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Abstract: With the increasingly fierce global competition, the manufacturing industry also needs to implement low-carbon 

scheduling to improve its competitiveness. To achieve the low-carbon goals of manufacturing enterprises, this study first 

constructs a multi-objective workshop low-carbon scheduling model for manufacturing enterprises. Then, the crossover 

operator, mutation operator, and elite retention strategy of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) are 

improved, which is applied to handle the low-carbon scheduling model between vehicles. When the targets were 20, the proposed 

model solved two multi-objective optimization test functions with inverse generation distance values of 0.338 and 1.153, and 

spatial evaluation values of 0.013 and 0.415. The proposed model had a faster solving speed and converged to the optimal 

solution in about 10 iterations. The proposed model performed the best in solving Low-Carbon Scheduling in Manufacturing 

Workshops (LSCW), with the shortest maximum completion time of 6.12 hours, the lowest total energy consumption of 6.71×105 

kJ, and still the lowest carbon emissions of 5.92×104 kW/h. The proposed model in solving the low-carbon scheduling model of 

manufacturing workshops can help reduce carbon emissions in manufacturing workshops and promote the green transformation 

of the manufacturing industry. 
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1. Introduction 

Nowadays, reducing Carbon Emissions (CEs) has 

become an important goal for governments and 

businesses around the world. CE is one of the key 

influencing factors for the continuous deterioration of 

the environment and the intensification of haze, and 

classical Manufacturing Industry (MI) often suffer from 

problems such as energy waste, low efficiency, and high 

CE [9]. How to reduce CE and improve energy 

efficiency in MI is a key issue. As the core link of MI, 

the production workshop has high Energy Consumption 

(ES) and serious CE problems. Low Carbon Scheduling 

in MI Workshop (MI-LSCW) is of great significance for 

reducing Manufacturing Industry Carbon Burden 

(MICB) [10]. Low Carbon Scheduling in the Workshop 

(LSCW) helps achieve the sustainable development 

goals of enterprises by optimizing production processes 

and resource utilization [28]. However, as the 

complexity of MI systems increases and the flexible 

resources increases, the complexity and difficulty of 

LSCW also sharply increase, requiring enterprises to 

research more efficient scheduling strategies to cope 

with increasingly complex manufacturing environments 

[25]. The Non dominated Sorting Genetic Algorithm  

 
II(NSGA-II) is introduced in workshop scheduling. It is 

used in workshop scheduling problems to 

simultaneously optimize multiple objective functions, 

aiming to optimize job completion time, reduce CE, and 

balance machine load, thereby improving production 

efficiency and reducing environmental impact [29]. 

However, currently NSGA-II still has insufficient 

convergence and local convergence issues in LSCW, 

which limits its performance in solving LSCW 

problems. Thus, this study builds a Multi-Objective 

(MO) MI-LSCW model and uses Improved NSGA-II 

(INSGA-II) to calculate the LSCW model. This study 

aims to provide effective LSCW for MI. The innovation 

of this study lies in proposing an improved Elite 

Retention Strategy (ERS) to address the issue of poor 

diversity in NSGA-II, which can determine the number 

of elites to be retained with a certain proportion to avoid 

the loss of population diversity. The following is a 

summary of the content of this study:  

1) The current research status is analyzed. 

2) Multi-objective MI-LSCW has been built and 

NSGA-II has been improved.  

3) The proposed model is subjected to application effect 

analysis.  
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4) The entire study has been summarized. 

2. Related Work 

LSCW aims to reduce ES and CE in the workshop 

production process through reasonable scheduling 

arrangements, thereby achieving the goals of efficient 

manufacturing and energy conservation and emission 

reduction. Li et al. [8] constructed a novel model that 

included real-time task list updates and non-periodic 

departure methods, and validated it through practical 

cases. The proposed dynamic scheduling model could 

reassign automatic guided vehicles, and had certain 

feasibility and effectiveness. Yang et al. [26] built a MO 

production scheduling offloading optimization model, 

and solved the model using intelligent algorithms. The 

method effectively balanced production efficiency and 

computational latency. Ning and Huang [15] developed 

a mathematical model to minimize completion time, 

workload, and CE. They also proposed an enhanced 

model with double-chain encoding that could meet the 

MI workshop’s emission reduction requirements during 

production and processing. Xu et al. [24] introduced a 

switching strategy during the idle time of equipment in 

the MI workshop to establish a model, and used 

intelligent algorithms to calculate the model, which had 

certain effectiveness. Mou et al. [14] established a fuzzy 

programming model, and proposed a machine learning 

based multi strategy approach to solve the model. The 

proposed method could effectively solve the reverse 

workshop scheduling problem. Tliba et al. [22] 

