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Abstract: Federated Learning (FL) is a Machine Learning (ML) paradigm in which multiple devices collaboratively train a 

model without sharing their local data. This decentralized approach provides significant privacy benefits, enabling compliance 

with data protection regulations and safeguarding sensitive user information by keeping raw data on local devices. Instead of 

transmitting raw data, FL sends model updates to a central aggregator to improve the global model. However, this process can 

result in higher Carbon Dioxide (CO₂) emissions compared to traditional centralized ML systems, due to the increased number 

of participating devices and communication rounds. This study evaluates the performance, convergence speed, energy efficiency, 

and environmental impact of FL models compared to centralized models, using the Modified National Institute of Standards and 

Technology dataset (MNIST) and Canadian Institute for Advanced Research-10 classes dataset (CIFAR-10). Four models were 

tested: two FL models and two centralized models. The evaluation focused on accuracy, number of training rounds to 

convergence, and total CO₂ emissions. To optimize both convergence and energy efficiency, a dynamic hill-climbing-based early 

stopping technique was introduced. After every 100 rounds, model accuracy improvements were assessed, and training was 

terminated early if further gains fell below a shrinking threshold, effectively reducing unnecessary computation and energy 

consumption. Results show that, under the tested conditions, FL models achieved competitive or higher accuracy than centralized 

models, particularly on non-Independent and Identically Distributed (IID) data distributions. For example, the federated MNIST 

model reached 98.79% accuracy with a significantly lower carbon footprint when early stopping was applied. Overall, the 

proposed optimization approach reduced CO₂ emissions by approximately 60% without substantial loss in accuracy. By 

integrating privacy preservation, explicit regulatory relevance, and a practical dynamic optimization method, this research 

demonstrates that FL can deliver strong model performance while meeting modern requirements for data privacy and 

environmental sustainability. 
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1. Introduction 

The rapid expansion of the Internet of Things (IoT) has 

created a vast network of interconnected devices, 

enabling innovative applications across healthcare, 

smart cities, transportation, and home automation [5]. 

These devices continuously generate and exchange 

large volumes of data, which has traditionally been 

processed using centralized Machine Learning (ML) 

approaches. While centralized ML facilitates powerful 

data-driven insights, it also introduces challenges 

related to communication overhead, privacy, regulatory 

compliance, and, increasingly, environmental 

sustainability due to high energy consumption and 

 
sustainability due to high energy consumption and 

associated Carbon Dioxide (CO₂) emissions [6, 17, 22]. 

In such centralized systems, as shown in Figure 1, raw 

data from edge devices is aggregated and analyzed at a 

central server, potentially exacerbating these challenges. 

To overcome these issues, Federated Learning (FL) 

has emerged as a promising paradigm. Instead of 

transmitting raw data, FL enables distributed devices to 

collaboratively train a shared model, sending only 

model updates to a central server for aggregation. This 

decentralized process, depicted in Figure 2, ensures that 

sensitive data remains local, offering enhanced privacy 

and supporting compliance with data protection 
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regulations such as General Data Protection Regulation 

(GDPR) [3, 24, 26]. FL has therefore become an 

attractive solution for privacy-conscious domains. 

 

Figure 1. FL training process. 

 

Figure 2. Framework of training models. 

However, deploying FL at scale introduces new 

challenges [2, 20]. Most notably, frequent 

synchronization and distributed computation across 

multiple devices substantially increase energy 

consumption and, consequently, CO₂ emissions [17, 

22]. As environmental sustainability becomes a critical 

consideration in AI, the carbon footprint associated with 

large-scale federated training cannot be overlooked. 

Thus, while FL addresses data privacy and ownership, it 

raises pressing questions about energy efficiency and 

environmental impact. 

The central aim of this research is to optimize FL not 

only for predictive accuracy and privacy, but also for 

energy efficiency and environmental sustainability. 

Specifically, this study develops and evaluates a 

dynamic early stopping technique based on a hill-

climbing strategy to minimize unnecessary computation 

and communication during training, thereby reducing 

CO₂ emissions. By systematically comparing FL and 

centralized learning models on benchmark datasets, and 

by explicitly quantifying energy use and emissions, this 

research contributes practical strategies for sustainable 

deployment of FL systems. 

