps of different scales,
namely Al to A5. Next, these feature maps are
processed through FPN’s horizontal connection and
top-down path to generate corresponding feature maps
P1 to P5. On this basis, P1 to P5 are processed again
through the bottom-up path of FPN to obtain feature
maps N1 to N5. Subsequently, N1 to N5 are fused with
the original image to generate the last image output. The
generated image is input into the discriminator together
with the target clear image, and the similarity
probability value between the generated and clear

images is calculated. The quality of the generated image
is improved by optimizing the generator. Finally,
through alternating training of the generator and
discriminator, the performance of the network is
gradually improved, completing the process of image
deblurring. The generator structure of DFPDeblur GAN
is shown in Figure 2.

In Figure 2, the generator includes multiple feature
extraction modules, whose main function is to extract
and fuse key features from the input blurred motion
image to achieve deblurring processing. Firstly, the
input blurred image is subjected to a five-layer 2D
convolution operation from bottom to top through the
backbone network, extracting feature maps of various
scales. These feature maps are then fused through the
top-down path of FPN to generate five fused features.
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At the same time, the feature fusion process introduces
horizontal ~ connections and combines Batch

Normalization (BN) layers and ReLU functions to
enhance the expressive power and extraction efficiency
of features. Then, IAFF dynamically focuses on the
detailed features in the key region through the
mechanism to

multilayer attention reduce the

interference of redundant information on the pose
judgment. Compared with the traditional single-feature
fusion method, IAFF is able to aggregate multi-scale
features in multiple rounds, which significantly
improves the ability to restore key details in blurred
images [4, 17].
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Figure 2. DFPDeblur GAN generator structure.

2.1.2. ODConv Module Principles and Benefits
Analysis

Compared with traditional convolution (e.g., standard
3x3 convolution or group convolution), the use of
ODConv for the backbone network can adaptively
assign attention weights in spatial, channel, and input-
output dimensions simultaneously, which enhances the
expression fineness of the features and the dynamic
modeling ability. Especially in the scenario of Archery
sports where fast movements lead to image blurring,
ODConv is able to extract multi-dimensional features
more flexibly, enhancing robustness and structure
preservation [35]. For example, Vancurik and Callahan
[31] measured and introduced variables by combining
wearable sensors with university tennis match video
observations to detect abnormal movements in tennis,
showing stable output results. The structure of ODConv
is shown in Figure 3.
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Figure 3. Structure diagram of ODConv.

In Figure 3, firstly, the input features are subjected to
Global Average Pooling (GAP), which aggregates
global information into feature vectors to quantitatively

describe their feature lengths. Subsequently, the
features are partitioned through a fully connected layer,
generating four branches with different dimensions.
Each branch corresponds to a different parameter
configuration of the convolutional kernel, which is used
to calculate the features of time position, spatial
position, filtering position, and output position
separately. Each branch calculates attention values
through a specific weight matrix and extracts
corresponding features. Subsequently, these features
undergo specific mapping calculations to generate
adjusted convolution kernel weights, further optimizing
the feature extraction process. Finally, the sigmoid
function normalizes the output and adjusts the weights
to an appropriate range to ensure the stability and
effectiveness of the output results [19]. The calculation
for GAP is given by Equation (1).

1 H W
Z=mzzx(i,1) 1)

i=1j=1

In Equation (1), x is the input feature map. x(i, j) means
the value of the feature map at position (i, j). H and W
are the height and width of the feature map. z is the
global eigenvector. The formula for generating branch
feature weights is shown in Equation (2).

ax = o(Wy Y + by) (2)
In Equation (2), o and by are the weights and biases of
branch k. yi is the input feature of k. ax denotes the
attention weight of k. ¢ corresponds to the sigmoid
function. At this point, the FPN connections from
bottom to top and from top to bottom are shown in
Equation (3).
{ P; = Convyx1(4;) + Upsample(P;4+) ©)
N; = Convsy3(P;) + Downsample(Nj,1)
In Equation (3), P; and N; are feature maps fused from
top to bottom and bottom-up. A; is a feature map of
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different scales extracted from the backbone network.
Upsample and Downsample are upsampling and
downsampling operations. The key features after
focusing by the IAFF module are shown in Equation (4).
FItAFF =

