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Abstract: Federated Learning (FL) is a Machine Learning (ML) paradigm in which multiple devices collaboratively train a
model without sharing their local data. This decentralized approach provides significant privacy benefits, enabling compliance
with data protection regulations and safeguarding sensitive user information by keeping raw data on local devices. Instead of
transmitting raw data, FL sends model updates to a central aggregator to improve the global model. However, this process can
result in higher Carbon Dioxide (CO:) emissions compared to traditional centralized ML systems, due to the increased number
of participating devices and communication rounds. This study evaluates the performance, convergence speed, energy efficiency,
and environmental impact of FL models compared to centralized models, using the Modified National Institute of Standards and
Technology dataset (MNIST) and Canadian Institute for Advanced Research-10 classes dataset (CIFAR-10). Four models were
tested: two FL models and two centralized models. The evaluation focused on accuracy, number of training rounds to
convergence, and total CO: emissions. To optimize both convergence and energy efficiency, a dynamic hill-climbing-based early
stopping technique was introduced. After every 100 rounds, model accuracy improvements were assessed, and training was
terminated early if further gains fell below a shrinking threshold, effectively reducing unnecessary computation and energy
consumption. Results show that, under the tested conditions, FL models achieved competitive or higher accuracy than centralized
models, particularly on non-Independent and Identically Distributed (IID) data distributions. For example, the federated MNIST
model reached 98.79% accuracy with a significantly lower carbon footprint when early stopping was applied. Overall, the
proposed optimization approach reduced CO: emissions by approximately 60% without substantial loss in accuracy. By
integrating privacy preservation, explicit regulatory relevance, and a practical dynamic optimization method, this research
demonstrates that FL can deliver strong model performance while meeting modern requirements for data privacy and
environmental sustainability.
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1. Introduction sustainability due to high energy consumption and
associated Carbon Dioxide (CO2) emissions [6, 17, 22].
In such centralized systems, as shown in Figure 1, raw
data from edge devices is aggregated and analyzed at a
central server, potentially exacerbating these challenges.

To overcome these issues, Federated Learning (FL)
has emerged as a promising paradigm. Instead of
transmitting raw data, FL enables distributed devices to
collaboratively train a shared model, sending only
model updates to a central server for aggregation. This
decentralized process, depicted in Figure 2, ensures that
sensitive data remains local, offering enhanced privacy
and supporting compliance with data protection

The rapid expansion of the Internet of Things (IoT) has
created a vast network of interconnected devices,
enabling innovative applications across healthcare,
smart cities, transportation, and home automation [5].
These devices continuously generate and exchange
large volumes of data, which has traditionally been
processed using centralized Machine Learning (ML)
approaches. While centralized ML facilitates powerful
data-driven insights, it also introduces challenges
related to communication overhead, privacy, regulatory
compliance, and, increasingly, environmental
sustainability due to high energy consumption and
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regulations such as General Data Protection Regulation
(GDPR) [3, 24, 26]. FL has therefore become an
attractive solution for privacy-conscious domains.
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Figure 1. FL training process.
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Figure 2. Framework of training models.

However, deploying FL at scale introduces new
challenges [2, 20]. Most notably, frequent
synchronization and distributed computation across
multiple devices substantially increase energy
consumption and, consequently, CO. emissions [17,
22]. As environmental sustainability becomes a critical
consideration in Al, the carbon footprint associated with
large-scale federated training cannot be overlooked.
Thus, while FL addresses data privacy and ownership, it
raises pressing questions about energy efficiency and
environmental impact.

The central aim of this research is to optimize FL not
only for predictive accuracy and privacy, but also for
energy efficiency and environmental sustainability.
Specifically, this study develops and evaluates a
dynamic early stopping technique based on a hill-
climbing strategy to minimize unnecessary computation
and communication during training, thereby reducing
CO: emissions. By systematically comparing FL and
centralized learning models on benchmark datasets, and
by explicitly quantifying energy use and emissions, this
research contributes practical strategies for sustainable
deployment of FL systems.

