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Abstract: Unmanned Aerial Vehicles (UAVs) have emerged as powerful platforms for intelligent traffic monitoring due to their
high-resolution imaging and wide-area coverage. This paper introduces a robust vehicle detection and classification framework
that employs a multi-modal feature optimization strategy to enhance detection accuracy in aerial environments. The proposed
pipeline begins with Histogram Equalization for contrast enhancement, followed by semantic segmentation using DeepLabV3+
to accurately isolate vehicle regions. YOLOV10, a state-of-the-art real-time object detector, is then applied to localize vehicles
with high precision. For feature extraction, we integrate three complementary modalities: Wavelet Transform Features
(capturing multi-resolution frequency details), Gabor Filters (highlighting directional textures), and Speeded-Up Robust
Features (SURF) (detecting keypoints and descriptors). A Genetic Algorithm (GA) is employed to optimize the extracted features
by selecting the most discriminative subset, thus reducing redundancy. Final classification is performed using the Swin
Transformer, a vision transformer that utilizes shifted window self-attention to model long-range spatial dependencies
effectively. Experimental evaluations on two UAV benchmark datasets, Roundabout Aerial Images and VAID which demonstrate
the superiority of our method, achieving classification accuracies of 97.71% and 98.57%, respectively. These results demonstrate
the effectiveness, scalability, and real-world applicability of our approach in UAV-based vehicle monitoring, contributing to the
advancement of autonomous aerial surveillance systems for intelligent transportation analytics and enhanced situational
awareness in smart city applications.
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1. Introduction These conditions make it difficult for traditional
machine learning methods and early deep learning
models to achieve consistent performance. While recent
advancements in deep Convolutional Neural Networks
(CNNs) and transformer-based architectures have
improved detection accuracy in controlled settings, their
effectiveness in aerial surveillance is limited. For
: X example, YOLO-based detectors provide real-time
capabilities over wide urban areas, highways, and  herformance but often miss small or partially occluded
intersections, making them particularly suitable for real- vehicles. Semantic segmentation models  like
time traffic surveillance, congestion analysis, and DeepLabV3+ offer improved object boundary
autonomous  navigation support [12]. Despite their  elineation but struggle in scenes with high object
advantages, analyzing UAV imagery for vehicle  gensity or complex textures. Moreover, most existing
detection and classification remains a complex challenge approaches rely on single-type feature representations,

due to _several factors,_llke vehlcle_s in aerial views often typically either spatial or frequency-based, resulting in
appearing small and visually ambiguous, environmental g hootimal  generalization across diverse aerial
conditions such as varying illumination, motion blur, and environments. This exposes a critical gap in the

occlusion further complicate detection, and dynamic irerature: the lack of a unified framework that can
traffic scenes introduce considerable background clutter. robustly detect and classify vehicles from UAV imagery

Unmanned Aerial Vehicles (UAVS) have emerged as
pivotal tools in modern intelligent transportation
systems, offering significant advantages such as high
mobility, elevated perspectives, and the ability to rapidly
capture extensive traffic data. Unlike fixed ground-based
sensors, UAVSs provide flexible and scalable monitoring
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by combining rich multi-modal features with advanced
feature optimization and classification techniques.

To address these limitations, we propose a novel,
multi-stage vehicle monitoring framework specifically
designed for UAV-based aerial surveillance. Our
method integrates advanced components across the
entire perception pipeline to enhance performance at
every stage. First, we apply histogram equalization to
improve image contrast under varying lighting
conditions. Next, semantic segmentation is performed
using DeepLabV3+, which accurately isolates vehicle
regions by leveraging atrous spatial pyramid pooling.
For object detection, we incorporate YOLOV10, a state-
of-the-art real-time detector optimized for aerial scenes
with complex backgrounds. We then introduce a multi-
modal feature extraction strategy, combining Wavelet
Transform for multi-resolution analysis, Gabor Filters
for directional texture encoding, and Speeded-Up
Robust Features (SURF) for local keypoint-based
descriptors. To eliminate redundancy and improve
feature discriminability, a GA is employed for optimal
feature selection. Finally, wvehicle classification is
conducted using the Swin Transformer, a hierarchical
vision transformer that uses shifted window attention to
model long-range spatial relationships efficiently and
accurately. By combining all elements into a cohesive
architecture, the proposed framework addresses the key
challenges in UAV-based vehicle monitoring: small
object detection, cluttered backgrounds, redundant
feature representation, and classification under varying
environmental conditions. The system is designed for
real-world deployment, with strong applicability in
smart city traffic analytics, automated law enforcement,
and autonomous vehicular systems.

