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Abstract: Large Language Models (LLMs), particularly multimodal LLMs, have significantly enhanced image captioning in 

recent years, producing output that is more descriptive, detailed, and context-aware. However, differences in architecture and 

training data lead to captions that vary in length, style, and level of detail, offering flexibility for diverse applications. In this 

survey, we provide a comprehensive overview and comparative analysis of prominent Vision-Language Models (VLMs) for 

image captioning, with a focus on their performance in zero-shot settings on the Microsoft Common Objects in Context (MS-

COCO) dataset. We evaluate these models using both human assessments (fluency, groundedness, relevance) and automatic 

metrics Contrastive Language–Image Pretraining Score (CLIPScore). Our findings reveal trade-offs between efficiency and 

performance, linking architectural decisions to issues such as hallucinations and caption grounding. Beyond benchmarking, we 

propose a human evaluation to capture nuances like fluency, factual grounding, and stylistic preferences, leading to 

recommendations for selecting VLMs based on different use cases. 
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1. Introduction 

The image captioning task involves generating accurate, 

relevant, and human-like sentences by blending 

Computer Vision (CV) and Natural Language 

Processing (NLP). This fundamental visual 

understanding task has attracted a lot of interest due to 

its substantial implications in real-world applications 

like data labeling, accessibility aids, and content 

production. The emergence of deep learning, in 

particular Convolutional Neural Networks (CNNs) [26] 

for image encoding and Recurrent Neural Networks 

(RNNs) [4] such as Long Short-Term Memory 

Networks (LSTMs) for sequence generation, 

revolutionized captioning task under flexible and 

context-aware encoder-decoder framework. 

The introduction of attention mechanisms [53] 

improved both relevance and coherence through 

dynamic area focusing while generating captions. The 

transformer architecture [44] replaced recurrence with 

self-attention to achieve better scalability and 

parallelization capabilities. Then, Vision Transformers 

(ViTs) [19] revolutionized the field by using image 

patches as sequences to merge visual and textual data 

processing. Despite these advances, progress in image 

captioning has faced persistent challenges. Many 

models produce overly generic captions, lacking 

specificity and informativeness. This stems from 

limitations in training data, model architecture, and  

 
decoding strategies, which often prioritize syntactic 

fluency over factual grounding and semantic precision. 

Recent developments in Large Language Models 

(LLMs), when integrated with vision encoders, have 

revitalized the field. These multimodal architectures, 

combining rich linguistic priors with visual 

understanding, have shown potential for generating 

captions that are more abstract, context-aware, and 

diverse. However, the performance of these models still 

varies considerably depending on architecture, training 

objectives, and modality integration strategies.In this 

survey, we first present a systematic comparison of 

state-of-the-art Vision-Language Models (VLMs) on 

the Microsoft Common Objects in Context (MS-

COCO) dataset [32] under zero-shot settings. Second, 

we propose a multi-perspective human evaluation 

approach through diverse lenses, including stylistic 

adaptability (descriptive vs. concise), syntactic structure 

(grammaticality and fluency), and use-case suitability 

(accessibility, creative generation, and technical 

applications). This approach allows us to uncover 

nuanced performance trade-offs, such as the tension 

between creativity and correctness, that are often missed 

by standard benchmarks. 

2. Literature Review  

2.1. Standard Image Captioning 

From early approaches that relied on retrieval-based and 
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template-based methods to advanced deep learning 

paradigms, image captioning has undergone meaningful 

change. While retrieval-based models [28] searched for 

similar images in a database and reused the original 

captions, they don’t adapt well to new examples and 

don’t provide much creativity. Template-based methods 

[27], on the other hand, employ fixed sentence 

structures with object labels to generate captions that are 

inflexible and unnatural. These methods were 

straightforward; however, they were limited in their 

flexibility and generalization capabilities. Numerous 

techniques have been proposed in the era of deep 

learning. Subsequent research led to the exploitation of 

encoder-decoder architectures, where a CNN is used to 

encode the visual input, and an RNN is used to condition 

the generation process. RNNs are often used with Long 

Short-Term Memory (LSTM) networks for decoding 

and generating the caption from the visual features [18, 

25, 47]. Then LSTMs were replaced by Gated Recurrent 

Units (GRUs) [22] and provide performant results also. 

Image captioning methods have been further 

improved by introducing attention mechanisms that 

allow the model to focus on important parts of the image 

when generating each word. The Show, Attend and Tell 

model [53] added a soft visual attention mechanism that 

improved the quality of captioning and its alignment 

with human descriptions. Follow-up work like the 

bottom-up and top-down attention model [2] extended 

this idea through object-level attention using parts of 

region proposal networks, such as Faster R-CNN, to 

provide richer and fine-grained features. Despite their 

effectiveness, these models frequently struggle to 

incorporate broader domain knowledge and fail to adapt 

to diverse contexts, which limits their ability to manage 

complex visual scenes and capture long-range 

dependencies within captions. 

Driven by the success of transformers in NLP, recent 

image captioning research leverages transformers to 

model intra-modal interactions for automatic caption 

generation [15, 16, 23]. The initial adoption of 

transformers replaced RNNs in the decoder, capitalizing 

on parallel training capabilities. Recent work has also 

explored transformer-based approaches for image 

captioning, demonstrating the effectiveness of multi-

encoder architectures in improving semantic coherence 

and contextual alignment [39]. Visual representations 

are typically derived using either a pre-trained object 

detector or a vision transformer, which can be applied 

directly to image patches, reducing or eliminating the 

reliance on convolutional operations. ViTs are 

becoming more popular, thus they generate contextually 

rich, coherent captions that better capture nuanced 

scenes, even with complex or lengthy descriptions. This 

enables them to adapt better to different contexts and 

tasks, and to produce more accurate and richer captions 

than early methods. Despite being relatively effective, 

encoder-decoder architectures have issues regarding 

reasoning, situatedness, and the level of semantics, 

especially in complex scenes. This raised the possibility 

of developing vision-language pretraining methods [12, 

48, 54]. 

2.2. Multimodal Large Language Models 

(MLLM) for Image Captioning 

Recent advancements in image captioning have 

demonstrated how LLMs are able to assist in 

understanding the visual signal. Therefore, image 

captioning combines LLMs and vision encoders to 

produce informative and accurate image descriptions. 

These models consider both visual and textual sources, 

facilitating an understanding of complex features to 

develop a full interpretation of the content. Bidirectional 

Encoder Representations from Transformers (BERT) 

[17] and Generative Pre-trained Transformer (GPT) 

[56] demonstrated the initial potential of LLMs, 

achieving significant advancements in few-shot and 

zero-shot learning and inspiring scaling efforts that 

yielded models like T5 [43], GPT-3 [8], Flan-T5 [13], 

and PaLM [14]. In the past year, large-scale Multimodal 

Large Language Models (MLLMs) have exhibited 

remarkable performance across a wide range of 

downstream tasks like visual dialogue, image 

captioning, and visual question answering [9]. 