The remainder of this paper is organized as follows:
Section 2 reviews related work, section 3 details the
research methodology and implementation, and section
4 presents and discusses the results.

2. Literature Review

FL is a distributed ML approach that allows participants
to collaboratively train models without exposing their
local data. Typically, only encrypted model updates are

transmitted to a central server, protecting data privacy
and supporting compliance with regulations such as the
GDPR. However, training optimal models in FL
remains challenging due to incomplete and distributed
data across diverse devices [7, 8, 19, 24].

FL frameworks have been identified based on
existing research and can be categorized according to
data partitioning, privacy mechanisms, communication
architecture, and methods for handling data
heterogeneity. Regarding data partitioning, FL. models
are generally divided into three main types: horizontal,
vertical, and federated transfer learning. Horizontal FL
applies when datasets share the same feature space but
differ in user identities, splitting data along the user
dimension [27]. Vertical FL is appropriate when datasets
have overlapping users but different feature sets,
allowing for the expansion of feature dimensions.
Federated transfer learning is used in situations where
there is little overlap between users and their features,
making it especially valuable when data is scarce or
distributed across distinct domains.

To address privacy concerns in FL, several
mechanisms have been proposed, including model
aggregation, differential privacy, and homomorphic
encryption. Model aggregation enables clients to keep
data locally and share only model parameters for global
training, though some risk of information leakage
remains [1, 4, 16]. Differential privacy ensures that
individual data points minimally affect aggregated
results, mitigating the risk of privacy breaches.
Homomorphic encryption allows computations on
encrypted data, supporting secure model training and
aggregation while maintaining confidentiality [9].

Communication architecture poses additional
challenges due to the uneven distribution of data and
inconsistencies in device computational capabilities.
Federated Averaging (FedAvg) is a commonly used
optimization technique but becomes less effective with
highly non-Independent and Identically Distributed
(IID) data or device heterogeneity [25]. Solutions
include asynchronous communication (which is robust
to device and network diversity), device sampling
(involving only a subset of devices in each round), fault-
tolerant mechanisms (ensuring network resilience), and
model heterogeneity (training models tailored to
specific devices or tasks) [12, 13, 23].

Recent empirical studies have explored the
performance and optimization of FL under various
conditions. For example, Kadam et al. [10] investigated
FL on the Modified National Institute of Standards and
Technology (MNIST) dataset for handwritten digit
recognition, tuning the learning rate and network depth
in their neural network models. They demonstrated that
a lower learning rate (0.002) significantly improved
accuracy to 92.93%, compared to 87.5% with a higher
rate. Nocentini ef al. [14] examined FL for image
classification using Convolutional Neural Networks
(CNNs) with the MNIST dataset. By testing different
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model architectures and aggregation strategies, they
achieved 92.54% accuracy, highlighting the influence of
deep learning techniques in FL environments. Kayed et
al. [11] implemented a three-layer neural network for
MNIST, achieving an accuracy of 87.23%, and provided
further insight into the trade-offs between network
complexity and performance.

Pan and Rajan [15] explored FL on the Canadian
Institute for Advanced Research-10 classes (CIFAR-10)
dataset, applying both traditional and FL architectures
for image classification, and reported an accuracy of
87.1%, illustrating the comparative performance
between centralized and federated models.

Reyes et al. [18] conducted a comparative study,
evaluating FL, centralized, and distributed ML models
on MNIST and CIFAR-10 datasets. They found that FL
achieved up to 92% accuracy on MNIST and 86% on
CIFAR-10, outperforming centralized models in
settings with non-I1ID data distributions and limited data
sharing.

While FL supports privacy-preserving and
distributed learning, these advantages are often
counterbalanced by higher computational and
communication demands, leading to increased energy
consumption. Recent studies have focused on the
environmental impact of FL, quantifying CO: emissions
for different datasets and training configurations. For
example, Qiu et al. [17] and Savazzi et al. [22]
measured CO: emissions associated with FL and
centralized training, demonstrating that emissions vary
significantly based on data distribution, model
complexity, and communication frequency. Sanderson
and Kalgonova [21] analyzed how non-IID data and
slow communication can increase energy usage and
emissions in federated settings.

