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Abstract: Human Interaction Recognition (HIR) is one of the most important research topics in computer vision and pattern
recognition that deals with the identification of specific interactions in static images and has several challenges that are related
to the lack of temporal data, feature extraction, variability in image conditions, and the requirement of more accurate and
interpretable robust models. However, current approaches face difficulties in recognizing the static images potential for
interaction recognition, which results in a lack of effective algorithms using these resources. Addressing these gaps could
potentially lead to great strides in the field. This paper aims to fill this gap by presenting a new Convolutional Neural Network
(CNN)-based deep learning framework for interaction recognition, which integrates multimodal data for enhanced performance.
The following steps are followed in the methodology: Preprocessing the images using Hue Saturation Value (HSV) color
transformation to improve the image quality and silhouette extraction using Multiple Object Tracking (MOT) and Visual
Background Subtractor (ViBe) techniques. We employ two distinct feature extraction approaches: Texton map for full body
features and geometric attributes for skeleton features. The extracted features are then efficiently discriminated using Quadratic
Discriminant Analysis (QDA). The analysis of our proposed framework suggests that the recognition rate on the Shakefive2
dataset is 90.2%, and the accuracy on the University of Lincoln (UoL) dataset is 92.3%. These results were compared to baseline
models, such as traditional methods (e.g., handcrafted features), showing improved performance. These results show that the
proposed method is a good solution for human interaction recognition based on static images. This research helps to enhance
state-of-the-art deep learning-based algorithms for human interaction recognition that could be used for human-computer
interaction, video analysis, and surveillance, and thus contributes to the field of computer vision.
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1. Introduction To address these gaps, this paper proposes a
Convolutional Neural Network (CNN) based deep
learning framework that integrates multimodal data,
offering a more effective solution for recognizing human
interactions in static images. The framework leverages
image features, geometric attributes from skeletons, and
potentially depth information for more robust
recognition. Although the current work primarily
focuses on static images, the proposed framework is
designed to be extensible to other sensor-based
modalities like depth or audio data, improving the
interaction recognition process.

The framework uses the latest methods including Hue
Saturation Value (HSV) color conversion, silhouette
extraction with Multiple Object Tracking (MOT) and
Visual Background subtractor (ViBe), and feature
extraction with Texton maps and skeleton features.
Using these techniques, we hope to enhance the

Human Interaction Recognition (HIR) is an important
field of research in computer vision and pattern
recognition concerned with the recognition of particular
human interactions based on visual information. HIR has
a lot of potential but it has a lot of challenges especially
when it comes to static images which do not have the
time aspect of video data. The main problems are the
complexity of feature extraction, the inconsistency of
image conditions (e.g., lighting and background clutter),
and the necessity of more accurate and interpretable
models that can address these issues. The existing
methods of HIR are mostly based on hand-crafted
features that have limited capabilities to reflect the
complex nature of human interactions. Such models also
tend to underutilize the potential of static images, and it
is hard to create robust algorithms that can recognize a
large variety of interactions.
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performance of recognition and help to develop HIR in
practice. The CNN is the main classifier within our
framework, which learns and classifies the interactions
using the multimodal features extracted. Quadratic
Discriminant Analysis (QDA) is applied as a feature
discrimination step to improve the performance of the
CNN by effectively discriminating the extracted features
prior to final classification.

In the considered context, the CNN will represent the
main classification model, which will exploit
multimodal characteristics to distinguish between
human interactions. QDA is used as a feature
discrimination step to enhance the performance of the
CNN by efficiently separating the extracted features
before final classification. HIR can be used in a variety
of fields such as surveillance, sports analytics, human-
computer interaction. In surveillance, accurate human
interactions are detected to add security systems by
identifying suspicious actions. In surveillance, accurate
recognition of human interactions can enhance security
systems by identifying suspicious behaviors. In sports,
HIR can be used to analyze player movements and
interactions, improving testing and training methods.
Additionally, human-computer interaction benefits from
HIR by enabling more intuitive and natural user
interfaces, where machines can understand and respond
to human gestures and actions [2].

HIR is used in many areas, including sports,
healthcare, security, and human-computer interfaces.
The potential to precisely calculate and interpret human
activities profoundly affects human conditions and the
effectiveness of various applications. One promising
strategy is implementing CNN [1]. Such models
consider sequential dependencies to model the features
of complex interaction patterns, delivering reliable
recognition results. Filtering and identifying relevant
features from various activities performed under
different circumstances is challenging. Some are
primitive and may not capture all aspects of human
motion, while others like deep learning may need large
amounts of labelled data for training [37]. Lighting,
background clutter, and occlusions affect recognition
accuracy when lighting and background change or there
are occlusions [3]. Most of the existing systems fail to
operate optimally under such conditions. It was found
that many methods fail to properly use temporal
information which is essential for discriminating
between similar activities. This is quite a limiting factor,
especially in dynamic environments, because it can lead
to misclassification [5].

This paper contributes to the field of computer vision
by presenting a novel CNN-based approach for HIR,
offering significant improvements in recognition
accuracy and robustness. Our proposed framework not
only enhances the state-of-the-art algorithms but also
demonstrates the potential of deep learning to tackle
longstanding challenges in the recognition of human
interactions from static images. The proposed system

comprises the following key contributions:

1. HSV transformation: improves the quality of image
frames by providing better color differentiation that
helps in feature identification.

2. Silhouette extraction: uses MOT and ViBe techniques
to obtain a precise estimation of shapes of human
body.

3. Feature extraction: Texton maps is used for the full-
body and geometric characteristics of skeleton
features to better understand interactions.

4. QDA: exclusively discriminates features from the
extraction process, enhancing the classification rate
when fed to the CNN.