Building on this progress, these MLLMs typically 

bridge visual and language modalities by connecting a 

pre-trained LLM with a large-scale visual encoder, such 

as Contrastive Language-Image Pretraining (CLIP) [42] 

or its variants. These models interpret both text and 

images, providing them with background knowledge to 

generate high-quality captions that refer to the objects 

and scenes depicted in the image while embedding 

contextual information and conveying a deeper 

understanding of the visual content. These models have 

been shown to have superior performance on several 

image captioning benchmarks and are also capable of 

changing the landscape of computer vision. 

MLLMs are often categorized by their multimodal 

connection type, with many, like the Large Language-

and-Vision Assistant (LLaVA) series [35, 36, 37], using 

an MLP [7, 52] or linear layer [11, 33] to establish 

multimodal connections. Several variations have been 

introduced, such as LLaMA-Adapter [21] that uses a 

zero-gating attention mechanism, while Cha et al. [10] 

replace linear layers with convolutions. Q-Former-

based models [30] represent another major category. 

Consequently, mPLUG-Owl [55] streamlines Q-

Former with a visual abstractor, condensing visual 

information into trainable tokens. Qwen-VL [5] 

similarly uses a single-layer cross-attention module 

with learnable queries to compress visual features. 

Alternatively, some methods integrate dense cross-

attention blocks within pre-trained LLM layers [1, 3], 

often employing a Perceiver model [24] to reduce visual 

tokens before integration. While MLLMs are 

undergoing rapid changes, they have not yet been 
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explored in image captioning. There are a few MLLMs 

that have been specifically trained and evaluated using 

standard benchmarks, and most of the work has treated 

image captioning as an intrinsic capability. Recent work 

[34, 49, 57] has begun to measure hallucination of 

MLLMs, an important consideration for the detailed 

usage of MLLMs to create image captions. This paper 

assesses the performance of standard MLLMs in 

creating image captions and a number of fine-tuning 

methods to assist in adapting to this task, which includes 

a clear differentiation from existing literature. Standard 

image captioning approaches developed foundation 

models by learning to map visual input to textual output 

using explicit alignment mechanisms. However, these 

models need task-specific training, and they cannot 

generalize in a zero-shot setting. In contrast, VLMs can 

generalize well, learn about semantic grounding, and 

afford flexibility of tasks because of extensive pre-

training on web-scale data. A significant shift occurred 

by moving from RNNs to transformers, from supervised 

training to contrastive and generative pre-trained 

training, and from isolated image encoders to unified 

multimodal architectures. As researchers continue to 

advance the future of VLMs, we expect the integration 

of richer lexical knowledge, enhanced grounding, 

improved reasoning capabilities, and support for 

multilingual and multimodal inputs, enabling deeper 

alignment between visual and linguistic understanding. 

3. Methodology  

3.1. Models’ Selection 

Our selection consists of eight VLMs developed from 

2022 to 2024, representing both the chronological and 

the conceptual evolution in image captioning. These 

models have different strengths in linguistic fluency, 

visual grounding, task generalization, and 

computational efficiency; they also reflect different 

architectures from early encoder-decoder baselines to 

MLLMs, as depicted in Figure 1, including contrastive 

pre-training, instruction tuning, modular LLM 

integration, grounded generation, and efficient 

decoding. Models like ViT-GPT2 [38] are adopted on 

minimalist architectures, thus they provide greater 

accessibility and simplicity. This model consists of a 

ViT connected to a GPT-2 decoder, with a linear 

projection layer acting as a bridge in order to create a 

simple-to-train, good-performing baseline for image 

captioning. Although simple and effective, its generality 

and lack of spatial awareness revealed the need for more 

complex architectures that better combined visual and 

textual data. OFA [51] was selected as a foundational 

model for its pioneering unification of vision-language 

tasks, which emphasized capability over computational 

efficiency. GIT [50] achieved architecture 

simplification and top performance even on images with 

a large amount of text, though it is less intuitive for some 

applications. BLIP-2 [30] was favoured as it has the best 

zero-shot potential, allowing for deployment without 

large language model fine-tuning considerations. 

LLaVA [37] was Selected due to its prompt-based 

system of allowing users flexibility, though it raises 

some uncertainties in output rigour. 

Kosmos-2 [41] provided spatial grounding for 

localising objects in 3D space, crucial for scene 

understanding, but increased complexity. Fuyu-8B [6] 

is notable because it has efficient performance in 

processing high-resolution data valuable for 

applications like digital agents; however, it lacks any 

aspects of dynamic representation. Moodream-2 [46] 

was tentatively included as an exploratory emerging 

model, representing a forward-looking perspective, 

though its speculative nature, and is thus included for 

exploratory comparison. 

 

Figure 1. Image captioning pipelines in vision-language models: a structural overview. 

Overall, the development from early models that rely 

largely on alignment to modular, grounded, and hybrid 

generative systems demonstrates a consistent effort to 

balance fluency, grounding, task generalization, and 
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computational efficiency. Each model implements its 

own responses to their predecessors’ limitations but also 

illustrates the increasing scope and ambition of vision-

language integration for the task of image captioning. 

A brief comparison of the selected models is 

presented in Table 1. This table analyses their 

architecture, performance, and contributions to vision-

language understanding, particularly in image 

captioning. 

Table 1. Comprehensive comparison of vision-language models for image captioning. 

Model  Year Architecture Training data Parameters Vision encoder/tokenizer 
Pre-trained 

backbone model 

ViT-GPT2 [38] 2021 
Encoder-Decoder (ViT + 

GPT-2) 
MS COCO, Flickr30k 

~124M (ViT + 

GPT-2) 

ViT (Vision Transformer) + 

GPT-2 Tokenizer 

ViT (ImageNet-21k), 

GPT-2 

OFA [51] 2022 Unified Transformer 
Multi-task (COCO, VQA, 

NLVR, etc.) 
~930M ResNet-101 + Transformer BART, ResNet 

GIT [50] 2022 
Encoder-Decoder (ViT + 

Transformer Decoder) 
800M image-text pairs 

(filtered) 
GIT-Base: 345M 

ViT (Huge) + BERT 
Tokenizer 

ViT-Huge (CLIP pre-
training) 

BLIP-2 [30] 2023 
Two-Stage (Image Encoder 

→ Q-Former → LLM) 

129M image-text pairs + 

synthetic data 

BLIP-2 OPT2.7B 

/ FLAN-T5 XXL 
ViT-G / Q-Former 

ViT-G, OPT/FLAN-

T5 

LLaVA [37] 2023 
Vision Encoder + connector 

+ LLM (Vicuna) 
COCO, Visual Genome, 

synthetic instruction tuning 
~13B (with 

Vicuna) 
CLIP ViT-L/14 CLIP, Vicuna 

Kosmos-2 [41] 2023 
Multimodal LLM with 

visual grounding 
Web-scale multimodal data ~1B–1.6B 

Patch embedding → Linear 

projection 
BERT-like encoder 

Fuyu-8B [6] 2023 
Decoder-Only Transformer 

(GPT-style) 