To summarize, the primary findings of our research
can be outlined as follows:

1. We developed a comprehensive vehicle detection and
classification framework that integrates advanced
deep learning techniques with traditional feature
extraction and optimization strategies for UAV-based
aerial imagery.

2. Our preprocessing and segmentation pipeline,
utilizing Histogram Equalization and DeepLabV3+,
significantly enhances image quality and improves
vehicle region extraction.

3. The adoption of YOLOV10 enables highly accurate
vehicle detection, making it well-suited for UAV
surveillance applications.

4. A multi-faceted feature extraction approach,
incorporating wavelet transform features, gabor
filters, and SURF, effectively captures essential
vehicle characteristics.

5. Feature  optimization using GA  improves
classification performance by selecting the most
relevant features while reducing computational
overhead.

6. The swin transformer-based classification model

achieves superior accuracy, demonstrating its
capability to handle complex aerial imagery.

2. Related Work

Researchers have done extensive research on UAV
aerial surveillance for many years to build better traffic
monitoring and identify vehicles. Studies about
detecting targets from UAV cameras use traditional and
new learning techniques to create better systems that can
find things more accurately. At the research’s start
phase, scientists used manual sensor characteristics
along with actual image processing, but classic vision
methods showed they could not handle uneven vehicle
sizes and environmental variations plus partial
blockages. Advanced traffic analysis systems of UAVsS
work better using object detection technology from CNN
and Transformer models. This section evaluates all
important aspects of UAV vehicle detection research
through its methods and newer detection strategies,
along with system limitations.

2.1. Vehicle Detection and Classification
Systems

UAYV technology provides real-time traffic and security
monitoring along with disaster response services by
processing detailed images and moving unstaffed
devices where needed. Standard vehicle detection
systems built with static sensors and normal machine
learning methods deal poorly with partial obscuration
and changes in object size against environmental factors.
Deep learning has made UAV-based vehicle detection
and classification work better through the networks
YOLO, Faster R-CNN, and Transformers because of
their improved accuracy and performance. Hamzenejadi
et al. [8] addressed the trade-off between detection
accuracy and inference speed by modifying YOLOVS’s
network width and depth, achieving a 3.7% mAP50
improvement and a 6.1 FPS increase on the VisDrone
and CARPK datasets while reducing model size by 44.6
MB. Similarly, Li et al. [14] enhanced YOLOv5-VTO
by adding an extra prediction head for small-scale object
detection and integrating a Bidirectional Feature
Pyramid Network (BiFPN) to improve multi-scale
feature fusion. Their use of Soft Non-Maximum
Suppression  (Soft-NMS) reduced false detections,
leading to a 3.7% increase in mMAP@0.5 and a 4.7%
improvement in mAP@0.5:0.95, demonstrating the
effectiveness of feature-based enhancements in UAV-
based vehicle detection. Kumar et al. [13] tackled UAV-
based Indian traffic surveillance, where dense and
unstructured road conditions pose significant detection
challenges. By employing the YOLOV8 model trained
on a custom drone-captured dataset and incorporating
preprocessing techniques like Gaussian filtering,
resizing, normalization, and augmentation, they
achieved 0.86 mAPS0, wvalidating the model’s
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applicability for real-world traffic monitoring and law
enforcement. Beyond civilian applications, UAV-based
vehicle detection is increasingly relevant for military
surveillance. The research of Gupta et al. [7] introduced
a publicly accessible military vehicle dataset including
6772 images that contain Military Trucks, Tanks,
Aircraft, Helicopters, Civilian Cars, and Civilian
Aircraft. The researchers tested Quantized SSD
MobileNet v2 and Tiny YOLOv3 against each other and
concluded that Tiny YOLOv3 delivered superior
precision with better efficiency, thus making it a more
suitable solution for UAV-based surveillance with
limited resources. The researchers created mathematical
equations for determining perfect flight paths and frame
coverage dynamics, which optimized tasks during real-
time reconnaissance operations. These latest research
studies show how UAV deep learning systems grow
stronger and confirm their ability to spot vehicles
properly across various working conditions. Future work
in drone vehicle detection must include two-step
methods that combine different sensory inputs plus
advanced edge computing for both day and nighttime
operations. Future research should focus on enhancing
UAV-based vehicle detection by integrating multi-
modal sensor data, including LIiDAR and thermal
imaging, to improve detection performance in
challenging environments such as low visibility and
nighttime conditions. Addressing challenges related to
occlusion, scale variation, and adverse weather
conditions will be key to developing more robust and
adaptable UAV surveillance systems for both civilian
and defence applications

