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Abstract: Unmanned Aerial Vehicles (UAVs) have emerged as powerful platforms for intelligent traffic monitoring due to their 

high-resolution imaging and wide-area coverage. This paper introduces a robust vehicle detection and classification framework 

that employs a multi-modal feature optimization strategy to enhance detection accuracy in aerial environments. The proposed 

pipeline begins with Histogram Equalization for contrast enhancement, followed by semantic segmentation using DeepLabV3+ 

to accurately isolate vehicle regions. YOLOv10, a state-of-the-art real-time object detector, is then applied to localize vehicles 

with high precision. For feature extraction, we integrate three complementary modalities: Wavelet Transform Features 

(capturing multi-resolution frequency details), Gabor Filters (highlighting directional textures), and Speeded-Up Robust 

Features (SURF) (detecting keypoints and descriptors). A Genetic Algorithm (GA) is employed to optimize the extracted features 

by selecting the most discriminative subset, thus reducing redundancy. Final classification is performed using the Swin 

Transformer, a vision transformer that utilizes shifted window self-attention to model long-range spatial dependencies 

effectively. Experimental evaluations on two UAV benchmark datasets, Roundabout Aerial Images and VAID which demonstrate 

the superiority of our method, achieving classification accuracies of 97.71% and 98.57%, respectively. These results demonstrate 

the effectiveness, scalability, and real-world applicability of our approach in UAV-based vehicle monitoring, contributing to the 

advancement of autonomous aerial surveillance systems for intelligent transportation analytics and enhanced situational 

awareness in smart city applications. 
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1. Introduction 

Unmanned Aerial Vehicles (UAVs) have emerged as 

pivotal tools in modern intelligent transportation 

systems, offering significant advantages such as high 

mobility, elevated perspectives, and the ability to rapidly 

capture extensive traffic data. Unlike fixed ground-based 

sensors, UAVs provide flexible and scalable monitoring 

capabilities over wide urban areas, highways, and 

intersections, making them particularly suitable for real-

time traffic surveillance, congestion analysis, and 

autonomous navigation support [12]. Despite their 

advantages, analyzing UAV imagery for vehicle 

detection and classification remains a complex challenge 

due to several factors, like vehicles in aerial views often 

appearing small and visually ambiguous, environmental 

conditions such as varying illumination, motion blur, and 

occlusion further complicate detection, and dynamic 

traffic scenes introduce considerable background clutter. 

These conditions make it difficult for traditional 

machine learning methods and early deep learning 

models to achieve consistent performance. While recent 

advancements in deep Convolutional Neural Networks 

(CNNs) and transformer-based architectures have 

improved detection accuracy in controlled settings, their 

effectiveness in aerial surveillance is limited. For 

example, YOLO-based detectors provide real-time 

performance but often miss small or partially occluded 

vehicles. Semantic segmentation models like 

DeepLabV3+ offer improved object boundary 

delineation but struggle in scenes with high object 

density or complex textures. Moreover, most existing 

approaches rely on single-type feature representations, 

typically either spatial or frequency-based, resulting in 

suboptimal generalization across diverse aerial 

environments. This exposes a critical gap in the 

literature: the lack of a unified framework that can 

robustly detect and classify vehicles from UAV imagery 
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by combining rich multi-modal features with advanced 

feature optimization and classification techniques. 

To address these limitations, we propose a novel, 

multi-stage vehicle monitoring framework specifically 

designed for UAV-based aerial surveillance. Our 

method integrates advanced components across the 

entire perception pipeline to enhance performance at 

every stage. First, we apply histogram equalization to 

improve image contrast under varying lighting 

conditions. Next, semantic segmentation is performed 

using DeepLabV3+, which accurately isolates vehicle 

regions by leveraging atrous spatial pyramid pooling. 