This paper is organized as follows: 1st Section
summarizes the previous studies and the current state-of-
the-art in HAR to pinpoint the existing methods, their
limits, and the gaps in knowledge. The 2nd Section of
our paper discloses the proposed framework and details
of CNN, which offers full body textures and geometric
features. 3rd Section provides the experimental setup,
including the datasets, metrics, and implementation
details. The results and analysis from the experiment are
displayed in 5th Section conclusion, and future research
perspectives in the field of HAR are provided.

2. Related Work

HIR has gained enormous recognition in multiple
domains over the past years, such as healthcare, sports,
surveillance, and  human-computer interaction.
Numerous proposed approaches target this challenge,
using different methods such as Machine Learning
(ML), computer vision, and sensor-based systems. This
part discusses the methods used widely and explains
their advantages and disadvantages.

2.1. Human Behavior Interaction with Machine
Learning

Human behavior interaction with ML deployment of this
surveillance [21] and suspicious interaction [4] detection
methods also form an essential aspect of HBI
applications as they help determine deviant behavior in
the commons, identify threats and protect people. HBI
also facilitates tracking of patient mobility, observing the
performance of the patients in exercises and physics
therapy, and even modifying the treatment regimens [6]
created a Support Vector Machine (SVM), smartphone,
real-time interaction identifying framework which was
87% accurate. The interaction recognition system
described in their study uses ML methods on depth
camera skeleton data to improve the instrument’s
dependability. Multiclass SVM and X-mean algorithms
are used to categorize interactions using this tool based
on postures. The method is better than the best art
techniques that can process input data in no more than 4
seconds. Another researcher was building dynamic
texture descriptors for human interaction detection,
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which they noted could be used to simplify the
computation. This is about picture data and contrasting
outcomes with the best strategies using the progression
of computer vision research [7].

HAR has widely adopted ML techniques that extract
discriminative features and train interaction classifiers
[8]. They proposed a multi-layered framework that
combines deep neural networks with Long Short Term
Memory (LSTM) units to learn temporal dynamics of
activities. They showed that their results achieved
improved recognition accuracy over conventional ML
approaches. Similarly, Gemeren et al. [11] use SVMs to
learn discriminative hyperplanes embedded with various
high-dimensional feature spaces to support interaction
recognition. In spite of that, a number of ML approaches
still depend on some hand-made features, and it is hard
to reflect the complexity of human activities with them.

2.2. Human Behavior Interaction Deep Learning

In human behavior interaction with deep learning [10] a
fuzzy deep learning algorithm is presented to evaluate
users of the lower limbs exoskeleton’s daily activities
based on real-time walking data, accomplished transition
of gait mode and dynamic dataset. But nowadays, the
features that are used for the recognition of human
movement are limited, such as the joint positions of
skeletal joints [12] or motion trajectories [13], these
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methods typically have a high degree of accuracy, but
they may not be able to capture all the discriminating
information present in human behavior. To cope with
this drawback, our suggested method aims to intensify
HAR that are equipped with full-body texture and
geometric features. Full-body texture features are quite
smooth and fine grain surface details such as clothing
patterns and skin texture can support interaction
recognition. Geometric characters include the space
relationships between body parts, which implies
depicting the structure’s characteristics and the body’s
configuration during the activities.

Compared with other kinds of Neural Network (NN)
architectures, the CNNs are overpowered. The reason is
that CNNs can learn richer, higher-order features and
that input images have a deep pixel correlation [15]. As
for the image classification, when Deep Convolutional
Neural Networks (DCNN) were successfully applied,
object detection also progressed considerably with deep
learning methods. Being convolutional neural networks,
DCNNs inherently generate hierarchical features to map
raw pixel values into semantic features, learn
automatically from training data, and are proficient in
discriminant performance in intricate circumstances.
This, in turn, resulted in object detection algorithms
using deep convolutional neural networks with end-to-
end optimization and richer features representation [16].

Table 1. Related work for existing human interaction techniques and recognition model.

State-of-the-art

Main contributions
models

Limitations Proposed model comparison

Handcrafted features | High interpretability, less computational cost.

Limited adaptability to
complex interactions.
Struggles with dynamic

Our model overcomes these limitations by using
multimodal features, including Texton maps for

relationships.

body parts.

[22] reaching overall accuracies of 0.87 and 0.88. L B full-body textures and skeleton features to capture
conditions (lighting, - -
) more nuanced interactions.
occlusion).
Good at capturing spatial and temporal Does not fully capture detailed con\w/\t/)?nliTprs(?(\é?ertgaufsetgfusrse:r\]/a%C?;?cgtk:gsed
ST-GC N [23] P gsp P motion or subtle cues between g 9

features (Texton maps), providing a richer
representation.

They developed a two-stream network that
Two-stream network | combines spatial and temporal information for

[9] skeleton based action recognition. results show
that with a percentage of 80 %.

Requires extensive training
data for optimal performance.

Our model achieves similar performance with
reduced complexity, using fewer training samples
and incorporating multimodal data for better
generalization.

Captures long-term dependencies for action
recognition. The accuracy
of each of the competing methods is above 90%.

RNNs with CNNs [24]

Struggles with real-time
processing and computational
load.

Thus, we rely on skeleton features that encode
motion temporal aspects and make use of CNNs.

A Transformer based model for human interaction
recognition that captures long range dependencies
and complex interactions. Accuracy of the
proposed method for body partdetection is
90.91%.

Interaction
transformer [25]

It suffer from optimal
parameter tuning and model
selection for best
performance.

The power of CNNs for feature extraction is
leveraged in our model, which can be potentially
combined with attention mechanisms to further
improve interaction modeling.