Public image-text datasets + 

Optical Character Recognition 

(OCR) documents 

8B 
Vision tokenizer into 

sequences 
GPT-style pre-trained 

transformer 

Moondream2 [46] 2024 
two major components: 

SigLIP, Phi-1.5 
LLaVa training dataset 2B 

SigLIP as the vision encoder 
and Phi-1.5 as the text encoder 

SigLIP, Phi-1.5 
(LLM) 

 

3.2. Experimental Process 

To evaluate the performance of recent VLM on image 

captioning, we use various pretrained models that have 

been officially released. This included ViT-GPT2 [38], 

OFA [51], GIT [50], BLIP-2 [30], LLaVA [37], 

Kosmos-2 [41], Fuyu-8B [6], and Moondream2 [46]. 

All models were evaluated in a zero-shot setting, and all 

models were officially released and used inference 

pipelines. Code implementation is available on my 

GitHub repository https://github.com/ansar2019/image-

captioning. 

To systematically evaluate the generalization 

performance of VLMs, we carefully created a 

comprehensive evaluation set of 1,000 images sampled 

frome the MS COCO 2014 test set, as shown in Figure 

2. This subset was built around a category-aware 

sampling process that increases both the semantic span 

and diversity while controlling the variability. This was 

achieved by balancing representations from seven 

semantic groups: 

1. People, including portraits and social gatherings. 

2. Animals, including wild-life and pets. 

3. Scenes, both indoor and outdoor. 

4. Food and meal contexts. 

5. Places, including natural and built landmarks. 

6. Types of vehicles, including cars, planes, and boats. 

7. Sport and activity scenarios. By bringing this level of 

semantic coverage. 

 

Figure 2. Sample images from the MS COCO test dataset.

We anticipated that the evaluation set would allow us 

to include the richness of real-world photo content that 

captioning models might encounter. The image 

selection also sought to maximize object category 

variation while retaining the true distributions of scenes, 

to facilitate representativity and challenge. That 

ultimately provides a more robust evaluation of models 

across varied and realistic contexts. 

Five expert annotators independently evaluated 

VLM-generated captions for 1,000 MS-COCO images, 

manually assessing fluency, grounding, richness, 

relevance, and error types using standardized rubrics. 

https://github.com/ansar2019/image-captioning
https://github.com/ansar2019/image-captioning
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Following individual scoring, trainers participated in 

structured discussion sessions to resolve discrepancies, 

focusing on three key criteria: 

1. Syntactic validity (grammar and coherence). 

2. Semantic alignment (object/action fidelity to the 

image). 

3. Descriptive utility (detail appropriateness for target 

applications).  

Disputed captions (18.3% of cases, primarily in 

crowded scenes) underwent iterative review until 

consensus was reached, with deliberation notes 

cataloging recurring failure modes like spatial relation 

errors (“man left of tree” vs. “man beside tree”). This 

consensus-driven approach yielded refined evaluation 

guidelines that informed our proposed VLM output 

structure taxonomy, categorizing errors into 

hallucination subtypes (attribute, object, or relation) and 

omission tiers (primary object vs. contextual detail). 

The results of this work will be presented in detail in the 

next section in a structured qualitative analysis of the 

VLM-generated caption judgment. 

3.3. Zero-Shot Inference Implementation 

Details 

To guarantee fairness and reproducibility, all models 

were assessed under zero-shot settings, indicating that 

no fine-tuning, supplementary supervision, or domain-

specific adaptation was utilized. We employ only the 

officially released pretrained checkpoints and public 

inference APIs or repositories made available by the 

original authors or developers. 

We followed the recommended inference pipeline for 

each model, which is available on open-source 

platforms like GitHub, HuggingFace, and model-

specific demo APIs. This included using tokenizers, 

vision encoders, and decoding strategies. We used 

prompt templates where necessary, as explained in the 

model documentation. This was especially true for 

instruction-tuned or conversational models like LLaVA, 

Kosmos-2, Fuyu-8 Band Moondream2, which use task-

specific prompt formatting to guide the generation. 

Table 2 shows a summary of the evaluation platform, 

programming libraries, and model-specific 

dependencies. 

Table 2. Summary of VLMs, inference tools, and prompt usage. 

Model Platform/Repository Inference API/Library Prompt used 

ViT-GPT2 [38] 
HuggingFace 

(nlpconnect/vit-gpt2-image-captioning)  
transformers pipeline (image-captioning)  No explicit prompt (internal defaults) 

OFA [51] OFA-Sys GitHub (OFA, OFA-Large)  Official PyTorch/fairseq-based framework Prompt “What does the image describe?” 

GIT[50] Hugging Face (microsoft/git-base) transformers image-captioning pipeline No prompt needed 

BLIP-2 [30] 
HuggingFace (ethzanalytics/BLIP-

2-flan-t5-xl-sharded)  

transformers: BlipProcessor+BLIP-

2ForConditionalGeneration 
Prompt=“Describe this image.” 

LLaVA [37] LLaVA GitHub (llava-v1.5) 
Uses LLaVA GitHub with quantized model 

weights (llava-13b-4bit) 

Prompt=(“Describe this image.” or 

“What’s in the image?”) 

Kosmos-2 [41] Hugging Face/Microsoft/Transformers docs  ONNX runtime or PyTorch Prompt=“Describe the image: [IMAGE]” 

Fuyu-8B [6] HuggingFace (adept/fuyu-8b)  Transformers using decoder-only architecture Prompt=“Describe the image in detail.” 

Moondream2 [46] HuggingFace (vikhyatk/moondream2)  
Transformers 

(AutoModelForCausalLM+tokenizer) 
Prompt=“What’s in this image?” 

 

Figure 3 illustrates the captions generated by the 

selected VLMs for a sample image taken from the 

training dataset, comparing their outputs to the 

corresponding ground-truth caption and highlighting 

differences in descriptive richness and semantic 

alignment across models. In contrast, Figure 4 presents 

the captions produced under zero-shot settings for 

multiple images from the test dataset, providing a 

broader view of each model’s generalization capability 

when applied to unseen visual samples. 

 

Figure 3. Model-specific caption outputs compared to ground truth descriptions. 
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Figure 4. Comparative captions from vision-language models for diverse visual inputs. 
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4. Experiments and Discussion 

The evaluation of generated captions is a challenging 

task, as it requires assessing both semantic accuracy) 

and linguistic quality. This analysis explores both 

quantitative and qualitative evaluations for selected 

image captioning models. 

