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Abstract: An Archery human pose estimation system based on Deep Feature Prior Deblurring Generative Adversarial Network 

(DFPDeblur GAN) is proposed. The system incorporates dynamic convolution, a technique that can adaptively adjust the 

parameters of the convolution kernel to extract multidimensional features, and a bidirectional Feature Pyramid Network (FPN), 

which effectively improves the image deblurring effect and multiscale feature fusion capability. Subsequently, the Improved 

High-Resolution Network (IHRNet), combined with the Coordinate Attention (CA)-mechanism, a mechanism that improves the 

accuracy of key point detection by focusing on the spatial location, is used to realize the precise localization of the key joints of 

the Archery action. The experimental results show that the proposed model achieves 94.3% key point localization accuracy, 

9.1% Peak Signal-to-Noise Ratio (PSNR) improvement compared with the traditional method, up to 0.92 Structural Similarity 

Index (SSIM), and less than 2 seconds running time, which exhibits good real-time performance and robustness. The results 

show that the model performs well in a variety of lighting conditions and action phases, providing effective technical support for 

action analysis and training in Archery. 
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1. Introduction 

1.1. Background and Motivation 

As a competitive sport with a long history and high 

technical content, Archery requires athletes to complete 

precise, coordinated and complex movements in a very 

short time. During the key stages of drawing the bow, 

aiming and releasing the arrow, all the joints of the 

athlete’s body need to be highly coordinated, and the 

subtle changes in the movements directly affect the 

accuracy and stability of the shooting. Traditional 

Archery training mainly relies on the coach’s 

experience guidance and visual observation, which is 

difficult to objectively and real-time capture the details 

of the athlete’s movements, resulting in a limited 

training effect [7, 29]. With the rapid development of 

computer vision and artificial intelligence technology, 

the intelligent Archery motion analysis system based on 

human posture estimation has gradually become a key 

technology to improve training science and efficiency. 

The system automatically captures athletes’ body 

postures through video data, and combines machine 

learning models to achieve high-precision action 

recognition and evaluation, which greatly facilitates the 

quantitative analysis of sports performance and 

personalized training guidance. 

However, in practical applications, the high-speed 

and complex dynamic scenes of Archery movements 

often lead to problems such as image blurring and low-

lighting, which seriously affect the accuracy and  

 
stability of pose estimation [22, 23]. Image blurring not 

only reduces the recognition rate of the athlete’s key 

points, but also makes it difficult to retain the detail 

information, which increases the difficulty of stance 

estimation. In addition, the Archery environment is 

variable and the lighting conditions are complex, which 

puts higher requirements on the robustness of the 

algorithm. Therefore, how to design a set of efficient 

and stable joint model of image deblurring and pose 

estimation has become a hot and difficult point in the 

current research, which is directly related to the 

practical effect and application promotion value of the 

Archery intelligent training system. 

1.2. Related Work in Pose Estimation and 

Deblurring 

Anvari et al. [3] proposed a new method inspired by 

classical regression models and trained on 3D motion 

capture data to achieve less parameter count in Archer 

Pose Estimation (APE) using virtual reality technology. 

The virtual reality simulation effect of pose estimation 

under this method is more realistic. Romero et al. [24] 

proposed a semi-automatic mechanism to enhance the 

training effectiveness of APE models, allowing 

synthetic humans to perform various actions to generate 

and edit visual scenes. The effectiveness of APE under 

this mechanism training was significantly improved, 

with shorter iteration times. Liu et al. [18] developed a 

method of inter-frame and intra-frame data 



1070                                                  The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025 

synchronization to lower the cost of pose estimation and 

enhance training efficiency. Compared to other 

methods, this method has improved the accuracy of 

action frame extraction by up to 8.3%. Abhishek and 

Tahir [2] proposed an adaptive boosting model to 

enhance the accuracy of context-based Archery action 

feature extraction. The average accuracy of this model 

for detecting ordinary sports datasets was 92.15%. Siaw 

et al. [27] proposed a marker-based optical Archery 

motion capture system. The system used a smartphone 

camera to capture the motion of the red marker, then 

tracked the coordinates of the marker, and calculated the 

angle. When the distance between the camera and the 

marker was 120 centimeters, the system had a low 

average root mean square error of 0.83°. Chen and Hu 

[6] concluded that the effectiveness of machine learning 

and deep learning techniques for activity recognition in 

sports such as swimming still needs to be improved, for 

this reason, the researchers proposed a new human 

swimming pose recognition model after combining 

reinforcement learning and inertial measurement units. 

Experimental results show that the new model has a 

balanced accuracy of 96.27% for human back, waist, 

and upper and lower limbs pose recognition. Tong and 

Wang [30] proposed a pose recognition model based on 

the combination of augmented Graph Convolutional 

Network (GCN) and Spatio-Temporal GCN (ST-GCN) 

for basketball player pose recognition. The model is 

able to handle graph-structured data with time series 

relationship, and extract the spatio-temporal features of 

human pose sequences by convolution operation. The 

results show that the ST-GCN model achieves 95.58% 

accuracy in basketball pose recognition. 