For object detection, we incorporate YOLOv10, a state-

of-the-art real-time detector optimized for aerial scenes 

with complex backgrounds. We then introduce a multi-

modal feature extraction strategy, combining Wavelet 

Transform for multi-resolution analysis, Gabor Filters 

for directional texture encoding, and Speeded-Up 

Robust Features (SURF) for local keypoint-based 

descriptors. To eliminate redundancy and improve 

feature discriminability, a GA is employed for optimal 

feature selection. Finally, vehicle classification is 

conducted using the Swin Transformer, a hierarchical 

vision transformer that uses shifted window attention to 

model long-range spatial relationships efficiently and 

accurately. By combining all elements into a cohesive 

architecture, the proposed framework addresses the key 

challenges in UAV-based vehicle monitoring: small 

object detection, cluttered backgrounds, redundant 

feature representation, and classification under varying 

environmental conditions. The system is designed for 

real-world deployment, with strong applicability in 

smart city traffic analytics, automated law enforcement, 

and autonomous vehicular systems. 

To summarize, the primary findings of our research 

can be outlined as follows: 

1. We developed a comprehensive vehicle detection and 

classification framework that integrates advanced 

deep learning techniques with traditional feature 

extraction and optimization strategies for UAV-based 

aerial imagery. 

2. Our preprocessing and segmentation pipeline, 

utilizing Histogram Equalization and DeepLabV3+, 

significantly enhances image quality and improves 

vehicle region extraction. 

3. The adoption of YOLOv10 enables highly accurate 

vehicle detection, making it well-suited for UAV 

surveillance applications. 

4. A multi-faceted feature extraction approach, 

incorporating wavelet transform features, gabor 

filters, and SURF, effectively captures essential 

vehicle characteristics. 

5. Feature optimization using GA improves 

classification performance by selecting the most 

relevant features while reducing computational 

overhead. 

6. The swin transformer-based classification model 

achieves superior accuracy, demonstrating its 

capability to handle complex aerial imagery. 

2. Related Work 

Researchers have done extensive research on UAV 

aerial surveillance for many years to build better traffic 

monitoring and identify vehicles. Studies about 

detecting targets from UAV cameras use traditional and 

new learning techniques to create better systems that can 

find things more accurately. At the research’s start 

phase, scientists used manual sensor characteristics 

along with actual image processing, but classic vision 

methods showed they could not handle uneven vehicle 

sizes and environmental variations plus partial 

blockages. Advanced traffic analysis systems of UAVs 

work better using object detection technology from CNN 

and Transformer models. This section evaluates all 

important aspects of UAV vehicle detection research 

through its methods and newer detection strategies, 

along with system limitations. 

2.1. Vehicle Detection and Classification 

Systems 

UAV technology provides real-time traffic and security 

monitoring along with disaster response services by 

processing detailed images and moving unstaffed 

devices where needed. Standard vehicle detection 

systems built with static sensors and normal machine 

learning methods deal poorly with partial obscuration 

and changes in object size against environmental factors. 

Deep learning has made UAV-based vehicle detection 

and classification work better through the networks 

YOLO, Faster R-CNN, and Transformers because of 

their improved accuracy and performance. Hamzenejadi 

et al. [8] addressed the trade-off between detection 

accuracy and inference speed by modifying YOLOv5’s 

network width and depth, achieving a 3.7% mAP50 

improvement and a 6.1 FPS increase on the VisDrone 

and CARPK datasets while reducing model size by 44.6 

MB. Similarly, Li et al. [14] enhanced YOLOv5-VTO 

by adding an extra prediction head for small-scale object 

detection and integrating a Bidirectional Feature 

Pyramid Network (BiFPN) to improve multi-scale 

feature fusion. Their use of Soft Non-Maximum 

Suppression (Soft-NMS) reduced false detections, 

leading to a 3.7% increase in mAP@0.5 and a 4.7% 

improvement in mAP@0.5:0.95, demonstrating the 

effectiveness of feature-based enhancements in UAV-

based vehicle detection. Kumar et al. [13] tackled UAV-

based Indian traffic surveillance, where dense and 

unstructured road conditions pose significant detection 

challenges. By employing the YOLOv8 model trained 

on a custom drone-captured dataset and incorporating 

preprocessing techniques like Gaussian filtering, 

resizing, normalization, and augmentation, they 

achieved 0.86 mAP50, validating the model’s 
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applicability for real-world traffic monitoring and law 

