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Abstract: With the increasingly fierce global competition, the manufacturing industry also needs to implement low-carbon
scheduling to improve its competitiveness. To achieve the low-carbon goals of manufacturing enterprises, this study first
constructs a multi-objective workshop low-carbon scheduling model for manufacturing enterprises. Then, the crossover
operator, mutation operator, and elite retention strategy of the Non-Dominated Sorting Genetic Algorithm Il (NSGA-II) are
improved, which is applied to handle the low-carbon scheduling model between vehicles. When the targets were 20, the proposed
model solved two multi-objective optimization test functions with inverse generation distance values of 0.338 and 1.153, and
spatial evaluation values of 0.013 and 0.415. The proposed model had a faster solving speed and converged to the optimal
solution in about 10 iterations. The proposed model performed the best in solving Low-Carbon Scheduling in Manufacturing
Workshops (LSCW), with the shortest maximum completion time of 6.12 hours, the lowest total energy consumption of 6.71x10°
kJ, and still the lowest carbon emissions of 5.92x10% kW/h. The proposed model in solving the low-carbon scheduling model of
manufacturing workshops can help reduce carbon emissions in manufacturing workshops and promote the green transformation
of the manufacturing industry.
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1. Introduction

Nowadays, reducing Carbon Emissions (CEs) has
become an important goal for governments and
businesses around the world. CE is one of the key
influencing factors for the continuous deterioration of
the environment and the intensification of haze, and
classical Manufacturing Industry (M) often suffer from
problems such as energy waste, low efficiency, and high
CE [9]. How to reduce CE and improve energy
efficiency in Ml is a key issue. As the core link of MI,
the production workshop has high Energy Consumption
(ES) and serious CE problems. Low Carbon Scheduling
in Ml Workshop (MI-LSCW) is of great significance for
reducing Manufacturing Industry Carbon Burden
(MICB) [10]. Low Carbon Scheduling in the Workshop
(LSCW) helps achieve the sustainable development
goals of enterprises by optimizing production processes
and resource utilization [28]. However, as the
complexity of MI systems increases and the flexible
resources increases, the complexity and difficulty of
LSCW also sharply increase, requiring enterprises to
research more efficient scheduling strategies to cope
with increasingly complex manufacturing environments
[25]. The Non dominated Sorting Genetic Algorithm

II(NSGA-I1) is introduced in workshop scheduling. It is
used in workshop scheduling problems to
simultaneously optimize multiple objective functions,
aiming to optimize job completion time, reduce CE, and
balance machine load, thereby improving production
efficiency and reducing environmental impact [29].
However, currently NSGA-II still has insufficient
convergence and local convergence issues in LSCW,
which limits its performance in solving LSCW
problems. Thus, this study builds a Multi-Objective
(MO) MI-LSCW model and uses Improved NSGA-II
(INSGA-I1I) to calculate the LSCW model. This study
aims to provide effective LSCW for MI. The innovation
of this study lies in proposing an improved Elite
Retention Strategy (ERS) to address the issue of poor
diversity in NSGA-II, which can determine the number
of elites to be retained with a certain proportion to avoid
the loss of population diversity. The following is a
summary of the content of this study:

1) The current research status is analyzed.

2) Multi-objective  MI-LSCW has been built and
NSGA-II has been improved.

3) The proposed model is subjected to application effect
analysis.
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4) The entire study has been summarized.