Currently, deep learning methods based on 

Generative Adversarial Networks (GANs), especially 

the Deblur GAN algorithm, have provided a new 

approach to solving the problems of image blur and pose 

estimation accuracy [13]. The core of Deblur GAN is to 

use the GAN model to deblurr blurry images and 

generate clear high-quality images, thereby improving 

the accuracy of pose estimation. Lee et al. [16] proposed 

a deblurring network using  

Deblur GAN to eliminate motion blur effects in UAV 

images. This method utilized a generative model to 

correct blur artifacts and generate clear images. The 

image quality evaluation under this model was higher 

than traditional methods. Jun [11] proposed a suitable 

method to eliminate blind blur caused by motion in 

images. This method was used for end-to-end learning 

of motion blur removal, describing the amount and type 

of blur caused by point light source imaging. This 

method provided the possibility of increasing real data 

and had a high blur elimination rate. Xiao et al. [33] 

considered the differences in feature abstraction levels 

extracted by different perceptual layers and used Deblur 

GAN based on weighted perceptual loss to deblur 

Unmanned Aerial Vehicle (UAV) images, thereby 

eliminating blur and restoring texture details of the 

images well. Kong et al. [14] found that due to the rapid 

movement between onboard cameras and fire targets, 

captured fire images often become dull and blurry. To 

this end, researchers have proposed a multiple input-

output Deblur GAN architecture that fuses spatial and 

frequency domain message for image deblurring 

models. This model achieved an image similarity of 

0.955 on a self-built dataset. Varela et al. [32] proposed 

a regression method using Deblur GAN to predict the 

parameters, length, and direction of linear motion blur 

kernels. In non-blind image deblurring methods, the 

cumulative histogram value error of the sum of squared 

differences of kernel parameters using this new method 

was higher than that of traditional methods. 

1.3. Identified GAPs 

Although there have been studies that have achieved 

certain results in the field of human pose estimation and 

image deblurring, there are still obvious shortcomings 

in the existing methods for highly dynamic and complex 

scenarios such as Archery sports. First, traditional 

deblurring algorithms rely on single-scale feature 

extraction, which is difficult to take into account the 

multi-scale dynamic changes of the moving objects, 

resulting in insufficient recovery of key details. Second, 

the existing pose estimation models are often difficult to 

realize efficient fusion of multi-resolution features 

when dealing with fast movements, and cannot 

adequately capture the coordinated motion 

characteristics of complex joints, which affects the 

accuracy and continuity of estimation. Furthermore, for 

the real-time tracking requirements in dynamic Archery 

scenarios, the traditional models have limited 

capabilities in target localization and time-series 

information fusion, making it difficult to meet the dual 

requirements of real-time and stability. 

1.4. Suggested Contributions 

To address these issues, the study proposes a joint model 

that fuses a Deep Feature Prior Deblur Generative 

Adversarial Network (DFPDeblur GAN) with an 

Improved High-Resolution Network (IHRNet). High-

Resolution Network (IHRNet) as a joint model. Its 

innovativeness is mainly reflected in the combination of 

multi-dimensional dynamic convolution and 

bidirectional Feature Pyramid Network (FPN), which 

proposes a DFPDeblur GAN for fast dynamic actions in 

Archery, which significantly improves the clarity and 

detail restoration of the image; meanwhile, the IHRNet 

based on the Ghost module, the Sandglass module, and 

the Coordinate Attention mechanism (CA-mechanism), 

is designed, which effectively enhanced multi-scale 

feature fusion and coordinated recognition of complex 

joints; further introduced the target tracking module, 

realizing the real-time accurate capture of key points in 

dynamic scenes, so as to ensure the continuity and 

robustness of attitude estimation. The main 
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contributions of this study are that the proposed method 

effectively improves the image deblurring effect and the 

key point localization accuracy and robustness of stance 

estimation in complex dynamic scenes in Archery, 

realizes the efficient capture of complex joint 

coordination in Archery movements, and provides a 

more effective intelligent assistive method for Archery 

training and competitions. 

2. Methods and Materials 

Aiming at the problems of image blurring and difficult 

pose estimation caused by fast movements in Archery, 

the study firstly constructs an image deblurring model 

for Archery athletes based on the improved DFP Deblur 

GAN. Multi-scale features are extracted by full-

dimensional dynamic convolution Omni-Dimensional 

Dynamic Convolution (ODConv) and bi-directional 

FPN, and combined with Iterative Attentionla Feature 

Fusion (IAFF) module for detail optimization. 

Secondly, the IHRNet for deblurring image input 

extracts multi-resolution features through Ghost and 

Sandglass modules as well as CA-mechanism, and 

combines with the target tracking module to capture 

dynamic targets and key joint features in real time. 

Finally, a novel Archery, Motion, High-Precision, 

Estimation (AMHPE) model is proposed that integrates 

deblurring and high-resolution pose estimation. 

2.1. Image Deblurring Based on DFPDeblur 

GAN 

2.1.1. Generator Design and Feature Extraction 

Path 

Archery has unique characteristics compared to other 

sports. The main challenge lies in the high-precision 

requirements for athletes’ postures, especially in the 

process of rapid and complex movements. How to 

capture the subtle posture changes of athletes is a key 

factor affecting Archery performance [28]. During the 

Archery process, athletes move at high speed and 

frequently during the moments of pulling the bow, 

aiming, and releasing the arrow, resulting in blurry 

images captured by the camera. The problem of image 

blur not only affects image quality and reduces the 

accessibility of detail information, but may also lead to 

pose estimation errors, thereby affecting the accuracy of 

training and competition [26]. Therefore, this paper 

designs a DFPDeblur GAN built on Deblur GAN. 

