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Abstract: Large Language Models (LLMs), particularly multimodal LLMs, have significantly enhanced image captioning in
recent years, producing output that is more descriptive, detailed, and context-aware. However, differences in architecture and
training data lead to captions that vary in length, style, and level of detail, offering flexibility for diverse applications. In this
survey, we provide a comprehensive overview and comparative analysis of prominent Vision-Language Models (VLMs) for
image captioning, with a focus on their performance in zero-shot settings on the Microsoft Common Objects in Context (MS-
COCO) dataset. We evaluate these models using both human assessments (fluency, groundedness, relevance) and automatic
metrics Contrastive Language—Image Pretraining Score (CLIPScore). Our findings reveal trade-offs between efficiency and
performance, linking architectural decisions to issues such as hallucinations and caption grounding. Beyond benchmarking, we
propose a human evaluation to capture nuances like fluency, factual grounding, and stylistic preferences, leading to
recommendations for selecting VLMs based on different use cases.
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1. Introduction

The image captioning task involves generating accurate,
relevant, and human-like sentences by blending
Computer Vision (CV) and Natural Language
Processing (NLP). This  fundamental  visual
understanding task has attracted a lot of interest due to
its substantial implications in real-world applications
like data labeling, accessibility aids, and content
production. The emergence of deep learning, in
particular Convolutional Neural Networks (CNNs) [26]
for image encoding and Recurrent Neural Networks
(RNNs) [4] such as Long Short-Term Memory
Networks (LSTMs) for sequence generation,
revolutionized captioning task under flexible and
context-aware encoder-decoder framework.

The introduction of attention mechanisms [53]
improved both relevance and coherence through
dynamic area focusing while generating captions. The
transformer architecture [44] replaced recurrence with
self-attention to achieve better scalability and
parallelization capabilities. Then, Vision Transformers
(ViTs) [19] revolutionized the field by using image
patches as sequences to merge visual and textual data
processing. Despite these advances, progress in image
captioning has faced persistent challenges. Many
models produce overly generic captions, lacking
specificity and informativeness. This stems from
limitations in training data, model architecture, and

decoding strategies, which often prioritize syntactic
fluency over factual grounding and semantic precision.

Recent developments in Large Language Models
(LLMs), when integrated with vision encoders, have
revitalized the field. These multimodal architectures,
combining rich linguistic priors with  visual
understanding, have shown potential for generating
captions that are more abstract, context-aware, and
diverse. However, the performance of these models still
varies considerably depending on architecture, training
objectives, and modality integration strategies.In this
survey, we first present a systematic comparison of
state-of-the-art Vision-Language Models (VLMSs) on
the Microsoft Common Objects in Context (MS-
COCO) dataset [32] under zero-shot settings. Second,
we propose a multi-perspective human evaluation
approach through diverse lenses, including stylistic
adaptability (descriptive vs. concise), syntactic structure
(grammaticality and fluency), and use-case suitability
(accessibility, creative generation, and technical
applications). This approach allows us to uncover
nuanced performance trade-offs, such as the tension
between creativity and correctness, that are often missed
by standard benchmarks.

2. Literature Review
2.1. Standard Image Captioning

From early approaches that relied on retrieval-based and
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template-based methods to advanced deep learning
paradigms, image captioning has undergone meaningful
change. While retrieval-based models [28] searched for
similar images in a database and reused the original
captions, they don’t adapt well to new examples and
don’t provide much creativity. Template-based methods
[27], on the other hand, employ fixed sentence
structures with object labels to generate captions that are
inflexible and unnatural. These methods were
straightforward; however, they were limited in their
flexibility and generalization capabilities. Numerous
techniques have been proposed in the era of deep
learning. Subsequent research led to the exploitation of
encoder-decoder architectures, where a CNN is used to
encode the visual input, and an RNN is used to condition
the generation process. RNNs are often used with Long
Short-Term Memory (LSTM) networks for decoding
and generating the caption from the visual features [18,
25, 47]. Then LSTMs were replaced by Gated Recurrent
Units (GRUS) [22] and provide performant results also.

Image captioning methods have been further
improved by introducing attention mechanisms that
allow the model to focus on important parts of the image
when generating each word. The Show, Attend and Tell
model [53] added a soft visual attention mechanism that
improved the quality of captioning and its alignment
with human descriptions. Follow-up work like the
bottom-up and top-down attention model [2] extended
this idea through object-level attention using parts of
region proposal networks, such as Faster R-CNN, to
provide richer and fine-grained features. Despite their
effectiveness, these models frequently struggle to
incorporate broader domain knowledge and fail to adapt
to diverse contexts, which limits their ability to manage
complex visual scenes and capture long-range
dependencies within captions.

Driven by the success of transformers in NLP, recent
image captioning research leverages transformers to
model intra-modal interactions for automatic caption
generation [15, 16, 23]. The initial adoption of
transformers replaced RNNs in the decoder, capitalizing
on parallel training capabilities. Recent work has also
explored transformer-based approaches for image
captioning, demonstrating the effectiveness of multi-
encoder architectures in improving semantic coherence
and contextual alignment [39]. Visual representations
are typically derived using either a pre-trained object
detector or a vision transformer, which can be applied
directly to image patches, reducing or eliminating the
reliance on convolutional operations. ViTs are
becoming more popular, thus they generate contextually
rich, coherent captions that better capture nuanced
scenes, even with complex or lengthy descriptions. This
enables them to adapt better to different contexts and
tasks, and to produce more accurate and richer captions
than early methods. Despite being relatively effective,
encoder-decoder architectures have issues regarding
reasoning, situatedness, and the level of semantics,

especially in complex scenes. This raised the possibility
of developing vision-language pretraining methods [12,
48, 54].

2.2. Multimodal Large Language Models
(MLLM) for Image Captioning

Recent advancements in image captioning have
demonstrated how LLMs are able to assist in
understanding the visual signal. Therefore, image
captioning combines LLMs and vision encoders to
produce informative and accurate image descriptions.
These models consider both visual and textual sources,
facilitating an understanding of complex features to
develop a full interpretation of the content. Bidirectional
Encoder Representations from Transformers (BERT)
[17] and Generative Pre-trained Transformer (GPT)
[56] demonstrated the initial potential of LLMs,
achieving significant advancements in few-shot and
zero-shot learning and inspiring scaling efforts that
yielded models like T5 [43], GPT-3 [8], Flan-T5 [13],
and PaLM [14]. In the past year, large-scale Multimodal
Large Language Models (MLLMs) have exhibited
remarkable performance across a wide range of
downstream tasks like visual dialogue, image
captioning, and visual question answering [9].