enforcement. Beyond civilian applications, UAV-based 

vehicle detection is increasingly relevant for military 

surveillance. The research of Gupta et al. [7] introduced 

a publicly accessible military vehicle dataset including 

6772 images that contain Military Trucks, Tanks, 

Aircraft, Helicopters, Civilian Cars, and Civilian 

Aircraft. The researchers tested Quantized SSD 

MobileNet v2 and Tiny YOLOv3 against each other and 

concluded that Tiny YOLOv3 delivered superior 

precision with better efficiency, thus making it a more 

suitable solution for UAV-based surveillance with 

limited resources. The researchers created mathematical 

equations for determining perfect flight paths and frame 

coverage dynamics, which optimized tasks during real-

time reconnaissance operations. These latest research 

studies show how UAV deep learning systems grow 

stronger and confirm their ability to spot vehicles 

properly across various working conditions. Future work 

in drone vehicle detection must include two-step 

methods that combine different sensory inputs plus 

advanced edge computing for both day and nighttime 

operations. Future research should focus on enhancing 

UAV-based vehicle detection by integrating multi-

modal sensor data, including LiDAR and thermal 

imaging, to improve detection performance in 

challenging environments such as low visibility and 

nighttime conditions. Addressing challenges related to 

occlusion, scale variation, and adverse weather 

conditions will be key to developing more robust and 

adaptable UAV surveillance systems for both civilian 

and defence applications 

3. Methodology 

Our UAV-based vehicle monitoring framework 

integrates deep learning techniques with feature 

optimization strategies for accurate vehicle detection and 

classification, as depicted in Figure 1. The process 

begins by using Histogram Equalization to make the 

images easier to see and by adjusting their overall 

brightness. DeepLabV3+ defines vehicle edges well 

during the region extraction step. YOLOv10 becomes 

our chosen object detection model because it processes 

vehicle locations swiftly through specialized aerial scene 

analysis. To build more detailed feature descriptions we 

take wavelet transform features, gabor filters, and SURF 

from both spatial and frequency-based data. The GA 

system tests and picks extraction results with optimal 

attributes that save processing time and improve 

detection accuracy. At last swin transformer handles 

vehicle classification using its hierarchical attention 

system to deliver high-quality results. Our system was 

tested on two datasets, achieving a classification 

accuracy of 97.71% on the roundabout aerial images 

dataset and 98.57% on the VAID dataset, highlighting its 

robustness and reliability. 

 

Figure 1. Proposed framework of UAVs traffic monitoring. 

3.1. Preprocessing via Histogram Equalization 

Preprocessing is a very important step in UAV-based 

vehicle monitoring, ensuring that raw aerial images are 

enhanced for improved feature extraction and detection 

accuracy. Histogram Equalization is employed to 

enhance image contrast by redistributing intensity 

values across the histogram, thereby improving 

visibility in varying lighting conditions [17]. Given an 

input UAV image, I (x,y) with intensity values ranging 

from 0 to L-1 the enhanced image IHE (x, y) is obtained 

using a novel adaptive histogram equalization function: 

𝐼𝐻𝐸  (𝑥, 𝑦)𝑛 =
𝐿 − 1

𝑁 × 𝑀
∑ 𝑝 𝛼𝑖

𝐼(𝑋,𝑌)

𝐼=0

 

Whereas Pi represents the probability density function 

of intensity i, N and M denote the image dimensions, and 

α is an adaptive enhancement factor that dynamically 

adjusts contrast based on local intensity distributions. 

Unlike traditional HE, this formulation ensures adaptive 

contrast enhancement tailored to UAV images, reducing 

over-enhancement artifacts while preserving essential 

details. This preprocessing step significantly refines 

image quality, improving segmentation accuracy in 

DeepLabV3+, leading to more precise vehicle detection 

using YOLOv10, and optimizing feature extraction 

performance for subsequent classification. The Output 

of the Said algorithm are shown in Figure 2. 

  

Figure 2. Preprocessing via histogram equalization. 