Unlike traditional GANs, DFPDeblur GAN introduces 

deep feature priors between the generator and 

discriminator. This prior information helps the 

generator to fully utilize the contextual information of 

the athlete’s posture when restoring blurred images, 

ensuring that the image structure and details remain 

consistent during the deblurring process. Figure 1 shows 

the DFPDeblur GAN structure. 

 

Figure 1. DFPDeblur GAN structure. 

In Figure 1, the entire DFPDeblur GAN consists of a 

generator, discriminator, and attention mechanism 

module. The process first utilizes ODConv to improve 

the Mobilenetv2 network as the backbone network, and 

extracts features layer by layer through downsampling 

method to obtain five feature maps of different scales, 

namely A1 to A5. Next, these feature maps are 

processed through FPN’s horizontal connection and 

top-down path to generate corresponding feature maps 

P1 to P5. On this basis, P1 to P5 are processed again 

through the bottom-up path of FPN to obtain feature 

maps N1 to N5. Subsequently, N1 to N5 are fused with 

the original image to generate the last image output. The 

generated image is input into the discriminator together 

with the target clear image, and the similarity 

probability value between the generated and clear 

images is calculated. The quality of the generated image 

is improved by optimizing the generator. Finally, 

through alternating training of the generator and 

discriminator, the performance of the network is 

gradually improved, completing the process of image 

deblurring. The generator structure of DFPDeblur GAN 

is shown in Figure 2. 

In Figure 2, the generator includes multiple feature 

extraction modules, whose main function is to extract 

and fuse key features from the input blurred motion 

image to achieve deblurring processing. Firstly, the 

input blurred image is subjected to a five-layer 2D 

convolution operation from bottom to top through the 

backbone network, extracting feature maps of various 

scales. These feature maps are then fused through the 

top-down path of FPN to generate five fused features. 
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At the same time, the feature fusion process introduces 

horizontal connections and combines Batch 

Normalization (BN) layers and ReLU functions to 

enhance the expressive power and extraction efficiency 

of features. Then, IAFF dynamically focuses on the 

detailed features in the key region through the 

multilayer attention mechanism to reduce the 

interference of redundant information on the pose 

judgment. Compared with the traditional single-feature 

fusion method, IAFF is able to aggregate multi-scale 

features in multiple rounds, which significantly 

improves the ability to restore key details in blurred 

images [4, 17]. 

 

Figure 2. DFPDeblur GAN generator structure. 

2.1.2. ODConv Module Principles and Benefits 

Analysis 

Compared with traditional convolution (e.g., standard 

3×3 convolution or group convolution), the use of 

ODConv for the backbone network can adaptively 

assign attention weights in spatial, channel, and input-

output dimensions simultaneously, which enhances the 

expression fineness of the features and the dynamic 

modeling ability. Especially in the scenario of Archery 

sports where fast movements lead to image blurring, 

ODConv is able to extract multi-dimensional features 

more flexibly, enhancing robustness and structure 

preservation [35]. For example, Vancurik and Callahan 

[31] measured and introduced variables by combining 

wearable sensors with university tennis match video 

observations to detect abnormal movements in tennis, 

showing stable output results. The structure of ODConv 

is shown in Figure 3. 

 

Figure 3. Structure diagram of ODConv. 

In Figure 3, firstly, the input features are subjected to 

Global Average Pooling (GAP), which aggregates 

global information into feature vectors to quantitatively 

describe their feature lengths. Subsequently, the 

features are partitioned through a fully connected layer, 

generating four branches with different dimensions. 

Each branch corresponds to a different parameter 

configuration of the convolutional kernel, which is used 

to calculate the features of time position, spatial 

position, filtering position, and output position 

separately. Each branch calculates attention values 

through a specific weight matrix and extracts 

corresponding features. Subsequently, these features 

undergo specific mapping calculations to generate 

adjusted convolution kernel weights, further optimizing 

the feature extraction process. Finally, the sigmoid 

function normalizes the output and adjusts the weights 

to an appropriate range to ensure the stability and 

effectiveness of the output results [19]. The calculation 

for GAP is given by Equation (1). 

𝑧 =
1

𝐻 ∙ 𝑊
∑∑𝑥(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

 

In Equation (1), x is the input feature map. x(i, j) means 

the value of the feature map at position (i, j). H and W 

are the height and width of the feature map. z is the 

global eigenvector. The formula for generating branch 

feature weights is shown in Equation (2). 

𝛼𝑘 = 𝜎(𝑊𝑘 ∙ 𝑦𝑘 + 𝑏𝑘) 

In Equation (2), 𝜎 and bk are the weights and biases of 

branch k. yk is the input feature of k. 𝛼k denotes the 

attention weight of k. 𝜎 corresponds to the sigmoid 

function. At this point, the FPN connections from 

bottom to top and from top to bottom are shown in 

Equation (3). 

{
𝑃𝑖 = 𝐶𝑜𝑛𝑣1×1(𝐴𝑖) + 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑃𝑖+1)

𝑁𝑖 = 𝐶𝑜𝑛𝑣3×3(𝑃𝑖) + 𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝑁𝑖+1)
 

In Equation (3), Pi and Ni are feature maps fused from 

top to bottom and bottom-up. Ai is a feature map of 

(1) 

(2) 

(3) 
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different scales extracted from the backbone network. 

Upsample and Downsample are upsampling and 

downsampling operations. The key features after 

focusing by the IAFF module are shown in Equation (4). 