The remainder of this paper is organized as follows: 

Section 2 reviews related work, section 3 details the 

research methodology and implementation, and section 

4 presents and discusses the results. 

2. Literature Review 

FL is a distributed ML approach that allows participants 

to collaboratively train models without exposing their 

local data. Typically, only encrypted model updates are 

transmitted to a central server, protecting data privacy 

and supporting compliance with regulations such as the 

GDPR. However, training optimal models in FL 

remains challenging due to incomplete and distributed 

data across diverse devices [7, 8, 19, 24]. 

FL frameworks have been identified based on 

existing research and can be categorized according to 

data partitioning, privacy mechanisms, communication 

architecture, and methods for handling data 

heterogeneity. Regarding data partitioning, FL models 

are generally divided into three main types: horizontal, 

vertical, and federated transfer learning. Horizontal FL 

applies when datasets share the same feature space but 

differ in user identities, splitting data along the user 

dimension [27]. Vertical FL is appropriate when datasets 

have overlapping users but different feature sets, 

allowing for the expansion of feature dimensions. 

Federated transfer learning is used in situations where 

there is little overlap between users and their features, 

making it especially valuable when data is scarce or 

distributed across distinct domains. 

To address privacy concerns in FL, several 

mechanisms have been proposed, including model 

aggregation, differential privacy, and homomorphic 

encryption. Model aggregation enables clients to keep 

data locally and share only model parameters for global 

training, though some risk of information leakage 

remains [1, 4, 16]. Differential privacy ensures that 

individual data points minimally affect aggregated 

results, mitigating the risk of privacy breaches. 

Homomorphic encryption allows computations on 

encrypted data, supporting secure model training and 

aggregation while maintaining confidentiality [9]. 

Communication architecture poses additional 

challenges due to the uneven distribution of data and 

inconsistencies in device computational capabilities. 

Federated Averaging (FedAvg) is a commonly used 

optimization technique but becomes less effective with 

highly non-Independent and Identically Distributed 

(IID) data or device heterogeneity [25]. Solutions 

include asynchronous communication (which is robust 

to device and network diversity), device sampling 

(involving only a subset of devices in each round), fault-

tolerant mechanisms (ensuring network resilience), and 

model heterogeneity (training models tailored to 

specific devices or tasks) [12, 13, 23]. 

Recent empirical studies have explored the 

performance and optimization of FL under various 

conditions. For example, Kadam et al. [10] investigated 

FL on the Modified National Institute of Standards and 

Technology (MNIST) dataset for handwritten digit 

recognition, tuning the learning rate and network depth 

in their neural network models. They demonstrated that 

a lower learning rate (0.002) significantly improved 

accuracy to 92.93%, compared to 87.5% with a higher 

rate. Nocentini et al. [14] examined FL for image 

classification using Convolutional Neural Networks 

(CNNs) with the MNIST dataset. By testing different 
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model architectures and aggregation strategies, they 

achieved 92.54% accuracy, highlighting the influence of 

deep learning techniques in FL environments. Kayed et 

al. [11] implemented a three-layer neural network for 

MNIST, achieving an accuracy of 87.23%, and provided 

further insight into the trade-offs between network 

complexity and performance. 

Pan and Rajan [15] explored FL on the Canadian 

Institute for Advanced Research-10 classes (CIFAR-10) 

dataset, applying both traditional and FL architectures 

for image classification, and reported an accuracy of 

87.1%, illustrating the comparative performance 

between centralized and federated models. 

Reyes et al. [18] conducted a comparative study, 

evaluating FL, centralized, and distributed ML models 

on MNIST and CIFAR-10 datasets. They found that FL 

achieved up to 92% accuracy on MNIST and 86% on 

CIFAR-10, outperforming centralized models in 

settings with non-IID data distributions and limited data 

sharing. 