examined the dynamic scheduling problem in a real 

mixed-flow workshop. They established a simulated 3D 

workshop model and proposed a dynamic scheduling 

model with digital twins. This model demonstrated 

promising application results in the 3D workshop. Shao 

et al. [17] built a MO meme algorithm using, and 

utilized a decoding strategy to decline the search space 

of subproblems. They obtained all the metrics in the 

comparison algorithms within a limited running time. 

NSGA-II simplifies the complexity associated with 

non-dominated sorting, offering advantages such as 

rapid execution speed and effective convergence. Feng 

et al. [3] established a multi-level cross planning matrix 

and proposed an overall layout planning model for 

landscape ceramic sculptures with NSGA-II. The 

optimal layout optimization rate could reach over 60%, 

which could effectively improve the layout planning of 

sculptures. Zhang [27] improved the NSGA-II and 

proposed an MO optimization model with lower 

iteration curves in cost, time, and environmental 

objective functions than classical NSGA-II, 

demonstrating better MO optimization performance. To 

further promote the widespread application of NSGA-

II, Ma et al. [11] conducted a comprehensive 

investigation of its related research work, classified its 

applications in the engineering field, and discussed its 

future research potential. Ma et al. [12] built a meta 

model for welding quality indicators through orthogonal 

experiments and proposed a MO optimization model for 

welding process parameters with NSGA-II. The 

optimized welding process parameters could increase 

the depth of sidewall fusion and helped improve the 

overall quality of ultra-narrow gap welding processes. 

Kabiri et al. [5] proposed a three-level dual objective 

programming model, and solved it using NSGA-II. This 

method could achieve maximum profit and minimize 

greenhouse gas emissions. Zhuo et al. [31] built a 

surrogate model for the relationship between process 

parameters and quality evaluation indicators based on 

Gaussian process regression, and achieved MO 

optimization using NSGA-II. It has good prediction 

performance and stability, with relatively small relative 

error values. Tang et al. [20] constructed a MO 

optimization model for path planning, and proposed an 

optimized NSGA-II. The waiting time of the proposed 

method was reduced by 42.39%, and the no-load 

distance was reduced by 10.50%. 

In summary, although many researchers have 

analyzed the workshop scheduling problem and proved 

the application effect of NSGA-II in solving 

optimization scheduling problems, NSGA-II still has 

insufficient convergence and local convergence 

problems. To this end, this study proposes an INSGA-

II, aiming to achieve faster low-carbon scheduling in 

workshops and create greater environmental benefits for 

businesses and society. 

3. LSCW Solution with INSGA-II 

To effectively reduce CE in the MI workshop, this study 

will construct an MI-LSCW model that integrates 

completion time, total ES, and CE. Subsequently, 

improvements were made to the crossover operator, 

mutation operator, and ERS of NSGA-II, and INSGA-

II is applied. 

3.1. MI-LSCW Model Construction 

To effectively reduce CE in the MI workshop, this study 

conducts MI-LSCW mathematical modeling. LSCW is 

an optimization model that involves multiple production 

processes and equipment, with the aim of specifying the 

machining sequence for different workpieces and 

achieving optimal resource allocation for workshop 

scheduling production [1]. n workpieces are processed 

by m different machine tools, and each workpiece 

undergoes multiple different processes in a certain 

order. Figure 1 shows the workpiece processing process 

in the MI workshop. 

To meet the needs of actual production, this study 

selected three optimization objectives when 

constructing MI-LSCW: minimizing the Maximum 

Completion Time (MCT), the total ES of the workshop, 

and the total amount of CE. The objective function f1 for 

minimizing the MCT is shown in Equation (1). 
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Figure 1. The workpiece processing process. 