𝐹𝐼𝐴𝐹𝐹
𝑡 = 

𝐹𝑡 + 𝛾 ∙ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑡, 𝐾𝑡, 𝑉𝑡) = 𝐹𝑡 + 𝛾 ∙ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑡, 𝐾𝑡𝑇

√𝑑
)𝑉𝑡 

In Equation (4), Ft is the fusion feature of the t-th 

iteration. Qt, Kt, and Vt are the query, key, and value 

matrix values in IFF at the t-th iteration. 𝛾 is the Feature 

Fusion Coefficient (FFC). √𝑑  is the scaling factor. 

𝐹𝐼𝐴𝐹𝐹
𝑡  is the fused feature map after the t-th iteration.  

2.1.3. IAFF Modular Structure and Iterative 

Feature Fusion Mchanisms 

Specifically, the architecture diagram of IAFF module 

and bidirectional FPN is shown in Figure 4. 

 

  

a) IAFF structure. b) Bidirectional FPN structure. 

Figure 4. Architecture diagram of IAFF module and bidirectional FPN. 

In Figure 4-a), the IAFF module is overlaid with two 

layers of Multi-Scale Channel Attention Module (MS-

CAM) for initial feature fusion. The input features are 

subjected to two layers of point by point convolution 

and BN layer, as well as ReLU for global feature 

extraction, and then input to the right side for repeated 

operations. Finally, a weighted balanced feature map is 

obtained through matrix calculation. In Figure 4-b), in 

the top-down FPN structure, high-level semantic 

features are passed to low-level features to enhance their 

representational power, while ensuring feature 

continuity through horizontal connections. In the 

bottom-up FPN structure, the information of low-level 

features is transmitted to high-level features to 

supplement detailed information and optimize feature 

expression.  

2.1.4. Hybrid Loss Function Design with 

Optimization Objective 

In addition, to preserve the details of blurry images, this 

study constructs a novel hybrid loss function that 

integrates content loss, perceptual loss, and adversarial 

loss. The content loss formula is given by Equation (5). 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
1

𝑁
∑‖𝐺(𝑥𝑖)𝑦𝑖‖1

𝑁

𝑖=1

 

In Equation (5), Lcontent is the content loss value. G(xi) is 

the image generated by the generator. ‖_‖1 is the norm of 

L1. The perceptual loss is given by Equation (6). 

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 =
1

𝑁
∑∑‖𝜙𝑙(𝐺(𝑥𝑖)) − 𝜙𝑙(𝑦𝑖))‖2

2

𝑙

𝑁

𝑖=1

 

In Equation (6), Lperceptual is the perceptual loss value. 

ϕl(_) is the l-th layer feature map of deep networks. ‖_‖2
2 

is the norm of L2. The adversarial loss is shown in 

Equation (7). 

𝐿𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 = −
1

𝑁
∑log𝐷(𝐺(𝑥𝑖))

𝑁

𝑖=1

 

In Equation (7), Ladversarial is the adversarial loss value. 

Ladversarial is a discriminator. 

2.2. Construction of AMHPE Model 

Integrating Deblurring and IHRNet 

2.2.1. Overall Structure and Flow of the IHRNet 

Model 

After constructing the image deblurring model based on 

DFPDeblur GAN, it is found that the deblurring module 

can effectively improve the quality of the input image 

and provide clear and reliable basic image data for 

subsequent pose estimation. However, relying solely on 

deblurring images for pose estimation may still face the 

problem of insufficient capture of complex pose 

features. Especially, Archery movements have high 

technical complexity, involving coordination and 

synchronization of multiple joints [9, 25]. 

Therefore, it is necessary to introduce a network 

structure that can enhance the ability to capture complex 

poses while maintaining high resolution, further 

improving the accuracy and robustness of the model. 

HRNet, as an advanced attitude estimation framework 

proposed in recent years, can achieve high accuracy and 

robustness in attitude estimation tasks through parallel 

high-resolution and low-resolution feature 

representations, as well as multi-scale feature 

interaction mechanisms [20, 34]. Its core advantage lies 

in maintaining the continuity of high-resolution features 

throughout the entire feature extraction process, while 

(4) 

(7) 

(5) 

(6) 
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fusing features of different scales through information 

exchange between branches. It can capture both global 

pose information and attention to detailed joint features 

[8, 21]. 

However, to adapt to the continuity and coordination 

of joint movements in Archery, this study improves the 

HRNet structure and proposes an IHRNet, as shown in 

Figure 5. 

 

Figure 5. The network structure of IHRNet. 

In Figure 5, the entire structure of IHRNet includes 

preprocessing and four different resolution network 

extraction stages. Firstly, in the preprocessing stage, 

motion blur removal module and target tracking module 

are used to collect camera image data of Archers, and 

unbiased data preprocessing is adopted to reduce the 

small errors caused by the initial review data. Then, the 

data are input into the HRNet of stage 1 for high-

resolution feature extraction. Phase 1 consists of 4 

layers, each of which integrates Ghost module, 

Sandglass module, and CA-mechanism. Then, the data 

are passed to the medium resolution network in stage 2 

for feature extraction. At this point, the resolution 

network has more branches than the previous stage, 

capturing deeper level feature information through 

downsampling. After passing through four times in 

sequence, the data stream achieves multi-scale feature 

alignment and complementarity from high-resolution to 

low-resolution.  