While FL supports privacy-preserving and 

distributed learning, these advantages are often 

counterbalanced by higher computational and 

communication demands, leading to increased energy 

consumption. Recent studies have focused on the 

environmental impact of FL, quantifying CO₂ emissions 

for different datasets and training configurations. For 

example, Qiu et al. [17] and Savazzi et al. [22] 

measured CO₂ emissions associated with FL and 

centralized training, demonstrating that emissions vary 

significantly based on data distribution, model 

complexity, and communication frequency. Sanderson 

and Kalgonova [21] analyzed how non-IID data and 

slow communication can increase energy usage and 

emissions in federated settings. 

3. Methodology 

This study evaluates FL and centralized ML by 

comparing convergence speed, energy efficiency, and 

environmental impact, using the MNIST and CIFAR-10 

image classification datasets. Each dataset was 

partitioned among simulated clients to reflect realistic, 

non-IID data distributions, accomplished using the Leaf 

toolkit. In every round of FL, ten clients were randomly 

selected to participate in local training and contribute 

model updates, providing a manageable and repeatable 

experimental setting. We acknowledge that this random 

sampling does not fully address issues of scalability, 

fairness, or client heterogeneity, and suggest further 

research to systematically examine these factors. 

To ensure a fair baseline for comparison, all models 

used a simple architecture with a single dense layer and 

softmax activation. Although this design is not optimal 

for the complex CIFAR-10 dataset, it allowed us to 

isolate the effects of the learning paradigm and 

optimization techniques on both model performance 

and environmental cost. The implications of using 

deeper or convolutional models are addressed in the 

discussion. 

Three experimental setups were established: 

centralized learning, standard FL, and FL with our 

dynamic hill-climbing-based early stopping technique. 

In centralized learning, all data is processed on a single 

server. In standard FL, all communication rounds are 

completed without regard to convergence. In the 

optimized FL approach, we sought to reduce 

unnecessary computation and energy use by introducing 

a periodic evaluation mechanism. Specifically, after 

every block of 100 training rounds, model accuracy was 

assessed on a validation set. If the improvement in 

accuracy over the previous block exceeded a threshold 

(beginning at 2%), training continued for another block, 

and the threshold was halved (2%, then 1%, then 0.5%, 

and so on). If the improvement failed to meet the 

threshold, training stopped early. This process is 

formally represented by the update rule in Equation (1): 

𝑥new = 𝑥current + 𝛥𝑥 

where xcurrent is the current solution, Δx is a step (here, 

100 training rounds), and xnew is the updated solution. 

This iterative process continues until no further 

improvement is observed, indicating model 

convergence. 

In our implementation, Δx is defined as a fixed step 

size representing 100 training rounds. That is, after 

every block of 100 rounds, model accuracy is evaluated. 

If the improvement exceeds the specified threshold 

(initially set to 2% and halved with each subsequent 

block), training proceeds for another 100 rounds 

(Δx=100). If the improvement falls below the threshold, 

training is terminated. Thus, Δx is not a dynamically 

calculated value but a discrete, pre-determined interval 

for evaluating progress and applying the stopping 

criterion. 

Key metrics were measured for each model and 

configuration. Classification accuracy was evaluated in 

Equation (2): 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where TP and TN are the counts of true positives and 

true negatives, while FP and FN denote false positives 

and false negatives. 

Convergence speed was evaluated by how quickly 

the global model’s parameters approached optimality, 

calculated in Equation (3) as: 

Convergence Rate =
1

𝑇
∑|𝑤𝑡 −𝑤∗|

𝑇

𝑡=1

 

where wt is the model parameter vector at iteration t, w* 

is the optimal parameter vector, and T is the total 

number of iterations. 

Equation (3) defines the convergence rate in theory; 

however, in our experiments, we did not directly 

compute or use the optimal model parameter vector w* 

as it is generally unknown in practical scenarios. Our 

(2) 

(3) 

(1) 
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convergence assessment was instead based on the 

plateauing of test accuracy. 

To estimate environmental impact, we measured CO₂ 

emissions in Equation (4) as: 

CO2 = 𝑁 × 𝑅 × (𝐶comp + 𝐶comm) 

where N is the number of clients, R is the number of 

communication rounds, Ccomp is the estimated CO₂ 

emission per local computation, and Ccomp is the 

emission per communication event. CO₂ calculations 

were performed using the linked data calculator, with all 

experiments conducted in a controlled Google Colab 

environment using TensorFlow federated and PyTorch 

frameworks. 