Previous studies on image captioning have adapted 

numerous types of evaluation metrics, from traditional, 

reference-based metrics like BLEU [40], METEOR 

[29], ROUGE [31], and CIDEr [45], to more recently 

developed, reference-free metrics such as Contrastive 

Language–Image Pre-training Score (CLIPScore) based 

on vision-language alignments. While these automated 

metrics provide quantitative insights, they are not 

always effective at capturing variation in the quality of 

generated descriptions. 

We incorporate a detailed human evaluation protocol 

focusing on syntactic complexity, grammatical 

correctness, and context awareness to provide a deeper 

understanding of model performance that cannot always 

be obtained or measured automatically. 

4.1. Quantitative Analysis 

As part of our evaluation of VLMs for image captioning, 

we performed a quantitative analysis using four 

complementary metrics: CLIPScore, Perplexity, 

Lexical Diversity, and Caption Length. These measures 

offer a multi-faceted approach for assessing each 

model’s performance in terms of semantic alignment, 

linguistic fluency, textual diversity, and verbosity. 

Our experiments on the MS COCO test set 

demonstrate substantial variation in performance across 

architectures. As summarized in Table 3, the eight 

evaluated models exhibit distinct trade-offs across these 

dimensions, reflecting the impact of their underlying 

design choices on caption quality. 

Table 3. Evaluation metrics for vision-language models on image captioning. 

Model  CLIPScore Perplexity  Diversity (4-grams) Caption length stats (Min/Max words) 

ViT-GPT2 [38] 0.7061 178.82 0.57 6/16 words 

OFA [51] 0.4702 128.99 0.66 6/16 

GIT [50] 0.7153 51.86 0.68 4/17 

BLIP-2 [30] 0.7183 177.09 0.70 3/15 

LLaVA [37] 0.7568 15.86 0.63 37/153 

Kosmos-2 [41] 0.7446 61.44 0.63 5/28 

Fuyu-8B [6] 0.7070 26.00 0.70 9/84 

Moondream2 [46] 0.4558 39.34 0.79 16/43 

 
Based on CLIPScore, a metric that assesses semantic 

alignment between the generated caption and the visual 

content, LLaVA (0.757), Kosmos-2 (0.745), and BLIP-

2 (0.718) demonstrated the strongest performance, 

exceeding the predefined robust performance threshold 

of 0.70. In contrast, Moondream2 (0.456) and OFA 

(0.470) scored considerably lower, indicating 

suboptimal visual-textual alignment. 

When evaluating a language model with perplexity, 

which measures how confidently a language model can 

predict the next tokens, LLaVA again came out at the 

top (15.86), followed by Fuyu-8B (26.00), 

Moondream2 (39.34), and GIT (51.86). ViT-GPT2 

(178.82) and BLIP-2 (177.09) had high perplexity, 

indicating low fluency or less confident word 

predictions during the caption generation process. This 

contrast places some weight on the observation that high 

CLIPScore does not equal fluent language generation, 

as seen with BLIP-2. 

Lexical diversity, operationalized through 4-gram 

diversity, captures the model’s ability to avoid textual 

repetitiveness. Moondream2 demonstrates the strongest 

performance (0.79), despite its relatively low 

CLIPScore. Other models with decent levels of diversity 

were Fuyu-8B and BLIP-2 (0.70 both), and ViT-GPT2 

had a low level of diversity (0.57), meaning there is 

some repetition or templating in its outputs, which is not 

evident in the comparison against diversity. 

Descriptions that are detailed but do not burden their 

readers. 

The evaluation of recent VLMs for image captioning, 

presented in Figure 5, emerges as a nuanced spectrum 

of performance, reflecting trade-offs between fluency, 

semantic alignment, and lexical diversity. LLaVA 

produces semantically aligned, fluent, and descriptively 

rich captions, but its tendency to overgenerate makes it 

less suitable for constrained caption use cases. Fuyu-8B 

exhibited a typical performance for VLMs referenced 

here, delivering high fluency and descriptiveness, yet 

produced captions that were more compact and perhaps 

more adaptable to constrained caption tasks in lieu of 

much of the expressiveness from LLaVA. BLIP-2 

presents a middle path, balancing conciseness and 

diversity of captions. However, its high perplexity 

indicates it can be linguistically unpredictable, 

suggesting that its outputs were less polished or 

coherent with syntactical multi-variant linguistics. 

In contrast, Moondream2 had a clear advantage in 

generating lexically varied captions with modest 

fluency loss, but its lower CLIPScore illustrates 

challenges it faces in terms of text-to-visual content 

alignment (probably due to limited exposure to or 

framework use of ground vision+language training 

data). 

The GIT model has a reliable profile, performing 

below-average across all dimensions. The equality in 

performance makes it most adopted for use cases where 

no single captioning quality is deemed of greatest 

priority. In stark contrast, ViT-GPT2 underperforms in 

both fluency and lexical richness, but significant lexical 
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alignment is not accounted for in the contribution to 

overall captioning potential. 

Finally, OFA appears under-optimized and trailing 

across key metrics, including alignment, fluency, and 

diversity. Unless the model is assessed with the 

potential of massive retraining or architectural changes, 

it has limited chances of applicability as it currently 

stands. 

LLaVA and Fuyu-8B were able to produce excellent 

fluency and grounding in a semantic sense, as well as 

very well-formed systemic structure, where verbosity is 

acceptable or even desirable. Occasionally informative 

but necessarily concise outputs are more applicable to 

GIT and BLIP-2. For diversity and lexical creativity, 

either as advertisements or storytelling, Moondream2 is 

quite strong, but it must be emphasized that careful 

management or additional fine-tuning will have to 

account for a noticeable decline in semantic accuracy in 

exchange for lexical diversity. 

 

Figure 5. Comparative evaluation of vision-language models across semantic alignment, fluency, and lexical diversity dimensions. 

4.2. Qualitative Analysis 

4.2.1. Structured Analysis of Captioning Models Via 

WH-Components 

To analyze the effectiveness and accuracy of each tested 

model, we perform a qualitative study of the generated 

captions. We adopted spaCy [20], which is a powerful, 

open-source NLP library used to analyze text structure, 

extract linguistic features, and derive insights from 

unstructured text. In the context of caption analysis, 

spaCy helps break down sentences into their 

grammatical components to answer WH questions 

(who, what, where, how, why) and quantify structural 

patterns. The analysis of generated caption’s structure is 

presented in Table 4.  

The evaluation was conducted on eight of the most 

advanced VLMs on six key dimensions of WH-question 

assessment: Subject Detail, Action Detail, Location 

Detail, Time Detail, Manner Detail, and 

Purpose/Reason. These factors reflect both important 

types of semantic detail and contextual understanding 

for producing captions, which then allow for a more 

thorough comparative understanding of the strengths 

and weaknesses of each model. 