2.2.2. Architecture and Benefits of Ghost and 

Sandglass Modules 

The Ghost module generates base features through a 

small number of standard convolutions, and then 

combines them with multiple linear transformations to 

quickly generate redundant features, significantly 

reducing the amount of model computation. Compared 

with the traditional convolution, it reduces the 

computational overhead by about 50% or more while 

maintaining the accuracy, which is especially suitable 

for real-time demanding tasks such as attitude 

estimation. The computational formula is shown in 

Equation (8) [10, 36]. 

𝐺ℎ𝑜𝑠𝑡(𝑥) = 𝐹(𝑥) +∑𝜃𝑖

𝑏

𝑖=1

∗ 𝐹(𝑥) 

In Equation (8), F(x) is the core feature generated by the 

main convolution. θi is the weight of the i-th lightweight 

operation. b is the amount of generated supplementary 

features. Ghost(x) is the feature output by the Ghost 

module. The Sandglass module is structured to enhance 

the transfer efficiency of the model in maintaining high-

resolution features by reversing the bottleneck structure 

of the standard residual block and combining the 

asymmetric feature flow with residual connections. 

Compared with conventional residual blocks, Sandglass 

is more suitable for detail modeling and position 

information retention in shallow networks. The 

computational formula is shown in Equation (9) [1]. 

𝑆(𝑥) = 𝑥 +𝑊3 ∙ 𝑅𝑒𝐿𝑈(𝑊2 ∙ 𝑅𝑒𝐿𝑈(𝑊1 ∙ 𝑥)) 

In Equation (9), W1, W2, and W3 are the weights of the 

first to third layer point wise convolutions. S(x) is the 

output of the Sandglass module.  

2.2.3. Coordinate Attention Mechanisms and 

Feature Weighted Representation 

CA generates globally perceived weighted features by 

separating horizontal and vertical information, as shown 

in Equation (10). 

𝐶𝐴(𝑥) = 𝜎(𝑊ℎ ∙ 𝐺𝐴𝑃ℎ(𝑥)) ⊗ 𝐸𝑥𝑝𝑎𝑛𝑑ℎ(𝑥) + 

𝜎(𝑊𝑤 ∙ 𝐺𝐴𝑃𝑤(𝑥)) ⊗ 𝐸𝑥𝑝𝑎𝑛𝑑𝑤(𝑥) 

In Equation (10), Wh and Ww are the weights of the 

horizontal and vertical axis features. GAPh(x) and 

GAPw(x) are GAP along the horizontal and vertical 

directions. Expandh(x) and Expandw(x) are feature 

extension operations along the horizontal and vertical 

directions. CA(x) is the output of CA. Throughout the 

process, the target tracking module plays an important 

role. By tracking the key parts of Archers in real-time, 

this module can effectively locate targets in dynamic 

scenes, ensuring that the feature extraction network 

maintains a high level of attention to key points in 

motion [5, 15]. 

2.2.4. Target Tracking Module Structure and 

Template Update Mechanism 

The framework of the target tracking module is 

displayed in Figure 6. 

(8) 

(9) 

(10) 
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Figure 6. Object tracking module structure. 

In Figure 6, the structure of the target tracking 

module mainly has three parts: Template matching, 

feature extraction, and update strategy. Firstly, the 

module prunes candidate regions from the video frame 

where the target is located by defining a search area, 

while extracting template regions for matching. The 

template matching stage adopts a feature level 

comparison method, extracts key features of the target 

through the backbone network, and combines the 

bounding box regression module to generate the initial 

position of the target. This method is similar to the 

approach taken by Kaloub and Abed Elgabar [12], who 

developed an emotion detection system for audio files 

by combining various machine learning classifiers such 

as sequence minimization, random forests, K-nearest 

neighbors, and simple logistic regression. Through a 

multi-ensemble approach, they selected the optimal 

feature-level objects from the target set. Next, the 

feature extraction part further processes the template 

features and search area features through a transformer 

encoder, integrating spatial and temporal information to 

enhance the discriminative capacity of the target. After 

extracting feature, the bounding box prediction module 

combines multi-scale features to generate the final 

target box. The update strategy ensures the tracking 

performance of the target in consecutive frames, and 

dynamically updates the template information based on 

the predicted matching degree between the target box 

and the template area. When the confidence level of the 

matching result exceeds a certain threshold, the template 

features are updated to adapt to the changes of the target 

during motion. At the same time, the branch module is 

responsible for determining whether to adjust or switch 

templates based on the tracking results to adapt to 

complex scenes such as occlusion, rapid motion, or 

target disappearance. The expression for template 

matching is shown in Equation (11). 

𝑆∗(𝑖, 𝑗) = ∑∑𝜀(𝑇(𝑢, 𝑣)) ∙ 𝜑(𝐼(𝑖 + 𝑢, 𝑗 + 𝑣))

𝑊

𝑣=1

𝐻

𝑢=1

 

In Equation (11), S*(i, j) is the similarity score of 

position (i, j) in the search area. T(u, v) is the template 

feature at position (u, v). I(i+u, j+v) is the feature value 

of the search area feature at the offset (i, j) position. ε 

and φ are both feature encoding functions. When the 

reliability of the target matching configuration exceeds 

the set threshold, the template features are updated to 

adapt to the dynamic changes of the target. The updated 

formula is shown in Equation (12). 