2. Related Work

LSCW aims to reduce ES and CE in the workshop
production process through reasonable scheduling
arrangements, thereby achieving the goals of efficient
manufacturing and energy conservation and emission
reduction. Li et al. [8] constructed a novel model that
included real-time task list updates and non-periodic
departure methods, and validated it through practical
cases. The proposed dynamic scheduling model could
reassign automatic guided vehicles, and had certain
feasibility and effectiveness. Yang et al. [26] built a MO
production scheduling offloading optimization model,
and solved the model using intelligent algorithms. The
method effectively balanced production efficiency and
computational latency. Ning and Huang [15] developed
a mathematical model to minimize completion time,
workload, and CE. They also proposed an enhanced
model with double-chain encoding that could meet the
MI workshop’s emission reduction requirements during
production and processing. Xu et al. [24] introduced a
switching strategy during the idle time of equipment in
the MI workshop to establish a model, and used
intelligent algorithms to calculate the model, which had
certain effectiveness. Mou et al. [14] established a fuzzy
programming model, and proposed a machine learning
based multi strategy approach to solve the model. The
proposed method could effectively solve the reverse
workshop scheduling problem. Tliba et al. [22]
examined the dynamic scheduling problem in a real
mixed-flow workshop. They established a simulated 3D
workshop model and proposed a dynamic scheduling
model with digital twins. This model demonstrated
promising application results in the 3D workshop. Shao
et al. [17] built a MO meme algorithm using, and
utilized a decoding strategy to decline the search space
of subproblems. They obtained all the metrics in the
comparison algorithms within a limited running time.
NSGA-II simplifies the complexity associated with
non-dominated sorting, offering advantages such as
rapid execution speed and effective convergence. Feng
et al. [3] established a multi-level cross planning matrix
and proposed an overall layout planning model for
landscape ceramic sculptures with NSGA-II. The
optimal layout optimization rate could reach over 60%,
which could effectively improve the layout planning of
sculptures. Zhang [27] improved the NSGA-II and
proposed an MO optimization model with lower
iteration curves in cost, time, and environmental
objective  functions than classical NSGA-II,
demonstrating better MO optimization performance. To
further promote the widespread application of NSGA-
II, Ma et al. [11] conducted a comprehensive
investigation of its related research work, classified its
applications in the engineering field, and discussed its
future research potential. Ma et al. [12] built a meta

model for welding quality indicators through orthogonal
experiments and proposed a MO optimization model for
welding process parameters with NSGA-Il. The
optimized welding process parameters could increase
the depth of sidewall fusion and helped improve the
overall quality of ultra-narrow gap welding processes.
Kabiri et al. [5] proposed a three-level dual objective
programming model, and solved it using NSGA-II. This
method could achieve maximum profit and minimize
greenhouse gas emissions. Zhuo et al. [31] built a
surrogate model for the relationship between process
parameters and quality evaluation indicators based on
Gaussian process regression, and achieved MO
optimization using NSGA-II. It has good prediction
performance and stability, with relatively small relative
error values. Tang et al. [20] constructed a MO
optimization model for path planning, and proposed an
optimized NSGA-II. The waiting time of the proposed
method was reduced by 42.39%, and the no-load
distance was reduced by 10.50%.

In summary, although many researchers have
analyzed the workshop scheduling problem and proved
the application effect of NSGA-II in solving
optimization scheduling problems, NSGA-II still has
insufficient convergence and local convergence
problems. To this end, this study proposes an INSGA-
Il, aiming to achieve faster low-carbon scheduling in
workshops and create greater environmental benefits for
businesses and society.

3. LSCW Solution with INSGA-II

To effectively reduce CE in the M1 workshop, this study
will construct an MI-LSCW model that integrates
completion time, total ES, and CE. Subsequently,
improvements were made to the crossover operator,
mutation operator, and ERS of NSGA-II, and INSGA-
Il is applied.

3.1. MI-LSCW Model Construction

To effectively reduce CE in the M1 workshop, this study
conducts MI-LSCW mathematical modeling. LSCW is
an optimization model that involves multiple production
processes and equipment, with the aim of specifying the
machining sequence for different workpieces and
achieving optimal resource allocation for workshop
scheduling production [1]. n workpieces are processed
by m different machine tools, and each workpiece
undergoes multiple different processes in a certain
order. Figure 1 shows the workpiece processing process
in the MI workshop.

To meet the needs of actual production, this study
selected three  optimization objectives  when
constructing MI-LSCW: minimizing the Maximum
Completion Time (MCT), the total ES of the workshop,
and the total amount of CE. The objective function f; for
minimizing the MCT is shown in Equation (1).
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Figure 1. The workpiece processing process.

fi = min(max(T;))

Pi m

T; = Z Z(Ti% + TR - Xijk (1)

j=1k=1

In Equation (1), Ti is the completion time of workpiece
i. pi represents the quantity of processes of workpiece i
.Ti‘]’-z is the processing time of the j™ process of
workpiece i on machine tool k. represents the
transportation time from machine tool h to k. Xij is the
decision variable. When its value is 1, the j™ process of
workpiece i is processed on machine tool k. Otherwise,
its value is 0. The objective function f; is shown in
Equation (2).