In regard to subject identification (“Who/What”), all 

models perform adequately at a basic level, while newer 

models are increasingly better at describing the 

characteristics of entities and connecting down to 

contextual recognition for multiple entities. For action 

recognition (“Doing What”), there is a meaningful 

change in previous basic verb use to recent models 

being able to indicate interaction and intent as these 

models can derive the purpose for actions. Improvement 

in spatial understanding (“Where”) has occurred, 

moving from environmental location to spatial 

structures and useable space with the meaning 

associated with that location within scenes. Temporal 
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understanding (“When”) continues to be the most 

limited dimension, although there is some growth 

regarding previous a lack of recognition to an early 

development of visual time; recent models can now 

include visuals that indicate time. When describing 

manner (“How”), earlier models used next to no 

adverbs, while most recent models give a usable, 

integrated way to describe which conveys sometimes 

emotional tones. The most evident advancement is seen 

in the dimension of purpose or reasoning (“Why”) 

whereby earlier models completely excluded causal 

understanding while the latest models are able to infer 

motivations and goals across visual events. 

Collectively, these advancements illustrate an 

increasing depth and coherency of model responses to 

WH-questions similar to the general improvement of 

semantic and contextual reasoning in vision-language 

models. The structural composition of image captions 

generated by VLM reveals a clear evolutionary trend in 

linguistic sophistication and contextual richness across 

six WH question dimensions: subject detail, action 

precision, location specificity, temporal awareness, 

manner description, and purpose/reasoning. All model 

tiers, the inclusion of core components such as Subject 

and Action is nearly universal. According to Figure 6, 

models like Fuyu-8B, LLaVA, Kosmos-2, and 

Moondream2, demonstrate a perfect or almost perfect 

detection rate in the location category and suggest that 

existing architectures are highly tuned for spatial scene 

recognition, possibly due to the fact that the visual 

datasets that are available for training these types of 

models tend to heavily focus annotation on object 

localization. However, a stark contrast emerges when 

assessing the manner, reason, and time dimensions. For 

instance, while fuyu-8B achieves an unusual score in 

both location and manner, it lacks temporal capabilities, 

reflecting a possible design bias towards descriptive 

features without deeper contextual modeling. Of all the 

models, LLaVA and Moondream2 represent the two 

most balanced semantic profiles, with relatively high 

location scores and moderate performance in time. 

These two models are unique in their ability to take on 

complex multi-modal inference problems, integrated 

descriptive and causal and temporal aspects 

simultaneously. LLaVA also demonstrates superior 

abilities overall-although it lags slightly from other 

models in Purpose/Reasoning category. On the other 

hand, ViT-GPT2 as an earlier generation model 

represents the weakest overall in many categories. ViT-

GPT2, and GIT show serious limitations in reasoning, 

while ViT-GPT2, and OFA more serious limitations in 

reasoning, reflecting that they smaller semantic 

bandwidth. Models like BLIP-2 and OFA are more 

mixed-achieving decent Subject Detail scores, but 

demonstrating deficient performance in reasoning-

based categories, consequently. Thus, while the models 

demonstrate similarities in high spatial awareness, few 

extend this capability to encompass richer, 

understanding. multi-dimensional semantic Model like 

LLaVA is currently best suited for tasks requiring 

diverse semantic interpretations, whereas others remain 

confined to more surface-level scene understanding. 

This analysis underscores the need for more holistic 

training approaches and benchmark datasets that go 

beyond object detection to include causal and temporal 

reasoning. 

Table 4. Model-specific structural analysis. 

Models  

Caption structure tendencies 

Subject identification 

(Who/What) 
Action recognition 

(Doing what) 
Location description 

(Where) 
Temporal 

awareness (When) 
Manner description 

(How) 
Purpose/Reasoning (Why) 

ViT-GPT2 

[38] 

Basic subject 

identification with 
simple attributes 

Limited verb 

vocabulary, mainly 
present progressive 

Generic locations 

with minimal context 

Almost no temporal 

indicators 

Minimal, typically 

omits how actions are 
performed 

Almost entirely absent, 

rarely speculates on 
intentions 

OFA [51] 

Multiple subject 

recognition with 

improved attributes 

More diverse verbs 

with object 

interactions 

More detailed than 

earlier models, 
contextualizes 

subjects 

Basic temporal 
context recognition 

Improved, sometimes 

includes adverbial 

descriptions. 

Basic purpose of common 
activities 

GIT [50] 

Good attribute 
recognition with 

contextual relevance 

Good verb variety 
with subject-object 

interactions 

Contextual and often 
integrated with 

subjects 

Limited, typically 
implied rather than 

stated 

Moderate inclusion 
of descriptive 

elements 

Limited purpose recognition 

BLIP-2 [30] 
Excellent, with detailed 

attribute recognition 

Precise actions with 
contextual 

appropriateness 

Well-integrated 

spatial awareness 

Moderate temporal 

context recognition 

Good inclusion of 

descriptive adverbs 

Improved function and 

purpose recognition 

LLaVA [37] 
Contextually rich 

subject identification 

Nuanced actions with 
contextual 

interpretation 

Rich environmental 

context with function 

Improved 
explicit/implicit time 

awareness 

Rich manner with 
emotional 

understanding 

Notable improvement in 
reasoning about intent and 

causation 

Kosmos-2 [41] 
Detailed identification 

with visual grounding 

Precise verbs with 

spatial understanding 

Excellent spatial 

relationships between 
objects 

Good recognition of 

visual time cues 

Strong spatial-

manner integration 

Improved reasoning about 

function and purpose 

Fuyu-8B [6] 
Efficient but precise 

subject identification 

Context-appropriate 

action description 

Effective spatial 

awareness and scene 
composition 

Selective inclusion of 

temporal information 

Contextual manner 

descriptions when 
relevant 

Balanced purpose 

recognition 

Moondream2 

[46] 

Focused subject 

identification with key 
attributes 

Contextually 

appropriate actions 
and states 

Concise but effective 

spatial descriptions 

Efficient inclusion of 

key time indicators 

Selective inclusion 

based on relevance 

Efficient inclusion of key 

purposes 
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Figure 6. Multimodal model comparison: WH-Question capabilities (1,000 captions per model). 

4.2.2. Architectural Influence on WH-Question 

Coverage 

The ability of VLM to adress WH-questions (who, what, 

where, when, why, and how) is bound to architectural 

developments and training paradigms. Comparative 

analysis indicates that newer models like LLaVA and 

Kosmos-2 demonstrate illustrates how newer models 

provide better and a more equal coverage of WH 

questions at a more abstract level, such as Purpose and 

Reasoning. This can be explained again with the size of 

the model and quality of the underlying language model. 