Ft +y - Attention(Q%, K%, V%) = F* +y - Soft ( t’KtT>Vf 4)

y ention(Q%, K¢, = y - Softmax 7a

In Equation (4), F' is the fusion feature of the t-th
iteration. Q', K', and V' are the query, key, and value

Input 2D Conv

matrix values in IFF at the t-th iteration. yis the Feature
Fusion Coefficient (FFC). v/d is the scaling factor.
Flypr is the fused feature map after the t-th iteration.

2.1.3. IAFF Modular Structure and lterative
Feature Fusion Mchanisms

Specifically, the architecture diagram of IAFF module
and bidirectional FPN is shown in Figure 4.

P5

P4

P2

+ Generate image

T -

a) |AFF structure.

b) Bidirectional FPN structure.

Figure 4. Architecture diagram of IAFF module and bidirectional FPN.

In Figure 4-a), the IAFF module is overlaid with two
layers of Multi-Scale Channel Attention Module (MS-
CAM) for initial feature fusion. The input features are
subjected to two layers of point by point convolution
and BN layer, as well as ReLU for global feature
extraction, and then input to the right side for repeated
operations. Finally, a weighted balanced feature map is
obtained through matrix calculation. In Figure 4-b), in
the top-down FPN structure, high-level semantic
features are passed to low-level features to enhance their
representational power, while ensuring feature
continuity through horizontal connections. In the
bottom-up FPN structure, the information of low-level
features is transmitted to high-level features to
supplement detailed information and optimize feature
expression.

2.1.4. Hybrid Loss Function Design with
Optimization Objective

In addition, to preserve the details of blurry images, this
study constructs a novel hybrid loss function that
integrates content loss, perceptual loss, and adversarial
loss. The content loss formula is given by Equation (5).

N
1
Leontent = NZ”G(xi)Yilll (5)
In Equation (5), Lcontent IS the content loss value. G(xi) is

the image generated by the generator. I_lI; is the norm of
L1. The perceptual loss is given by Equation (6).

N
1
Lperceptual = Nz Z||¢I(G(xl)) - ¢l(}’1))”§ (6)
i=1 1

In Equation (6), Lperceptial IS the perceptual loss value.
() is the I-th layer feature map of deep networks. ||_|I3

is the norm of L,. The adversarial loss is shown in
Equation (7).

N
1
Laaversariat = — NZ logD (G (x;)) (7)
i=1

In Equation (7), Lagversariar 1S the adversarial loss value.
Ladversarial IS @ discriminator.

2.2. Construction of AMHPE Model
Integrating Deblurring and IHRNet

2.2.1. Overall Structure and Flow of the IHRNet
Model

After constructing the image deblurring model based on
DFPDeblur GAN, it is found that the deblurring module
can effectively improve the quality of the input image
and provide clear and reliable basic image data for
subsequent pose estimation. However, relying solely on
deblurring images for pose estimation may still face the
problem of insufficient capture of complex pose
features. Especially, Archery movements have high
technical complexity, involving coordination and
synchronization of multiple joints [9, 25].

Therefore, it is necessary to introduce a network
structure that can enhance the ability to capture complex
poses while maintaining high resolution, further
improving the accuracy and robustness of the model.
HRNet, as an advanced attitude estimation framework
proposed in recent years, can achieve high accuracy and
robustness in attitude estimation tasks through parallel
high-resolution and low-resolution feature
representations, as well as multi-scale feature
interaction mechanisms [20, 34]. Its core advantage lies
in maintaining the continuity of high-resolution features
throughout the entire feature extraction process, while
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fusing features of different scales through information
exchange between branches. It can capture both global
pose information and attention to detailed joint features
[8, 21].

Unbiased data
preprocessing
The first stage

The second stage

However, to adapt to the continuity and coordination
of joint movements in Archery, this study improves the
HRNet structure and proposes an IHRNet, as shown in
Figure 5.