f2
m n Pi (2)
Z [(ZZ Tii‘injk> E.+ (Tk - Tlg - Ti(;zxijk)Eu + (max(Ti))Ei
k=1|\i=1 j=1
In Equation (2), Ec denotes the ES per unit time during
the machining process of machine tool k. Tk denotes the
completion time of machine tool k. T denotes the start-
up time of machine tool k. Eu denotes the ES per unit
time when machine tool k is idling. E; is the ES per unit
time in the workshop. In Figure 2, this study divides the
main sources of CE in the MI workshop into the basic
CE generated by machine tool operation and the CE
generated by other auxiliary transportation equipment.
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Figure 2. The main source of CE in manufacturing workshops.

In Figure 2, the main CE of the MI workshop is
concern with the operating status of the machine tools,
the operating power and time of the auxiliary
transportation equipment. The operating status of the
machine tool includes on/off state, processing state, and
standby state. The on/off state of a machine tool refers
to the ES generated by the machine tool from the off
state to the on state, as well as from the on state to the
off state. The calculation of CE Q° during this process
is shown in Equation (3).

Q= P TEHPETIXE @)
k=1

In Equation (3), P¢ and P represent the starting power
and unloading power of machine tool k, respectively, in
kW. & represents the electrical energy CE conversion
factor. The calculation of CE Q® for machine tool
machining is shown in Eequation (4).

n Pi m

Q™ = >N PRTShE X Xige (4)

i=1j=1k=1

In Equation (4), P2? is the machining power of the
machine tool k, in kW. Standby CE is the CE generated
when the machine tool is in standby mode, during which
the machine tool is not fully utilized. Therefore, standby
CE can be reduced by shutting down and restarting or
arranging the processing sequence reasonably. To
determine whether a shutdown and restart strategy is
needed for the machine tool, the difference in time and
CE between the machine tool’s standby state and the
shutdown and restart strategy needs to be considered.
Figure 3 is a schematic diagram of determining whether
to shut down and restart the strategy.

This study assumes that the total number of
machining processes of machine tool k is, and the
calculation of machine tool standby CE QP' considering
shutdown and restart operations is shown in Equation
(5).

Qpre —

m Bk (5)
D ((Sucerny = V) X B X (1= Zi) + 2 YT x
k=1t=1
In Equation (5), Ske+1) is the starting processing time of
the t+1" process of machine tool k. Uk represents the
end processing time of the t™" process of machine tool k.
E2'7 is the standby power of the machine tool k, in kW.
Zx is the decision variable, when its value is 1, the
shutdown and restart strategy is executed. E;?f f
represents the ES required for one shutdown and restart
strategy. The calculation of CE for auxiliary equipment
Q? is shown in Equation (6).

Q=) D PThxE (6)

In Equation (6), P? is the power of the auxiliary
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equipment, in kW. Therefore, the objective function f;
of minimizing the total CE is shown in Equation (7).

f5 = minQeora = min(Q° +Q°? + Q¢ +@»  (7)

In Equation (7), Quwtal represents the total amount of CE.
In addition, to improve the quality and practicality of the
scheduling scheme, the MI-LSCW model also needs to
satisfy the following five constraints. First, the same
workpiece and process can only be processed by one
machine tool. Secondly, interruptions are not allowed
during the machining process of the workpiece. Thirdly,
the first process of each workpiece does not take into
account transportation time. Fourth, there is a sequential
order between different processes of the same
workpiece, and only after the current process is
completed can the next process be entered. Fifth, the
completion time of each workpiece shall not exceed the
MCT.

3.2. Solution of LSCW with INSGA-II

The MI-LSCW requires finding a balance point
between multiple objectives. Therefore, this study
applies NSGA-II to calculate the model. In MO
problems, there is a Pareto front composed of a set of
solutions [2, 21]. Figure 4 shows the NSGA-II’s
process.