Effective for capturing motion in controlled

Optical flow [14] conditions. Proposed method accuracy 87.2%.

Sensitive to noise and
occlusions.

Our framework is more robust, addressing noise
and occlusion issues through advanced
preprocessing (HSV, MOT, ViBe).

Combines strengths of multiple methods.

One can consider our model as a hybrid by

approaches [27] accuracy with convnet +Istm+RGB.

data alignment.

Hybrid FZ%‘; roaches IGFormer achieves state-of-the-art performance Inc;gﬁei tg%'gﬁ;ﬁg dand combining the skeleton features with Texton maps
85.4%. P ) which are image features.
Multi-modal Utilizes diverse data sources. Achieve 76.7% Integration challenges and We proposed an improved model which can

handle multi-modal data sources for better results.

CNNs and RNNs are very much suggested as
possible networks for face recognition, which is
accomplished with recent deep learning studies [17].
These methods can acquire a structural description of
images and videos articulating activities [18]. The

current CNN-based approaches are excellent data
domain such as medical image classification or object
detection, However, they need a massive number of
labeled data as input and the computational cost is high.
Other human behavior-crafted features like Motion
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History Image (MHI), optical flow, and 3D
Convolutional Neural Networks (3D CNNs) are now
used to determine Human. Furthermore, different
research studies have proposed different techniques to
improve the success of human pose detection and
recognition, such as combining CNN with Hidden
Markov Model (HMM) [19]. Then, in this setup we use
the CNN to extract features from the image and HMM
as a model for the temporal information of the activities.
Human interaction recognition is a challenging but
promising field in computer vision, where the systems
learn to recognize human interactions in videos. They
have been used in areas such as monitoring security
cameras or enhancing the ways that humans interface
with machines. Although there have been some
breakthroughs on this front, challenges still need to be
addressed to develop accurate and generalizable
interaction recognition models [20]. Table 1 is

Preprocessing

representing related work summery of human
interaction recognition model.

3. Methods

In this work, we describe a CNN-based interaction
recognition technique. We suggest 1st with the HSV
color transformation as a preprocessing step that will
help increase the frame clarity. Then the MOT and ViBe
steps are applied to the template to get the silhouette.
Feature extraction is performed using two distinct
approaches: Texton map is employed to obtain all body
traits, and the point features of geometric visualization
gain skeleton features. QDA effectively discriminates
the released features. Feature extraction and
discrimination and then apply CNN. System
architecture shown in Figure 1.

Silhouette Extraction

Feature Extraction

Dataset Frames HRY

e }

v

MOT, .
o - Full body oo |
—— * Texton Maps o | ¥
Split =l ﬁ
! poid
‘ Skeleton f; S
Vibe eleton features
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Feature Discrimination

Quadratic
Discriminant

Analysis , a

Figure 1. Structural diagram of our novel proposed model.

3.1. Preprocessing: Adaptive Mean Filter

First step in preprocessing is essential for removing
noise and extracting features from frames. With this step,
we can accurately predict human activities. This paper
proposed a preprocessing technique to address this
problem, which is one of the concerns. The method
consists of two steps:

a) Converting the color space into HSV.
b) Choosing the most suitable channel and then
smoothing the image with the median filter.

Figure 2 illustrates the outcome of such a process.
Transformation of an HSV color space maximizes the
difference between the pixels of the input video frame.
This transformation employs the original video frame
denoted as I(p,q) as its operands. Set up R(p,q), G(p,q),
and B(p, q) to be the red, green, and blue channels of the

image that needs to be processed. The HSV channels are
computed as follows:

v=M(MREO)LMGCE ) MBEO) (1)
. {V - min[R(p,q),G(p. ), B, OBV} if v#0 )

|4 " otherwise

60(6(.9) = B®,9))
vV —min(R(®,9),G(p.q), B(p, )
where V = R(p, q), and
60(B(P,Q) — R(P,Q))
H= 120+ v —min(R(P,Q),G(P,Q),B(P,Q))’ ®)
ifV=6P,Q (3)
{60(R(p.9) — G(p,9))}
{V = min(R(p, q), (G(p, ), B(p, D)},
{if }V =B q)
Here, M represents the number of training samples used
in the model, and R(p, g) denotes the color values at pixel

240 +
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(p, g) in the image. The corresponding channels of the
HSV image, which are V, S, and H for value, saturation,
and hue, respectively, are put in this formula. The color
hue is normalized in the range [0, 1] with 360 when being
divided. Lastly, the enhanced contrast image is yielded
by merging the hue, saturation, and value channels into
an HSV image, followed by its conversion back to the
BGR color space. To address the noise, a median filter is
applied to the channel that shows the best performance
with the goal of reducing the noise.

c) The split channel, and the
median filter applied.

a) The original frame. b) The HSV channel.

Figure 2. HSV transformation is used to improve the frame.

HSV transformation is used to improve the frame in
Figure 2-a) the original frame, in Figure 2-b) the HSV
channel, in Figure 2-c) the split channel, and the median
filter applied.

In other words, the preprocessing method used in this
study increases the contrast in video frames by
converting them to the HSV colour space. The best
channel is chosen, and a median filter is thus applied to
remove unwanted noise. This method requires more
accuracy in human activations.

3.2. Silhouette Extraction

Silhouette extraction is a crucial task for feature
extraction, used to capture accurate human shapes and
movements [28, 29]. Here, we are speaking about how
to have precise shapes of people. The critical task is to
get the silhouette in place to extract and detect the best
features. We are using two techniques for efficient
extraction of silhouette 1st multi object tracking which
help to track object then apply ViBe for batter silhouette
extraction.