Fourth stage

Figure 5. The network structure of IHRNet.

In Figure 5, the entire structure of IHRNet includes
preprocessing and four different resolution network
extraction stages. Firstly, in the preprocessing stage,
motion blur removal module and target tracking module
are used to collect camera image data of Archers, and
unbiased data preprocessing is adopted to reduce the
small errors caused by the initial review data. Then, the
data are input into the HRNet of stage 1 for high-
resolution feature extraction. Phase 1 consists of 4
layers, each of which integrates Ghost module,
Sandglass module, and CA-mechanism. Then, the data
are passed to the medium resolution network in stage 2
for feature extraction. At this point, the resolution
network has more branches than the previous stage,
capturing deeper level feature information through
downsampling. After passing through four times in
sequence, the data stream achieves multi-scale feature
alignment and complementarity from high-resolution to
low-resolution.

2.2.2. Architecture and Benefits of Ghost and
Sandglass Modules

The Ghost module generates base features through a
small number of standard convolutions, and then
combines them with multiple linear transformations to
quickly generate redundant features, significantly
reducing the amount of model computation. Compared
with the traditional convolution, it reduces the
computational overhead by about 50% or more while
maintaining the accuracy, which is especially suitable
for real-time demanding tasks such as attitude
estimation. The computational formula is shown in
Equation (8) [10, 36].

b
Ghost(x) = F(x) + Z 0; * F(x) 8
i=1

In Equation (8), F(x) is the core feature generated by the
main convolution. 6; is the weight of the i-th lightweight
operation. b is the amount of generated supplementary
features. Ghost(x) is the feature output by the Ghost

module. The Sandglass module is structured to enhance
the transfer efficiency of the model in maintaining high-
resolution features by reversing the bottleneck structure
of the standard residual block and combining the
asymmetric feature flow with residual connections.
Compared with conventional residual blocks, Sandglass
is more suitable for detail modeling and position
information retention in shallow networks. The
computational formula is shown in Equation (9) [1].

S(x) = x + Wy - ReLU(W, - ReLU(W; - x)) €)]

In Equation (9), W1, W,, and W3 are the weights of the
first to third layer point wise convolutions. S(x) is the
output of the Sandglass module.

2.2.3. Coordinate Attention Mechanisms and
Feature Weighted Representation

CA generates globally perceived weighted features by
separating horizontal and vertical information, as shown
in Equation (10).

CA(x) = o(Wy, - GAP,(x)) ® Expandy, (x) +
a(W,, - GAP,(x)) ® Expand,, (x)

In Equation (10), Wy and W, are the weights of the
horizontal and vertical axis features. GAPx(x) and
GAPy(x) are GAP along the horizontal and vertical
directions. Expandn(x) and Expandw(x) are feature
extension operations along the horizontal and vertical
directions. CA(x) is the output of CA. Throughout the
process, the target tracking module plays an important
role. By tracking the key parts of Archers in real-time,
this module can effectively locate targets in dynamic
scenes, ensuring that the feature extraction network
maintains a high level of attention to key points in
motion [5, 15].

(10)

2.2.4. Target Tracking Module Structure and
Template Update Mechanism

The framework of the target tracking module is
displayed in Figure 6.
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Figure 6. Object tracking module structure.

In Figure 6, the structure of the target tracking
module mainly has three parts: Template matching,
feature extraction, and update strategy. Firstly, the
module prunes candidate regions from the video frame
where the target is located by defining a search area,
while extracting template regions for matching. The
template matching stage adopts a feature level
comparison method, extracts key features of the target
through the backbone network, and combines the
bounding box regression module to generate the initial
position of the target. This method is similar to the
approach taken by Kaloub and Abed Elgabar [12], who
developed an emotion detection system for audio files
by combining various machine learning classifiers such
as sequence minimization, random forests, K-nearest
neighbors, and simple logistic regression. Through a
multi-ensemble approach, they selected the optimal
feature-level objects from the target set. Next, the
feature extraction part further processes the template
features and search area features through a transformer
encoder, integrating spatial and temporal information to
enhance the discriminative capacity of the target. After
extracting feature, the bounding box prediction module
combines multi-scale features to generate the final
target box. The update strategy ensures the tracking
performance of the target in consecutive frames, and
dynamically updates the template information based on
the predicted matching degree between the target box
and the template area. When the confidence level of the
matching result exceeds a certain threshold, the template
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features are updated to adapt to the changes of the target
during motion. At the same time, the branch module is
responsible for determining whether to adjust or switch
templates based on the tracking results to adapt to
complex scenes such as occlusion, rapid motion, or
target disappearance. The expression for template
matching is shown in Equation (11).