{

𝑓1 = min⁡(max⁡(𝑇𝑖))

𝑇𝑖 =∑∑(𝑇𝑖𝑗𝑘
𝑜𝑏 + 𝑇𝑖𝑗,ℎ

𝑘 ) ∙ 𝑋𝑖𝑗𝑘

𝑚

𝑘=1

𝑝𝑖

𝑗=1

 

In Equation (1), Ti is the completion time of workpiece 

i. pi represents the quantity of processes of workpiece i

. 𝑇𝑖𝑗𝑘
𝑜𝑏  is the processing time of the j-th process of 

workpiece i on machine tool k. represents the 

transportation time from machine tool h to k. Xijk is the 

decision variable. When its value is 1, the j-th process of 

workpiece i is processed on machine tool k. Otherwise, 

its value is 0. The objective function f2 is shown in 

Equation (2). 

𝑓2 = 

∑[(∑∑𝑇𝑖𝑗𝑘
𝑜𝑏𝑋𝑖𝑗𝑘

𝑝𝑖

𝑗=1

𝑛

𝑖=1

)𝐸𝑐 + (𝑇𝑘 − 𝑇𝑘
𝑜 − 𝑇𝑖𝑗𝑘

𝑜𝑏𝑋𝑖𝑗𝑘)𝐸𝑢]

𝑚

𝑘=1

+ (𝑚𝑎𝑥(𝑇𝑖))𝐸𝑖 

In Equation (2), Ec denotes the ES per unit time during 

the machining process of machine tool k. Tk denotes the 

completion time of machine tool k. 𝑇𝑘
𝑜 denotes the start-

up time of machine tool k. Eu denotes the ES per unit 

time when machine tool k is idling. Ei is the ES per unit 

time in the workshop. In Figure 2, this study divides the 

main sources of CE in the MI workshop into the basic 

CE generated by machine tool operation and the CE 

generated by other auxiliary transportation equipment. 

 

Figure 2. The main source of CE in manufacturing workshops. 

In Figure 2, the main CE of the MI workshop is 

concern with the operating status of the machine tools, 

the operating power and time of the auxiliary 

transportation equipment. The operating status of the 

machine tool includes on/off state, processing state, and 

standby state. The on/off state of a machine tool refers 

to the ES generated by the machine tool from the off 

state to the on state, as well as from the on state to the 

off state. The calculation of CE Qoc during this process 

is shown in Equation (3). 

𝑄𝑜𝑐 =∑(𝑃𝑘
𝑜 ∙ 𝑇𝑘

𝑜 + 𝑃𝑘
𝑐 ∙ 𝑇𝑘) × 𝜉

𝑚

𝑘=1

 

In Equation (3),  𝑃𝑘
𝑜⁡and 𝑃𝑘

𝑐 represent the starting power 

and unloading power of machine tool k, respectively, in 

kW. ξ represents the electrical energy CE conversion 

factor. The calculation of CE Qob for machine tool 

machining is shown in Eequation (4). 

𝑄𝑜𝑏 =∑∑∑𝑃𝑘
𝑜𝑏𝑇𝑖𝑗𝑘

𝑜𝑏ξ × 𝑋𝑖𝑗𝑘

𝑚

𝑘=1

𝑝𝑖

𝑗=1

𝑛

𝑖=1

 

In Equation (4), 𝑃𝑘
𝑜𝑏  is the machining power of the 

machine tool k, in kW. Standby CE is the CE generated 

when the machine tool is in standby mode, during which 

the machine tool is not fully utilized. Therefore, standby 

CE can be reduced by shutting down and restarting or 

arranging the processing sequence reasonably. To 

determine whether a shutdown and restart strategy is 

needed for the machine tool, the difference in time and 

CE between the machine tool’s standby state and the 

shutdown and restart strategy needs to be considered. 

Figure 3 is a schematic diagram of determining whether 

to shut down and restart the strategy. 

This study assumes that the total number of 

machining processes of machine tool k is, and the 

calculation of machine tool standby CE Qpre considering 

shutdown and restart operations is shown in Equation 

(5). 