3.2.1. Multiple Object Tracking (MOT)

MOT is a non-overlapping data processing technique
that tracks targets simultaneously from one frame to the
next during a given time. MOT is widely implemented
in security and self-driving vehicle analysis [30].
Primarily, the function of the MOT-based technique is to
accurately determine the location of the objects and their
identity while at the same time predicting their upcoming
state [31]. Such regularization is associated with
challenges, such as when obstacles or objects are often
processed. In recognition of the need to maneuver
through these obstacles, MOT algorithms deploy

different procedures, including data association, motion
prediction and object representation. An alternative
approach is the implementation of object tracking
technologies which consist of detecting objects in every
frame of video frame data to be processed and applying
a group matching technique that associates these
detections during consecutive frames thus forming
tracks. Most of MOT techniques are evaluated using
measures that consider the numbers of true positives,
false alarms and missed detections, such as tracking
accuracy, precision, and recall.

Pzgetect |Z£ruck . P erack
PzDetect
n

(4)

The probability of a track given a detection in P
(Track|Detection) is obtained by multiplying the
probability of the detection given the track the
probability of the track itself, and the probability of the
detection across all tracks. This equation is frequently
used in the data association methods for MOT also
results shown in Figure 3.

P (Track|Detect) =

a) High five. b) Hug. c) Explain.

Figure 3. The figure illustrates silhouette extraction results of MOT.

3.2.2. Visual Background Subtractor (ViBe)

ViBe is an algorithm employed for background
subtraction, a core procedure in many responsibilities of
computer vision such as object detection and tracking.
The background removal process is a technique that
isolates the objects present in the foreground from the
background in an image sequence [32]. The ViBe
algorithm has become well known for its backdrop
subtracting algorithm owing to its simplicity and
efficiency. It represents the background by keeping the
same set of statistics pixel-wise distribution
distributions. Such covers are real-time spots of
background changes. Through measurement of the new
frame with the previous background model, ViBe
validates the accuracy of the background and updates the
respective distribution. The algorithm determines if the
pixel belongs to the foreground or background area
through pre-established thresholds and statistical
measures. The ViBe algorithm has excelled in situations
that fall into a category of difficult complexities like
dynamic backgrounds, illumination changes, and camera
motion.

(cv—-BPV)

I
Bi(x) = —p—= = (1) > 0B;4 () (5)
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The term, By(X), in Equation (5) refers to the background
(or background pixel value) at position x in frame t. It (x)
denotes the pixel value of the current image capture at
location x The dissimilarity function d(x) is used as a
metric to quantify the dissimilarity between It (x) and the
background model. If d(x) goes over threshold 6, the
pixel is taken as the foreground; otherwise, it is taken as
the background pixel. Current pixel value as CV and
background model pixel value as BPV. This formula is
used in the ViBe algorithm to update the background
model, result shown in Figure 4.

a) High five. b) Hug.

c) Explain.
Figure 4. The figure illustrates silhouette extraction results of ViBe.

3.3. Feature Extraction

We employed Texton maps for full-body feature
extraction, enabling effective representation and
characterization of visual and textual elements in the
data.

3.3.1. Full Body Features

Texton maps segment textures in images to aid in object
recognition and scene understanding. Texton maps are
used to segment an image into different textures so that
the computer can analyze different Textons. This
technique is very useful in object recognition, scene
understanding, and the generation of realistic textures.
Texton maps represent another important instrument for
assessing an image’s structural and compositional
attributes by analyzing its texture information. Thus, this
is becoming more precise and detailed in examining and
categorizing the objects depicted in the image. Texton
maps can supplement image segmentation algorithms
that might use the image texture information in a more
generalized form. The patterns of the Texture are
classified into Textons.

T(x,y) = min d(I(x,y), T(t,u,v

() (OZEN (min d(IC).TEun)  (6)
Where T(x, y) Texton map value at the pixel coordinates
(x, y) is calculated by Texton of the most suitable one (t)
which is in the nearby region (N). Through function d (),
we find the distance between the strength of the picture
at coordinates (x, y) and the Texton value at (t, u, v), the
latter being the coordinates of the neighborhood. The
algorithm designates a pixel that is nearest to neighbors,
and the final value of the Texton map, T(X, y), is this
distance. The Texton map, T(X, y), will result when the
argmin algorithm is performed to trace the Texton that

achieves the smallest distance and results shown in
Figure 5.
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a) High five. b) Hug. c) Explain.

Figure 5. lllustrates feature extraction results of Texton maps.

3.3.2. Skeleton Features Extraction

The skeletal geometry features are very useful when the
information is obtained from the skeletal structure to
determine human motion [33]. These qualities include
the positions and geometries of the important points of
the human skeleton, such as junctions and bone length.
The skeleton geometry features are often acquired using
the method that is based on the distances between the
joints of the skeleton, and the distances are measured
using the euclidean distance metric. Calculations of
distances of the joints in particular combinations provide
hints regarding human poses and movements.

dlm = \/(p - pm)z + (q - qm)z + (rl - rm)z (7)

Where din is the euclidean distance between I and m™
joints of a skeleton. The coordinates of the I" joint is (pl,
gl, zI) and the coordinates of the m™ joint is (pm, qm,
zm). The formula uses the square root of the square sum
of differences between the p, g, and r parameters as the
three-dimensional distance. The skeleton geometry
features can be used to create Equation (7) motion
capture systems, which produce a lot of information
about the structure and movement of the human being.
Results are shown in Figure 6 and Algorithm (1) extracts
dynamic information of human skeletons in video
frames, which includes joint displacement, statistical
displacement and angles/orientation. These
characteristics form a baseline set to understand human
movement and interaction and serve as the basis of a
follow-up process and machine-learning operation
aimed at identifying specific types of interactions.

a) High five. b) Hug.

c) Explain.