(1) 
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3.2. Segmentation Using Deeplabv3 

UAV-based vehicle monitoring heavily depends on 

segmentation as it creates clear vehicle boundaries which 

allows for proper detection as well as classification 

precision. DeepLabV3+ serves as the state-of-the-art 

deep learning model for semantic segmentation to 

extract regions of vehicles accurately. An Atrous Spatial 

Pyramid Pooling (ASPP) module with multiple scale 

context capabilities exists in this model through the 

application of dilated convolutions at various rates [19]. 

The decoder proceeds to refine object boundaries, which 

makes it an ideal solution for UAV imagery because 

objects occur at different scales and experience obscured 

conditions. Given an input preprocessed UAV image IHE 

(x, y) the segmented output S (x, y) is obtained as: 

𝑆(𝑥, 𝑦) = σ ∑  𝑤𝑖 . 𝑓𝐴𝑆𝑃𝑃 (

∞

𝑖=1

𝐼𝐻𝐸(𝑥, 𝑦), 𝑟𝑖) + 𝑏) 

Whereas f ASPP represent the multi-scale atrous 

convolutional operation applied at different dilation rate 

ri . wi are the learned weight b is the bias term and σ 

denotes the softmax activation function for pixel-wise 

classification. Unlike conventional segmentation 

methods, this adaptive feature extraction mechanism 

enables DeepLabV3+ to effectively differentiate 

vehicles from shadows, roads, and other objects in UAV 

imagery [15]. This segmentation step significantly 

enhances detection accuracy in the next stage, where 

YOLOv10 is utilized for precise vehicle localization. 

Figure 3 illustrates the segmented vehicle regions 

obtained using the proposed methodology, 

demonstrating the model’s effectiveness in 

distinguishing vehicles from the surroundings with high 

precision whereas Figure 4 shows the architecture of 

Deeplabv3. This precise segmentation output serves as a 

critical foundation for the subsequent vehicle detection 

and classification stages, ensuring higher accuracy and 

reliability in UAV-based surveillance scenarios. 

 

Figure 3. Results of road segmentation. 

 

Figure 4. Architecture of deeplabv3. 

3.3. Vehicle Detection Via YOLOv10 

After achieving accurate segmentation using 

DeepLabV3+, the next crucial step is vehicle detection, 

where we localize vehicles within [5] the segmented 

UAV images. For this, we employ YOLOv10, a cutting-

edge real-time object detection model known for its 

speed and precision [20]. YOLOv10 efficiently detects 

vehicles by leveraging an enhanced CSP-based 

backbone for feature extraction, a Path Aggregation 

Network (PAN) Neck for multi-scale feature fusion, and 

an optimized Detection Head for accurate bounding box 

regression and classification. These advancements 

enable YOLOv10 to detect vehicles with high accuracy, 

even in aerial images with varying scales, occlusions, 

and complex backgrounds. Given a Segmented UAV 

image S(x, y) the detected vehicle bounding boxes Bi are 

determined as: 

𝐵𝑖 = 𝑎𝑟𝑔  𝑚𝑎𝑥(𝑥,𝑦,𝑤,ℎ)𝜎 ( 𝑓 𝑌𝑂𝐿𝑂 (𝑆(𝑥, 𝑦), 0 

Where f YOLO represent the YOLOv10 detection model 

θ denotes the learned model parameters, and max(x, y, w, h) 

(2) 

(3) 
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defines the bounding box coordinates with width and 

height. The sigmoid activation function σ ensures 

probabilistic confidence scores for vehicle detection. 

The integration of DeepLabV3+ segmentation with 

YOLOv10 reduces false detections, enhancing model 

reliability. YOLOv10’s multi-scale feature extraction and 

anchor-free detection strategy allow it to outperform 

previous versions, making it highly effective for UAV-

based vehicle monitoring applications. Figure 5 shows 

the detected vehicles with bounding boxes, while Figure 

6 illustrates the YOLOv10 architecture used in this study. 

These results validate the robustness of our detection 

pipeline, ensuring high precision and recall. 

  

Figure 5. YOLOv10 based vehicle detection. 