Building on this progress, these MLLMs typically
bridge visual and language modalities by connecting a
pre-trained LLM with a large-scale visual encoder, such
as Contrastive Language-Image Pretraining (CLIP) [42]
or its variants. These models interpret both text and
images, providing them with background knowledge to
generate high-quality captions that refer to the objects
and scenes depicted in the image while embedding
contextual information and conveying a deeper
understanding of the visual content. These models have
been shown to have superior performance on several
image captioning benchmarks and are also capable of
changing the landscape of computer vision.

MLLMs are often categorized by their multimodal
connection type, with many, like the Large Language-
and-Vision Assistant (LLaVA) series [35, 36, 37], using
an MLP [7, 52] or linear layer [11, 33] to establish
multimodal connections. Several variations have been
introduced, such as LLaMA-Adapter [21] that uses a
zero-gating attention mechanism, while Cha et al. [10]
replace linear layers with convolutions. Q-Former-
based models [30] represent another major category.

Consequently, mPLUG-Owl [55] streamlines Q-
Former with a visual abstractor, condensing visual
information into trainable tokens. Qwen-VL [5]
similarly uses a single-layer cross-attention module
with learnable queries to compress visual features.
Alternatively, some methods integrate dense cross-
attention blocks within pre-trained LLM layers [1, 3],
often employing a Perceiver model [24] to reduce visual
tokens before integration. While MLLMs are
undergoing rapid changes, they have not yet been
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explored in image captioning. There are a few MLLMs
that have been specifically trained and evaluated using
standard benchmarks, and most of the work has treated
image captioning as an intrinsic capability. Recent work
[34, 49, 57] has begun to measure hallucination of
MLLMs, an important consideration for the detailed
usage of MLLMs to create image captions. This paper
assesses the performance of standard MLLMs in
creating image captions and a number of fine-tuning
methods to assist in adapting to this task, which includes
a clear differentiation from existing literature. Standard
image captioning approaches developed foundation
models by learning to map visual input to textual output
using explicit alignment mechanisms. However, these
models need task-specific training, and they cannot
generalize in a zero-shot setting. In contrast, VLMs can
generalize well, learn about semantic grounding, and
afford flexibility of tasks because of extensive pre-
training on web-scale data. A significant shift occurred
by moving from RNNs to transformers, from supervised
training to contrastive and generative pre-trained
training, and from isolated image encoders to unified
multimodal architectures. As researchers continue to
advance the future of VLMs, we expect the integration
of richer lexical knowledge, enhanced grounding,
improved reasoning capabilities, and support for
multilingual and multimodal inputs, enabling deeper
alignment between visual and linguistic understanding.

3. Methodology
3.1. Models’ Selection

Our selection consists of eight VLMs developed from
2022 to 2024, representing both the chronological and
the conceptual evolution in image captioning. These
models have different strengths in linguistic fluency,
visual  grounding, task  generalization, and
computational efficiency; they also reflect different
architectures from early encoder-decoder baselines to
MLLMs, as depicted in Figure 1, including contrastive
pre-training, instruction tuning, modular LLM
integration, grounded generation, and efficient
decoding. Models like ViT-GPT2 [38] are adopted on
minimalist architectures, thus they provide greater
accessibility and simplicity. This model consists of a
ViT connected to a GPT-2 decoder, with a linear
projection layer acting as a bridge in order to create a
simple-to-train, good-performing baseline for image
captioning. Although simple and effective, its generality
and lack of spatial awareness revealed the need for more
complex architectures that better combined visual and
textual data. OFA [51] was selected as a foundational
model for its pioneering unification of vision-language
tasks, which emphasized capability over computational
efficiency. GIT  [50] achieved architecture
simplification and top performance even on images with
a large amount of text, though it is less intuitive for some
applications. BLIP-2 [30] was favoured as it has the best
zero-shot potential, allowing for deployment without
large language model fine-tuning considerations.
LLaVA [37] was Selected due to its prompt-based
system of allowing users flexibility, though it raises
some uncertainties in output rigour.
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Figure 1. Image captioning pipelines in vision-language models: a structural overview.

Kosmos-2 [41] provided spatial grounding for
localising objects in 3D space, crucial for scene
understanding, but increased complexity. Fuyu-8B [6]
is notable because it has efficient performance in
processing  high-resolution data valuable for
applications like digital agents; however, it lacks any
aspects of dynamic representation. Moodream-2 [46]

was tentatively included as an exploratory emerging
model, representing a forward-looking perspective,
though its speculative nature, and is thus included for
exploratory comparison.

Overall, the development from early models that rely
largely on alignment to modular, grounded, and hybrid
generative systems demonstrates a consistent effort to
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balance fluency, grounding, task generalization, and
computational efficiency. Each model implements its
own responses to their predecessors’ limitations but also

A brief comparison of the selected models is
presented in Table 1. This table analyses their
architecture, performance, and contributions to vision-

illustrates the increasing scope and ambition of vision- language understanding, particularly in image
language integration for the task of image captioning. captioning.
Table 1. Comprehensive comparison of vision-language models for image captioning.
Model Year Architecture Training data Parameters Vision encoder/tokenizer Pre-trained
backbone model
. Encoder-Decoder (ViT + . ~124M (ViT + | VIiT (Vision Transformer) + |ViT (ImageNet-21Kk),
ViT-GPT2[38] | 2021 GPT-2) MS COCO, Flickr30k GPT-2) GPT-2 Tokenizer GPT-2
OFA [51] 2022 Unified Transformer MUIt"t&S II_(\§ER:Oe(t:cO) VQA, ~930M ResNet-101 + Transformer BART, ResNet
Encoder-Decoder (ViT + 800M image-text pairs . . VIiT (Huge) + BERT ViT-Huge (CLIP pre-
GIT [50] 2022 Transformer Decoder) (filtered) GIT-Base: 345M Tokenizer training)
Two-Stage (Image Encoder| 129M image-text pairs + BLIP-2 OPT2.7B . ViT-G, OPT/FLAN-
BLIP-2[30] | 2023 | ""Z, (s Former — LLM) synthetic data /FLAN-Ts XxL|  VIT-G/Q-Former T5
Vision Encoder + connector| COCO, Visual Genome, ~13B (with . .
LLaVA[37] 2023 + LLM (Vicuna) synthetic instruction tuning Vicuna) CLIP ViT-L/14 CLIP, Vicuna
Kosmos-2 [41] | 2023 | Multimodal LLMwith |y ooie multimodal data |  ~18-168 | atch embedding — Linear | gepr e ancoger
visual grounding projection
Public image-text datasets + - o .
) Decoder-Only Transformer - o Vision tokenizer into GPT-style pre-trained
Fuyu-8B [6] 2023 (GPT-style) Optical Character Recognition 8B sequences transformer
(OCR) documents
two major components: . SigLIP as the vision encoder |  SigLIP, Phi-1.5
Moondream [46] 2024 SigLIP, Phi-1.5 LLaVa training dataset 2B land Phi-L5 as the textencoder]  (LLM)