𝑄𝑝𝑟𝑒 = 

∑∑((𝑆𝑘(𝑡+1) −𝑈𝑘𝑡) × 𝑃𝑘
𝑝𝑟𝑒

× (1 − 𝑍𝑘𝑡) + 𝑍𝑘𝑡𝐸𝑘
𝑜𝑓𝑓
) × 𝜉

𝐵𝑘

𝑡=1

𝑚

𝑘=1

 

In Equation (5), Sk(t+1)  is the starting processing time of 

the t+1-th process of machine tool k. Ukt represents the 

end processing time of the t-th process of machine tool k. 

𝐸𝑘
𝑜𝑓𝑓 is the standby power of the machine tool k, in kW. 

Zkt is the decision variable, when its value is 1, the 

shutdown and restart strategy is executed. 𝐸𝑘
𝑜𝑓𝑓 

represents the ES required for one shutdown and restart 

strategy. The calculation of CE for auxiliary equipment 

Qa is shown in Equation (6). 

𝑄𝑎 =∑∑𝑃𝑎𝑇𝑖𝑗,ℎ
𝑘

𝑝𝑖

1𝑗=1

× 𝜉

𝑛

𝑖=1

 

In Equation (6), Pa is the power of the auxiliary 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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equipment, in kW. Therefore, the objective function f3 

of minimizing the total CE is shown in Equation (7). 

𝑓3 = 𝑚𝑖𝑛𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑖𝑛(𝑄
𝑜𝑐 + 𝑄𝑜𝑏 + 𝑄𝑝𝑟𝑒 + 𝑄𝑎) 

In Equation (7), Qtotal represents the total amount of CE. 

In addition, to improve the quality and practicality of the 

scheduling scheme, the MI-LSCW model also needs to 

satisfy the following five constraints. First, the same 

workpiece and process can only be processed by one 

machine tool. Secondly, interruptions are not allowed 

during the machining process of the workpiece. Thirdly, 

the first process of each workpiece does not take into 

account transportation time. Fourth, there is a sequential 

order between different processes of the same 

workpiece, and only after the current process is 

completed can the next process be entered. Fifth, the 

completion time of each workpiece shall not exceed the 

MCT. 

3.2. Solution of LSCW with INSGA-II 

The MI-LSCW requires finding a balance point 

between multiple objectives. Therefore, this study 

applies NSGA-II to calculate the model. In MO 

problems, there is a Pareto front composed of a set of 

solutions [2, 21]. Figure 4 shows the NSGA-II’s 

process. 

In Figure 4, NSGA-II introduces strategies such as 

fast non-dominated sorting, crowded distance, and elite 

retention, making it efficient and high-precision in MO 

optimization problems. Non-dominated solution refers 

to a Bk soluion that is superior to other solutions in at 

least one objective, while not inferior to other solutions 

in other objectives. It improves any objective function 

without weakening the performance of other objective 

functions. Fast non-dominated sorting is a non-

dominated solution search algorithm used for MO 

optimization problems, which divides the solution set 

into multiple non-dominated layers, where the solutions 

in each layer do not dominate each other, but the 

solutions within each layer dominate the solutions in 

other layers, thus finding the Pareto optimal solution set 

with less computational cost [7]. First, the quantity of 

individuals np that dominate individual p in the 

population and the dominating solution set Sp of 

individual p are calculated. Secondly, if there is an 

individual np=0, it is placed in the first layer and saved 

in the set F1. Then, the dominance correlation between 

the individual in F1 and other individuals is compared, 

and the dominance solution set is updated. 

Subsequently, for each individual in F1, np is subtracted 

by 1. If np=0 is satisfied after subtracting 1, the 

individual is placed in the second layer and saved in the 

set F2. This operation is repeated until all individuals are 

stratified. Finally, all stratified individuals are saved to 

the corresponding result set. Crowding distance is an 

indicator used to evaluate solutions to MO problems, 

which evaluates the crowding distance of individuals by 

calculating the density around them, helping to avoid 

the population falling into local optima [16, 23]. Taking 

the two objective minimization problem as an example, 

Figure 5 presents the schematic diagram of crowding 

distance. 

 

Figure 4. The flowchart of NSGA-II. 

(7) 
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Figure 5. Schematic diagram of crowded distance. 

Crowding distance can measure the distribution 

uniformity and diversity among individuals in a 

population, to avoid the algorithm getting stuck in local 

optima. The calculation of crowding distance di usually 

involves hierarchical storage of all individuals in the 

population, see Equation (8). 