 

Figure 6. Overview of the yolo object detection algorithm. 

3.4. Feature Extraction 

UAV-based vehicle monitoring requires an essential 

process called feature extraction, which converts plain 

data images into object-defining characteristics for 

precise detection alongside classification. Through the 

methodology, the essential characteristics of vehicle 

form-shape and surface texture and structural elements 

are detected against background elements. The 

combination of Wavelet Transform and Gabor Filters 

and SURF processes strengthens features because these 

techniques defend spatial data and frequency data 

simultaneously. The recognition performance benefits 

from effective feature extraction, which leads to 

enhanced efficiency of optimization and classification 

processes. 

3.4.1. Wavelet Transform Feature Extraction 

 We employ Wavelet Transform Features, which provide 

multi-resolution analysis by decomposing an image into 

different frequency components. This allows for better 

representation of vehicle shapes, edges, and textures, 

particularly in aerial images where vehicles appear at 

different scales and orientations [21]. Wavelet 

Transform decomposes the detected vehicle region V (x, 

y) into multiple sub-bands using a series of low-pass and 

high-pass filters. The transformed feature set Wf(x,y) can 

be expressed as: 

𝑊𝑓(𝑥, 𝑦) = ∑  𝑉 (𝑥 − 𝑚, 𝑦 − 𝑛) . 𝛹𝑙, ℎ (𝑚, 𝑛) 

𝑀−1 𝑁−1

𝑚=0

 

Where Ψ i, h (m, n) represents the wavelet basis function, 

with l and h denoting the low-pass and high-pass filters. 

The decomposition process generates four sub-bands: 

LL (approximation), LH (horizontal details), HL 

(vertical details), and HH (diagonal details), capturing 

fine details crucial for vehicle recognition. By extracting 

statistical and energy-based wavelet coefficients from 

these sub-bands, we obtain a compact yet discriminative 

feature representation. This improves the robustness of 

the model by preserving crucial textural patterns while 

reducing redundancy [6]. Figure 7 illustrates the 

extracted wavelet features, which serve as a critical input 

for the subsequent feature optimization and 

(4) 
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classification stages, ensuring enhanced vehicle 

recognition performance. 

  

Figure 7. Feature extraction via wavelet. 

3.4.2. Gabor Filter 

After wavelet feature extraction, we further enhance 

texture representation using Gabor Filters, which are 

highly effective in capturing spatial frequency, 

orientation, and edge information. Gabor filters are 

particularly useful for UAV-based vehicle monitoring, 

as they mimic the human visual system in detecting 

directional patterns and textures [10]. A Gabor Filter is 

defined as: 

𝐺(𝑥, 𝑦; 𝜃, 𝜆, 𝜎, 𝛾) = 𝑒𝑥𝑝 (−
𝑥2 + 𝛾2𝑦2

2𝜎2 ) 𝐶𝑜𝑠 (
2𝜋𝑥

𝜆
+ 𝜙) 

Where x’=x cos0+y sin0 and y’=-xsin0+ycos represent 

the rotated coordinates 0 is the filter orientation, λ is the 

wavelength of the sinusoidal component, σ is the 

standard deviation of the Gaussian envelope, γ is the 

spatial aspect ratio, and ϕ is the phase offset. We extract 

rich texture-based features that enhance vehicle 

classification by convolving the detected vehicle regions 

with multiple Gabor kernels at different orientations and 

scales [1]. These features and wavelet coefficients 

contribute to a more robust and discriminative 

representation, further improving classification accuracy 

in the later stages. Figure 8 illustrates the extracted 

Gabor filter responses, highlighting the texture 

variations and edge details captured for enhanced vehicle 

representation 

 
Figure 8. Feature extraction via gabor filter. 