3.2. Experimental Process

To evaluate the performance of recent VLM on image
captioning, we use various pretrained models that have
been officially released. This included ViT-GPT2 [38],
OFA [51], GIT [50], BLIP-2 [30], LLaVA [37],
Kosmos-2 [41], Fuyu-8B [6], and Moondream?2 [46].
All models were evaluated in a zero-shot setting, and all
models were officially released and used inference
pipelines. Code implementation is available on my
GitHub repository https://github.com/ansar2019/image-
captioning.

To systematically evaluate the generalization
performance of VLMs, we carefully created a
comprehensive evaluation set of 1,000 images sampled

frome the MS COCO 2014 test set, as shown in Figure
2. This subset was built around a category-aware
sampling process that increases both the semantic span
and diversity while controlling the variability. This was
achieved by balancing representations from seven
semantic groups:

. People, including portraits and social gatherings.

. Animals, including wild-life and pets.

. Scenes, both indoor and outdoor.

Food and meal contexts.

. Places, including natural and built landmarks.

. Types of vehicles, including cars, planes, and boats.

. Sport and activity scenarios. By bringing this level of
semantic coverage.

~NouUuhAwNPE

Figure 2. Sample images from the MS COCO test dataset.

We anticipated that the evaluation set would allow us
to include the richness of real-world photo content that
captioning models might encounter. The image
selection also sought to maximize object category
variation while retaining the true distributions of scenes,
to facilitate representativity and challenge. That
ultimately provides a more robust evaluation of models
across varied and realistic contexts.

Five expert annotators independently evaluated
VLM-generated captions for 1,000 MS-COCO images,
manually assessing fluency, grounding, richness,
relevance, and error types using standardized rubrics.
Following individual scoring, trainers participated in
structured discussion sessions to resolve discrepancies,
focusing on three key criteria:
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. Syntactic validity (grammar and coherence).

2. Semantic alignment (object/action fidelity to the
image).

3. Descriptive utility (detail appropriateness for target

applications).

Disputed captions (18.3% of cases, primarily in
crowded scenes) underwent iterative review until
consensus was reached, with deliberation notes
cataloging recurring failure modes like spatial relation
errors (“man left of tree” vs. “man beside tree”). This
consensus-driven approach yielded refined evaluation
guidelines that informed our proposed VLM output
structure  taxonomy, categorizing errors into
hallucination subtypes (attribute, object, or relation) and
omission tiers (primary object vs. contextual detail).
The results of this work will be presented in detail in the
next section in a structured qualitative analysis of the
VLM-generated caption judgment.

3.3. Zero-Shot Inference Implementation
Details

85

To guarantee fairness and reproducibility, all models
were assessed under zero-shot settings, indicating that
no fine-tuning, supplementary supervision, or domain-
specific adaptation was utilized. We employ only the
officially released pretrained checkpoints and public
inference APIs or repositories made available by the
original authors or developers.

We followed the recommended inference pipeline for
each model, which is available on open-source
platforms like GitHub, HuggingFace, and model-
specific demo APIs. This included using tokenizers,
vision encoders, and decoding strategies. We used
prompt templates where necessary, as explained in the
model documentation. This was especially true for
instruction-tuned or conversational models like LLaVA,
Kosmos-2, Fuyu-8 Band Moondream2, which use task-
specific prompt formatting to guide the generation.
Table 2 shows a summary of the evaluation platform,
programming libraries, and model-specific
dependencies.

Table 2. Summary of VLMs, inference tools, and prompt usage.

Model Platform/Repository Inference API/Library Prompt used
- HuggingFace S i . .
ViT-GPT2 [38] (nlpconnectivit-gpt2-image-captioning) transformers pipeline (image-captioning) No explicit prompt (internal defaults)
OFA [51] OFA-Sys GitHub (OFA, OFA-Large) Official PyTorch/fairseq-based framework |Prompt “What does the image describe?”
GIT[50] Hugging Face (microsoft/git-base) transformers image-captioning pipeline No prompt needed
HuggingFace (ethzanalytics/BLIP- transformers: BlipProcessor+BLIP- e . .. »
BLIP-2 [30] 2-flan-t5-xl-sharded) 2ForConditionalGeneration Prompt=*Describe this image.
] } Uses LLaVA GitHub with quantized model Prompt=(“Describe this image.” or
LLaVA[37] LLaVA GitHub (llava-v1.5) weights (llava-13b-4bit) “What’s in the image?”)
Kosmos-2 [41] | Hugging Face/Microsoft/Transformers docs ONNX runtime or PyTorch Prompt=“Describe the image: [[MAGE]”
Fuyu-8B [6] HuggingFace (adept/fuyu-8b) Transformers using decoder-only architecture | Prompt="“Describe the image in detail.”
. . Transformers P
— > o
Moondream2 [46] HuggingFace (vikhyatk/moondream?2) (AutoModelForCausall M+tokenizer) Prompt=“What’s in this image?

Figure 3 illustrates the captions generated by the
selected VLMs for a sample image taken from the
training dataset, comparing their outputs to the
corresponding ground-truth caption and highlighting

alignment across models. In contrast, Figure 4 presents
the captions produced under zero-shot settings for
multiple images from the test dataset, providing a
broader view of each model’s generalization capability

differences

in descriptive richness

and semantic

Ground truth A group of people crossing a street at a cross walk
a group of people walking across the street.
Several people, some on bikes, some on foot, crossing a street at a crosswalk.
A group of walkers and bikers crossing the street
A pedestrian crosswalk with bikers and walkers crossing it.
VIT-GPT2 people crossing a street at a crosswalk
OFA bicyclists and pedestrians cross a street in san francisco.
GIT a group of people crossing a street in the crosswalk.
\ BLIP-2 a group of people walking down a street.
T LLaVA
ife/
N,
=\
— J
= N
_—
[— : Kosmos-2 An image of people crossing the street at a crosswalk
L1 Fuyu-8B There are multiple cars in the scene, with one car on the left side and two cars
|y
1] Moondream?