𝑑𝑖 =∑(|𝑓𝑜
𝑙+1 − 𝑓𝑜

𝑙−1|), 𝑜 = 1,2, … , 𝑎

𝑎

𝑜=1

 

In Equation (8), a is the quantity of objective functions. 

𝑓𝑜
𝑙+1 is the function value of individual l+1 on the o-th 

objective 𝑓𝑜
𝑙−1  is the function value of individual l-1. 

The ERS preserves excellent individuals, enabling the 

offspring population to inherit superior genetic 

information during the evolutionary process. This 

accelerates the convergence speed and optimization 

effect of the algorithm [19, 30]. Figure 6 shows the ERS. 

 

Figure 6. Schematic diagram of ERS. 

In Figure 6, the ERS directly replicates specific 

individuals from the previous generation to the next 

generation, which can avoid the optimal individual 

being destroyed due to hybridization operations. 

Nevertheless, the NSGA-II algorithm has certain 

limitations; it is susceptible to premature convergence 

(local optima) and exhibits low convergence efficiency 

[13]. Therefore, this study proposes an INSGA-II. First, 

in response to the issue of NSGA-II’s inability to ensure 

that individuals in the population search within nearby 

regions when generating offspring, this study proposes 

to determine which operation to perform on individuals 

with non-dominated sorting levels and generated 

random numbers. If the non-dominated sorting level is 

1 and the generated random number is less than 0.5, 

perform a variable neighborhood search operation. If the 

sorting level is not 1 and the generated random number 

is greater than or equal to 0.5, selection, crossover, and 

mutation operations will be performed. Secondly, the 

crossover and mutation operators of NSGA-II have been 

improved. NSGA-II simulates the genetic and mutation 

processes in biological evolution [4, 18]. The crossover 

probability of the improved crossover operator Pc is 

calculated as shown in Equation (9). 

𝑃𝑐 = {
𝑃𝑐𝑚𝑖𝑛 +

𝑃𝑐𝑚𝑎𝑥 − 𝑃𝑐𝑚𝑖𝑛
𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑔

(𝑓′ − 𝑓𝑎𝑣𝑔), 𝑓
′ ≥ 𝑓𝑎𝑣𝑔

𝑃𝑐𝑚𝑎𝑥 , 𝑓
′ < 𝑓𝑎𝑣𝑔

 

In Equation (9), Pcmax and Pcmin represent the largest and 

smallest values of crossover probability, taken as 0.9 

and 0.7. fmax and favg are the largest and average values 

of fitness. f’ represents the larger fitness value between 

two individuals. After obtaining the maximum value of 

the parent gene locus, the integers on n gene locus are 

discretized into j new parent individuals, as shown in 

Equation (10). 

𝑒𝑖
𝑗
= 𝑥𝑖−𝑚𝑖𝑛 +

(𝑏 + 1)(𝑥𝑖−𝑚𝑎𝑥 − 𝑥𝑖−𝑚𝑖𝑛)

𝑗 − 1
, 

𝑏 = 1,2, … , 𝑗; 𝑖 = 1,2,… , 𝑛 

In Equation (10), xi-max and xi-min represent the largest and 

smallest values on the i-th gene locus of the parent 

chromosome, respectively. Two individuals are selected 

from the original and new parent individuals, and the 

starting and ending positions are randomly selected. The 

genes at this position are partially matched and crossed. 

The mutation operation introduces new genetic 

variations by randomly changing some genes of the 

individual [6]. The mutation probability of the improved 

mutation operator Pv is shown in Equation (11). 

𝑃𝑣 = {
𝑃𝑣𝑚𝑖𝑛 +

𝑃𝑣𝑚𝑎𝑥 − 𝑃𝑣𝑚𝑖𝑛
𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑔

(𝑓𝑚𝑎𝑥 − 𝑓), 𝑓
′ ≥ 𝑓𝑎𝑣𝑔

𝑃𝑣𝑚𝑎𝑥, 𝑓 < 𝑓𝑎𝑣𝑔

 

In Equation (11), Pvmax and Pvmin represent the largest 

and smallest values of crossover probability, taken as 

0.1 and 0.001, respectively. f represents the fitness value 

of the mutant individual. The mutant gene 𝑥𝑚
′  is shown 

in Equation (12). 