3.4.3. Feature Extraction Via SURF  

To further enhance feature representation, we employ 

SURF, a robust key point detection and descriptor 

extraction technique. SURF efficiently detects 

distinctive vehicle features by leveraging an integral 

image-based Hessian matrix approximation, making it 

highly suitable for UAV-based vehicle monitoring 

where scale and rotation invariance are crucial [2]. The 

Detected key points and descriptors Sf for a given vehicle 

region V(x, y) are computed as: 

(𝑆𝑓)
 

= ∑ 𝐻( 𝑥𝑖  𝑦𝑖). 𝐷( 𝑥𝑖  𝑦𝑖)

𝑛

𝑖=1

 

Where H=(xi, yi) represents the Hessian determinant 

response at key point (xi, yi) and D(xi, yi) denotes the 

descriptor vector capturing local gradient information. 

The combination of key points and descriptors forms a 

highly discriminative feature set, enabling precise 

vehicle recognition [3]. Figure 9 presents the detected 

SURF key points, showcasing their robustness in 

capturing vehicle-specific patterns and structures. 

  

Figure 9. SURF based feature extraction. 

3.5. Feature Optimization via Genetic 

Algorithm 

After extracting multi-scale features from Wavelet 

Transform, Gabor Filters, and SURF, the next step is 

feature optimization to enhance classification accuracy 

and computational efficiency [10]. We employ a GA, a 

powerful evolutionary optimization technique, to select 

the most discriminative features while eliminating 

redundant and irrelevant ones [9]. GA mimics the 

natural selection process by iteratively evolving a 

population of feature subsets through selection, 

crossover, and mutation operations. The optimal feature 

subset F is obtained using the following equation: 

𝐹 = arg max(
∑ 𝑤𝑗. 𝑓𝑖 𝑁

𝑗=1

𝐹𝑖
), 𝑤𝑗 =

1

1 + 𝑒−𝑏𝑗(𝐹𝑖)
 

Where F represents the full feature set, Fi is a candidate 

subset, fj are individual features, wj are adaptive weights 

computed using a sigmoid-based fitness function, β 

controls selection pressure, and J(Fi) represents the 

classification accuracy achieved using the subset Fi. 

This approach ensures that only the most informative 

features contribute to the final classification stage. In our 

implementation, the Genetic Algorithm was configured 

with a population size of 40, running for 60 generations. 

A crossover rate of 0.8 and a mutation rate of 0.05 were 

selected based on preliminary grid search experiments. 

The algorithm was terminated once either the 

classification accuracy plateaued over 10 consecutive 

generations or the maximum generation limit was 

(5) 

(7) 

(6) 
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reached. This setup ensured a balance between 

convergence stability and computational efficiency 

during feature subset selection. By optimizing the 

feature set using GA, we achieve a compact and highly 

discriminative representation, reducing computational 

complexity while maintaining superior classification 

performance. 

3.6. Vehicle Classification Using Swin 

Transformer 

The classification of detected vehicles into specific 

categories constitutes the last step after the Genetic 

Algorithm optimization of extracted features in our 

pipeline. This work uses the Swin Transformer as its 

vehicle classification model because of its innovative 

shifted window-based attention system, which builds 

upon traditional Vision Transformers (ViTs). The Swin 

Transformer provides better performance than 

traditional CNNs because it successfully analyzes 

vehicle images through both short-range and distant 

relationships and handles different image scaling 

dimensions [4]. The Swin Transformer processes input 

features through a hierarchical architecture, 

progressively increasing the receptive field while 

maintaining computational efficiency. The model starts 

by embedding the optimized feature set F∗ into a series 

of patch embeddings, which are then passed through 

multiple swin transformer blocks. Each block consists of 

Shifted Window Multi-Head Self-Attention (SW-MSA) 

layers, which allow for more effective feature interaction 

across different spatial locations. This is particularly 

useful in UAV imagery, where vehicles may appear at 

various scales, orientations, and lighting conditions. 

Mathematically, the Classification Output C is computed 

as follows: 

𝐶 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑠. ∑ 𝐴(𝑊𝑡𝐹𝑖)

𝑛

𝑖=0

 

Where Wt represents the trainable weights of the 

Transformer Encoder, A(⋅) is the self-attention function, 

which enhances feature representations by learning 

spatial dependencies, and WS is the classification head 

that maps the learned representations to class labels. 

Softmax executes to find final classification probabilities 

that determine confidence scores for vehicle categories. 