COCO_train2014_000000007228

elements.

when applied to unseen visual samples.

The image depicts a busy street scene with a group of people crossing the street at a crosswalk. Among the group, there are two
men and a child, with one of the men holding the child's hand. The group is composed of various individuals, some of whom are
nding bicycles. There are multiple cars and a truck visible in the scene, with some cars parked on the side of the street and others
driving through the intersection. A traffic light is present, indicating the flow of traffic.

A busy city street scene with people walking, cycling, and crossing the street at a crosswalk. The street 15 lined with trees and
buildings, and traffic lights and street signs are visible. The scene has a warm, sunny atmosphere with a mix of urban and natural

Figure 3. Model-specific caption outputs compared to ground truth descriptions.
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ViT-GPT2: people walking down a street with umbrellas.

OFA : a group of people walking down a street with umbrellas.
GIT: people walking on a street with umbrellas.

BLIP-2 : group of people walking down a street with umbrellas.

LLaVA : The image depicts a group of people walking down a street in the rain. They are using umbrellas to protect themselves from the rain,
with a total of five umbrellas visible in the scene. The people are carrying various items, such as handbags and a backpack. There are at least nine
people in the scene, with some walking closer to the camera and others further away. The street is lined with stores, and the overall atmosphere
suggests a typical rainy day in a city.

Kosmos-2: An image of people crossing the street in the rain.

haldi Hrall
5

Fuyu-8B :The image features a group of people walking down a street while to protect th Ives from the rain.

Moondream2: A busy street scene in Paris, France, with people walking on the sidewalk and crossing the street. Many of them are holding
umbrellas, likely to protect themselves from the rain. The street is lined with shops, including a H&M store. The buildings have large windows
and awnings, typical of Parisian architecture. The street is wet, reflecting the city lights. The image has a slightly overexposed or washed-out
look, giving it a vintage or nostalgic feel. The colors are mostly muted, with some bright umbrellas standing out. The Overall atmosphere is
bustling and lively.

ViT-GPT2: a plate of food with a salad and a fork.
OFA : a plate of food with broccoli and vegetables and a bowl of fruit.
GIT : a plate of food with a side of vegetables and a fork.

BLIP-2: a plate of food with a lemon on it.

LLaVA: The image features a dining table with a white plate filled with a variety of food items. The plate contains a mix of vegetables, including
broccoli and peas, as well as a lemon wedge. There is also a piece of meat on the plate. The table setting includes a fork. a knife, and a spoon
placed around the plate. In addition to the main plate, there are two bowls on the table, one on the left side and the other on the right side. The left
bowl contains strawberries, while the right bow! contains a different type of food. The table setting appears to be a complete and balanced meal,
with a focus on healthy and nutritious food choices.

Kosmos-2 : An image of a plate of food and a cup of coffee.

Fuyu-8B : The image features a dining table with a white plate of food, silverware, and a bowl of fruit. On the table, there is a bowl of strawberries,
a fork, a knife, and a spoon. The fork and knife are positioned on the left side of the plate, while the spoon is on the right.

Moondream2: A plate of healthy food on a light blue countertop. The plate contains a variety of colorful vegetables, including broccoli, peas, and
roasted squash. There are also lemon wedges and sliced chicken on the plate. To the left of the plate is a bowl of fresh strawberries. On the right
side of the plate is a bowl of orange soup. The table is set with silverware, including a fork, knife, and spoon. The overall scene has a warm,
inviting atmosphere.

VIiT-GPT?2: a large building with a clock tower.
OFA: a view of big ben and the big ben clock tower.
GIT: a large clock tower in the city.

BLIP-2 : a city with a clock tower and a river.

LLaVA : The image is a black and white photo of a city skyline featuring a large clock tower, which is likely the Big Ben in London. The clock
tower is prominently visible in the center of the scene. towering over the city. In addition to the clock tower, there are several other clocks scattered
throughout the cityscape. The skyline is filled with various buildings, some of which have clocks on their exteriors. The image also captures a busy
street with numerous cars and buses, including a red double-decker bus. The cars are parked or driving along the street, while the buses are likely
providing public transportation for the city's residents. The overall atmosphere of the photo is bustling and dynamic, showcasing the city's lively
urban environment.

Kosmos-2: An image of the famous Big Ben and other London landmarks from a high vantage point.
Fuyu-8B : The image features the Big Ben clock tower in London, England.

Moondream?: A panoramic view of the London skyline, with the iconic Big Ben clock tower in the center, surrounded by various historic buildings
and modern structures. The sky 1s overcast, creating a soft, diffused light over the scene. The image 1s taken from a high vantage point, providing a
sweeping view of the cityscape. The colors are muted, with a warm. golden hue from the Big Ben and the stone facades of the buildings. The overall
atmosphere is atmospheric and atmospheric, with a sense of depth and scale.

ViT-GPT2 : a sign that says “no swimming" on a beach”.
OFA: a sign on a river with a person on a surfboard.

GIT: a sign warning people to surf on the beach.

BLIP-2 : asign that says surfers and beware of the water.

LLaVA : The image features a beach scene with a group of people enjoying various water activities. There are at least nine people in the scene, with
some of them surfing on waves and others standing or walking nearby. The surfers are using surfboards, with at least two surfboards visible in the
scene. A sign is also present in the image, which is written in German. The sign 1s located near the water, possibly providing information or warnings
for beachgoers. The overall atmosphere of the scene is lively and fun, with people engaging in water sports and enjoying the beach environment.

Kosmos-2: An image of a sign warning of the dangers of surfing in the ocean

Fuyu-8B : The image features a sign on a rocky beach that warns people about surfing and wading in shallow water. There are also two surfboards
vistble in the scene, with one being closer to the sign and another slightly further away.

Moondream?2: A sign in German warning about the dangers of water sports, including surfing and bodysurfing, with a warning about the risk of
drowning and the importance of wearing life jackets. The sign is located near a river with people surfing on the waves, and there are wamning
symbols for a skull and a red circle with a line through it. The background shows a river with a waterfall and trees, creating a natural setting. The
overall color palette 1s muted, with the sign in white and red standing out against the natural background.