𝑥𝑚
′ = 𝑥𝑚 [1 + 𝐶(0,1) (1 −

𝑡

𝑇
)] 

In Equation (12), xm represents the gene before 

mutation. (0,1)C  represents the Cauchy distribution. t is 

the current iteration count. T is the largest iteration 

count. The improved mutation operator has a strong 

mutation effect, and the degree of mutation gradually 

decreases gradually, enabling the algorithm to search for 

more feasible solutions. In addition, this study builds an 

ERS with population balance to address the issue of 

reduced species diversity in NSGA-II. Assuming the 

(8) 

(9) 

(10) 

(11) 

(12) 
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population size is N, if the total number of individuals is 

bigger than N, the top N optimal individual based on 

crowding distance is retained. If it is equal to N, all 

individuals in the first non-dominated layer are retained. 

If the total number of individuals is less than N, the 

selection of individuals in the x-th layer and the 

calculation of the new population pt+1 are shown in 

Equation (13). 

{
 
 

 
 𝑛𝑥 =

𝑚𝑥
2

2𝑁

𝑝𝑡+1 = 𝑚1 +∑
𝑚𝑖
2

2𝑁
, 𝑟 = 1,2, … , 𝑥

𝑟

𝑖=2

 

In Equation (13), nx represents the quantity of 

individuals to be selected in the x-th layer. mx is the total 

quantity of individuals in the x-th layer. m1 represents all 

individuals in the first non-dominated layer. Figure 7 is 

a schematic diagram of an improved ERS. 

 

Figure 7. Schematic diagram of improved ERS. 

In Figure 7, the proposed improved ERS first retains 

all individuals in the first non-dominated layer of the 

population to the new population, and then retains 

individuals in a certain proportion, which can improve 

its efficiency. 

4. Analysis of Low-Carbon Scheduling 

Effect with INSGA-II 

To validate the performance of the low-carbon 

scheduling model solving method with INSGA-II, this 

study applied MO optimization test functions and 

explored their application effects in solving the MI-

LSCW model through test cases. 

4.1. Performance Analysis of INSGA-II 

This study used the MO optimization test function Deb 

Thiele Laumanns Zitzler (DTLZ) for testing. 

MatlabR2020 was used for simulation experiments, 

with a computer system of Windows 11, a central 

processing unit of i7-9800X, and 16GB of memory. The 

population size was 150 and the largest iterations were 

200. INSGA-II was compared with Inverse Generation 

Distance (IGD), classical NSGA-II, Strength Pareto 

Evolutionary Algorithm 2 (SPEA2), and Multi-

Objective Evolutionary Algorithm with Decomposition 

(MOEAD). In Figure 8, each algorithm ran 

independently 30 times. In Figure 8-a), in the solution 

of DTLZ1, as the number of targets increased, the IGD 

values of all four algorithms gradually increased. 

Among them, the IGD value of INSGA-II was always 

the lowest, and when the target quantity was 20, the IGD 

value was 0.338. Secondly, MOEAD and SPEA2 had 

the highest IGD values. In Figure 8-b), INSGA-II still 

performed the best in terms of IGD metrics in the 

solution of DTLZ2. When the target quantity was 20, 

the IGD value was 1.153. INSGA-II achieved good 

results in IGD indicators, with good convergence and 

distribution performance. 

 

  
a) DTLZ1. b) DTLZ2. 

Figure 8. Comparison of inverted generation distance among four algorithms. 

Figure 9 compares the Spatial Metric (SM) values of 

the four algorithms mentioned above. In Figure 9-a), as 

the number of targets increased, the SM values of all 

four algorithms gradually increased. Among them, 

INSGA-II performed the best in the SM indicator, with 

an SM value of 0.013 when the target quantity was 20. 

In Figure 9-b), the SM value of INSGA-II was still 

lower than the other three algorithms, and when the 

number of targets was 20, the SM value was 0.415. 

Secondly, MOEAD and classical NSGA-II had the 

highest SM values. As a result, INSGA-II achieved 

good results in the SM index, and the algorithm had 

good convergence. 

(13) 
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a) DTLZ1. b) DTLZ2. 