Through its shifted window method, the Swin 

Transformer excel at processing large aerial images with 

high resolution efficiently [11]. 

The model processes aerial image sections rather than 

entire pictures to enhance feature collaboration with 

smaller processing requirements. For different types of 

UAV images, our method improves both the accuracy 

and flexibility of model applications. Training progress 

stops when both the adaptive learning rate and cross-

entropy loss achieve optimal performance to minimize 

misclassifications. Swin Transformer model displays its 

full design elements and explains its techniques for 

feature extraction and attention linking in Figure 10. 

 

Figure 10. Swin transformer architecture. 

4. Result and Analysis 

The testing took place on a system that featured an Intel 

Core i7-12700H (2.70 GHz) CPU with 32 GB RAM and 

used a NVIDIA RTX 3060 GPU that provided 6 GB 

VRAM. The created system combined PyTorch with 

TensorFlow in addition to CUDA acceleration which 

boosted deep learning processing speed. Our deep 

learning model needed perfect settings that we gained 

from extensive hyperparameter adjustments, including 

weight rules during learning rate selection and selection 

of the best batch size 

4.1. Dataset Description 

4.1.1. Roundabout Aerial Image 

The roundabout dataset utilizes UAV imagery to classify 

vehicle types even in busy traffic scenes. The 

Roundabout Aerial Image Dataset contains both aerial 

images and video sequences that capture different 

vehicle types and show how cars interact through 

multiple lanes even when they partly disappear from 

view [18]. The dataset includes two types of labeling to 

assist traffic research. It shows boundaries between 

objects and tags traffic types for deep learning studies. 

4.1.2. VAID Dataset 

The VAID dataset offers testing tools to detect objects 

with air vehicle identification followed by tracking their 

movements [16]. The VAID dataset consists of 100 

video sequences amounting to 80,000 frames, which 

were acquired through a UAV platform. The video 

material crosses 10 hours of continuous footage that 

(8) 
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displays different city settings. Each JPG image has a 

1080×540-pixel resolution at 30 frames per second as its 

capture parameters. T-junctions and arterial routes, 

together with highways and squares as well as crossings, 

represent the various road configurations found in this 

dataset. 

4.2. Performance Evaluation 

The system evaluation occurred through rigorous 

testing with Roundabout Aerial Image and VAID 

datasets to validate its effectiveness as a UAV-based 

vehicle monitoring solution. The accuracy of the 

performance assessment relied on five independent tests 

where researchers recorded the mean results. Precision 

and recall along with F1-score served as the key 

evaluation metrics to measure both the algorithmic 

accuracy and robustness during vehicle detection 

operations. The UAV-based vehicle surveillance model 

proposed has a high detection and classification rate in 

benchmark datasets. Tables 1 and 2 indicate class-wise 

precision, recall, and F1-score on the Roundabout and 

VAID datasets, with average F1-scores of 0.97 and 0.96. 

Table 1. Vehicle detection accuracy, precision, recall, and f1-score 
evaluation of roundabout dataset. 

Classes Precision Recall F1-score 

C 0.97 0.96 0.96 

Tru 0.98 0.97 0.97 

B 0.97 0.95 0.96 

Cy 0.98 0.95 0.96 

V 0.97 0.95 0.96 

MB 0.99 0.97 0.98 

Tra 0.99 0.98 0.98 

Mean 0.98 0.96 0.97 

Table 2. Vehicle detection accuracy, precision, recall, and f1-score 
evaluation of VAID dataset. 

Classes Precision Recall F1-score 

C 0.96 0.95 0.95 

Tru 0.97 0.96 0.96 

B 0.96 0.94 0.95 

Cy 0.97 0.93 0.95 

V 0.96 0.94 0.95 

MB 0.98 0.96 0.97 

Tra 0.98 0.97 0.97 

Mean 0.97 0..95 0.96 

Table 3 shows that the method outperforms state-of-

the-art models, including SSD, RetinaNet, YOLOv5, 

and EfficientNet. 

Table 3. Comparison of model detection rate with other state-of-the-

art methods. 