Figure 4. Comparative captions from vision-language models for diverse visual inputs.
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4. Experiments and Discussion

The evaluation of generated captions is a challenging
task, as it requires assessing both semantic accuracy)
and linguistic quality. This analysis explores both
guantitative and qualitative evaluations for selected
image captioning models.

Previous studies on image captioning have adapted
numerous types of evaluation metrics, from traditional,
reference-based metrics like BLEU [40], METEOR
[29], ROUGE [31], and CIDEr [45], to more recently
developed, reference-free metrics such as Contrastive
Language—Image Pre-training Score (CLIPScore) based
on vision-language alignments. While these automated
metrics provide quantitative insights, they are not
always effective at capturing variation in the quality of
generated descriptions.

We incorporate a detailed human evaluation protocol

correctness, and context awareness to provide a deeper
understanding of model performance that cannot always
be obtained or measured automatically.

4.1. Quantitative Analysis

As part of our evaluation of VLMs for image captioning,
we performed a quantitative analysis using four
complementary metrics: CLIPScore, Perplexity,
Lexical Diversity, and Caption Length. These measures
offer a multi-faceted approach for assessing each
model’s performance in terms of semantic alignment,
linguistic fluency, textual diversity, and verbosity.

Our experiments on the MS COCO test set
demonstrate substantial variation in performance across
architectures. As summarized in Table 3, the eight
evaluated models exhibit distinct trade-offs across these
dimensions, reflecting the impact of their underlying

focusing on syntactic complexity,

grammatical

design choices on caption quality.

Table 3. Evaluation metrics for vision-language models on image captioning.

Model CLIPScore | Perplexity | Diversity (4-grams) | Caption length stats (Min/Max words)
VIiT-GPT2 [38] 0.7061 178.82 0.57 6/16 words

OFA [51] 0.4702 128.99 0.66 6/16
GIT [50] 0.7153 51.86 0.68 4/17
BLIP-2 [30] 0.7183 177.09 0.70 3/15

LLaVA [37] 0.7568 15.86 0.63 37/153
Kosmos-2 [41] 0.7446 61.44 0.63 5/28
Fuyu-8B [6] 0.7070 26.00 0.70 9/84
Moondream2 [46] 0.4558 39.34 0.79 16/43

Based on CLIPScore, a metric that assesses semantic
alignment between the generated caption and the visual
content, LLaVA (0.757), Kosmos-2 (0.745), and BLIP-
2 (0.718) demonstrated the strongest performance,
exceeding the predefined robust performance threshold
of 0.70. In contrast, Moondream2 (0.456) and OFA
(0.470) scored considerably lower, indicating
suboptimal visual-textual alignment.

When evaluating a language model with perplexity,
which measures how confidently a language model can
predict the next tokens, LLaVA again came out at the
top (15.86), followed by Fuyu-8B (26.00),
Moondream2 (39.34), and GIT (51.86). ViT-GPT2
(178.82) and BLIP-2 (177.09) had high perplexity,
indicating low fluency or less confident word
predictions during the caption generation process. This
contrast places some weight on the observation that high
CLIPScore does not equal fluent language generation,
as seen with BLIP-2.

Lexical diversity, operationalized through 4-gram
diversity, captures the model’s ability to avoid textual
repetitiveness. Moondream2 demonstrates the strongest
performance (0.79), despite its relatively low
CLIPScore. Other models with decent levels of diversity
were Fuyu-8B and BLIP-2 (0.70 both), and ViT-GPT2
had a low level of diversity (0.57), meaning there is
some repetition or templating in its outputs, which is not
evident in the comparison against diversity.
Descriptions that are detailed but do not burden their
readers.

The evaluation of recent VLMs for image captioning,
presented in Figure 5, emerges as a nuanced spectrum
of performance, reflecting trade-offs between fluency,
semantic alignment, and lexical diversity. LLaVA
produces semantically aligned, fluent, and descriptively
rich captions, but its tendency to overgenerate makes it
less suitable for constrained caption use cases. Fuyu-8B
exhibited a typical performance for VLMs referenced
here, delivering high fluency and descriptiveness, yet
produced captions that were more compact and perhaps
more adaptable to constrained caption tasks in lieu of
much of the expressiveness from LLaVA. BLIP-2
presents a middle path, balancing conciseness and
diversity of captions. However, its high perplexity
indicates it can be linguistically unpredictable,
suggesting that its outputs were less polished or
coherent with syntactical multi-variant linguistics.

In contrast, Moondream2 had a clear advantage in
generating lexically varied captions with modest
fluency loss, but its lower CLIPScore illustrates
challenges it faces in terms of text-to-visual content
alignment (probably due to limited exposure to or
framework use of ground vision+language training
data).

The GIT model has a reliable profile, performing
below-average across all dimensions. The equality in
performance makes it most adopted for use cases where
no single captioning quality is deemed of greatest
priority. In stark contrast, ViT-GPT2 underperforms in
both fluency and lexical richness, but significant lexical
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alignment is not accounted for in the contribution to
overall captioning potential.

Finally, OFA appears under-optimized and trailing
across key metrics, including alignment, fluency, and
diversity. Unless the model is assessed with the
potential of massive retraining or architectural changes,
it has limited chances of applicability as it currently
stands.

LLaVA and Fuyu-8B were able to produce excellent
fluency and grounding in a semantic sense, as well as
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Figure 5. Comparative evaluation of vision-language models across semantic alignment, fluency, and lexical diversity dimensions.

4.2. Qualitative Analysis

4.2.1. Structured Analysis of Captioning Models Via
WH-Components

To analyze the effectiveness and accuracy of each tested
model, we perform a qualitative study of the generated
captions. We adopted spaCy [20], which is a powerful,
open-source NLP library used to analyze text structure,
extract linguistic features, and derive insights from
unstructured text. In the context of caption analysis,
spaCy helps break down sentences into their
grammatical components to answer WH questions
(who, what, where, how, why) and quantify structural
patterns. The analysis of generated caption’s structure is
presented in Table 4.

The evaluation was conducted on eight of the most
advanced VLMs on six key dimensions of WH-question
assessment: Subject Detail, Action Detail, Location
Detail, Time Detail, Manner Detail, and

Purpose/Reason. These factors reflect both important
types of semantic detail and contextual understanding
for producing captions, which then allow for a more
thorough comparative understanding of the strengths
and weaknesses of each model.