H W
SN =Y. Y eT@v) - 9UG+uj+v)  (11)
u=1v=1
In Equation (11), S°(i, j) is the similarity score of
position (i, j) in the search area. T(u, v) is the template
feature at position (u, v). I(i+u, j+v) is the feature value
of the search area feature at the offset (i, j) position. ¢
and ¢ are both feature encoding functions. When the
reliability of the target matching configuration exceeds
the set threshold, the template features are updated to
adapt to the dynamic changes of the target. The updated
formula is shown in Equation (12).

Thew =P Tota + (1 = p) - Feurr (12)

In Equation (12), Trew is the updated template feature.
Feurr is the current template feature Tog. is the target
feature extracted from the current frame. p is the
Template Update Coefficient (TUC). In summary, this
study combines an image deblurring model based on
DFPDeblur GAN and an attitude recognition model
based on IHRNet to construct a novel AMHPE model.
The process of this model is shown in Figure 7.

THRNet attitude

I estimation

Ghost network

° U
= § &= [ &=

Key feature Target tracking Ghost network

Figure 7. Flow of a new Archery human pose estimation model.
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In Figure 7, firstly, the Archery video is preprocessed
using the motion blur removal module and target
tracking module. The target area is cropped and the
quality of the input data is optimized. Then, DFPDeblur
GAN is used to eliminate image blur, and multi-scale
features are extracted and fused through ODConv and
bidirectional FPN. IAFF module is used to focus on key
details and generate high-quality images. Subsequently,
the deblurred image is input into IHRNet, and multi-
resolution features are extracted layer by layer using
Ghost, Sandglass modules, and CA-mechanism. By
combining the target tracking module to capture
dynamic targets in real-time, precise positioning of key
joints and capture of motion continuity have been
achieved. Finally, a hybrid optimization based on
content loss, perceptual loss, and adversarial loss
optimizes the robustness and accuracy, providing
scientific motion analysis and training support for
Archers.

3. Results

This study first established an environment and
conducted multidimensional testing using two classic
datasets, with deblurring effect, pose estimation
accuracy, and robustness as the core indicators. The
experimental content covered hyperparameter selection,
ablation testing, comparative testing, and multi-scenario
simulation experiments. In addition, this study
compared advanced human pose estimation algorithms
and deblurring algorithms in the field to verify the true
effectiveness of the research model.

3.1. Performance Testing of the AMHPE Model

This study establishes a suitable experimental
environment and uses the Common Objects in COntext
keypoint detection dataset (COCO) and the Max Planck
Institute for Informatics human pose dataset (MPII) as
test data sources. Among them, the COCO dataset is a
widely used human pose estimation dataset. It contains
over 250,000 images and over 150,000 human body
instances, annotated with 17 key points including head,
shoulders, elbows, wrists, hips, knees, ankles, etc. The
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MPII dataset focuses on pose estimation of human
activities, containing over 25,000 images and over
40,000 annotated human instances, covering 410 daily
activity scenarios. Each human instance is annotated
with 16 key points, making it particularly suitable for
capturing dynamic poses and high-precision motion
analysis. Table 1 provides detailed configuration
parameters.

Table 1. Experimental parameter table.

Experimental equipment Value

CPU AMD Ryzen 7 5800H

GPU NVIDIA RTX 3070
Memory 32GB DDR4
Graphics memory 8GB GDDR6

Development environment
Programming tools

Ubuntu 20.04, Python 3.8
PyTorch 1.12, CUDA 11.5

Initialise learning rate 0.0001
Learning rate batch size 32
Momentum parameters 0.9

Training period 200 epochs
Weight decay 5e-5
Optiming period 250 epochs

Based on Table 1, this study first conducted value
selection tests on two types of hyperparameters that
have a significant impact on deblurring and pose
estimation, namely FFC and TUC, as shown in Figure
8.