3. Methodology

This study evaluates FL and centralized ML by
comparing convergence speed, energy efficiency, and
environmental impact, using the MNIST and CIFAR-10
image classification datasets. Each dataset was
partitioned among simulated clients to reflect realistic,
non-IID data distributions, accomplished using the Leaf
toolkit. In every round of FL, ten clients were randomly
selected to participate in local training and contribute
model updates, providing a manageable and repeatable
experimental setting. We acknowledge that this random
sampling does not fully address issues of scalability,
fairness, or client heterogeneity, and suggest further
research to systematically examine these factors.

To ensure a fair baseline for comparison, all models
used a simple architecture with a single dense layer and
softmax activation. Although this design is not optimal
for the complex CIFAR-10 dataset, it allowed us to
isolate the effects of the learning paradigm and
optimization techniques on both model performance
and environmental cost. The implications of using

deeper or convolutional models are addressed in the
discussion.

Three experimental setups were established:
centralized learning, standard FL, and FL with our
dynamic hill-climbing-based early stopping technique.
In centralized learning, all data is processed on a single
server. In standard FL, all communication rounds are
completed without regard to convergence. In the
optimized FL approach, we sought to reduce
unnecessary computation and energy use by introducing
a periodic evaluation mechanism. Specifically, after
every block of 100 training rounds, model accuracy was
assessed on a validation set. If the improvement in
accuracy over the previous block exceeded a threshold
(beginning at 2%), training continued for another block,
and the threshold was halved (2%, then 1%, then 0.5%,
and so on). If the improvement failed to meet the
threshold, training stopped early. This process is
formally represented by the update rule in Equation (1):

new = Xeurrem T A% (1)

where Xcuren 1 the current solution, Ax is a step (here,
100 training rounds), and X, is the updated solution.
This iterative process continues until no further
improvement is  observed, indicating model
convergence.

In our implementation, Ax is defined as a fixed step
size representing 100 training rounds. That is, after
every block of 100 rounds, model accuracy is evaluated.
If the improvement exceeds the specified threshold
(initially set to 2% and halved with each subsequent
block), training proceeds for another 100 rounds
(4x=100). If the improvement falls below the threshold,
training is terminated. Thus, 4x is not a dynamically
calculated value but a discrete, pre-determined interval
for evaluating progress and applying the stopping
criterion.

Key metrics were measured for each model and
configuration. Classification accuracy was evaluated in
Equation (2):

X

p TP + TN
CUraY =Tp Y TN + FP + FN

2

where TP and TN are the counts of true positives and
true negatives, while FP and FN denote false positives
and false negatives.

Convergence speed was evaluated by how quickly
the global model’s parameters approached optimality,
calculated in Equation (3) as:

T
1
Convergence Rate = T E wt —w*/ 3)
t=1

where W' is the model parameter vector at iteration ¢, w"
is the optimal parameter vector, and 7 is the total
number of iterations.

Equation (3) defines the convergence rate in theory;
however, in our experiments, we did not directly
compute or use the optimal model parameter vector w’
as it is generally unknown in practical scenarios. Our
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convergence assessment was instead based on the
plateauing of test accuracy.

To estimate environmental impact, we measured CO:
emissions in Equation (4) as:

COy = N X R X (Coomp + Ceomm)

“)

where N is the number of clients, R is the number of
communication rounds, Cemp is the estimated CO:
emission per local computation, and Ceomp is the
emission per communication event. CO: calculations
were performed using the linked data calculator, with all
experiments conducted in a controlled Google Colab
environment using TensorFlow federated and PyTorch
frameworks.

To provide meaningful context for the environmental
results, CO: emissions and performance metrics from
the optimized FL setup were directly compared to those
from standard FL and centralized learning. The results
were visualized through comparative graphs and tables,
allowing for transparent, empirical assessment of model
accuracy, convergence dynamics, and environmental
impact under each approach.