𝑇𝑛𝑒𝑤 = 𝜌 ∙ 𝑇𝑜𝑙𝑑 + (1 − 𝜌) ∙ 𝐹𝑐𝑢𝑟𝑟 

In Equation (12), Tnew is the updated template feature. 

Fcurr is the current template feature Told. is the target 

feature extracted from the current frame. ρ is the 

Template Update Coefficient (TUC). In summary, this 

study combines an image deblurring model based on 

DFPDeblur GAN and an attitude recognition model 

based on IHRNet to construct a novel AMHPE model. 

The process of this model is shown in Figure 7. 

 

Figure 7. Flow of a new Archery human pose estimation model. 

(11) 

(12) 
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In Figure 7, firstly, the Archery video is preprocessed 

using the motion blur removal module and target 

tracking module. The target area is cropped and the 

quality of the input data is optimized. Then, DFPDeblur 

GAN is used to eliminate image blur, and multi-scale 

features are extracted and fused through ODConv and 

bidirectional FPN. IAFF module is used to focus on key 

details and generate high-quality images. Subsequently, 

the deblurred image is input into IHRNet, and multi-

resolution features are extracted layer by layer using 

Ghost, Sandglass modules, and CA-mechanism. By 

combining the target tracking module to capture 

dynamic targets in real-time, precise positioning of key 

joints and capture of motion continuity have been 

achieved. Finally, a hybrid optimization based on 

content loss, perceptual loss, and adversarial loss 

optimizes the robustness and accuracy, providing 

scientific motion analysis and training support for 

Archers. 

3. Results 

This study first established an environment and 

conducted multidimensional testing using two classic 

datasets, with deblurring effect, pose estimation 

accuracy, and robustness as the core indicators. The 

experimental content covered hyperparameter selection, 

ablation testing, comparative testing, and multi-scenario 

simulation experiments. In addition, this study 

compared advanced human pose estimation algorithms 

and deblurring algorithms in the field to verify the true 

effectiveness of the research model. 

3.1. Performance Testing of the AMHPE Model 

This study establishes a suitable experimental 

environment and uses the Common Objects in COntext 

keypoint detection dataset (COCO) and the Max Planck 

Institute for Informatics human pose dataset (MPII) as 

test data sources. Among them, the COCO dataset is a 

widely used human pose estimation dataset. It contains 

over 250,000 images and over 150,000 human body 

instances, annotated with 17 key points including head, 

shoulders, elbows, wrists, hips, knees, ankles, etc. The 

MPII dataset focuses on pose estimation of human 

activities, containing over 25,000 images and over 

40,000 annotated human instances, covering 410 daily 

activity scenarios. Each human instance is annotated 

with 16 key points, making it particularly suitable for 

capturing dynamic poses and high-precision motion 

analysis. Table 1 provides detailed configuration 

parameters. 

Table 1. Experimental parameter table. 

Experimental equipment Value 

CPU AMD Ryzen 7 5800H 

GPU NVIDIA RTX 3070 

Memory 32GB DDR4 

Graphics memory 8GB GDDR6 

Development environment Ubuntu 20.04, Python 3.8 

Programming tools PyTorch 1.12, CUDA 11.5 

Initialise learning rate 0.0001 

Learning rate batch size 32 

Momentum parameters 0.9 

Training period 200 epochs 

Weight decay 5e-5 

Optiming period 250 epochs 

Based on Table 1, this study first conducted value 

selection tests on two types of hyperparameters that 

have a significant impact on deblurring and pose 

estimation, namely FFC and TUC, as shown in Figure 

8. 

In Figure 8-a), within the iteration range of 100 to 

200, the image clarity at an FFC of 0.6 consistently 

outperforms other coefficient settings, with a stable 

image clarity of around 95%, demonstrating good 

stability and clarity improvement effect. When FFC is 

0.8, although it performs well in some iteration 

intervals, the overall clarity is low and not suitable as 

the best choice. In Figure 8-b), TUC has a significant 

impact on the accuracy of keypoint localization. When 

the TUC is close to 0.6 and 0.8, both can maintain a 

keypoint positioning accuracy of over 94.3%, with the 

test result with a coefficient of 0.8 slightly better in most 

cases. In contrast, when TUC is 0.2, the positioning 

accuracy fluctuates greatly, making it difficult to ensure 

high stability. Therefore, this study determines that the 

model performance is optimal when the FFC is 0.6 and 

the TUC is 0.8. This study continues with ablation 

testing, as shown in Figure 9. 

 

  

a) Feature fusion coefficient. b) Template updating coefficient. 

Figure 8. Hyperparameter selection test result. 
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a) Accuracy testing. b) Error rate test. 

Figure 9. Ablation test results. 

Figure 9-a) shows the accuracy and average accuracy 

results of the model ablation test; Figure 9-b) shows the 

error and average error results of the model ablation test. 

From Figure 9-a), it can be seen that the base GAN 

model has the lowest accuracy throughout the test and 

fluctuates greatly, maintaining only between 80% and 

85%, indicating that there is an obvious deficiency in its 

stability and recognition ability in dynamic scenes. 

After the introduction of the DFPDeblur GAN, the 

accuracy is significantly increased to about 90%, with 

an overall improvement of 6.5 percentage points, 

indicating that the image deblurring module has a 

positive effect on the enhancement of feature quality. 

