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Abstract: A Vehicle Type Recognition (VTR) system faces challenges in achieving accurate classification when distinguishing 

between vehicle types with intra-class patterns, such as sedan cars, taxis, vans, minivans, trucks, and buses. The main challenge 

lies in effectively extracting and preserving discriminant features for each vehicle type to prevent misclassification. Therefore, 

this paper proposes an efficient regularization approach within the Mask Region-based Convolutional Neural Network 

(Mask_RCNN) optimizer by integrating Weighted Mean League 2 (WMean_L2) with Stochastic Gradient Distance (SGD). We 

introduce this model as Mask_RCNN+SGD+WMean_L2. WMean_L2 is formulated to ensure consistency in penalty regardless 

of model size, providing stability across architectures and simplifying hyperparameter tuning. This approach enhances the 

preservation of discriminant features while achieving consistent and optimal classification performance. We tested our model 

on the benchmark database known as Beijing Institute of Technology (BIT), evaluating its performance based on precision, 

recall, F-score, and accuracy. Our results demonstrate significant efficiency improvements compared to previous studies, with 

precision ranging from 92.31% to 100%, recall from 94.74% to 100%, and F-score from 93.51% to 100% across six vehicle 

classes, achieving the highest average accuracy of 97.22%.  
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1. Introduction 

Vehicle Type Recognition (VTR) is important for many 

smart transportation use cases, such as vehicle tracking, 

toll collection, and urban planning [5]. High accuracy in 

classification, however, remains a challenge, especially 

when dealing with intra-class variation which is a subtle 

variation in a same vehicle type. For example, sedans 

and taxis have similar looks, and van and minivan have 

similar forms, with conventional model recognizability 

having a problem in distinguishing between them. Due 

to that, most researchers classify the taxi and the car as a 

sedan car, or the truck and bus as heavy vehicles [3, 10]. 

The consequence is, it is not efficient when 

implementing the system in the real implementation [1]. 

A key challenge in handling intra-class issues is 

effectively extracting and maintaining discriminant 

features between almost similar vehicles but in different 

vehicle types. Conventional classification algorithms 

suffer in extracting and maintaining the discriminant 

features. Deep learning techniques like Convolutional 

Neural Networks (CNNs) and Mask Region-based 

Convolutional Neural Network (Mask_RCNN) 

architectures often struggle with overfitting and 

underfitting when dealing with intra-class patterns,  

 
leading to poor and unpredictable classification 

performance. Additionally, traditional regularization 

methods in deep networks may not effectively preserve 

the discriminant features, which can worsen 

classification errors. This is because penalty process in 

the regularization applies uniform penalty to all weights, 

regardless of their importance 
To address this challenge, we introduce an efficient 

regularization method aimed to improve vehicle type 

classification when dealing with the intra-class patterns, 

supporting applications in Intelligent Transportation 

System (ITS) such as toll collection, traffic census, and 

traffic light control [11]. We propose a new 

regularization scheme called Weighted Mean League 2 

(WMean_L2) and combine it with Stochastic Gradient 

Distance (SGD) in the Mask_RCNN optimizer. The 

WMean_L2 is formulated in the regularization based on 

mean squared value during the penalty process. The 

WMean_L2 is not influenced by the total number of 

weights in the model, ensuring consistent penalties, 

better model training, and improved the preservation 

discriminant features. Thus, the contributions of this 

paper are: 

 Efficient regularization is introduced by using mean 
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squared value named WMean_L2. 

 The WMean_L2 was implemented in optimization 

layer with SGD as the optimizer in Mask_RCNN and 

named as Mask_RCNN+SGD+WMean_L2. 

2. Related Works 

2.1. Mask_RCNN and Regularization in Vehicle 

Type Recognition  

Deep learning has demonstrated considerable 

advantages in improving accuracy when extracting 

discriminative features from images. A region-based 

deep neural network, exemplified by the Mask_RCNN, 

has been widely employed to extract discriminative 

features from intra-class patterns [9, 11, 15]. In the realm 

of vehicle type classification, studies utilizing 

Mask_RCNN have achieved commendable accuracy in 

identifying general vehicle classes. However, challenges 

arise when aiming for precise classification into specific 

vehicle types, leading to a decline in accuracy. 

Mask_RCNN has drawbacks that can burden the 

backbone network’s weight throughout the feature 

extraction process. This is because Mask_RCNN is 

trained using various optimization algorithms, including 

RMSprop, Adam, and Momentum. While this 

segmentation algorithm can address feature extraction 

challenges by generalizing and processing large datasets 

more efficiently [6, 17], it introduces another limitation 

which is model complexity. Increased complexity in the 

training model leads to longer training times and a 

decrease in accuracy due to the loss of extracted 

discriminative features [7]. The complexity in the 

Mask_RCNN framework arises from the sensitivity of 

hyperparameters, which affect both efficiency and 

practical application [18]. To mitigate this limitation and 

enhance the performance of the Mask_RCNN 

framework, regularization techniques are employed. 

These techniques introduce penalties to the loss function 

to discourage overly complex models that may overfit 

the training data. Such penalties take various forms but 

serve the common purpose of preventing overfitting and 

promoting the learning of more generalizable patterns. 