Datasets Models Precision 

Roundabout dataset 

SSD 

RetinaNet  

Blob detection 

Our method 

0.76 

0.68 

0.73 

0.97 

VAID dataset 

Yolov6  

Yolov5  

EfficientNet 

Our method 

0.84 

0.69 

0.83 

0.96 

Tables 4 and 5 show the confusion matrices having 

an overall classification accuracy of 97.71% and 

98.57% respectively which means that the inter-class 

misclassification is not much.  

Table 4. Confusion matrix for vehicle classification over the VAID 

dataset. 

Classes C Tru B Cy V MB Tra 

C 99 0 1 0 0 0 0 

Tru 0 98 1 0 0 1 0 

B 0 0 97 1 1 1 0 

Cy 0 0 0 98 0 1 1 

V 0 0 1 0 98 0 1 

MB 0 0 1 0 1 97 1 

Tra 0 0 1 1 0 1 97 

Mean: 97.71% 

Table 5. Confusion matrix for vehicle classification over the 

roundabout aerial dataset. 

Classes C TR B SD V MB Tra 

C 98 0 1 0 0 0 1 

TR 1 99 0 0 0 0 0 

B 1 0 98 0 1 0 0 

SD 0 1 0 99 0 0 0 

V 0 0 1 0 98 1 0 

MB 0 0 0 0 1 99 0 

Tra 0 0 0 1 0 0 99 

Mean: 98.57% 

*Mn=Minibus, TR=Truck, PT=Pickup Truck, B=Bus, SD=Sedan, C=Car, CT=Cement 

Truck, Tra=Trailer. 

Table 6 highlights superior or competitive 

performance compared to existing studies, confirming 

the framework’s robustness, reliability, and 

effectiveness for UAV-based traffic surveillance in 

diverse scenarios. 

Table 6. Classification Comparison with other State-of-the-art 
Models. 

Method Roundabout VAID 

Lin et al. [16] -- 91.3% 

Hussein et al. [10] -- 95.50% 

Kumar et al. [13]  86.7% -- 

Gopta et al. [7] 89.5% -- 

Proposed method 97.71% 95.50% 

The proposed model shows remarkable accuracy 

together with strong robustness levels for UAV-based 

vehicle detection yet it requires certain specified 

limitations to be examined. The detection system faces 

important difficulties from environmental objects that 

partially or fully hide vehicles because this condition 

leads to classification errors. The detection accuracy and 

feature extraction process get impaired through weather 

elements that combine rain and fog with decreased 

visibility when observing images. The model operates 

best during daylight conditions since it has not been 

optimized to perform effectively under nighttime 

conditions where illumination problems and sensor 

noise function as significant performance decreases. 

Furthermore, while the model performs well in 

structured environments, highly congested and 

unstructured traffic scenarios may introduce 

complexities due to overlapping vehicles and varying 

perspectives. Future work should explore the integration 

of multi-spectral imaging, low-light enhancement 

techniques, and domain adaptation strategies to improve 
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the model’s robustness under diverse conditions. 

5. Conclusions 

The research introduced an effective UAV-based 

vehicle detection and classification structure that 

applied state-of-the-art deep learning methodologies 

along with optimized feature extraction methods. The 

proposed method unites histogram equalization image 

enhancement with DeepLabV3+ segmentation and 

YOLOv10 vehicle detection and a feature extraction 

system that utilizes Wavelet Transform and Gabor 

Filters and SURF to analyze spatial and frequency 

domain signal information. A Genetic Algorithm served 

to optimize feature selection through an improvement of 

both computational efficiency and classification 

accuracy. Vehicle classification was performed by using 

the Swin Transformer, which demonstrated exceptional 

capabilities for detecting fine-scale information. The 

proposed framework was tested on two benchmark 

UAV datasets, achieving a classification accuracy of 

97.71% on the Roundabout Aerial Images dataset and 

98.57% on the VAID dataset, demonstrating its strong 

performance. This work contributes significantly to the 

advancement of autonomous aerial surveillance, 

offering a scalable and high-performance solution for 

intelligent traffic analysis. 
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