3. Methodology

Our UAV-based vehicle monitoring framework
integrates deep learning techniques with feature
optimization strategies for accurate vehicle detection and
classification, as depicted in Figure 1. The process
begins by using Histogram Equalization to make the
images easier to see and by adjusting their overall
brightness. DeepLabV3+ defines vehicle edges well
during the region extraction step. YOLOv10 becomes
our chosen object detection model because it processes
vehicle locations swiftly through specialized aerial scene
analysis. To build more detailed feature descriptions we
take wavelet transform features, gabor filters, and SURF
from both spatial and frequency-based data. The GA
system tests and picks extraction results with optimal
attributes that save processing time and improve
detection accuracy. At last swin transformer handles
vehicle classification using its hierarchical attention
system to deliver high-quality results. Our system was
tested on two datasets, achieving a classification
accuracy of 97.71% on the roundabout aerial images
dataset and 98.57% on the VAID dataset, highlighting its
robustness and reliability.
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Figure 1. Proposed framework of UAVs traffic monitoring.
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3.1. Preprocessing via Histogram Equalization

Preprocessing is a very important step in UAV-based
vehicle monitoring, ensuring that raw aerial images are
enhanced for improved feature extraction and detection
accuracy. Histogram Equalization is employed to
enhance image contrast by redistributing intensity
values across the histogram, thereby improving
visibility in varying lighting conditions [17]. Given an
input UAV image, | (X,y) with intensity values ranging
from 0 to L-1 the enhanced image Ine (X, Y) is obtained
using a novel adaptive histogram equalization function:

L1 1(X,Y)
Iyg (x, )" = p at (1)

TNxM L

Whereas P' represents the probability density function
of intensity i, N and M denote the image dimensions, and
a is an adaptive enhancement factor that dynamically
adjusts contrast based on local intensity distributions.
Unlike traditional HE, this formulation ensures adaptive
contrast enhancement tailored to UAV images, reducing
over-enhancement artifacts while preserving essential
details. This preprocessing step significantly refines
image quality, improving segmentation accuracy in
DeepLabV3+, leading to more precise vehicle detection
using YOLOv10, and optimizing feature extraction
performance for subsequent classification. The Output
of the Said algorithm are shown in Figure 2.
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3.2. Segmentation Using Deeplabv3

UAV-based vehicle monitoring heavily depends on
segmentation as it creates clear vehicle boundaries which
allows for proper detection as well as classification
precision. DeepLabV3+ serves as the state-of-the-art
deep learning model for semantic segmentation to
extract regions of vehicles accurately. An Atrous Spatial
Pyramid Pooling (ASPP) module with multiple scale
context capabilities exists in this model through the
application of dilated convolutions at various rates [19].
The decoder proceeds to refine object boundaries, which
makes it an ideal solution for UAV imagery because
objects occur at different scales and experience obscured
conditions. Given an input preprocessed UAV image lxe
(%, y) the segmented output S (X, y) is obtained as:

S(x,y) = oz wi . fASPP (Lys(o,y),r) +B)  (2)
i=1

Whereas f ASPP represent the multi-scale atrous
convolutional operation applied at different dilation rate
ri . wi are the learned weight b is the bias term and o
denotes the softmax activation function for pixel-wise
classification.  Unlike conventional segmentation
methods, this adaptive feature extraction mechanism
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enables DeeplLabV3+ to effectively differentiate
vehicles from shadows, roads, and other objects in UAV
imagery [15]. This segmentation step significantly
enhances detection accuracy in the next stage, where
YOLOVI10 is utilized for precise vehicle localization.
Figure 3 illustrates the segmented vehicle regions
obtained using the proposed  methodology,
demonstrating the model’s effectiveness in
distinguishing vehicles from the surroundings with high
precision whereas Figure 4 shows the architecture of
Deeplabv3. This precise segmentation output serves as a
critical foundation for the subsequent vehicle detection
and classification stages, ensuring higher accuracy and
reliability in UAV-based surveillance scenarios.