Figure 6. Skeleton geometry features result shown as High Five, Hug
and Explain.
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Algorithm 1: Skeleton joints keypoints and features extraction.

Input: Image frames

Output: Extracted joins features and key points

Initialize empty feature vectors for

-Joint displacement Dj

-Statistical displacement v, ajz

-Angles /orientation

fort=1tondo

If t>1then

for each joint j do

Calculate displacement vector Dj(t) between joint j in frames t-1
andt

Append Dj(t) to joint displacement feature vector

end for

end if

Store skeleton joints for
angles/orientation calculations
end for

Mean : u; = = ¥, Dj(t)
Variance: of = —3L, Dj(t) = 4,2

for each joint j do

Append yj and ajzz to statistical displacement feature vector
fort=1tondo

for each joint j do

Determine joint angles and orientation relative to body segments
Append joint angles and orientation features to
angles/orientation feature vector

end for

end for

Return: statistical displacement feature vector, joint displacement
feature vector, and angles/orientation feature vector

statistical displacement and

The extracted features are then used for further
classification and interpretation in subsequent stages.

_(a—ay) + (b —by) ) (8)

2
20y

Cy(a,b) = exp(

Where Cy(a, b) is the confidence map for keypoint, (ay,
by) is the location of key point, o}, the standard deviation
controls the confidence spread around the key point
location.

3.4. Feature Discrimination Analysis

QDA is a statistical classification technique that is being
applied to determine the probability of an observation to
belong to a particular class, or is it [34]. In this context,
QDA is based on the principle that every class adheres
to a multivariate normal distribution, and it estimates the
parameters of the Gaussian process to forecast results.
While Linear Discriminant Analysis (LDA) requires the
classes to share the same covariance matrix, QDA
provides the alternative possibility of fitting one class
with a unique covariance matrix. This implies that QDA,
through its methodologies, can detect any additional
facets between the variables. The decision boundary in
QDA is defined by a quadratic equation, which makes it
a nonlinear classifier. The goal of QDA is to maximize
the posterior probability of each class given the observed
data. To achieve this, QDA calculates each class’s
discriminant function, represented by a quadratic

equation. The discriminant function for class k is given
by:

) 1
e lot = ln(P(Ck)) - Eln(lzkl) 9)
: 1 1
max xe™ == (x = )" Et (x = ) — 5 d In(2m) (10)
e (x) = et — max xe (1)

0=x<1

Where gk(x) is the discriminant function for class k, in e’
" p(CK) is the prior probability of class k, Xk is the
covariance matrix for class k, in max xe™*, pk is the

0=x<1

mean vector for class k, x is the input vector, and d is the
dimensionality of the input space. Based on the
discriminant functions, QDA assigns the observation to
the class with the highest discriminant value. By
considering the quadratic terms, QDA can capture more
complex decision boundaries compared to linear
classifiers like LDA. However, QDA requires more
parameters to be estimated and may be more prone to
overfitting when the number of training samples is
limited. Figures 7 and 8 represent features fusion and
discrimination result using QDA.

o thumbsup o hug
+  fistbump o pass-object

s handshake o  rock-papersizer
a high-five « explain

Figure 7. The features fusion and discrimination result using QDA on
Shakefive2 dataset.

o Handshake o Hug
«  Help walk o push
e Help stand-up o Conversation
a Fight « Call attention

0. 200

Figure 8. Features fusion and discrimination result using QDA on
UoL dataset.
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Figure 9. Standard architecture of CNN.

3.5. Convolutional Neural Network

Human interaction recognition is a typical and well-
used task for CNN as they can automatically learn and
classify different activities using input data. CNNs,
then, can examine features which is already extracted.
Those kinds of data capture such spatial and temporal
patterns, which give chances to determine activities like
hug, punch, push, or other specified activities. CNNs
learn to recognize human activities with an incredible
accuracy and can be used in real time systems for
instance fitness trackers and monitoring systems in
health care and sports analytics. Architecture of human
interaction recognition shown in Figure 9. It has been
implemented using a hybrid approach where
convolutional neural network is used as a classifier on
manually extracted visual features and raw images. In
particular, Texton maps are computed in order to retain
texture data, but geometric features based upon
skeletons are used to represent spatial data. The
resulting descriptors are concatenated and are used as
inputs to CNN model. This process allows the CNN to
leverage its powerful classification capabilities, not just
on raw image data but also on the manually curated
features, thereby enhancing the model’s ability to
recognize complex human interactions.

3.5.1. Convolutional Layers

The CNN architecture consists of three convolutional
layers. Convolutional layers are the foundation of CNNs
that control perceiving spatial hierarchies of features
from input data. For HIR, the pre-extracted features are
directly fed to Convolutional layers for classification.
The 1x7 sized 32 filters are used in the first
convolutional layer, which gives us an output feature
map of size 9600x526x32. The calculation of this
dimension takes into account the valid padding. The
second convolutional layer uses 64 filters of size 1x6
and outputs 9600x258x64. The third convolutional layer
uses 128 filters of size 1x5, giving us an output of
9600x125x128. We also want to mention that after each

convolutional layer, we add activation functions ReLU
and bias terms to improve model performance.