After further overlaying HRNet, the average accuracy 

stabilizes above 93%, and the fluctuation is significantly 

reduced, indicating that high-resolution feature 

modeling effectively improves the attitude estimation 

accuracy. Finally, the model accuracy reaches 94.6% 

under the joint optimization of DFPDeblur GAN and 

IHRNet, which is the best performance, and the overall 

improvement is nearly 12 percentage points compared 

with the base GAN. As seen in Figure 9-b), the GAN 

model has the highest average error rate of about 35%, 

accompanied by obvious fluctuations, which makes it 

difficult to ensure the stability of keypoint localization; 

after the introduction of the DFPDeblur GAN, the error 

rate decreases to about 21.7%, which suggests that the 

improvement of the image clarity can help to reduce the 

recognition bias; after further combining with the 

HRNet, the error rate decreases to 14.9%, and the final 

introduction of the improved IHRNet, the average error 

is minimized to 12.3%, which is a 22.7% reduction in 

overall error compared to the original model. The above 

results verify the superimposed contribution of each key 

module to the performance improvement, and also show 

that the proposed model has better accuracy and 

robustness in complex dynamic scenarios. This study 

introduces other advanced deblurring pose estimation 

algorithms for comparison, such as Deblur GAN 

Version 2 (DeblurGAN-v2), Semantic Consistency 

GAN (SCGAN), and Pose Fixing Network (PoseFix). 

Table 2 presents test data using Peak Signal-to-Noise 

Ratio (PSNR), Structural Similarity Index (SSIM), and 

runtime as indicators. 

Table 2. Index test results of different models. 

Data set Model PSNR (dB) SSIM Runtime (s) 

COCO 

DeblurGAN-v2 31.78 0.85 2.13 

SCGAN 33.62 0.87 2.45 

PoseFix 32.49 0.86 2.29 

Research model 34.81 0.91 1.87 

MPII 

DeblurGAN-v2 30.43 0.84 2.21 

SCGAN 32.56 0.86 2.39 

PoseFix 31.67 0.85 2.34 

Research model 34.32 0.92 1.94 

In Table 2, the research model shows significant 

advantages in PSNR, SSIM, and runtime metrics. On 

the COCO and MPII datasets, the PSNR of the research 

model reaches 34.81dB and 34.32, which are about 

9.1% and 7.4% higher than DeblurGAN-v2 and 

PoseMix. The SSIM index also reaches 0.91 and 0.92, 

far higher than other models. This indicates that it has 

better performance in image quality and structural 

restoration. In terms of runtime, the average runtime of 

the research model on both datasets is less than 2 

seconds, which is about 0.5 seconds less than SCGAN 

and PoseMix, demonstrating its efficiency. Overall, the 

research model can maintain low computational costs 

while ensuring high-precision image quality, and has 

broad application prospects. 

3.2. New AMHPE Model Simulation Testing 

To validate the actual effectiveness of the research 

model in deblurring and Archery posture estimation, 

this study randomly selects two images from the MPII 

dataset for different model comparison tests. Firstly, it 

is necessary to ensure that these models have undergone 

image data preprocessing and maintain a certain level of 

data validity. The test results are shown in Figure 10. 

Figures 10-a) to (d) show the deblurring effects of 

DeblurGAN-v2, SCGAN, PoseFix, and research model. 

Comparison shows that DeblurGAN-v2 has a good 

effect on restoring the basic structure of images, but it is 

slightly lacking in detail processing, with some joint 

edges still blurred. SCGAN has some improvement in 

semantic consistency, with overall image clarity higher 

than DeblurGAN-v2, but some details still appear 

slightly blurry, especially in complex background areas. 

PoseMix maintains a certain level of image clarity while 

correcting key point positions, but has limited ability to 



1078                                                  The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025 

restore blur in dynamic scenes, resulting in noticeable 

blurry traces in the background. The research model 

performs the best in deblurring and detail restoration, 

not only effectively restoring the overall clarity of the 

image, but also preserving the accuracy of joint 

positions in complex dynamic scenes. The character 

contours and background details are clear and natural, 

significantly better than other comparison models. This 

study tests four types of standard Archery movements 

(bow holding, string pulling, aiming, and shooting) and 

Keypoint Detection Error (KDE) as indicators, as shown 

in Figure 11. 

 

    

    

a) DeblurGAN-v2. b) SCGAN. c) PoseFix. d) Our model. 

Figure 10. Comparison results of image deblurring effect of different methods. 

  

a) COCO. b) MPII. 

Figure 11. KDE test results of Archery pose of different models. 

Figures 11-a) and (b) show the KDE detection results 

of four models on four types of Archery movements in 

the COCO and MPII datasets. In Figure 11-a), 

DeblurGAN-v2 has high KDE values in all stages of the 

action, with some stages, such as string pulling and 

aiming, approaching the upper limit of KDE at 0.9, 

indicating low accuracy in locating key points of the 

action. The SCGAN and PoseMix models perform 

slightly better in the bow and arrow stages, but there are 

still significant errors in the string pulling and aiming 

stages, indicating their limited robustness in dynamic 

motion capture. The research model maintains a KDE 

value of around 0.2 in all action stages, demonstrating 

excellent keypoint localization accuracy and stability. In 

Figure 11-b), the performance of PoseFix in the MPII 

dataset is abnormal, while DeblurGAN-v2 and SCGAN 

are relatively stable, but compared to the research 

model, they have poorer accuracy and stability in bow 

holding, string pulling, and aiming. The KDE mean of 

the research method is 0.23, which has a significant 

advantage over PoseMix’s 0.51. This study uses 

Dynamic Time Warping (DTW) and Average Overlap 

(AO) as indicators for action trajectory similarity, as 

shown in Figure 12. 