Figure 3. Results of road segmentation.
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Figure 4. Architecture of deeplabv3.

3.3. Vehicle Detection Via YOLOv10

After achieving accurate  segmentation  using
DeepLabV3+, the next crucial step is vehicle detection,
where we localize vehicles within [5] the segmented
UAYV images. For this, we employ YOLOV10, a cutting-
edge real-time object detection model known for its
speed and precision [20]. YOLOv10 efficiently detects
vehicles by leveraging an enhanced CSP-based
backbone for feature extraction, a Path Aggregation
Network (PAN) Neck for multi-scale feature fusion, and

an optimized Detection Head for accurate bounding box
regression and classification. These advancements
enable YOLOV10 to detect vehicles with high accuracy,
even in aerial images with varying scales, occlusions,
and complex backgrounds. Given a Segmented UAV
image S(x, y) the detected vehicle bounding boxes B;are
determined as:

B; = arg max(yywmo (fYOLO (S(x,¥),0 (3)

Where f YOLO represent the YOLOv10 detection model
6 denotes the learned model parameters, and maxy, y, w, )
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defines the bounding box coordinates with width and
height. The sigmoid activation function o ensures
probabilistic confidence scores for vehicle detection.
The integration of DeepLabV3+ segmentation with
YOLOV10 reduces false detections, enhancing model
reliability. YOLOv10’s multi-scale feature extraction and
anchor-free detection strategy allow it to outperform
previous versions, making it highly effective for UAV-
based vehicle monitoring applications. Figure 5 shows
the detected vehicles with bounding boxes, while Figure
6 illustrates the YOLOV10 architecture used in this study.
These results validate the robustness of our detection
Backbone
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C

pipeline, ensuring high precision and recall.

Figure 5. YOLOV10 based vehicle detection.
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Figure 6. Overview of the yolo object detection algorithm.

3.4. Feature Extraction

UAV-based vehicle monitoring requires an essential
process called feature extraction, which converts plain
data images into object-defining characteristics for
precise detection alongside classification. Through the
methodology, the essential characteristics of vehicle
form-shape and surface texture and structural elements
are detected against background elements. The
combination of Wavelet Transform and Gabor Filters
and SURF processes strengthens features because these
techniques defend spatial data and frequency data
simultaneously. The recognition performance benefits
from effective feature extraction, which leads to
enhanced efficiency of optimization and classification
processes.

3.4.1. Wavelet Transform Feature Extraction

We employ Wavelet Transform Features, which provide
multi-resolution analysis by decomposing an image into
different frequency components. This allows for better
representation of vehicle shapes, edges, and textures,

particularly in aerial images where vehicles appear at
different scales and orientations [21]. Wavelet
Transform decomposes the detected vehicle region V (X,
y) into multiple sub-bands using a series of low-pass and
high-pass filters. The transformed feature set Wf(x,y) can
be expressed as:

M-1N-1

Wf(x,y) = Z V(x-my-n).YLh(mn) (4)
m=0

Where ¥, h (m, n) represents the wavelet basis function,
with | and h denoting the low-pass and high-pass filters.
The decomposition process generates four sub-bands:
LL (approximation), LH (horizontal details), HL
(vertical details), and HH (diagonal details), capturing
fine details crucial for vehicle recognition. By extracting
statistical and energy-based wavelet coefficients from
these sub-bands, we obtain a compact yet discriminative
feature representation. This improves the robustness of
the model by preserving crucial textural patterns while
reducing redundancy [6]. Figure 7 illustrates the
extracted wavelet features, which serve as a critical input
for the subsequent feature optimization and
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classification stages, enhanced vehicle

recognition performance.

ensuring

Figure 7. Feature extraction via wavelet.