Larger, and more capable language backbones allow for 

the generation of more complex and contextually 

nuanced responses related to WH-questions. However, 

the key relationship affecting performance is the depth 

of the visual-linguistic interface: models like BLIP-2 

and LLaVA use state-of-the-art cross-modal fusion so 

are able to merge spatial, contextual, and referential 

information better than other models built on basis of 

knowledge in literature. In addition, pre-trainings on 

multiple and semantical rich image-text datasets can 

help a model comprehend temporally and causally 

whilst architectures that employ explicit forms of visual 

grounding, as in Kosmos-2, enable models to accurately 

interpret scene-based dependence and juxtaposition of 

spatial locations. In terms of linguistic expressiveness, 

models are additionally impacted by the ability of the 

language decoder: the greater the language modules, 

usually, the larger and more varying and fluent the 

sentences produced by the models. Nearing captioning 

organization, in a lot of instances, models are fairly 

predictable in that they typically follow a cognitive 

hierarchy where they provide what the VLM perceives 

as the important notion of 

Subject→Action→Object→Context, with some more 

advanced models exhibiting variations in this pattern 

and beyond based on image salience and therefore 

semantics. In general, improvements in architecture and 

training enable a model to answer. Table 5 shows 

explicit patterns of increasing language and context 

sophistication closely correlated with model 

architecture and methods of training. The earliest-

generation models such as VIT-GPT2, OFA, and GIT 

are motivated by a basic subject-action location 

framework and produce captions that are similar to bare 

factual statements with little contextual 

detail/attachment. 

As models advanced to the intermediate tier, 

including BLIP-2 and LLaVA, their outputs began to 

incorporate a modest increase in descriptive richness, 

although they still adhered to a relatively formulaic 

syntactic structure. In contrast, the most recent and 

advanced models-Kosmos-2, Fuyu-8B, and 

Moondream2-demonstrate a substantial leap in caption 

complexity. These models generate multi-component 

narratives that not only contain elements of manner, 

degree, and purpose, but also generate descriptions that 

are similar to human interpretations in terms of 

elaborative scene descriptions. This evolution not only 

highlights a transition from basic object identification to 

more nuanced scene understanding but also underscores 

a growing capacity for contextual reasoning and 

semantic coherence. 
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Table 5. Characteristic caption patterns of vision-language models. 

Models  Characteristic caption pattern 

ViT-GPT2 [38] Formulaic structure: “[Subject] [simple verb] [object/location]”, shorter captions with straightforward constructions 

Limited handling of complex scenes with multiple subjects or actions 

OFA [51] 
More varied sentence structures than earlier models, can manage compound subjects and multiple actions 

Pattern: “[Detailed subject] [action verb] [object] [prepositional phrase for location/manner]” 

Better at capturing interactions between multiple entities 

GIT [50] 
More naturalistic language than earlier models, often begins with subject-focused descriptions before actions 

Typical structure integrates location with subject or action 

Example: “A [detailed subject description] [verb-ing] [object] in [detailed location]” 

BLIP-2 [30] Flexible structures with improved contextual awareness, rich descriptions with better relationships 

“A [detailed subject with multiple attributes] is [specific action verb-ing] [object] in a [detailed environment] with [specific features].” 

LLaVA [37] 

More conversational and natural language, oomplex sentences with causal or temporal relationships 

Better at abstract concepts and implied information, often includes evaluative or interpretive elements beyond description 

“A [specific] [subject] that appears to be [contextual description] is [nuanced action] [object] [manner] [apparent purpose] in what 
appears to be a [specific environment type] with [contextual details].” 

Kosmos-2 [41] 

Strong spatial relationships and positioning, often includes relative positioning of elements 

More sophisticated object attribute descriptions 

“A [specific type] of [object] with [distinctive features] [precise action] [object] [precise spatial relation] to [another object] in a 

[specific environment].” 

Fuyu-8B [6] 

Efficient but informative descriptions, efficient balance between detail and conciseness 
Less template-like, more adaptable sentence structures 

Example structure: “The image shows a [subject with key attributes] [specific verb] [object] [essential qualifier] in a [relevant 

environment descriptor] [key spatial relationship].” 

Moondream2 [46] 

Concise, information-dense descriptions, more straightforward structures optimized for efficiency, prioritizes key elements over 

exhaustive description, often follows template: “A [distinctive attribute] [subject] [position/state] [focused action verb] [qualifier when 

relevant] in/on [concise location description].” 

 

Overall, these findings show that advancements in 

model design have increased the capability of vision 

language systems to produce captions that demonstrate 

a more comprehensive understanding of visual 

elements. ViT-GPT2 is frequently used to produce brief 

and direct descriptions as single sentences. These 

descriptions are framed in terms of observable entities 

without inference or context. The structure is also fairly 

standard and follows a “subject-action-location” format. 

In general, the descriptions show accuracy but often 

miss out on more subtle details and relationships among 

the visual elements. GIT increases the breadth of the 

description by incorporating a more attributes and 

relationships in it. The captions provided by GIT often 

begin with the main subject and then build out 

describing anything else in proximity. Overall, it is a 

more descriptive description than the ViT-GPT2 

overall, although the overall description retains a 

mechanical structure, where the description first deals 

with the primary object in view and then the secondary 

objects. OFA represents a step forward in natural 

language generation. Its captions typically open with a 

scene overview before diving into specifics. The model 

creates more cohesive narratives by linking 

observations with transitional phrases, though it can 

sometimes be overly verbose in its attempt to be 

comprehensive. BLIP-2 provides impressive caption 

generation with coherence between sentence structure. 

It also has a narrative arc within descriptions, beginning 

with primary elements within scenes to contextual 

information. The strength of the model lies in its 

description of actions and relationships between 

elements in the scene. LLaVA considers captioning as a 

more conversational approach to description. The 

descriptions tend to capture direct observations and 

inferred context in both observation and narrative. 

LLaVA creates more of a narrative crossing stage 

directions and narrative point of view. When generating 

captions, LLaVA connect visual elements to implied 

purpose or context, which can sometimes lead to over-

interpretation. Kosmos-2 considers heading spatial 

relations when structuring captions. Most descriptions 

begin with a description of the scene, then detail the 

spatial arrangements and relations between the 

elements. The model excels at creating a coherent 

mental image by paying attention to relative positioning. 

The Fuyu-8B model generates very structured captions, 

balancing directness with readability. Fuyu-8B 

systematically describes primary, secondary, and 

contextual elements, while keeping the natural flow of 

language. The model performs well in organizing 

multiple observations into coherent narratives. Despite 

its lightweight design, Moondream2 is able to produce 

effective and focused captions. Its descriptions 

prioritize key elements while maintaining coherence. 

Moondream2 tends towards being concise, but 

complete, in its captions, but as shown in an example 

above. It might sacrifice some nuance as a result of 

being more informationally efficient. To sum-up, this 

comparative analysis of image captioning models 

outlines some important trends in the trajectory that 

caption generation has evolved into. First, there is a 

developing sophistication from simple subject verb-

object to richer scene semantics that use complicated, 

multi-layered, and layered categorization. More recent 

models clearly incorporate context clues and spatial 

relationship semantics, allowing them to produce 

captions that resemble a more proper human 

description. Additionally, some advanced architecture 

capabilities produce multi-sentence outputs and 

effectively describe primary elements and secondary 

details. There is a considerable range in how the models 
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treat attributes and modifiers - either with succinct 

descriptions or entirely detailed with elaborate captions. 