In Figure 4, NSGA-II introduces strategies such as
fast non-dominated sorting, crowded distance, and elite
retention, making it efficient and high-precision in MO
optimization problems. Non-dominated solution refers
to a Bk soluion that is superior to other solutions in at

least one objective, while not inferior to other solutions
in other objectives. It improves any objective function
without weakening the performance of other objective
functions. Fast non-dominated sorting is a non-
dominated solution search algorithm used for MO
optimization problems, which divides the solution set
into multiple non-dominated layers, where the solutions
in each layer do not dominate each other, but the
solutions within each layer dominate the solutions in
other layers, thus finding the Pareto optimal solution set
with less computational cost [7]. First, the quantity of
individuals np that dominate individual p in the
population and the dominating solution set S, of
individual p are calculated. Secondly, if there is an
individual np=0, it is placed in the first layer and saved
in the set Fi. Then, the dominance correlation between
the individual in F1 and other individuals is compared,
and the dominance solution set is updated.
Subsequently, for each individual in F1, np is subtracted
by 1. If n,=0 is satisfied after subtracting 1, the
individual is placed in the second layer and saved in the
set F». This operation is repeated until all individuals are
stratified. Finally, all stratified individuals are saved to
the corresponding result set. Crowding distance is an
indicator used to evaluate solutions to MO problems,
which evaluates the crowding distance of individuals by
calculating the density around them, helping to avoid
the population falling into local optima [16, 23]. Taking
the two objective minimization problem as an example,
Figure 5 presents the schematic diagram of crowding
distance.
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Figure 4. The flowchart of NSGA-II.
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Figure 5. Schematic diagram of crowded distance.

Crowding distance can measure the distribution
uniformity and diversity among individuals in a
population, to avoid the algorithm getting stuck in local
optima. The calculation of crowding distance d; usually
involves hierarchical storage of all individuals in the
population, see Equation (8).

di= ) (I =fi)o=12..a (8)

In Equation (8), a is the quantity of objective functions.
f+1 is the function value of individual I+1 on the o™
objective £!=1 is the function value of individual I-1.
The ERS preserves excellent individuals, enabling the
offspring population to inherit superior genetic
information during the evolutionary process. This
accelerates the convergence speed and optimization
effect of the algorithm [19, 30]. Figure 6 shows the ERS.

Non-dominated sorting  Crowded distance sorting
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—

Figure 6. Schematic diagram of ERS.

Py

In Figure 6, the ERS directly replicates specific
individuals from the previous generation to the next
generation, which can avoid the optimal individual
being destroyed due to hybridization operations.
Nevertheless, the NSGA-II algorithm has certain
limitations; it is susceptible to premature convergence
(local optima) and exhibits low convergence efficiency
[13]. Therefore, this study proposes an INSGA-II. First,
in response to the issue of NSGA-II’s inability to ensure
that individuals in the population search within nearby
regions when generating offspring, this study proposes
to determine which operation to perform on individuals

with non-dominated sorting levels and generated
random numbers. If the non-dominated sorting level is
1 and the generated random number is less than 0.5,
perform a variable neighborhood search operation. If the
sorting level is not 1 and the generated random number
is greater than or equal to 0.5, selection, crossover, and
mutation operations will be performed. Secondly, the
crossover and mutation operators of NSGA-I1 have been
improved. NSGA-II simulates the genetic and mutation
processes in biological evolution [4, 18]. The crossover
probability of the improved crossover operator Pc is
calculated as shown in Equation (9).
fmax - favg

p = {Pcmin
. =
Pcmax'f’ < favg

In Equation (9), Pemax and Pemin represent the largest and
smallest values of crossover probability, taken as 0.9
and 0.7. fmax and fayg are the largest and average values
of fitness. f” represents the larger fitness value between
two individuals. After obtaining the maximum value of
the parent gene locus, the integers on n gene locus are
discretized into j new parent individuals, as shown in
Equation (10).

Pcmax B Pcmin
+7(/ﬂ _favg)'f’ = favg (9)

(b + 1)(xi—max - xi—min)
j—1
b=12,...j;i=12..,n

J_
ei = Xi—min

(10)

In Equation (10), xi-max and Xi-min represent the largest and
smallest values on the i™" gene locus of the parent
chromosome, respectively. Two individuals are selected
from the original and new parent individuals, and the
starting and ending positions are randomly selected. The
genes at this position are partially matched and crossed.
The mutation operation introduces new genetic
variations by randomly changing some genes of the
individual [6]. The mutation probability of the improved
mutation operator Py is shown in Equation (11).

fmax - favg
Pvmaxrf < favg

In Equation (11), Pumax and Pumin represent the largest
and smallest values of crossover probability, taken as
0.1 and 0.001, respectively. f represents the fitness value
of the mutant individual. The mutant gene x;,, is shown
in Equation (12).