3.4.2. Gabor Filter

After wavelet feature extraction, we further enhance
texture representation using Gabor Filters, which are
highly effective in capturing spatial frequency,
orientation, and edge information. Gabor filters are
particularly useful for UAV-based vehicle monitoring,
as they mimic the human visual system in detecting
directional patterns and textures [10]. A Gabor Filter is
defined as:

x2+y? 2mx
G(x,y;0,1,0,7) = exp (— #) Cos (T +¢) (5)

Where x’=x cos0+y sin0 and y’=-xsin0+ycos represent
the rotated coordinates O is the filter orientation, A is the
wavelength of the sinusoidal component, o is the
standard deviation of the Gaussian envelope, y is the
spatial aspect ratio, and ¢ is the phase offset. We extract
rich texture-based features that enhance vehicle
classification by convolving the detected vehicle regions
with multiple Gabor kernels at different orientations and
scales [1]. These features and wavelet coefficients
contribute to a more robust and discriminative
representation, further improving classification accuracy
in the later stages. Figure 8 illustrates the extracted
Gabor filter responses, highlighting the texture
variations and edge details captured for enhanced vehicle
representation

Gabor (Freq=0.3, Theta=0.00)

Gabor (Freq=0.3, Theta=0.79)

Figure 8. Feature extraction via gabor filter.

3.4.3. Feature Extraction Via SURF

To further enhance feature representation, we employ
SURF, a robust key point detection and descriptor
extraction technique. SURF efficiently detects
distinctive vehicle features by leveraging an integral

image-based Hessian matrix approximation, making it
highly suitable for UAV-based vehicle monitoring
where scale and rotation invariance are crucial [2]. The
Detected key points and descriptors S'for a given vehicle
region V(x, y) are computed as:

(s) = ZH(Xi vi).D(x; yi) (6)
=1

Where H=(xi, yi) represents the Hessian determinant
response at key point (xi, yi) and D(xi, yi) denotes the
descriptor vector capturing local gradient information.
The combination of key points and descriptors forms a
highly discriminative feature set, enabling precise
vehicle recognition [3]. Figure 9 presents the detected
SURF key points, showcasing their robustness in
capturing vehicle-specific patterns and structures.

Figure 9. SURF based feature extraction.

3.5. Feature Optimization via Genetic
Algorithm

After extracting multi-scale features from Wavelet
Transform, Gabor Filters, and SURF, the next step is
feature optimization to enhance classification accuracy
and computational efficiency [10]. We employ a GA, a
powerful evolutionary optimization technique, to select
the most discriminative features while eliminating
redundant and irrelevant ones [9]. GA mimics the
natural selection process by iteratively evolving a
population of feature subsets through selection,
crossover, and mutation operations. The optimal feature
subset F is obtained using the following equation:

2?1:1 wj. fi ,
Fi ) wj = 1+ e biGFD (7)

F = arg max(

Where F represents the full feature set, Fi is a candidate
subset, fj are individual features, wj are adaptive weights
computed using a sigmoid-based fitness function,
controls selection pressure, and J(Fi) represents the
classification accuracy achieved using the subset Fi.
This approach ensures that only the most informative
features contribute to the final classification stage. In our
implementation, the Genetic Algorithm was configured
with a population size of 40, running for 60 generations.
A crossover rate of 0.8 and a mutation rate of 0.05 were
selected based on preliminary grid search experiments.
The algorithm was terminated once either the
classification accuracy plateaued over 10 consecutive
generations or the maximum generation limit was
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reached. This setup ensured a balance between
convergence stability and computational efficiency
during feature subset selection. By optimizing the
feature set using GA, we achieve a compact and highly
discriminative representation, reducing computational
complexity while maintaining superior classification
performance.

3.6. Vehicle Classification Using Swin
Transformer

The classification of detected vehicles into specific
categories constitutes the last step after the Genetic
Algorithm optimization of extracted features in our
pipeline. This work uses the Swin Transformer as its
vehicle classification model because of its innovative
shifted window-based attention system, which builds
upon traditional Vision Transformers (ViTs). The Swin
Transformer provides better performance than
traditional CNNs because it successfully analyzes
vehicle images through both short-range and distant
relationships and handles different image scaling
dimensions [4]. The Swin Transformer processes input
features through a hierarchical  architecture,
progressively increasing the receptive field while
maintaining computational efficiency. The model starts
by embedding the optimized feature set F* into a series
of patch embeddings, which are then passed through
multiple swin transformer blocks. Each block consists of
Shifted Window Multi-Head Self-Attention (SW-MSA)