To provide meaningful context for the environmental 

results, CO₂ emissions and performance metrics from 

the optimized FL setup were directly compared to those 

from standard FL and centralized learning. The results 

were visualized through comparative graphs and tables, 

allowing for transparent, empirical assessment of model 

accuracy, convergence dynamics, and environmental 

impact under each approach. 

Results were visualized through graphs comparing 

FL and centralized models, tracking accuracy, 

improvement per 100 rounds, and cumulative CO₂ 

emissions. This methodology provides a practical 

strategy for balancing performance, efficiency, and 

environmental sustainability in FL systems. 

The overall methodology, including data preparation, 

federated model setup, training, and evaluation, is 

illustrated in Figure 2. This flowchart provides a visual 

summary of each step in the experimental process 

described in this section. 

4. Results 

This section presents a detailed comparative analysis of 

FL and centralized ML models using the MNIST and 

CIFAR-10 datasets, with attention given to convergence 

dynamics, environmental impact, and the 

interpretability of results in light of methodological 

limitations. 

A central consideration throughout this analysis is the 

architectural mismatch between the models: the FL 

models utilized a single dense layer for both datasets, 

whereas the centralized models leveraged more 

complex structures (a multilayer perceptron for MNIST 

and a CNNs for CIFAR-10). This distinction is crucial, 

as it means any observed differences in accuracy cannot 

be attributed solely to the learning paradigm. Therefore, 

accuracy comparisons should be viewed as illustrative, 

and the primary analytical focus is directed at 

convergence behavior and environmental impact, which 

are less affected by model complexity. 

Figure 3 displays the distribution of labels among a 

sample of federated clients using the MNIST dataset. 

The pronounced variability in label counts across clients 

illustrates the non-IID data scenario created by the Leaf 

toolkit, which closely mirrors the challenges 

encountered in practical federated deployments. Such 

heterogeneity tends to increase optimization difficulty 

and can introduce instability in learning, which is 

reflected in subsequent performance results. 

 

Figure 3. Label counts for a sample of clients in the MNIST dataset. 

Figure 4 plots the evolution of test accuracy over 

training rounds for all models. Both FL and centralized 

models experienced their most significant accuracy 

improvements in the early rounds of training a pattern 

expected as initial random weights rapidly adapt to their 

data. As training progresses, accuracy gains diminish 

and curves plateau, signaling model convergence. The 

FL model on MNIST, under the given experimental 

configuration, eventually achieved nearly 99% 

accuracy, while the centralized model plateaued below 

90%. In contrast, both FL and centralized approaches on 

CIFAR-10 reached similar final accuracies. However, 

due to the architectural differences highlighted earlier, 

these accuracy results must be interpreted cautiously. 

 

Figure 4. Model accuracy measured each 100 rounds. 

Table 1. Accuracy improvement among models. 

Model 
Difference 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

FL MNIST 77.04% 4.57% 1.73% 1.09% 0.62% 0.49% 0.21% 0.33% 0.21% 0.16% 

FL CIFAR-10 45.00% 8.12% 4.74% 0.24% 3.88% -0.10% 3.76% -2.18% 1.20% 2.32% 

Central MNIST 62.93% 0.87% 2.58% -0.86% -0.86% 3.45% -0.86% -1.73% 1.73% -1.73% 

Central CIFAR-10 50.62% 8.90% 3.92% 2.66% 2.10% 0.00% 4.74% -1.14% 0.38% 3.68% 

 

(4) 
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Table 1 provides a quantitative breakdown of 

accuracy changes at each 100-round interval. The most 

substantial improvements occur in the first block, with 

sharply reduced gains (and sometimes losses) in 

subsequent blocks. The negative improvement intervals 

such as -2.18% indicate temporary reductions in test 

accuracy. These drops are not signs of model instability 

or failure, but are inherent to federated optimization, 

where random client sampling, non-IID data, and local 

overfitting can all lead to occasional short-term 

accuracy regressions. Importantly, these fluctuations 

tend to decrease as more rounds are completed and the 

model stabilizes. 