ConvtDI(G, j) = ReLU(u) (12)

The activation value of a neuron at position (i, j) of the
feature map in a convolutional layer, after a
convolutional layer in a CNN is denoted by Conv{(+D3(.
), First we need to compute u, which is a weighted sum
of the previous layer’s inputs plus a bias term and then
we just multiply that with a frame drop probability to
compute this value. The ReLU activation function plays
an important role in this process, bringing much needed
non linearity to the network. Essentially, ReLU only
looks at the input u and sets it to O if u is less than O or
to u if u is nonnegative, so it only looks at positive
values.
2 y+1
— ; alli,c {a}

ReLU(u) = {;}Q[l, c,(a—1)+ T] wialliel 4 et (13)
The ReLU activation for a particular neuron in the CNN
is calculated in detail by Equation (13). This involves a
sum over a range of values most likely corresponding to
different values of the previous channel (or feature)
from which these vectors are derived. Accessing data
from a multidimensional array or tensor, which is the

inputs or the feature maps, is denoted by the notation

Qfi, ¢, (a-1)+X]. W& s the weight for the

2
contribution of each feature or chanel, and k{{f}} is bias

term that multiplies all output. This equation shows how
the network processed different inputs and applied its
learned parameters to generate meaningful activation
values, so the network learns complicated patterns and
makes predictions.

3.5.2. Pooling Layers

Pooling layers are mainly used to down-sample feature
maps and generate information summaries. This helps
reduce the complexity in the subsequent layers and
hence saves computation. We apply the down-sample
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max-pooling layer to each convolutional layer to reduce
the size of feature maps. The first pooling layer has a
1x2 window doing a 1/2 of spatial reduction on the
feature vector axis. The output is 9600x263x32. The
second and third pooling layers also use 1x2 max-
pooling, giving outputs of 9600x129x64 and
9600x63x128.

Poolm(i,j) = max (Conv{l}(i'((j_1)x(m+n)))) (14)

Poolt™(i, j) is the result of pooling the feature map of
layer | at position (i, j) taken in the context of a neural
network. Conv{ -Dx™m) represents the area of the
input feature map which is under examination by
pooling window and is specific to that window. In this
pooling operation, this area selects the maximum value,
down sampling the feature map and reducing its size.

3.5.3. Fully Connected Layers

Through fully connected layers, the classification
component becomes the central part of the CNN. These
layers meet the previously extracted features’ inputs and
make decisions based on the learned representations.
This enables the CNN to detect intricate links between
the features and the interaction classes. The fully
connected layers achieve the task by performing the
matrix multiplications and nonlinear transformations,
which, help to transform the pre-extracted features into
class probabilities or scores used for the precise
classification and recognition of human activities
images.

FCU+DY = ReLU (Z W %, + b{{g}) (15)
k

Then, we move on to the fully connected layer,
FCN(I+1)} is the output of a neuron in that layer. W%
represents weight between the k-th neuron on the
previous layer and the I-th neuron on the current layer.
The activation value in the neuron of the k-th layer in

previous layer is symbolized xp,. And b{{g} is the term

bias for the Ith neuron in this layer. The output of a
neuron is given as, we weight the activations from the
previous layer getting the basic weighted summation of
the biases on that level and finally applying ReLU
activation on it. Then the process take place in which
input is made to the neuron and output of the neuron is
generated , so that the neuron can learn and predict.

The current study utilized TensorFlow version 2.4 to
train a CNN model. The training parameters included a
batch size of 32, a learning rate of 0.001, and the Adam
optimizer that was applied to 50 epochs, where early
stopping was applied in order to prevent overfitting.
These decisions were made with care and a balance
between performance capacity and computational
performance with clear documentation so that it can be
reproduced.

The datasets-Shakefive2 and University of Lincoln
(UoL) were separated into 70 percent training, 15

percent validation and 15 percent testing. These ratios
provided sufficient availability of training data along
with close evaluation by the use of separate validation
and test sets. As far as hyperparameters are concerned,
a 3x3 median filter was added to remove noise in the
input frames. The ViBe algorithm was tuned in the
background update rate to 0.5, and the MOT algorithm
was tuned to a track association threshold of 30 pixels
and a maximum distance of 50 pixels between the
successive frames to enable the tracking of the objects
reliably.

4. Result and Analysis

In this paper, we implemented CNN as a classifier to
evaluate the effectiveness of the presented approach. The
experiment was carried out very carefully, with all the
steps executed correctly, and the resulting numerical
data was subjected to detailed scrutiny.

4.1. Dataset Description
4.1.1. ShakeFive2

ShakeFive2 focuses on dyadic human interaction in the
dataset. The dataset comprises 8 different modes of
Interaction: Fist bump, handshake, high five, hug, pass
object, thumbs up, rock-paper-scissors, and explaining.
with this dataset under our examination, our study aims
to discover intricate connections and the general patterns
among these human communications. Consequently,
through our research, we anticipate adding to the
knowledge base of human behavior and assisting in the
development of intelligent systems development that
facilitate social interaction interpretation and response to
it.

4.1.2. UOL 3D Social Activity

UoL 3D social activity dataset data collection refers to
two persons who are involved in social communication.
The dataset comprises eight distinct social activities:
greeting, hug, handshake, help stand up, help walk,
push, conversation, fight, and call attention. Sessions
were generally recorded in interaction samples, each
about 40 to 60 seconds in duration and comprised of
repetition of up to 30 frames per second.

4.2. Performance Evaluation

To assess the classifier’s performance in detail, various
measures such as accuracy, precision, and recall were
used to identify how the classifier performed, giving a
sense of understanding. The evaluation, structured in
two parts, showed that the CNN method achieves a high
accuracy of 90.2% over the Shakefive2 dataset and
92.3% over the UoL dataset indicating that the proposed
approach can be used in real-world applications.