It seems as though this trend relates to a generalized 

increase in line length and depth of information with 

complexity in a model. Finally, instruction-tuned are 

more flexible and presented in different ways in their 

output, finding that fine-tuning with some language 

guidance enables both lexicon flexibility and offers a 

broad range of expression shown in the generated 

output. 

Table 6. Comparative analysis of vision-language models: performance across dynamic and behavioural understanding, object-level perception, 
and specialized recognition. 

Models 

Evaluation 

dimensions 

ViT-GPT2[38] OFA [51] GIT [50] BLIP-2[30] LLaVA [37] Kosmos-2[41] Fuyu-8B [6] Monndream2[46] 

S
ce

n
e 

a
n

d
 s

em
a

n
ti

c 
u

n
d

er
st

a
n

d
in

g
 

S
ce

n
e 

u
n

d
er

st
a

n
d

in
g
 

Limited by small-

scale pre-training 

but performs 

adequately on 

simple image-
caption tasks. 

Good at scene 

understanding due to 

large-scale pre-

training, 

moderate, but 

less tested on 

complex 

relational scenes 

achieving 

robust 

performance on 

scene 
comprehension 

indicating 

excellent scene 

comprehension 

with holistic 
contextual 

Robust 

performance 

with detailed 

scene 
description  

Strong in real-world 

scenarios, 

suggesting good 

scene understanding, 

but less tested on 
complex scenes. 

Strong scene 

understanding with 

effective detail 

capture 

V
is

u
a
l 

re
a
so

n
in

g
 

Limited reasoning 

capabilities 

beyond simple 

descriptions 

Good reasoning 

from unified task 

training, as 

evidenced by zero-

shot performance. 

Moderate 

reasoning with 

occasional 

inconsistencies 

Indicating 

strong 

reasoning. 

Exceptional 

reasoning about 

visual 

relationships and 

implications 

Advanced 

reasoning via 

grounding and 

causal language 

modeling 

Solid reasoning 

capabilities across 

various complexity 

levels 

Strong reasoning for 

a lightweight model 

S
p

a
ti

a
l 

re
la

ti
o
n

 

Limited spatial 

reasoning 
capabilities 

Good spatial 

reasoning due to 
unified architecture  

moderate; not 

spatial-focused 

Strong spatial 

reasoning with 

good 
directional 

awareness 

Superior spatial 

relationship 
understanding 

Excellent 

spatial 

reasoning and 
relationship 

description 

Good spatial 

relationship 

description 
capabilities 

Good spatial 

relationship 
understanding 

D
y

n
a
m

ic
 a

n
d

 b
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a
v
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l 

u
n

d
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st
a

n
d
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g
 

A
ct

io
n

 

re
co

g
n

it
io

n
 

Limited action 

recognition 

capabilities 

Adequate action 

recognition with 

some limitations 

Basic 

understanding 

of actions 

portrayed in 

images. 

Good 

perception of 

activities and 

actions in 

images 

Strong action 

recognition and 

contextual 

interpretation 

Advanced 

action 

recognition 

with contextual 

understanding 

Decent action 

recognition 

capabilities 

Good action 

recognition 

capabilities in 

common scenarios 

O
b

je
ct

 

in
te

ra
ct

io
n

 

Limited 

interaction 
recognition 

capabilities 

Good performance 
in identifying object 

relationships 

Moderate; 

captioning focus 
limits 

interaction. 

Strong 

interaction 
understanding 

with contextual 

interpretation 

Excellent 

recognition of 
complex object 

interactions 

Superior 

interaction 
analysis with 

detailed 

descriptions 

Good interaction 
recognition 

capabilities 

Reasonable 
interaction 

understanding. 

O
b

je
ct

-l
ev

el
 p

er
ce

p
ti

o
n

 

O
b

je
ct

 

id
en

ti
ty

 

Basic object 

identification with 

occasional errors 

Good performance 

in identifying object 

relationships 

Adequate 

interaction 

description with 

some limitations 

Strong object 

recognition 

across diverse 

categories 

Excellent object 

identification with 

fine-grained 

distinctions 

Superior object 

identification 

with contextual 

understanding 

Strong object 

identification 

capabilities 

Strong object 

identification 

capabilities across 

diverse categories 

O
b

je
ct

 

a
tt

ri
b

u
te

 

Basic attribute 
recognition for 

prominent features 

Good attribute 
identification 

performance 

Adequate 

attribute 
description with 

moderate detail 

Strong attribute 

identification 
across object 

types 

Excellent attribute 
recognition and 

description 

Superior 

attribute 
detection with 

detailed 

descriptions 

Strong attribute 
recognition 

capabilities 

Strong attribute 

recognition for 
common object 

properties 

O
b

je
ct

 

co
u

n
ti

n
g
 Limited counting 

abilities, 

especially in 

complex scenes 

Basic counting 

capabilities with 

some inconsistencies 

Moderate; 

captioning may 

include counts 

but not explicit. 

Decent 

counting but 

struggles with 

crowded scenes 

Good counting 

accuracy across 

various scenarios 

Strong counting 

abilities with 

spatial 

awareness 

Reliable object 

counting capabilities 

Reasonable counting 

accuracy for 

common scenarios 

O
b

je
ct

 

lo
ca

li
za

ti
o

n
 

Limited 
Localization 

capabilities. 

Good localization 
abilities due to 

unified architecture 

Basic 

localization 
with occasional 

imprecision. 

Good object 

localization 
with contextual 

understanding 

Strong 

localization 
capabilities with 

good spatial 

language 

Excellent 

spatial 
localization 

with precise 

descriptions 

Capable object 
localization across 

image regions 

Adequate object 

localization in 
standard 

compositions 

S
p

ec
ia

li
ze

d
 r

ec
o
g

n
it

io
n

 

T
ex

t 

re
co

g
n

it
io

n
 

Limited text 

recognition 

abilities 

Good text 

recognition with 

contextual 

integration 

Basic text 

recognition 

capabilities. 

Adequate text 

recognition but 

struggles with 

complex 

layouts 

Good text 

recognition with 

context integration 

Superior text 

recognition and 

integration into 

understanding 

Strong text 

recognition 

capabilities across 

different formats 

Adequate text 

recognition for 

standard text formats 

L
a

n
d

m
a

rk
 

re
co

g
n

it
io

n
 

Limited landmark 

recognition 

capabilities 

Adequate landmark 

recognition for 

common locations. 