Patch Merging

Patch Merging

layers, which allow for more effective feature interaction
across different spatial locations. This is particularly
useful in UAV imagery, where vehicles may appear at
various scales, orientations, and lighting conditions.
Mathematically, the Classification Output C is computed
as follows:

C = Softmax (WS.Z A(W.F;) (8)
i=0

Where W; represents the trainable weights of the
Transformer Encoder, A(+) is the self-attention function,
which enhances feature representations by learning
spatial dependencies, and Ws is the classification head
that maps the learned representations to class labels.
Softmax executes to find final classification probabilities
that determine confidence scores for vehicle categories.
Through its shifted window method, the Swin
Transformer excel at processing large aerial images with
high resolution efficiently [11].

The model processes aerial image sections rather than
entire pictures to enhance feature collaboration with
smaller processing requirements. For different types of
UAYV images, our method improves both the accuracy
and flexibility of model applications. Training progress
stops when both the adaptive learning rate and cross-
entropy loss achieve optimal performance to minimize
misclassifications. Swin Transformer model displays its
full design elements and explains its techniques for
feature extraction and attention linking in Figure 10.

Patch Merging Patch Merging

Patch Linear
Merging Embedding

Swin Swin
Transformer Block Transformer Block

Layer 1 Layer 2
x2 x2

Patch Merging
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Layer Patch Swin
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Figure 10. Swin transformer architecture.

4. Result and Analysis

The testing took place on a system that featured an Intel
Core i7-12700H (2.70 GHz) CPU with 32 GB RAM and
used a NVIDIA RTX 3060 GPU that provided 6 GB
VRAM. The created system combined PyTorch with
TensorFlow in addition to CUDA acceleration which
boosted deep learning processing speed. Our deep
learning model needed perfect settings that we gained
from extensive hyperparameter adjustments, including
weight rules during learning rate selection and selection
of the best batch size

4.1. Dataset Description
4.1.1. Roundabout Aerial Image
The roundabout dataset utilizes UAV imagery to classify

vehicle types even in busy traffic scenes. The
Roundabout Aerial Image Dataset contains both aerial
images and video sequences that capture different
vehicle types and show how cars interact through
multiple lanes even when they partly disappear from
view [18]. The dataset includes two types of labeling to
assist traffic research. It shows boundaries between
objects and tags traffic types for deep learning studies.

4.1.2. VAID Dataset

The VAID dataset offers testing tools to detect objects
with air vehicle identification followed by tracking their
movements [16]. The VAID dataset consists of 100
video sequences amounting to 80,000 frames, which
were acquired through a UAV platform. The video
material crosses 10 hours of continuous footage that
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displays different city settings. Each JPG image has a
1080x540-pixel resolution at 30 frames per second as its
capture parameters. T-junctions and arterial routes,
together with highways and squares as well as crossings,
represent the various road configurations found in this
dataset.

4.2. Performance Evaluation

The system evaluation occurred through rigorous
testing with Roundabout Aerial Image and VAID
datasets to validate its effectiveness as a UAV-based
vehicle monitoring solution. The accuracy of the
performance assessment relied on five independent tests
where researchers recorded the mean results. Precision
and recall along with Fl-score served as the key
evaluation metrics to measure both the algorithmic
accuracy and robustness during vehicle detection
operations. The UAV-based vehicle surveillance model
proposed has a high detection and classification rate in
benchmark datasets. Tables 1 and 2 indicate class-wise
precision, recall, and F1-score on the Roundabout and
VAID datasets, with average F1-scores of 0.97 and 0.96.

Table 1. Vehicle detection accuracy, precision, recall, and f1-score
evaluation of roundabout dataset.

Classes | Precision | Recall | F1-score

C 0.97 0.96 0.96
Tru 0.98 0.97 0.97
B 0.97 0.95 0.96
Cy 0.98 0.95 0.96
\ 0.97 0.95 0.96
MB 0.99 0.97 0.98
Tra 0.99 0.98 0.98
Mean 0.98 0.96 0.97

Table 2. Vehicle detection accuracy, precision, recall, and fl-score
evaluation of VAID dataset.