In Figure 8-a), within the iteration range of 100 to
200, the image clarity at an FFC of 0.6 consistently
outperforms other coefficient settings, with a stable
image clarity of around 95%, demonstrating good
stability and clarity improvement effect. When FFC is
0.8, although it performs well in some iteration
intervals, the overall clarity is low and not suitable as
the best choice. In Figure 8-b), TUC has a significant
impact on the accuracy of keypoint localization. When
the TUC is close to 0.6 and 0.8, both can maintain a
keypoint positioning accuracy of over 94.3%, with the
test result with a coefficient of 0.8 slightly better in most
cases. In contrast, when TUC is 0.2, the positioning
accuracy fluctuates greatly, making it difficult to ensure
high stability. Therefore, this study determines that the
model performance is optimal when the FFC is 0.6 and
the TUC is 0.8. This study continues with ablation
testing, as shown in Figure 9.
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Figure 8. Hyperparameter selection test result.
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Figure 9. Ablation test results.

Figure 9-a) shows the accuracy and average accuracy
results of the model ablation test; Figure 9-b) shows the
error and average error results of the model ablation test.
From Figure 9-a), it can be seen that the base GAN
model has the lowest accuracy throughout the test and
fluctuates greatly, maintaining only between 80% and
85%, indicating that there is an obvious deficiency in its
stability and recognition ability in dynamic scenes.
After the introduction of the DFPDeblur GAN, the
accuracy is significantly increased to about 90%, with
an overall improvement of 6.5 percentage points,
indicating that the image deblurring module has a
positive effect on the enhancement of feature quality.
After further overlaying HRNet, the average accuracy
stabilizes above 93%, and the fluctuation is significantly
reduced, indicating that high-resolution feature
modeling effectively improves the attitude estimation
accuracy. Finally, the model accuracy reaches 94.6%
under the joint optimization of DFPDeblur GAN and
IHRNet, which is the best performance, and the overall
improvement is nearly 12 percentage points compared
with the base GAN. As seen in Figure 9-b), the GAN
model has the highest average error rate of about 35%,
accompanied by obvious fluctuations, which makes it
difficult to ensure the stability of keypoint localization;
after the introduction of the DFPDeblur GAN, the error
rate decreases to about 21.7%, which suggests that the
improvement of the image clarity can help to reduce the
recognition bias; after further combining with the
HRNet, the error rate decreases to 14.9%, and the final
introduction of the improved IHRNet, the average error
is minimized to 12.3%, which is a 22.7% reduction in
overall error compared to the original model. The above
results verify the superimposed contribution of each key
module to the performance improvement, and also show
that the proposed model has better accuracy and
robustness in complex dynamic scenarios. This study
introduces other advanced deblurring pose estimation
algorithms for comparison, such as Deblur GAN
Version 2 (DeblurGAN-v2), Semantic Consistency
GAN (SCGAN), and Pose Fixing Network (PoseFix).
Table 2 presents test data using Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM), and
runtime as indicators.

Table 2. Index test results of different models.

Data set Model PSNR (dB) | SSIM |Runtime (s)
DeblurGAN-v2 31.78 0.85 2.13
SCGAN 33.62 0.87 2.45
COCO ™ poseFix 3249 | 086 | 229
Research model 34.81 0.91 1.87
DeblurGAN-v2 30.43 0.84 221
MPII SCGA_N 32.56 0.86 2.39
PoseFix 31.67 0.85 2.34
Research model 34.32 0.92 1.94

In Table 2, the research model shows significant
advantages in PSNR, SSIM, and runtime metrics. On
the COCO and MPII datasets, the PSNR of the research
model reaches 34.81dB and 34.32, which are about
9.1% and 7.4% higher than DeblurGAN-v2 and
PoseMix. The SSIM index also reaches 0.91 and 0.92,
far higher than other models. This indicates that it has
better performance in image quality and structural
restoration. In terms of runtime, the average runtime of
the research model on both datasets is less than 2
seconds, which is about 0.5 seconds less than SCGAN
and PoseMix, demonstrating its efficiency. Overall, the
research model can maintain low computational costs
while ensuring high-precision image quality, and has
broad application prospects.