The Shakefive2 dataset classification outcome, in
terms of precision, recall, and F1-score, is demonstrated
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as follows Table 2 and in Figure 10. In Table 2
Shakefive2, there were significant precisions/recall trade-
offs. Actions like Fist-bump (precision=0.92, recall=0.86)
and Pass-object (precision=1.00, recall=0.97) had high
precision but low recall, and this shows that, though the
model was accurate in predicting these interactions where
it did, it still produced a large number of false negatives.
In contrast, Shake-hand (precision=0.67, recall=0.83) and
High-five (precision=0.82, recall=0.92) had a better recall,
but at the cost of lower precision, since the two classes had
a tendency to misclassify each other because of similar arm
movements and postures.

Table 2. Detailed results of proposed system classification for the
shakefive2 dataset.

Table classes Precision | Recall | F1-score
Explain 0.80 0.90 0.82
Fist-bump 0.81 0.92 0.86
Shake-hand 0.67 0.83 0.84
High-five 0.82 0.92 0.80
Hug 0.79 0.83 0.83
Pass-object 1.00 0.97 0.97
Rock-paper-sizer 0.97 0.97 0.96
Thumbs-up 0.90 0.85 0.87

Figures 10 and 12 show the CNN recognition of
human interaction results. Confusion matrix of the
Shakefive2 dataset provides the systematic evaluation
of the model ability to distinguish between multiple
classes of human interactions. The matrix shows that the
classification accuracy is high across the majority of the
classes, such as explain, high five, fist bump, rock paper
sizer and pass object, where the diagonal value is over
0.8 (and 1.00 in some cases). However, there are
misclassifications, especially between Explain, Hug,
and Thumbs-up, in which the model in some cases
mixes up the classes. Explain is incorrectly classified as
Thumbs-up with the rate of 0.10. Similarly, the High-
Five and Fist-bump are likely to be incorrectly labeled
as one another at the rate of 0.08, which is probably due
to the similar arm movement pattern and postures. There
are also misclassifications between Shake-hands and
Fist-bump, which indicates that it is challenging to
define these gestures, and both of them have a similar
arm movement. These findings underscore the
challenge of recognizing subtle differences in
interactions involving similar movements or postures,
which can lead to frequent misclassifications in these
cases.

Explain 0.00 0.00 0.00 0.00 0.00 0.00 0.10

High_Five 0.05 0.03 0.00 0.00 0.00 0.00 0.8
shake_hands 10.00 0.08 (&K 0.00 0.00 0.00 0.08 0.00
Fist_Bump 10.08 0.08 0.08 {¥k%4 0.02 0.00 0.00 0.00

Hug 10.10 0.08 0.03 0.00 [X&4 0.02 0,02 0.00 i

True Label

Rock_Paper_Sizer 10.00 0.03 0.03 0.00 0.00 &4 0.00 0.00

Pass_Object 10.00 0.00 0.00 0.05 0.00 0.00 (X4 0.00 0.2

Thumbs_up 10.10 0.00 0.00 0.04 0.02 0.00 0.00 (L&ES]
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Figure 10. Confusion matrix result on shakefive2 dataset.
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Figure 11. Recall, precision, and F1-score for each class on
shakefive2 dataset.
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Figure 12. Human interaction recognition comparison with state-of-
the-art methods on UoL dataset.

As the confusion matrix of the UoL dataset Figure 12
shows, the classification accuracy is high: 0.94 in
Handshake, 0.92 in Help walk, 0.93 in Fight, 0.94 in
Hug, 0.97 in Push. However, misclassifications occur
between those behaviours exhibiting similar kinematic
patterns. Help walk is also commonly confused with
Help stand-up (0.05), because both have similar poses
and leg actions. Similarly, Hug and Push have similar
arm trajectories but body orientation is different
resulting in a mislabeling rate of 0.06. Moreover,
Conversation and Call Attention have an overlap; the
former is incorrectly classified as the former (0.11) due
to similar gestures of the upper body. These numbers
show that the model has a strong performance, but it is
unable to distinguish between those types of interactions
where there is a slight difference in posture or dynamics
of the movements.

Call attention

Conversation

e

Hug

Fight
Help stand-up

Help walk

Handshake
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Figure 13. Precision, recall, and F1-score for each class on UoL
dataset.
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Table 3. Detect the proposed system classification results for the
UoL dataset.

Table classes | Precision | Recall | F1-score
Handshake 0.92 0.94 0.94
Help walk 0.87 0.92 0.89
Help stand-up 0.87 0.81 0.84
Fight 0.88 0.93 0.85
Hug 0.92 0.94 0.86
push 0.86 0.97 0.93
Conversation 0.89 0.89 0.99
Call attention 0.93 0.89 0.87

Figure 11 and 13 showing the comparison of each
class with respect precision, recall, and F1-score for
each class of dataset. In Table 3, the UoL dataset
showed relatively good results, with high values of
precision and recall of interactions with Handshake
(precision=0.92, recall=0.94) and Hug (precision=0.92,
recall=0.94). However, some of the classes that were
considered similar in terms of visual appearances
exhibited  corrupted  precision:  Help  walk
(precision=0.87, recall=0.92) and Help stand-up
(precision=0.87, recall=0.81) were frequently confused
due to similar spatial and temporal characteristics. Push
performed well with respect to the recall
(precision=0.97, recall=0.97), but the precision was
lower, and it implied that it misclassified the data to

some extent. Similar problems were also faced by the
Fight class (precision=0.88, recall=0.93) probably due
to the similarity of aggressive gestures in interactions.
The misclassifications were also mediated by
differences in posture, lighting, and movement pattern
specific to the subject, which restricted the model to
perceive slight differences in gestures.