Basic landmark 

recognition for 

well-known 

sites 

Good 

Landmark 

identification 

capabilities 

Good landmark 

recognition with 

contextual 

knowledge 

Advanced 

landmark 

identification 

abilities 

Decent landmark 

recognition with 

some limitations 

Reasonable 

landmark 

recognition for 

common locations 

F
o

o
d

 

re
co

g
n

it
io

n
 

Basic food 

recognition for 

common items 

Good food 

recognition across 

diverse cuisines 

Adequate food 

identification 

with basic 

descriptions 

Good food 

recognition 

with contextual 

understanding 

Strong food 

identification with 

detailed 

descriptions 

Advanced food 

identification 

capabilities 

Strong food 

recognition 

capabilities 

Strong food 

recognition with the 

ability to identify 

various dishes 

 

4.2.3. Structured Analysis of Captioning Models via 

Human Evaluation  

Image captioning models are evaluated across three key 

aspects: dynamic and behavioral understanding, object-

level perception, and specialized recognition. These 

aspects are assessed through twelve dimensions, as 

outlined in the table, to comprehensively gauge the 

models’ visual understanding capabilities, particularly 

in terms of scene and semantic comprehension. 

Overall performance of recent VLMs, as shown in 

Table 6, we get a clear stratification that reflects quite 

different strengths and design trade-offs at all model 



Toward Human-Level Understanding: A Systematic Review of Vision-Language Models ...                                                       93 

tiers. Best performing methods (i.e., LLaVA, Kosmos-

2, BLIP-2) show enormous potential  in multimodal 

understanding due to their sophisticated architectures 

and training techniques. LLaVA outperforms by a 

significant margin in visual and interaction reasoning, 

object identity, and interaction understanding, which is 

mainly due to its instruction-tuning method and strong 

language model backbone. Kosmos-2 is closely 

followed by Kosmos, which performs well in text 

recognition and spatial localization by considering its 

text-grounding framework and large-scale multimodal 

training that scopes a server room to integrate textual 

with visual semantics. 

BLIP-2 shares the same consistency between 

evaluation metrics, and the consistency between scene 

understanding and landmark recognition, which 

benefits from the two-stage pipeline and the Q-Former 

module that well connects the vision encoder and the 

language model. 

We classify a group of models, like Fuyu-8B, OFA, 

Moondream2, and GIT, to the middle tier as the models 

do not have ultra-specialized but relatively competent 

ability. By exploiting its efficient architectural design 

and its end-to-end pipeline training strategy, Fuyu-8B 

achieves remarkable performance and tends to show 

fine promise in text recognition as well as object 

counting. 

OFA takes advantage of its end-to-end sequence-to-

sequence framework and achieves superior performance 

in food recognition and attribute analysis. An apparent 

art-humanist implementation, Moondream2, it orally 

competes with general methods in tasks of image 

captioning and scene understanding at a certain scale of 

I model sizes. Although coarser, GIT retains 

rudimentary object competences and seems to be an 

earlier design. 

On the other hand, lower-tier ViT-GPT2 models 

reveal the shortcomings of the earlier VLM designs. 

Although it does have some basic object detection 

capabilities, it struggles with more advanced reasoning, 

understanding, detecting spatial relationships, and 

recognizing text. This fine-grained performance 

summary not only describes how the architecture 

evolves and how the training varies among VLMs but 

also demonstrates the increasing significance of 

customizing pre-training and integration methods to 

yield comprehensive visual-linguistic representation. 

The analysis indicates a wide disparity in 

performance across VLMs, with newer architectures 

typically outpacing older architectures. Among the 

VLMs, LLaVA, Kosmos-2, and Fuyu-8B consistently 

outperform the other models across several 

characteristics, as they represent advancements in 

architectural and training methodologies, catalysing the 

linking of vision and language modalities. 

Performance gaps are most pronounced in complex 

reasoning tasks (e.g., visual reasoning, spatial relations, 

object interactions) and in granularity of understanding 

(e.g., text recognition, object counting, locating 

objects). Each of these aspects likely relies on complex 

interactions between visual perception and language 

understanding, illustrating the opportunities offered by 

thoughtful architectural development and an expansive 

training corpus. 

Fuyu-8B’s strong performance despite its simpler 

architecture suggests promising directions for 

architectural streamlining without significant capability 

loss. Similarly, Moondream2 represents an impressive 

achievement in efficient model design, demonstrating 

that lighter models can achieve surprisingly robust 

performance in image understanding tasks, particularly 

in image captioning and object identification. 

Moondream2’s effectiveness challenges assumptions 

about size-performance trade-offs in VLMs, suggesting 

that careful dataset curation and training optimization 

can produce highly efficient models with capabilities 

approaching those of much larger counterparts in many 

practical scenarios. 

Future VLM development would benefit from 

exploring Moondream2’s efficient design principles 

while continuing to improve fine-grained spatial 

understanding, complex visual reasoning, and better 

integration of text recognition with general visual 

perception capabilities across all model scales. 

The comparison shows how each model has unique 

approaches to structuring and prioritizing information in 

captions. However, several challenges remain 

unresolved, particularly the issue of generic bias, which 

limits the informativeness of captions. Existing models 

often generate overly broad descriptions, failing to 

capture the unique aspects of images. This issue is 

exacerbated by the inherent nature of training data and 

generation mechanisms. 

Our findings reveal a persistent challenge in vision-

language models: the tendency to produce generic 

captions that lack domain-specific nuance. Motivated 

by this limitation, we are working on a centered context-

aware regularization, a novel training paradigm that 

dynamically penalizes overly generic outputs while 

preserving fluency. This approach integrates two key 

innovations: 

1. Domain-adaptive priors that steer descriptions 

toward application-critical details. 

2. Contrastive concept learning to sharpen distinctions 

between visually similar but semantically distinct 

elements. 

5. Conclusions 

This study makes three key contributions to advancing 

image captioning evaluation. First, we establish a 

comprehensive human assessment framework that 

evaluates VLMs across multiple critical dimensions, 

including fluency, specificity, grounding accuracy, and 

stylistic appropriateness, revealing important 

limitations that standard automated metrics fail to 
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capture. Our large-scale comparative analysis of state-

of-the-art architectures uncovers fundamental trade-

offs, such as the tension between descriptive richness 

and factual reliability, while identifying persistent 

challenges in spatial reasoning and domain adaptation. 

Most significantly, we develop and validate a 

standardized evaluation protocol featuring a detailed 

error taxonomy, domain-specific criteria, and robust 

quality control mechanisms. These contributions 

collectively demonstrate that while modern models 

excel at conventional benchmarks, they still struggle 

with contextual specificity and often produce generic 

descriptions. Our findings not only provide practical 

guidance for model selection in real-world applications 

but also establish essential groundwork for future 

research directions, including multilingual evaluation, 

bias mitigation, and the development of hybrid human-

AI assessment systems. By integrating rigorous human 

evaluation with technical analysis, this work moves the 

field toward more dependable, adaptable, and 

contextually aware caption generation. 
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