3.2. New AMHPE Model Simulation Testing

To validate the actual effectiveness of the research
model in deblurring and Archery posture estimation,
this study randomly selects two images from the MPII
dataset for different model comparison tests. Firstly, it
is necessary to ensure that these models have undergone
image data preprocessing and maintain a certain level of
data validity. The test results are shown in Figure 10.
Figures 10-a) to (d) show the deblurring effects of
DeblurGAN-v2, SCGAN, PoseFix, and research model.
Comparison shows that DeblurGAN-v2 has a good
effect on restoring the basic structure of images, but it is
slightly lacking in detail processing, with some joint
edges still blurred. SCGAN has some improvement in
semantic consistency, with overall image clarity higher
than DeblurGAN-v2, but some details still appear
slightly blurry, especially in complex background areas.
PoseMix maintains a certain level of image clarity while
correcting key point positions, but has limited ability to
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restore blur in dynamic scenes, resulting in noticeable
blurry traces in the background. The research model
performs the best in deblurring and detail restoration,
not only effectively restoring the overall clarity of the
image, but also preserving the accuracy of joint
positions in complex dynamic scenes. The character

b) SCGAN.

a) DeblurGAN-v2.
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contours and background details are clear and natural,
significantly better than other comparison models. This
study tests four types of standard Archery movements
(bow holding, string pulling, aiming, and shooting) and
Keypoint Detection Error (KDE) as indicators, as shown
in Figure 11.

c) PoseFix. d) Our model.

Figure 10. Comparison results of image deblurring effect of different methods.
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Figure 11. KDE test results of Archery pose of different models.

Figures 11-a) and (b) show the KDE detection results
of four models on four types of Archery movements in
the COCO and MPII datasets. In Figure 11-a),
DeblurGAN-v2 has high KDE values in all stages of the
action, with some stages, such as string pulling and
aiming, approaching the upper limit of KDE at 0.9,
indicating low accuracy in locating key points of the
action. The SCGAN and PoseMix models perform
slightly better in the bow and arrow stages, but there are
still significant errors in the string pulling and aiming
stages, indicating their limited robustness in dynamic
motion capture. The research model maintains a KDE

DTW/%

a) DTW test.

value of around 0.2 in all action stages, demonstrating
excellent keypoint localization accuracy and stability. In
Figure 11-b), the performance of PoseFix in the MPII
dataset is abnormal, while DeblurGAN-v2 and SCGAN
are relatively stable, but compared to the research
model, they have poorer accuracy and stability in bow
holding, string pulling, and aiming. The KDE mean of
the research method is 0.23, which has a significant
advantage over PoseMix’s 0.51. This study uses
Dynamic Time Warping (DTW) and Average Overlap
(AO) as indicators for action trajectory similarity, as
shown in Figure 12.

b) OA test.

Figure 12. DTW and OA test results of models under different light intensities.
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Figures 12-a) and (b) show the DTW and OA test
results of four types of models under different light
intensities. In Figure 12-a), DeblurGAN-v2 performs
poorly under low light intensity conditions, witha DTW
value of only about 45%, indicating that its ability to
capture motion trajectories is significantly limited by
lighting conditions. SCGAN and PoseMix exhibit
significant fluctuations in DTW values between 65%
and 80% at high light intensities (i.e., 501-2000Lux) and
ultra-high light intensities (i.e., greater than 2000Lux),
indicating insufficient stability. The research model
maintains a high level of DTW values under all lighting
intensities, especially at low light intensities where the
DTW value reaches 85.7%, demonstrating high
robustness and adaptability to motion trajectory capture.
In Figure 12-b), DeblurGAN-v2 has the lowest AO
value at low light intensity, only about 35.6%. With the
increase of light intensity, the AO value has improved,
but the overall performance is still unstable. SCGAN
and PoseMix perform relatively well under medium
light intensity conditions, with AO values reaching
72.3% and 75.2%, but they also exhibit fluctuations
under high and ultra-high light intensities. The research
model maintains excellent performance under all light
intensity conditions, with an AO value consistently
above 88.2%, and is able to maintain high accuracy and
stability even under ultra-high light intensity. The
results based on tracking error, Image Processing Speed
(IPS), and mean Average Precision (mAP) are listed in
Table 3.