 

  

a) DTW test. b) OA test. 

Figure 12. DTW and OA test results of models under different light intensities. 
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Figures 12-a) and (b) show the DTW and OA test 

results of four types of models under different light 

intensities. In Figure 12-a), DeblurGAN-v2 performs 

poorly under low light intensity conditions, with a DTW 

value of only about 45%, indicating that its ability to 

capture motion trajectories is significantly limited by 

lighting conditions. SCGAN and PoseMix exhibit 

significant fluctuations in DTW values between 65% 

and 80% at high light intensities (i.e., 501-2000Lux) and 

ultra-high light intensities (i.e., greater than 2000Lux), 

indicating insufficient stability. The research model 

maintains a high level of DTW values under all lighting 

intensities, especially at low light intensities where the 

DTW value reaches 85.7%, demonstrating high 

robustness and adaptability to motion trajectory capture. 

In Figure 12-b), DeblurGAN-v2 has the lowest AO 

value at low light intensity, only about 35.6%. With the 

increase of light intensity, the AO value has improved, 

but the overall performance is still unstable. SCGAN 

and PoseMix perform relatively well under medium 

light intensity conditions, with AO values reaching 

72.3% and 75.2%, but they also exhibit fluctuations 

under high and ultra-high light intensities. The research 

model maintains excellent performance under all light 

intensity conditions, with an AO value consistently 

above 88.2%, and is able to maintain high accuracy and 

stability even under ultra-high light intensity. The 

results based on tracking error, Image Processing Speed 

(IPS), and mean Average Precision (mAP) are listed in 

Table 3. 

Table 3. Multiple index test results of different models. 

Data set Model Tracking error/% IPS/FPS mAP/% 

COCO 

DeblurGAN-v2 12.48 23.87 81.76 

SCGAN 10.34 24.92 84.32 

PoseFix 9.67 26.14 85.89 

Our model 7.43 29.61 89.23 

MPII 

DeblurGAN-v2 13.89 22.45 79.34 

SCGAN 11.52 23.67 82.17 

DEKR 10.11 25.21 84.68 

Our model 8.24 28.76 88.47 

In Table 3, in terms of tracking error, the error of the 

research model on COCO and MPII is 7.43% and 

8.24%, which is lower than other models, indicating that 

it has an advantage in the accuracy of target tracking. 

On IPS, the processing speed of the research model on 

two types of datasets is 29.61 Frames Per Second (FPS) 

and 28.76FPS, which is higher than the comparison 

model. Especially compared to DeblurGAN-v2’s 

22.45FPS, IPS has increased by about 30.1%, 

demonstrating high real-time performance and suitable 

for application requirements in dynamic scenarios. In 

terms of mAP, the research model achieves 89.23% on 

COCO and 88.47% on MPII, which is about 3% and 4% 

higher than PoseMix and Disentangled Keypoint 

Regression (DEKR), demonstrating its excellent 

performance in keypoint localization and attitude 

estimation. In summary, the research model has shown 

significant advantages in tracking error, IPS, and mAP, 

especially in complex dynamic scenarios with higher 

robustness and application potential. 

4. Conclusions 

Archery requires extremely high precision in motion 

capture and pose estimation, but existing technologies 

still have shortcomings in performance in dynamic 

scenes. Therefore, this study solved the problems of 

image blur and keypoint localization in complex 

dynamic scenes by incorporating fuzzy algorithms and 

HRNet, and ultimately proposed an AMHPE model 

based on DFPDeblur GAN. In the experiment, when 

FFC=0.6 and TUC=0.8, the image clarity of the model 

remained stable at around 95%, and the accuracy of 

keypoint localization reached 94.3%. After sequentially 

incorporating DFPDeblur GAN and IHRNet, the final 

model achieved an average keypoint detection accuracy 

of 94.6% and an average error of only 12.3%. Compared 

with DeblurGAN-v2 and PoseMix, the PSNR of the 

research model increased by 9.1% and 7.4%, the SSIM 

reached a maximum of 0.92, and the average runtime 

was less than 2 seconds. The proposed model performed 

the best in deblurring and detail restoration for four 

types of Archery actions: bow holding, string pulling, 

aiming, and shooting. At the same time, its KDE was the 

lowest at 0.2, which had a significant advantage over 

PoseMix’s 0.51. Its DTW value reached 85.7% under 

low light intensity, and its AO value remained above 

88.2% under all light intensities. The fastest IPS was 

29.61FPS, and the lowest tracking error was 7.43%. In 

summary, the research model can well lift the accuracy 

and adaptability of pose estimation in complex dynamic 

scenes, providing reliable support for action analysis 

and training optimization in Archery. However, actual 

Archery testing is affected by differences in athletes’ 

training quality, and this study has not yet tested 

Archery in a multi person environment. Subsequent 

research can further incorporate lightweight design to 

enhance real-time performance and deeply explore the 

key point capture problem in multi-target scenarios. 

Meanwhile, the proposed framework shows good 

versatility in image deblurring and high-precision pose 

estimation, which can be further extended to other 

motion-intensive scenarios, such as martial arts action 

recognition, biomechanical behavior analysis, and 

public safety video surveillance, to validate the model’s 

adaptability and utility value in a wider range of 

complex dynamic environments. 
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