Figure 9. Comparison of spacing metrics for four algorithms. 

This study conducted ablation experiments. The 

target quantity was 8, and INSGA-II was compared with 

classical NSGA-II, INSGA-II without improved 

crossover operator (A), INSGA-II without improved 

mutation operator (B), and INSGA-II without improved 

ERS (C). All algorithms were independently run 30 

times, and the experimental results were presented in the 

form of mean±standard deviation. Independent sample 

t-test (α=0.05, Bonferroni correction) was used to verify 

the significant differences between the proposed 

improved NSGA-II algorithm and other algorithms. As 

shown in Table 1, INSGA-II had the best performance 

in solving DTLZ1 and DTLZ2. It had the lowest IGD 

and SM values, which were significantly lower than 

those of algorithms A, B, and C (p<0.05) and extremely 

significantly lower than those of the traditional NSGA-

II algorithm (p<0.01). Consequently, the enhancement 

strategy had the potential to significantly enhance the 

convergence performance of NSGA-II, and had certain 

feasibility and effectiveness. 

Table 1. Results of ablation experiment. 

Algorithm 
DTLZ1 DTLZ2 

IGD SM IGD SM 

NSGA-II 34.155±3.244** 54.317±2.371** 1.229±1.887** 0.812±0.106** 

A 2.423±0.239* 0.374±0.035* 0.639±0.065* 0.593±0.052* 

B 2.437±0.242* 0.381±0.037* 0.647±0.071* 0.610±0.057* 

C 4.263±0.433* 0.538±0.056* 0.865±0.094* 0.764±0.069* 

INSGA-II 0.230±0.022* 0.007±0.001* 0.517±0.050* 0.329±0.028* 

Note: ** indicates a highly significant difference compared to INSGA-II, p<0.01, * indicates a significant difference compared to INSGA-II, p<0.05. 

In Figure 10, the IGD values of the five algorithms 

mentioned above were compared under different target 

quantities. In Figure 10-a), as the number of targets 

increased, the IGD values of different algorithms 

showed an upward trend. Among them, the IGD value 

of algorithm C was only inferior to classical NSGA-II, 

indicating that the improved ERS had a more significant 

optimization effect on the algorithm. In Figure 10-b), 

INSGA-II still performed the best in terms of IGD 

indicators. Therefore, the improvement strategy had the 

potential to significantly enhance the performance of 

NSGA-II, with the contribution of improving the ERS 

being the greatest. 

 

  
a) DTLZ1. b) DTLZ2. 

Figure 10. Comparison of IGD values for five algorithms. 

4.2. Effect Analysis of MI-LSCW 

To test the performance of INSGA-II in handling LSCW 

model, this study used classic examples such as Kacem 

and Brandimarte for testing. In Figure 11, the search 

processes of INSGA-II and classical NSGA-II for 

solving Kacem01 and Kacem03 problems were 

compared. In Figure 11-a), both INSGA-II and classical 

NSGA-II could solve for the optimal solution, but 

INSGA-II had a faster solving speed and converged to 

the optimal solution after about 10 iterations. In Figure 

11-b), the classical NSGA-II fell into a local optimum 

and failed to find the optimal solution. INSGA-II 

jumped out of the local optimum multiple times. 

Therefore, INSGA-II had a fast convergence speed and 
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strong optimization performance, demonstrating good scheduling performance. 

 

  
a) Kacem01. b) Kacem03. 

Figure 11. Comparison of search processes for solving kacem01 and kacem03 problems. 

In Table 2, the test results of INSGA-II, classical 

NSGA-II, Improved Genetic Algorithm (IGA) 

combined with reactivation mechanism, Powell Search 

Method Genetic Algorithm (PSM-GA) and Multi-

Objective Genetic Algorithm (MOGA) on the 

Brandimarte case were compared. Among the six test 

cases, INSGA-II showed the best optimization 

performance, and obtained the shortest MCT. 

Therefore, INSGA-II had certain feasibility and 

effectiveness. 
 

Table 2. Brandimarte case test results. 