Table 4 show the results of an ablation study to
evaluate the contribution of each component in our
proposed human interaction recognition system. The
ablation study results show the importance of each
component in high performance, which represents the
Tabular ablation study, all the components of the
models have a substantial impact on the performance of
the system. Most noticeably, leaving out CNN resulted
in a drop in performance to 79% which proves that it
plays a critical role in feature extraction and
classification. When Texton maps were not used, a
similar drop, namely, that of 92.3 percent to 82 percent
was registered, which indicates the role played by
Texton maps in the extraction of texture-based features.
The removal of skeleton features, MOT and ViBe or
QDA led to less significant decreases in performance,
with accuracy being relatively constant.

Table 4. Detect the proposed system classification results for the shakefive2 dataset.

Experiments HSV and median| MOT and ViBe | Texton map | Skeleton features| QDA | CNN UoL Shake five2
Full model N v v v v N 92.3% 90.2%
Without HSV and median filter X N v v v N 87% 82%
Without MOT and ViBe v X v v v v 84% 77%
Without Texton map v v X v v v 82% 84%
Without skeleton features v v v X v v 81% 86%
Without QDA X v v v X v 83% 79%
Without CNN v v v v v X 79% 73%
Figures 14 and 15 give graphical representations of fotulion Sy Resils 10 Lo Boleer
the evaluation outcomes of Shakefive2 and UoL, Without CNN
respectively. The bar chart represents the accuracy of _
each model of the experiments, and each bar represents iiihout GbA
an accuracy after the removal of a certain component. Without Skeleton Features
These bar charts clearly highlight the significant _
performance drop when CNN and Texton maps were Hhout Texton Hap
removed, reinforcing their critical roles in the system. Without MOT & VIBE
Ablation Study Results for Shakefive2 Dataset Without HSV & Median Filter
Without CNN Full Model
Without QDA 70 75 80 Fenorn?:nca[%] 90 95 100
Without Skeleton Features Figure 15. The performance of UoL with and without component
ablations, and the comparison of the results.
Without Texton Map
, Confidence intervals of accuracy, precision and
Without MOT & VIBE . .
recall were created using bootstrapping on UoL and
Without HV & Median filter shakefive2 datasets. The process is described in Table 5
— ar_1d Figure 16 on the Uc_)L data set and Table 6 and
Figure 17 on the Shakefive2. Table 7 shows that our
075 8 8 % %5 100 framework’s performance was tested on shakefive2 and

Performance (%)

Figure 14. The performance of Shakefive2, with and without
component ablations, and the comparison of the results.

UoL datasets and the obtained accuracy was 90.2% and
92.3% respectively. Compared with the existing
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interaction recognition methods, it can be deduced that
our proposed framework had enhanced accuracy and
performance. Our framework was more accurate in
recognizing interactions across the video data than the
previously proposed methods. Framework techniques
were chosen specifically to cover some important
aspects of appearance and motion to improve the
proposed framework’s abilities for interaction
classification.

Table 5. The confidence intervals for accuracy, precision, and recall
have been calculated using bootstrapping UoL dataset.

Metric Mean value (95% CI lower95% CI upper
(%) bound bound
Accuracy 92.3 90 93
Precision 91 89.5 92.5
Recall 90 88 915

Performance Metrics with Confidence Intervals
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Figure 16. The confidence intervals for accuracy, precision, and
recall have been calculated using bootstrapping of UoL dataset.

Table 6. The confidence intervals for accuracy, precision, and recall
have been calculated using bootstrapping of UoL dataset.

Mean value| 95% CI lower | 95% CI upper

Metric (%) bound bound
Accuracy 90.20 89.20 92.30
Precision 89.25 77.5 91.5

Recall 89.87 86.37 94.0

Performance Metrics with Confidence Intervals
100

95 1

|
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Performance (%)
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Figure 17. The confidence intervals for accuracy, precision, and
recall have been calculated using bootstrapping of shakefive2
dataset.

Table 7. Comparison with other SR methods over RGB-d dataset.

Dataset Methods Accuracy (%)
Deformable parts models [34] 65.0%- 87.0%
Shakefive2 | Histogram of Oriented Gradients (HOG) and 82.0%
dataset Motion Boundary Histogram (MBH) [35] )
Proposed 90.2%
Statistical and geometrical features [36] 85.5%
Probabilistic merging of fusion based features 86.2%
UoL dataset [38] )
SVM [39] 87.0%
Proposed 92.3

5. Conclusions

This paper has developed an effective CNN-based
framework for an interaction recognition approach to
recognize and categorize interactions. The proposed
method includes using HSV color transformation,
object silhouette extraction using MOT or ViBe
methods, the Texton maps and skeleton features as the
features extraction and the QDA as the feature
separation. The experimentation on the Shakefive2 and
UoL datasets shows that the suggested approach is
effective. The method got an 84% recognition rate on
the Shakefive2 dataset and 87% accuracy on the UoL
dataset, which are the best results to date in interaction
recognition. The method has been proven to be accurate
in distinguishing interactions based on the distinctive
features of each interaction. The results show the
effectiveness and power of the method in practice based
on CNN and implemented into the system. The
proposed technique which successfully combines
various methods is a realistic approach that solves
computer vision and human interaction recognition real-
world problems. The following research is the study of
more advanced techniques that can be used to optimize
this method and improve accuracy by exploring many
other datasets. The proposed method can also be
extended to address complex interaction recognition
tasks and could be applied to various domains, where
accurate interaction identification is a must.
Conclusively, the CNN-based interaction recognition
approach discussed in this paper offers a solid basis to
interaction recognition development and makes a
relevant contribution to the creation of intelligent
systems that could understand and interpret the
activities of people in the current applications.
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