Xy = X [1 +¢(0,1) (1 - %)] (12)

In Equation (12), xm represents the gene before
mutation. C(0,1) represents the Cauchy distribution. tis

the current iteration count. T is the largest iteration
count. The improved mutation operator has a strong
mutation effect, and the degree of mutation gradually
decreases gradually, enabling the algorithm to search for
more feasible solutions. In addition, this study builds an
ERS with population balance to address the issue of
reduced species diversity in NSGA-Il. Assuming the

Bomax = Pomin '
- {pmzn + T (fae = . 2 favg (11)
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population size is N, if the total number of individuals is
bigger than N, the top N optimal individual based on
crowding distance is retained. If it is equal to N, all
individuals in the first non-dominated layer are retained.
If the total number of individuals is less than N, the
selection of individuals in the x™ layer and the
calculation of the new population pw1 are shown in
Equation (13).
( s
n, = ﬁ

T m?
1
=m —,r=1,2,..,
th+1 1t EZ N x
<

In Equation (13), nx represents the quantity of
individuals to be selected in the x™ layer. my is the total
quantity of individuals in the x™" layer. m; represents all
individuals in the first non-dominated layer. Figure 7 is
a schematic diagram of an improved ERS.
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Figure 7. Schematic diagram of improved ERS.

In Figure 7, the proposed improved ERS first retains
all individuals in the first non-dominated layer of the
population to the new population, and then retains
individuals in a certain proportion, which can improve
its efficiency.

63
4. Analysis of Low-Carbon Scheduling
Effect with INSGA-II
To validate the performance of the low-carbon

scheduling model solving method with INSGA-II, this
study applied MO optimization test functions and
explored their application effects in solving the MI-
LSCW model through test cases.

4.1. Performance Analysis of INSGA-II

This study used the MO optimization test function Deb
Thiele Laumanns Zitzler (DTLZ) for testing.
MatlabR2020 was used for simulation experiments,
with a computer system of Windows 11, a central
processing unit of i7-9800X, and 16GB of memory. The
population size was 150 and the largest iterations were
200. INSGA-II was compared with Inverse Generation
Distance (IGD), classical NSGA-II, Strength Pareto
Evolutionary Algorithm 2 (SPEA2), and Multi-
Obijective Evolutionary Algorithm with Decomposition
(MOEAD). In Figure 8, each algorithm ran
independently 30 times. In Figure 8-a), in the solution
of DTLZ1, as the number of targets increased, the IGD
values of all four algorithms gradually increased.
Among them, the IGD value of INSGA-II was always
the lowest, and when the target quantity was 20, the IGD
value was 0.338. Secondly, MOEAD and SPEA2 had
the highest IGD values. In Figure 8-b), INSGA-II still
performed the best in terms of IGD metrics in the
solution of DTLZ2. When the target quantity was 20,
the IGD value was 1.153. INSGA-II achieved good
results in IGD indicators, with good convergence and
distribution performance.
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Figure 8. Comparison of inverted generation distance among four algorithms.

Figure 9 compares the Spatial Metric (SM) values of
the four algorithms mentioned above. In Figure 9-a), as
the number of targets increased, the SM values of all
four algorithms gradually increased. Among them,
INSGA-II performed the best in the SM indicator, with
an SM value of 0.013 when the target quantity was 20.
In Figure 9-b), the SM value of INSGA-II was still

lower than the other three algorithms, and when the
number of targets was 20, the SM value was 0.415.
Secondly, MOEAD and classical NSGA-II had the
highest SM values. As a result, INSGA-II achieved
good results in the SM index, and the algorithm had
good convergence.



64 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

100 20
80 1.6 "
E e E ) o -
§ 60 - O NAGA-TII £ R
E —A - MOEAD = 1 O NAGAI
& 0O SPEAZ H —4& — MOEAD
s —— Improved NAGA-TI E -0 SPEA?2
o 40 208 _ i
= - -.—0 = —&— Improved NAGA-II
3 o =
= --a = |
= - - & [a} O-- - - o
20 0.4
P D S
| A e ——— 5~
0 A a2 0.0
8 12 16 20 8 12 16 20
Number of targets Number of targets
a) DTLZ1. b) DTLZ2.