Results were visualized through graphs comparing
FL and centralized models, tracking accuracy,
improvement per 100 rounds, and cumulative CO:
emissions. This methodology provides a practical
strategy for balancing performance, efficiency, and
environmental sustainability in FL systems.

The overall methodology, including data preparation,
federated model setup, training, and evaluation, is
illustrated in Figure 2. This flowchart provides a visual
summary of each step in the experimental process
described in this section.

4. Results

This section presents a detailed comparative analysis of
FL and centralized ML models using the MNIST and
CIFAR-10 datasets, with attention given to convergence
dynamics,  environmental  impact, and the
interpretability of results in light of methodological
limitations.

A central consideration throughout this analysis is the
architectural mismatch between the models: the FL
models utilized a single dense layer for both datasets,
whereas the centralized models leveraged more
complex structures (a multilayer perceptron for MNIST
and a CNNs for CIFAR-10). This distinction is crucial,
as it means any observed differences in accuracy cannot
be attributed solely to the learning paradigm. Therefore,
accuracy comparisons should be viewed as illustrative,
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and the primary analytical focus is directed at
convergence behavior and environmental impact, which
are less affected by model complexity.

Figure 3 displays the distribution of labels among a
sample of federated clients using the MNIST dataset.
The pronounced variability in label counts across clients
illustrates the non-IID data scenario created by the Leaf
toolkit, which closely mirrors the challenges
encountered in practical federated deployments. Such
heterogeneity tends to increase optimization difficulty
and can introduce instability in learning, which is
reflected in subsequent performance results.

Client 0 Client 1 Client 2

Client 3 Client 4 Client 5

8 B 8
6 6 6
4 4 4
2 2 2
o o 0

Figure 3. Label counts for a sample of clients in the MNIST dataset.

Figure 4 plots the evolution of test accuracy over
training rounds for all models. Both FL and centralized
models experienced their most significant accuracy
improvements in the early rounds of training a pattern
expected as initial random weights rapidly adapt to their
data. As training progresses, accuracy gains diminish
and curves plateau, signaling model convergence. The
FL model on MNIST, under the given experimental
configuration, eventually achieved nearly 99%
accuracy, while the centralized model plateaued below
90%. In contrast, both FL and centralized approaches on
CIFAR-10 reached similar final accuracies. However,
due to the architectural differences highlighted earlier,
these accuracy results must be interpreted cautiously.
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Figure 4. Model accuracy measured each 100 rounds.

Table 1. Accuracy improvement among models.

Model

Difference

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FL MNIST

77.04%

4.57%

1.73%

1.09%

0.62%

0.49%

0.21%

0.33%

0.21%

0.16%

FL CIFAR-10

45.00%

8.12%

4.74%

0.24%

3.88%

-0.10%

3.76%

-2.18%

1.20%

2.32%

Central MNIST

62.93%

0.87%

2.58%

-0.86%

-0.86%

3.45%

-0.86%

-1.73%

1.73%

-1.73%

Central CIFAR-10

50.62%

8.90%

3.92%

2.66%

2.10%

0.00%

4.74%

-1.14%

0.38%

3.68%
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Table 1 provides a quantitative breakdown of
accuracy changes at each 100-round interval. The most
substantial improvements occur in the first block, with
sharply reduced gains (and sometimes losses) in
subsequent blocks. The negative improvement intervals
such as -2.18% indicate temporary reductions in test
accuracy. These drops are not signs of model instability
or failure, but are inherent to federated optimization,
where random client sampling, non-IID data, and local
overfitting can all lead to occasional short-term
accuracy regressions. Importantly, these fluctuations
tend to decrease as more rounds are completed and the
model stabilizes.

Hill climbing applied results comparison

20 40 60 80 100
Accuracy

Figure 5. Models’ accuracy comparison for first 400 iterations.

To assess training efficiency and environmental
impact, a dynamic early stopping strategy based on hill-
climbing was applied. By evaluating model accuracy
every 100 rounds and terminating training when
improvement thresholds were not met, this approach
successfully reduced the total number of training rounds
needed for convergence. Figure 5 demonstrates that by
round 400, all models had effectively reached their best
performance; continued training beyond this point
offered little additional gain but would incur further
computational and environmental cost.