In regard to subject identification (“Who/What”), all
models perform adequately at a basic level, while newer
models are increasingly better at describing the
characteristics of entities and connecting down to
contextual recognition for multiple entities. For action
recognition (“Doing What”), there is a meaningful
change in previous basic verb use to recent models
being able to indicate interaction and intent as these
models can derive the purpose for actions. Improvement
in spatial understanding (“Where”) has occurred,
moving from environmental location to spatial
structures and useable space with the meaning
associated with that location within scenes. Temporal
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understanding (“When”) continues to be the most
limited dimension, although there is some growth
regarding previous a lack of recognition to an early
development of visual time; recent models can now
include visuals that indicate time. When describing
manner (“How”), earlier models used next to no
adverbs, while most recent models give a usable,
integrated way to describe which conveys sometimes
emotional tones. The most evident advancement is seen
in the dimension of purpose or reasoning (“Why”)
whereby earlier models completely excluded causal
understanding while the latest models are able to infer
motivations and goals across visual events.
Collectively, these advancements illustrate an
increasing depth and coherency of model responses to
WH-questions similar to the general improvement of
semantic and contextual reasoning in vision-language
models. The structural composition of image captions
generated by VLM reveals a clear evolutionary trend in
linguistic sophistication and contextual richness across
six WH question dimensions: subject detail, action
precision, location specificity, temporal awareness,
manner description, and purpose/reasoning. All model
tiers, the inclusion of core components such as Subject
and Action is nearly universal. According to Figure 6,
models like Fuyu-8B, LLaVA, Kosmos-2, and
Moondream?2, demonstrate a perfect or almost perfect
detection rate in the location category and suggest that
existing architectures are highly tuned for spatial scene
recognition, possibly due to the fact that the visual
datasets that are available for training these types of
models tend to heavily focus annotation on object
localization. However, a stark contrast emerges when
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assessing the manner, reason, and time dimensions. For
instance, while fuyu-8B achieves an unusual score in
both location and manner, it lacks temporal capabilities,
reflecting a possible design bias towards descriptive
features without deeper contextual modeling. Of all the
models, LLaVA and Moondream2 represent the two
most balanced semantic profiles, with relatively high
location scores and moderate performance in time.
These two models are unique in their ability to take on
complex multi-modal inference problems, integrated
descriptive and causal and temporal aspects
simultaneously. LLaVA also demonstrates superior
abilities overall-although it lags slightly from other
models in Purpose/Reasoning category. On the other
hand, VIiT-GPT2 as an earlier generation model
represents the weakest overall in many categories. ViT-
GPT2, and GIT show serious limitations in reasoning,
while VIiT-GPT2, and OFA more serious limitations in
reasoning, reflecting that they smaller semantic
bandwidth. Models like BLIP-2 and OFA are more
mixed-achieving decent Subject Detail scores, but
demonstrating deficient performance in reasoning-
based categories, consequently. Thus, while the models
demonstrate similarities in high spatial awareness, few
extend this capability to encompass richer,
understanding. multi-dimensional semantic Model like
LLaVA is currently best suited for tasks requiring
diverse semantic interpretations, whereas others remain
confined to more surface-level scene understanding.
This analysis underscores the need for more holistic
training approaches and benchmark datasets that go
beyond object detection to include causal and temporal
reasoning.

Table 4. Model-specific structural analysis.

Caption structure tendencies

Models |Subject identification | Action recognition [Location description Temporal Manner description Purpose/Reasoning (Why)
(Who/What) (Doing what) (Where) awareness (When) (How) P 9 Y
ViT-GPT?2 ~ Basic sgbject_ Limited vert? Generic locations | Almost no temporal Mlnlmal, typ_lcally Almost entirely absent,
38] |dgnt|f|cat|o_n with | vocabulary, malply with minimal context indicators omits how actions are rarely spec_ulates on
simple attributes present progressive performed intentions
Multiple subject More diverse verbs Mg;ﬁ%?ﬂ:)egeisan Basic temporal Improved, sometimes Basic purpose of common
OFA[51] _ recognition ‘.N'th W'th Ob.JeCt contextualizes context recognition mcludes_ ac!verblal activities
improved attributes interactions subjects descriptions.
Good attribute Good verb variety |Contextual and often| Limited, typically | Moderate inclusion
GIT [50] recognition with with subject-object integrated with implied rather than of descriptive  |Limited purpose recognition
contextual relevance interactions subjects stated elements
Excellent, with detailed Precise actions with Well-integrated Moderate temporal | Good inclusion of Improved function and
BLIP-2 [30] - " contextual ; L L o,
attribute recognition . spatial awareness | context recognition | descriptive adverbs purpose recognition
appropriateness
- Nuanced actions with| _. - Improved Rich manner with | Notable improvement in
LLaVA [37] C_ontegtual_ly_ ”C.h contextual Rich env!ronment_al explicit/implicit time emotional reasoning about intent and
subject identification . - context with function - -
interpretation awareness understanding causation
Ll . . Excellent spatial s . ;
Detailed identification | Precise verbs with . . Good recognition of Strong spatial- Improved reasoning about
Kosmos-2 [41] .. : . - . _[relationships between - - : . :
with visual grounding |spatial understanding objects visual time cues manner integration function and purpose
Efficient but precise | Context-appropriate Effective spatial Selective inclusion of Conte_xtL_laI manner Balanced purpose
Fuyu-8B [6] A S h - awareness and scene . . descriptions when L
subject identification | action description - temporal information recognition
composition relevant
Moondream?2 | . Fqguseq sub!ect cOnt_extuaIIy Concise but effective|Efficient inclusion of| Selective inclusion | Efficient inclusion of key
identification with key | appropriate actions . L S
[46] attributes and states spatial descriptions | key time indicators | based on relevance purposes
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Figure 6. Multimodal model comparison: WH-Question capabilities (1,000 captions per model).