Example Optimal solution 
Algorithms 

NSGA-II IGA PSM-GA MOGA INSGA-II 

MK01 [36, 42] 40 40 40 40 40 

MK02 [24, 32] 29 28 26 28 26 

MK03 [204, 211] 208 204 204 206 204 

MK04 [48, 81] 68 65 61 66 60 

MK05 [168, 186] 180 176 173 178 173 

MK06 [33, 86] - - 65 68 59 

 

   
a) Markespan. b) Total energy consumption in the workshop. c) Total carbon emission. 

Figure 12. Iterative curve comparison. 

   
a) Pare to fronts obtained by NSGA-II. b) Pare to fronts obtained by MOGA. c) Pare to fronts obtained by Improved NSGA-II. 

Figure 13. Pareto frontier comparison. 

In Figure 12, this study took a manufacturing 

workshop as an example and used classical NSGA-II, 

MOGA, and INSGA-II algorithms in MATLAB 

software to optimize and solved the three objectives in 

the MI-LSCW model. In Figure 12-a), INSGA-II 

performed the best in minimizing the MCT, with the 

lowest MCT of 6.12 hours. The MCT for MOGA and 

classical NSGA-II was both over 6.5 hours. In Figure 

12-b), the total ES calculated by INSGA-II was the 

lowest, at 6.71×105kJ. In Figure 12-c), the CE obtained 
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by INSGA-II was still the lowest, at 5.92×104kw/h. 

Therefore, INSGA-II performed well in solving the MI-

LSCW model, and could solve scheduling schemes with 

shorter completion time, less total ES, and CE, which 

had certain feasibility and effectiveness. 

In Figure 13, the Pareto front gotten by INSGA-II 

was compared with classical NSGA-II and MOGA. 

INSGA-II had better approximation and distribution, 

and had stronger performance in solving MI-LSCW 

models. 

5. Conclusions 

To reduce CE in the manufacturing workshop while 

ensuring production efficiency, this study constructs an 

MI-LSCW model with three optimization objectives: 

minimizing MCT, minimizing total ES, and minimizing 

CE. An INSGA-II is constructed. As the number of 

targets increased, the IGD and SM values of the four 

algorithms gradually increased. When solving DTLZ1, 

the IGD value of INSGA-II was always the lowest, and 

when the number of targets was 20, the IGD value was 

0.338. INSGA-II performed the best in the SM metric, 

with an SM value of 0.013 when the target quantity was 

20. In the solution of DTLZ2, when the number of 

targets was 20, the IGD value of INSGA-II was 1.153 

and the SM value was 0.415. INSGA-II performed the 

best in solving DTLZ1 and DTLZ2, with the lowest IGD 

and SM values. The IGD and SM values of classical 

NSGA-II were the highest. In the solution of Kacem01, 

both INSGA-II and classical NSGA-II could solve for 

the optimal solution, but INSGA-II had a faster solving 

speed and converged to the optimal solution in about 10 

iterations. The MCT solved by INSGA-II was the 

shortest, which was 6.12 hours. The MCT for MOGA 

and classical NSGA-II was both over 6.5 hours. The 

total ES and CE calculated by INSGA-II were the 

lowest, with values of 6.71×105kJ and 5.92×104kw/h. 

INSGA-II had better approximation and distribution, 

and had stronger performance in solving MI-LSCW 

models. Thus, the INSGA-II had good convergence 

performance and has also demonstrated good results in 

solving LSCW problems. The proposed low-carbon 

scheduling model and INSGA-II algorithm have broad 

application potential in MO collaborative optimization 

in multiple practical, complex industrial scenarios, such 

as automobile manufacturing, electronic precision 

manufacturing, and processing large components in the 

aerospace industry. It can optimize workpiece sequence 

and equipment allocation, reduce high-ES equipment 

idle and material handling CEs. However, to simplify 

calculations, current research models primarily focus on 

static scheduling environments. These models assume 

that machines will not experience unexpected stops 

during the production process. The actual workshop 

often faces dynamic disturbances, such as machine 

failures, emergency order insertion, or raw material 

shortages. Therefore, in future research, further analysis 

should be conducted on unexpected situations such as 

machine failures and emergency order insertion. To 

build a workshop low-carbon scheduling model that is 

more in line with actual production situations, the 

proposed algorithm should be embedded into an event-

driven rescheduling framework to cope with dynamic 

disturbances or integrated with real-time workshop IoT 

data for online optimization and evaluation. 
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