Cumulative Carbon kg CO2 Per Model
014

0.13

010

Carbon kg CO2
g

0.06

0.04

FL MNIST FL CIFAR-10

Central Central
model MNIST Model CIFAR-10

Model

Figure 6. Cumulative CO2 emissions for used models.

Environmental impact, measured as CO: emissions,
is illustrated in Figures 6 and 7. FL models generally
produced higher emissions than their centralized
counterparts, primarily due to the greater number of
devices involved in distributed computation and
communication. However, the application of the hill-
climbing early stopping technique dramatically
curtailed these emissions by as much as 60% by
eliminating unnecessary training rounds. This
environmental benefit was achieved without significant

loss in accuracy, especially for MNIST. The results
reinforce the potential of adaptive training strategies to
make FL not just effective, but also more sustainable.

Hill Climbing Effect on Carbon Emissions

0.14 — BN Hill Climbing Carbon kg CO2
013 = Models Carbon kg CO2

carben kg CO2
o
2
g

0.06

0.04 -

FL MNIST FL CIFAR-10

entral Central
model MNIST Model CIFAR-10

Model

Figure 7. Comparison between 400 hill-climbing and 1,000
iterations of CO2 emissions.

It is also important to acknowledge the limitations in
attributing improvements solely to the hill-climbing
strategy. While the comparative results suggest clear
gains in training efficiency and environmental footprint,
other factors such as stochastic client selection and data
heterogeneity could influence the results. The current
experimental design does not fully disentangle these
effects. Future research should employ repeated trials
with controlled random seeds and matched model
architectures across all settings to isolate the precise
contributions of the optimization strategy.

Figure 8 shows the mean accuracy of the FL MNIST
model across 1,000 rounds, with error bars representing
standard deviation across five runs.

100 —4— FL MNIST (mean & SD, 5 runs)
80

60

Accuracy (%)

40

20

0 100 200 300 400 500 600 700 80O 900 1000
Rounds

Figure 8. Cumulative CO: emissions for centralized and FL models.

Figure 8 shows rapid improvement in the early
rounds, followed by a plateau as the model converges.
Notably, the error bars are relatively narrow throughout,
demonstrating that the training process yields consistent
results despite the inherent randomness in client
selection and local updates. This suggests that, under the
tested conditions, FL on MNIST achieves stable
performance, and the outcomes are robust to variations
in initialization and sampling. The small standard
deviation further indicates that reported accuracy trends
reliably represent the expected behavior of the system.

5. Conclusions

This research set out to optimize FL for energy
efficiency, convergence speed, and environmental
sustainability, with explicit attention to the impact of
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training strategies on both performance and CO:
emissions. Through systematic experimentation on the
MNIST and CIFAR-10 datasets, the study compared
centralized and federated models under standard and
dynamically optimized (hill-climbing) training regimes.

The results demonstrate that applying a dynamic
early stopping technique to FL significantly reduces
unnecessary computation and associated CO2 emissions
by as much as 60% while preserving competitive
accuracy, especially for MNIST. Notably, the hill-
climbing approach enabled most models to reach their
optimal performance within 400 rounds, as opposed to
the default 1,000, directly translating into lower energy
use and environmental impact. These findings were
further validated by presenting accuracy and emissions
results with statistical context, showing that the
improvements were consistent and robust across
repeated experimental runs.

It is important to acknowledge that the accuracy
comparison between FL and centralized models is
influenced by differences in model architecture; thus,
direct comparisons should be interpreted with caution.
The primary contribution of this study is the empirical
demonstration that adaptive optimization—rather than
prolonged training can deliver substantial sustainability
benefits in federated settings, without compromising
model stability or convergence.

Limitations remain, including the use of basic
architectures for FL, fixed client sampling, and the
absence of extensive hyperparameter tuning or large-
scale heterogeneity studies. Future work should employ
matched model designs for FL and centralized setups,
assess the effects of increased client diversity, and
further quantify the unique contribution of the hill-
climbing optimization through more controlled ablation
experiments.
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