Classes | Precision | Recall | F1-score

C 0.96 0.95 0.95
Tru 0.97 0.96 0.96
B 0.96 0.94 0.95
Cy 0.97 0.93 0.95
\ 0.96 0.94 0.95
MB 0.98 0.96 0.97
Tra 0.98 0.97 0.97
Mean 0.97 0..95 0.96

Table 3 shows that the method outperforms state-of-
the-art models, including SSD, RetinaNet, YOLOV5,
and EfficientNet.

Table 3. Comparison of model detection rate with other state-of-the-
art methods.

Datasets Models Precision
SSD 0.76
RetinaNet 0.68
Roundabout dataset Blob detection 073
Our method 0.97
Yolové 0.84
Yolovs 0.69
VAID dataset EfficientNet | 0.83

Our method 0.96

Tables 4 and 5 show the confusion matrices having
an overall classification accuracy of 97.71% and

98.57% respectively which means that the inter-class
misclassification is not much.

Table 4. Confusion matrix for vehicle classification over the VAID
dataset.

Classes | C |[Tru| B [ Cy | V |MB | Tra
C 99 0 1 0 0 0 0
Tru 0 | 98 1 0 0 1 0
B 0 0 97 1 1 1 0
Cy 0 0 0 | 98 0 1 1
V 0 0 1 0 |98 | 0 1
MB 0 0 1 0 1 97 1
Tra 0 0 1 1 0 1 |97
Mean: 97.71%

Table 5. Confusion matrix for vehicle classification over the
roundabout aerial dataset.

Classes| C |TR| B |SD | V |MB | Tra
C 8| 0 1 0 0 0 1
TR 1 | 99 0 0 0 0 0
B 1 0 98 0 1 0 0
SD 0 1 0 99 0 0 0
\Y 0 0 1 0 98 1 0
MB 0 0 0 0 1 99 0
Tra 0 0 0 1 0 0 99
Mean: 98.57%

*Mn=Minibus, TR=Truck, PT=Pickup Truck, B=Bus, SD=Sedan, C=Car, CT=Cement
Truck, Tra=Trailer.

Table 6 highlights superior or competitive
performance compared to existing studies, confirming
the framework’s  robustness, reliability, and
effectiveness for UAV-based traffic surveillance in
diverse scenarios.

Table 6. Classification Comparison with other State-of-the-art
Models.

Method Roundabout| VAID
Linetal. [16] - 91.3%

Hussein et al. [10] -- 95.50%

Kumar et al. [13] 86.7% -
Gopta et al. [7] 89.5% -

Proposed method 97.71% 95.50%

The proposed model shows remarkable accuracy
together with strong robustness levels for UAV-based
vehicle detection yet it requires certain specified
limitations to be examined. The detection system faces
important difficulties from environmental objects that
partially or fully hide vehicles because this condition
leads to classification errors. The detection accuracy and
feature extraction process get impaired through weather
elements that combine rain and fog with decreased
visibility when observing images. The model operates
best during daylight conditions since it has not been
optimized to perform effectively under nighttime
conditions where illumination problems and sensor
noise function as significant performance decreases.
Furthermore, while the model performs well in
structured environments, highly congested and
unstructured traffic  scenarios may introduce
complexities due to overlapping vehicles and varying
perspectives. Future work should explore the integration
of multi-spectral imaging, low-light enhancement
techniques, and domain adaptation strategies to improve
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the model’s robustness under diverse conditions.

5. Conclusions

The research introduced an effective UAV-based
vehicle detection and classification structure that
applied state-of-the-art deep learning methodologies
along with optimized feature extraction methods. The
proposed method unites histogram equalization image
enhancement with DeepLabV3+ segmentation and
YOLOV10 vehicle detection and a feature extraction
system that utilizes Wavelet Transform and Gabor
Filters and SURF to analyze spatial and frequency
domain signal information. A Genetic Algorithm served
to optimize feature selection through an improvement of
both computational efficiency and classification
accuracy. Vehicle classification was performed by using
the Swin Transformer, which demonstrated exceptional
capabilities for detecting fine-scale information. The
proposed framework was tested on two benchmark
UAYV datasets, achieving a classification accuracy of
97.71% on the Roundabout Aerial Images dataset and
98.57% on the VAID dataset, demonstrating its strong
performance. This work contributes significantly to the
advancement of autonomous aerial surveillance,
offering a scalable and high-performance solution for
intelligent traffic analysis.
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