Table 3. Multiple index test results of different models.

Data set Model Tracking error/%| IPS/FPS | mAP/%
DeblurGAN-v2 12.48 23.87 81.76
SCGAN 10.34 24.92 84.32
COCO ™ poseFix 9.67 26.14 | 85.89
Our model 7.43 29.61 89.23
DeblurGAN-v2 13.89 22.45 79.34
MPII SCGAN 11.52 23.67 82.17
DEKR 10.11 25.21 84.68
Our model 8.24 28.76 88.47

In Table 3, in terms of tracking error, the error of the
research model on COCO and MPII is 7.43% and
8.24%, which is lower than other models, indicating that
it has an advantage in the accuracy of target tracking.
On IPS, the processing speed of the research model on
two types of datasets is 29.61 Frames Per Second (FPS)
and 28.76FPS, which is higher than the comparison
model. Especially compared to DeblurGAN-v2’s
22.45FPS, IPS has increased by about 30.1%,
demonstrating high real-time performance and suitable
for application requirements in dynamic scenarios. In
terms of mAP, the research model achieves 89.23% on
COCO and 88.47% on MPII, which is about 3% and 4%
higher than PoseMix and Disentangled Keypoint
Regression (DEKR), demonstrating its excellent
performance in keypoint localization and attitude
estimation. In summary, the research model has shown
significant advantages in tracking error, IPS, and mAP,

especially in complex dynamic scenarios with higher
robustness and application potential.

4. Conclusions

Archery requires extremely high precision in motion
capture and pose estimation, but existing technologies
still have shortcomings in performance in dynamic
scenes. Therefore, this study solved the problems of
image blur and keypoint localization in complex
dynamic scenes by incorporating fuzzy algorithms and
HRNet, and ultimately proposed an AMHPE model
based on DFPDeblur GAN. In the experiment, when
FFC=0.6 and TUC=0.8, the image clarity of the model
remained stable at around 95%, and the accuracy of
keypoint localization reached 94.3%. After sequentially
incorporating DFPDeblur GAN and IHRNet, the final
model achieved an average keypoint detection accuracy
of 94.6% and an average error of only 12.3%. Compared
with DeblurGAN-v2 and PoseMix, the PSNR of the
research model increased by 9.1% and 7.4%, the SSIM
reached a maximum of 0.92, and the average runtime
was less than 2 seconds. The proposed model performed
the best in deblurring and detail restoration for four
types of Archery actions: bow holding, string pulling,
aiming, and shooting. At the same time, its KDE was the
lowest at 0.2, which had a significant advantage over
PoseMix’s 0.51. Its DTW value reached 85.7% under
low light intensity, and its AO value remained above
88.2% under all light intensities. The fastest IPS was
29.61FPS, and the lowest tracking error was 7.43%. In
summary, the research model can well lift the accuracy
and adaptability of pose estimation in complex dynamic
scenes, providing reliable support for action analysis
and training optimization in Archery. However, actual
Archery testing is affected by differences in athletes’
training quality, and this study has not yet tested
Archery in a multi person environment. Subsequent
research can further incorporate lightweight design to
enhance real-time performance and deeply explore the
key point capture problem in multi-target scenarios.
Meanwhile, the proposed framework shows good
versatility in image deblurring and high-precision pose
estimation, which can be further extended to other
motion-intensive scenarios, such as martial arts action
recognition, biomechanical behavior analysis, and
public safety video surveillance, to validate the model’s
adaptability and utility value in a wider range of
complex dynamic environments.
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