Figure 9. Comparison of spacing metrics for four algorithms.

This study conducted ablation experiments. The
target quantity was 8, and INSGA-I1 was compared with
classical NSGA-II, INSGA-Il without improved
crossover operator (A), INSGA-II without improved
mutation operator (B), and INSGA-II without improved
ERS (C). All algorithms were independently run 30
times, and the experimental results were presented in the
form of meanzstandard deviation. Independent sample
t-test (0=0.05, Bonferroni correction) was used to verify
the significant differences between the proposed

improved NSGA-I11 algorithm and other algorithms. As
shown in Table 1, INSGA-II had the best performance
in solving DTLZ1 and DTLZ2. It had the lowest IGD
and SM values, which were significantly lower than
those of algorithms A, B, and C (p<0.05) and extremely
significantly lower than those of the traditional NSGA-
Il algorithm (p<0.01). Consequently, the enhancement
strategy had the potential to significantly enhance the
convergence performance of NSGA-II, and had certain
feasibility and effectiveness.

Table 1. Results of ablation experiment.

Algorithm DTLZ1 DTLZ2
IGD SM IGD SM
NSGA-I1 | 34.155+3.244™ | 54.317+2.371™ | 1.229+1.887" | 0.812+0.106™
A 2.423+0.239" | 0.374+0.035" | 0.639+0.065" | 0.593+0.052"
B 2.437+0.242" | 0.381+0.037° | 0.647+0.071" | 0.610+0.057"
C 4.263+0.433" | 0.538+0.056" | 0.865+0.094" | 0.764+0.069"
INSGA-Il | 0.230+0.022" | 0.007+0.001° | 0.517+0.050" | 0.329+0.028"

Note: ™ indicates a highly significant difference compared to INSGA-I1, p<0.01, * indicates a significant difference compared to INSGA-II, p<0.05.

In Figure 10, the IGD values of the five algorithms
mentioned above were compared under different target
quantities. In Figure 10-a), as the number of targets
increased, the IGD values of different algorithms
showed an upward trend. Among them, the IGD value
of algorithm C was only inferior to classical NSGA-II,
indicating that the improved ERS had a more significant

optimization effect on the algorithm. In Figure 10-b),
INSGA-II still performed the best in terms of IGD
indicators. Therefore, the improvement strategy had the
potential to significantly enhance the performance of
NSGA-II, with the contribution of improving the ERS
being the greatest.
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Figure 10. Comparison of IGD values for five algorithms.

4.2. Effect Analysis of MI-LSCW

To test the performance of INSGA-II in handling LSCW
model, this study used classic examples such as Kacem
and Brandimarte for testing. In Figure 11, the search
processes of INSGA-II and classical NSGA-II for
solving Kacem0l1 and Kacem03 problems were
compared. In Figure 11-a), both INSGA-1I and classical

NSGA-II could solve for the optimal solution, but
INSGA-I1I had a faster solving speed and converged to
the optimal solution after about 10 iterations. In Figure
11-b), the classical NSGA-II fell into a local optimum
and failed to find the optimal solution. INSGA-II
jumped out of the local optimum multiple times.
Therefore, INSGA-II had a fast convergence speed and
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strong optimization performance, demonstrating good
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scheduling performance.
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Figure 11. Comparison of search processes for solving kacemO1 and kacemQ3 problems.

In Table 2, the test results of INSGA-II, classical
NSGA-II, Improved Genetic Algorithm (IGA)
combined with reactivation mechanism, Powell Search
Method Genetic Algorithm (PSM-GA) and Multi-
Objective Genetic Algorithm (MOGA) on the

Brandimarte case were compared. Among the six test
cases, INSGA-Il showed the best optimization
performance, and obtained the shortest MCT.
Therefore, INSGA-Il had certain feasibility and
effectiveness.

Table 2. Brandimarte case test results.