4.2.2. Architectural Influence on WH-Question
Coverage

The ability of VLM to adress WH-questions (who, what,
where, when, why, and how) is bound to architectural
developments and training paradigms. Comparative
analysis indicates that newer models like LLaVA and
Kosmos-2 demonstrate illustrates how newer models
provide better and a more equal coverage of WH
questions at a more abstract level, such as Purpose and
Reasoning. This can be explained again with the size of
the model and quality of the underlying language model.
Larger, and more capable language backbones allow for
the generation of more complex and contextually
nuanced responses related to WH-questions. However,
the key relationship affecting performance is the depth
of the visual-linguistic interface: models like BLIP-2
and LLaVA use state-of-the-art cross-modal fusion so
are able to merge spatial, contextual, and referential
information better than other models built on basis of
knowledge in literature. In addition, pre-trainings on
multiple and semantical rich image-text datasets can
help a model comprehend temporally and causally
whilst architectures that employ explicit forms of visual
grounding, as in Kosmos-2, enable models to accurately
interpret scene-based dependence and juxtaposition of
spatial locations. In terms of linguistic expressiveness,
models are additionally impacted by the ability of the
language decoder: the greater the language modules,
usually, the larger and more varying and fluent the
sentences produced by the models. Nearing captioning
organization, in a lot of instances, models are fairly

predictable in that they typically follow a cognitive
hierarchy where they provide what the VLM perceives
as the important notion of
Subject— Action—Object—Context, with some more
advanced models exhibiting variations in this pattern
and beyond based on image salience and therefore
semantics. In general, improvements in architecture and
training enable a model to answer. Table 5 shows
explicit patterns of increasing language and context
sophistication  closely  correlated with  model
architecture and methods of training. The earliest-
generation models such as VIT-GPT2, OFA, and GIT
are motivated by a basic subject-action location
framework and produce captions that are similar to bare
factual statements  with little contextual
detail/attachment.

As models advanced to the intermediate tier,
including BLIP-2 and LLaVA, their outputs began to
incorporate a modest increase in descriptive richness,
although they still adhered to a relatively formulaic
syntactic structure. In contrast, the most recent and
advanced models-Kosmos-2, Fuyu-8B, and
Moondream2-demonstrate a substantial leap in caption
complexity. These models generate multi-component
narratives that not only contain elements of manner,
degree, and purpose, but also generate descriptions that
are similar to human interpretations in terms of
elaborative scene descriptions. This evolution not only
highlights a transition from basic object identification to
more nuanced scene understanding but also underscores
a growing capacity for contextual reasoning and
semantic coherence.
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Table 5. Characteristic caption patterns of vision-language models.

Models

Characteristic caption pattern

ViT-GPT2 [38]

Formulaic structure: “[Subject] [simple verb] [object/location]”, shorter captions with straightforward constructions
Limited handling of complex scenes with multiple subjects or actions

OFA [51]

More varied sentence structures than earlier models, can manage compound subjects and multiple actions
Pattern: “[Detailed subject] [action verb] [object] [prepositional phrase for location/manner]”
Better at capturing interactions between multiple entities

GIT [50]

More naturalistic language than earlier models, often begins with subject-focused descriptions before actions
Typical structure integrates location with subject or action
Example: “A [detailed subject description] [verb-ing] [object] in [detailed location]”

BLIP-2 [30]

Flexible structures with improved contextual awareness, rich descriptions with better relationships
“A [detailed subject with multiple attributes] is [specific action verb-ing] [object] in a [detailed environment] with [specific features].”

LLaVA [37]

More conversational and natural language, oomplex sentences with causal or temporal relationships
Better at abstract concepts and implied information, often includes evaluative or interpretive elements beyond description
“A [specific] [subject] that appears to be [contextual description] is [nuanced action] [object] [manner] [apparent purpose] in what
appears to be a [specific environment type] with [contextual details].”

Kosmos-2 [41]

Strong spatial relationships and positioning, often includes relative positioning of elements
More sophisticated object attribute descriptions
“A [specific type] of [object] with [distinctive features] [precise action] [object] [precise spatial relation] to [another object] in a
[specific environment].”

Fuyu-8B [6]

Efficient but informative descriptions, efficient balance between detail and conciseness
Less template-like, more adaptable sentence structures
Example structure: “The image shows a [subject with key attributes] [specific verb] [object] [essential qualifier] in a [relevant
environment descriptor] [key spatial relationship].”

Concise, information-dense descriptions, more straightforward structures optimized for efficiency, prioritizes key elements over
Moondream? [46]| exhaustive description, often follows template: “A [distinctive attribute] [subject] [position/state] [focused action verb] [qualifier when
relevant] in/on [concise location description].”

Overall, these findings show that advancements in
model design have increased the capability of vision
language systems to produce captions that demonstrate
a more comprehensive understanding of visual
elements. ViT-GPT2 is frequently used to produce brief
and direct descriptions as single sentences. These
descriptions are framed in terms of observable entities
without inference or context. The structure is also fairly
standard and follows a “subject-action-location” format.
In general, the descriptions show accuracy but often
miss out on more subtle details and relationships among
the visual elements. GIT increases the breadth of the
description by incorporating a more attributes and
relationships in it. The captions provided by GIT often
begin with the main subject and then build out
describing anything else in proximity. Overall, it is a
more descriptive description than the VIiT-GPT2
overall, although the overall description retains a
mechanical structure, where the description first deals
with the primary object in view and then the secondary
objects. OFA represents a step forward in natural
language generation. Its captions typically open with a
scene overview before diving into specifics. The model
creates more cohesive narratives by linking
observations with transitional phrases, though it can
sometimes be overly verbose in its attempt to be
comprehensive. BLIP-2 provides impressive caption
generation with coherence between sentence structure.
It also has a narrative arc within descriptions, beginning
with primary elements within scenes to contextual
information. The strength of the model lies in its
description of actions and relationships between
elements in the scene. LLaV A considers captioning as a
more conversational approach to description. The
descriptions tend to capture direct observations and
inferred context in both observation and narrative.

LLaVA creates more of a narrative crossing stage
directions and narrative point of view. When generating
captions, LLaVA connect visual elements to implied
purpose or context, which can sometimes lead to over-
interpretation. Kosmos-2 considers heading spatial
relations when structuring captions. Most descriptions
begin with a description of the scene, then detail the
spatial arrangements and relations between the
elements. The model excels at creating a coherent
mental image by paying attention to relative positioning.
The Fuyu-8B model generates very structured captions,
balancing directness with readability. Fuyu-8B
systematically describes primary, secondary, and
contextual elements, while keeping the natural flow of
language. The model performs well in organizing
multiple observations into coherent narratives. Despite
its lightweight design, Moondream2 is able to produce
effective and focused captions. Its descriptions
prioritize key elements while maintaining coherence.
Moondream2 tends towards being concise, but
complete, in its captions, but as shown in an example
above. It might sacrifice some nuance as a result of
being more informationally efficient. To sum-up, this
comparative analysis of image captioning models
outlines some important trends in the trajectory that
caption generation has evolved into. First, there is a
developing sophistication from simple subject verb-
object to richer scene semantics that use complicated,
multi-layered, and layered categorization. More recent
models clearly incorporate context clues and spatial
relationship semantics, allowing them to produce
captions that resemble a more proper human
description. Additionally, some advanced architecture
capabilities produce multi-sentence outputs and
effectively describe primary elements and secondary
details. There is a considerable range in how the models
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treat attributes and modifiers - either with succinct
descriptions or entirely detailed with elaborate captions.
It seems as though this trend relates to a generalized
increase in line length and depth of information with
complexity in a model. Finally, instruction-tuned are
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more flexible and presented in different ways in their
output, finding that fine-tuning with some language
guidance enables both lexicon flexibility and offers a
broad range of expression shown in the generated
output.