 

Figure 5. Models’ accuracy comparison for first 400 iterations. 

To assess training efficiency and environmental 

impact, a dynamic early stopping strategy based on hill-

climbing was applied. By evaluating model accuracy 

every 100 rounds and terminating training when 

improvement thresholds were not met, this approach 

successfully reduced the total number of training rounds 

needed for convergence. Figure 5 demonstrates that by 

round 400, all models had effectively reached their best 

performance; continued training beyond this point 

offered little additional gain but would incur further 

computational and environmental cost. 

 

Figure 6. Cumulative CO2 emissions for used models. 

Environmental impact, measured as CO₂ emissions, 

is illustrated in Figures 6 and 7. FL models generally 

produced higher emissions than their centralized 

counterparts, primarily due to the greater number of 

devices involved in distributed computation and 

communication. However, the application of the hill-

climbing early stopping technique dramatically 

curtailed these emissions by as much as 60% by 

eliminating unnecessary training rounds. This 

environmental benefit was achieved without significant 

loss in accuracy, especially for MNIST. The results 

reinforce the potential of adaptive training strategies to 

make FL not just effective, but also more sustainable. 

 

Figure 7. Comparison between 400 hill-climbing and 1,000 

iterations of CO2 emissions. 

It is also important to acknowledge the limitations in 

attributing improvements solely to the hill-climbing 

strategy. While the comparative results suggest clear 

gains in training efficiency and environmental footprint, 

other factors such as stochastic client selection and data 

heterogeneity could influence the results. The current 

experimental design does not fully disentangle these 

effects. Future research should employ repeated trials 

with controlled random seeds and matched model 

architectures across all settings to isolate the precise 

contributions of the optimization strategy. 

Figure 8 shows the mean accuracy of the FL MNIST 

model across 1,000 rounds, with error bars representing 

standard deviation across five runs. 

 

Figure 8. Cumulative CO₂ emissions for centralized and FL models. 

Figure 8 shows rapid improvement in the early 

rounds, followed by a plateau as the model converges. 

Notably, the error bars are relatively narrow throughout, 

demonstrating that the training process yields consistent 

results despite the inherent randomness in client 

selection and local updates. This suggests that, under the 

tested conditions, FL on MNIST achieves stable 

performance, and the outcomes are robust to variations 

in initialization and sampling. The small standard 

deviation further indicates that reported accuracy trends 

reliably represent the expected behavior of the system. 

5. Conclusions 

This research set out to optimize FL for energy 

efficiency, convergence speed, and environmental 

sustainability, with explicit attention to the impact of 
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training strategies on both performance and CO₂ 

emissions. Through systematic experimentation on the 

MNIST and CIFAR-10 datasets, the study compared 

centralized and federated models under standard and 

dynamically optimized (hill-climbing) training regimes. 

The results demonstrate that applying a dynamic 

early stopping technique to FL significantly reduces 

unnecessary computation and associated CO₂ emissions 

by as much as 60% while preserving competitive 

accuracy, especially for MNIST. Notably, the hill-

climbing approach enabled most models to reach their 

optimal performance within 400 rounds, as opposed to 

the default 1,000, directly translating into lower energy 

use and environmental impact. These findings were 

further validated by presenting accuracy and emissions 

results with statistical context, showing that the 

improvements were consistent and robust across 

repeated experimental runs. 

It is important to acknowledge that the accuracy 

comparison between FL and centralized models is 

influenced by differences in model architecture; thus, 

direct comparisons should be interpreted with caution. 

The primary contribution of this study is the empirical 

demonstration that adaptive optimization—rather than 

prolonged training can deliver substantial sustainability 

benefits in federated settings, without compromising 

model stability or convergence. 

Limitations remain, including the use of basic 

architectures for FL, fixed client sampling, and the 

absence of extensive hyperparameter tuning or large-

scale heterogeneity studies. Future work should employ 

matched model designs for FL and centralized setups, 

assess the effects of increased client diversity, and 

further quantify the unique contribution of the hill-

climbing optimization through more controlled ablation 

experiments. 
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