Example | Optimal solution Algorithms
ple &p NSGA-11| IGA |PSM-GA| MOGA [INSGA-II
MKOL [36, 42] 40 40 40 40 40
MKO02 [24, 32] 29 28 26 28 26
MKO03 [204, 211] 208 204 204 206 204
MKO04 [48, 81] 68 65 61 66 60
MKO05 [168, 186] 180 176 173 178 173
MKO06 [33, 86] - - 65 68 59
105 - NSGA-II 105 — - NSGATI =R — - NSGA-I
i -~ MOGA =z '\ - MOGA = N o MOGA
05 — Improved NSGA-TT = o b —— Improved NSGA-I Eal N — Improved NSGA-II
& 2
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Tterations
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b) Total energy consumption in the workshop.

Iterations

c) Total carbon emission.

Figure 12. Iterative curve comparison.
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Figure 13. Pareto frontier comparison.

In Figure 12, this study took a manufacturing
workshop as an example and used classical NSGA-II,
MOGA, and INSGA-II algorithms in MATLAB
software to optimize and solved the three objectives in
the MI-LSCW model. In Figure 12-a), INSGA-II

performed the best in minimizing the MCT, with the
lowest MCT of 6.12 hours. The MCT for MOGA and
classical NSGA-II was both over 6.5 hours. In Figure
12-b), the total ES calculated by INSGA-II was the
lowest, at 6.71x10°kJ. In Figure 12-c), the CE obtained
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by INSGA-II was still the lowest, at 5.92x10%kw/h.
Therefore, INSGA-II performed well in solving the MI-
LSCW model, and could solve scheduling schemes with
shorter completion time, less total ES, and CE, which
had certain feasibility and effectiveness.

In Figure 13, the Pareto front gotten by INSGA-II
was compared with classical NSGA-II and MOGA.
INSGA-II had better approximation and distribution,
and had stronger performance in solving MI-LSCW
models.

5. Conclusions

To reduce CE in the manufacturing workshop while
ensuring production efficiency, this study constructs an
MI-LSCW model with three optimization objectives:
minimizing MCT, minimizing total ES, and minimizing
CE. An INSGA-II is constructed. As the number of
targets increased, the IGD and SM values of the four
algorithms gradually increased. When solving DTLZ1,
the IGD value of INSGA-II was always the lowest, and
when the number of targets was 20, the IGD value was
0.338. INSGA-II performed the best in the SM metric,
with an SM value of 0.013 when the target quantity was
20. In the solution of DTLZ2, when the number of
targets was 20, the IGD value of INSGA-II was 1.153
and the SM value was 0.415. INSGA-II performed the
bestin solving DTLZ1 and DTLZ2, with the lowest IGD
and SM values. The IGD and SM values of classical
NSGA-II were the highest. In the solution of Kacem01,
both INSGA-II and classical NSGA-II could solve for
the optimal solution, but INSGA-I1I had a faster solving
speed and converged to the optimal solution in about 10
iterations. The MCT solved by INSGA-II was the
shortest, which was 6.12 hours. The MCT for MOGA
and classical NSGA-II was both over 6.5 hours. The
total ES and CE calculated by INSGA-II were the
lowest, with values of 6.71x10°kJ and 5.92x10*kw/h.
INSGA-II had better approximation and distribution,
and had stronger performance in solving MI-LSCW
models. Thus, the INSGA-II had good convergence
performance and has also demonstrated good results in
solving LSCW problems. The proposed low-carbon
scheduling model and INSGA-II algorithm have broad
application potential in MO collaborative optimization
in multiple practical, complex industrial scenarios, such
as automobile manufacturing, electronic precision
manufacturing, and processing large components in the
aerospace industry. It can optimize workpiece sequence
and equipment allocation, reduce high-ES equipment
idle and material handling CEs. However, to simplify
calculations, current research models primarily focus on
static scheduling environments. These models assume
that machines will not experience unexpected stops
during the production process. The actual workshop
often faces dynamic disturbances, such as machine
failures, emergency order insertion, or raw material
shortages. Therefore, in future research, further analysis

should be conducted on unexpected situations such as
machine failures and emergency order insertion. To
build a workshop low-carbon scheduling model that is
more in line with actual production situations, the
proposed algorithm should be embedded into an event-
driven rescheduling framework to cope with dynamic
disturbances or integrated with real-time workshop loT
data for online optimization and evaluation.
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