Table 6. Comparative analysis of vision-language models: performance across dynamic and behavioural understanding, object-level perception,
and specialized recognition.

Models
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4.2.3. Structured Analysis of Captioning Models via

Image captioning models are evaluated across three key
aspects: dynamic and behavioral understanding, object-
level perception, and specialized recognition. These
aspects are assessed through twelve dimensions, as

Human Evaluation

outlined in the table, to comprehensively gauge the

models’ visual understanding capabilities, particularly

in terms of scene and semantic comprehension.

Overall performance of recent VLMs, as shown in

Table 6, we get a clear stratification that reflects quite
different strengths and design trade-offs at all model
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tiers. Best performing methods (i.e., LLaVA, Kosmos-
2, BLIP-2) show enormous potential in multimodal
understanding due to their sophisticated architectures
and training techniques. LLaVA outperforms by a
significant margin in visual and interaction reasoning,
object identity, and interaction understanding, which is
mainly due to its instruction-tuning method and strong
language model backbone. Kosmos-2 is closely
followed by Kosmos, which performs well in text
recognition and spatial localization by considering its
text-grounding framework and large-scale multimodal
training that scopes a server room to integrate textual
with visual semantics.

BLIP-2 shares the same consistency between
evaluation metrics, and the consistency between scene
understanding and landmark recognition, which
benefits from the two-stage pipeline and the Q-Former
module that well connects the vision encoder and the
language model.

We classify a group of models, like Fuyu-8B, OFA,
Moondream2, and GIT, to the middle tier as the models
do not have ultra-specialized but relatively competent
ability. By exploiting its efficient architectural design
and its end-to-end pipeline training strategy, Fuyu-8B
achieves remarkable performance and tends to show
fine promise in text recognition as well as object
counting.

OFA takes advantage of its end-to-end sequence-to-
sequence framework and achieves superior performance
in food recognition and attribute analysis. An apparent
art-humanist implementation, Moondream2, it orally
competes with general methods in tasks of image
captioning and scene understanding at a certain scale of
I model sizes. Although coarser, GIT retains
rudimentary object competences and seems to be an
earlier design.

On the other hand, lower-tier ViT-GPT2 models
reveal the shortcomings of the earlier VLM designs.
Although it does have some basic object detection
capabilities, it struggles with more advanced reasoning,
understanding, detecting spatial relationships, and
recognizing text. This fine-grained performance
summary not only describes how the architecture
evolves and how the training varies among VLMs but
also demonstrates the increasing significance of
customizing pre-training and integration methods to
yield comprehensive visual-linguistic representation.

The analysis indicates a wide disparity in
performance across VLMs, with newer architectures
typically outpacing older architectures. Among the
VLMs, LLaVA, Kosmos-2, and Fuyu-8B consistently
outperform the other models across several
characteristics, as they represent advancements in
architectural and training methodologies, catalysing the
linking of vision and language modalities.

Performance gaps are most pronounced in complex
reasoning tasks (e.g., visual reasoning, spatial relations,
object interactions) and in granularity of understanding

(e.g., text recognition, object counting, locating
objects). Each of these aspects likely relies on complex
interactions between visual perception and language
understanding, illustrating the opportunities offered by
thoughtful architectural development and an expansive
training corpus.

Fuyu-8B’s strong performance despite its simpler
architecture  suggests promising directions for
architectural streamlining without significant capability
loss. Similarly, Moondream2 represents an impressive
achievement in efficient model design, demonstrating
that lighter models can achieve surprisingly robust
performance in image understanding tasks, particularly
in image captioning and object identification.

Moondream?2’s effectiveness challenges assumptions
about size-performance trade-offs in VLMs, suggesting
that careful dataset curation and training optimization
can produce highly efficient models with capabilities
approaching those of much larger counterparts in many
practical scenarios.

Future VLM development would benefit from
exploring Moondream2’s efficient design principles
while continuing to improve fine-grained spatial
understanding, complex visual reasoning, and better
integration of text recognition with general visual
perception capabilities across all model scales.

The comparison shows how each model has unique
approaches to structuring and prioritizing information in
captions. However, several challenges remain
unresolved, particularly the issue of generic bias, which
limits the informativeness of captions. Existing models
often generate overly broad descriptions, failing to
capture the unique aspects of images. This issue is
exacerbated by the inherent nature of training data and
generation mechanisms.

Our findings reveal a persistent challenge in vision-
language models: the tendency to produce generic
captions that lack domain-specific nuance. Motivated
by this limitation, we are working on a centered context-
aware regularization, a novel training paradigm that
dynamically penalizes overly generic outputs while
preserving fluency. This approach integrates two key
innovations:

1. Domain-adaptive priors that steer descriptions
toward application-critical details.

2. Contrastive concept learning to sharpen distinctions
between visually similar but semantically distinct
elements.

5. Conclusions

This study makes three key contributions to advancing
image captioning evaluation. First, we establish a
comprehensive human assessment framework that
evaluates VLMs across multiple critical dimensions,
including fluency, specificity, grounding accuracy, and
stylistic ~ appropriateness,  revealing  important
limitations that standard automated metrics fail to
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capture. Our large-scale comparative analysis of state-
of-the-art architectures uncovers fundamental trade-
offs, such as the tension between descriptive richness
and factual reliability, while identifying persistent
challenges in spatial reasoning and domain adaptation.
Most significantly, we develop and validate a
standardized evaluation protocol featuring a detailed
error taxonomy, domain-specific criteria, and robust
quality control mechanisms. These contributions
collectively demonstrate that while modern models
excel at conventional benchmarks, they still struggle
with contextual specificity and often produce generic
descriptions. Our findings not only provide practical
guidance for model selection in real-world applications
but also establish essential groundwork for future
research directions, including multilingual evaluation,
bias mitigation, and the development of hybrid human-
Al assessment systems. By integrating rigorous human
evaluation with technical analysis, this work moves the
field toward more dependable, adaptable, and
contextually aware caption generation.
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