L2 regularization has been widely used in the 

Mask_RCNN framework due to its advantages over 

other regularization techniques. Shim et al. [13] 

implemented L2 regularization in Mask_RCNN to 

classify vehicle types in a traffic control system. 

However, their work struggled with misclassifications 

within truck categories due to limitations in feature 

discrimination and a narrow focus on cars, bicycles, and 

trucks. Tahir et al. [14] developed an intelligent vehicle 

system that applied Mask_RCNN for real-time vehicle 

detection. They deployed L2 regularization to optimize 

the training model, but their approach also failed to 

achieve high accuracy when dealing with intra-class 

vehicle variations. 

Similarly, other studies have implemented 

Mask_RCNN with regularization for vehicle counting 

and classification [8]. This approach was tested on three 

different video datasets and achieved precision 

recognition results ranging from 97.3% to 99.1%. 

However, it was not tested on intra-class data, limiting 

the ability to assess the effectiveness of their 

Mask_RCNN model. 

L2 regularization has also been utilized in a 

conventional CNN architecture for vehicle detection and 

classification using spatio-temporal information [16]. 

The regularization process was implemented after 

feature extraction, resulting in a less complex model. 

However, based on their results, this model was unable 

to improve classification precision. This is because the 

CNN extracts hierarchical features at lower layers, but 

the model did not learn discriminative features due to 

improper regularization of the higher layers. 

Based on these studies, it has been demonstrated that 

L2 regularization has been widely utilized in 

Mask_RCNN for recognition and classification systems. 

However, despite its widespread use, the default L2 

regularization technique still exhibits weaknesses that 

can be improved. L2 regularization works by summing 

the squares of all weights. This sum-of-squares approach 

penalizes the total sum of squared weights across the 

entire dataset. As a result, the regularization strength is 

directly affected by the total number of samples in the 

dataset. For larger datasets, this can lead to more 

substantial penalties, which may influence the training 

dynamics and potentially result in overly conservative 

updates to the model parameters. 

One key limitation of L2 regularization is that it 

prevents the training model from effectively extracting 

discriminative features. This occurs because L2 

regularization treats all directions in the feature space 

equally, shrinking all coefficients uniformly. 

Consequently, distinguishing discriminative features in 

datasets becomes more challenging. Additionally, L2 

regularization does not reduce the number of features, 

making it less effective in high-dimensional spaces with 

many irrelevant features. This uniform treatment can 

also lead to overlapping class boundaries, further 

complicating the extraction of discriminative features. 

Therefore, we propose an efficient regularization 

technique by utilizing the mean squared value to address 

the weaknesses of the sum-of-squares approach. The 

advantage of using the mean squared value is that it 

offers a regularization strength independent of dataset 

size. This method provides more consistent 

regularization across different batch sizes by averaging 

the penalty over all samples. Consequently, the mean 

squared approach ensures that the regularization penalty 

remains stable, predictable, and efficient, regardless of 

the dataset’s scale. With this consistency, the 

discriminative features extracted by Mask_RCNN can 

be preserved, leading to improved classification 

performance.  
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3. Methodology 

Our proposed regularization modification, known as 

WMean_L2, was implemented in the optimization layer 

after Regions Of Interest (ROI) align in the 

Mask_RCNN model, as shown in Figure 1. The 

Mask_RCNN model was deployed for VTR. We chose 

VTR to evaluate the performance of our proposed 

regularization modification in Mask_RCNN for 

addressing intra-class issues in vehicle classification. 

The process consists of two main stages. Stage 1 

includes three primary steps: data acquisition and pre-

processing, feature extraction, and optimization. Stage 2 

focuses on feature classification to obtain the final 

classification results. The model was deployed through 

training and testing phases, with these stages 

implemented in both phases. 

 

Figure 1. Mask_RCNN+SGD+WMean_L2 general framework. 

3.1. Data Acquisition and Pre-Processing 

The vehicle images were pre-processed in this phase. 

The data was acquired from benchmark database known 

as Beijing Institute of Technology (BIT) that contain raw 

vehicle images with variety of vehicle classes. Next, we 

implemented data annotation and data augmentation to 

provide information of vehicle labels and bounding box 

to the Mask_RCNN model during training process, and 

to balance the dataset.  

The annotated data is stored and produced in a 

JavaScript Object Notation (JSON) file. While for data 

augmentation, we had applied three techniques that are 

rotate 45, flip and warp shift. The output of this process 

is pre-possessed and annotated dataset that was used as 

input for feature extraction with image size of 

1024x1024 as shown in Figure 2. The annotated dataset 

was used only in the training phase, whereas the testing 

dataset remains unannotated and is excluded from the 

training process. Next, features from the datasets were 

extracted in the convolutional backbone of the 

Mask_RCNN. 

 

  

a) Before annotation. b) Annotated image. 

Figure 2. Example of annotation image used for training phase. 

3.2. Feature Extraction 

In this process, we used Restnet-101 as a convolutional 

backbone for Mask_RCNN. The process consists of five 

stages, beginning with processing the raw VTR dataset 

image through a convolutional layer, batch 

normalization, ReLU activation, and max pooling to 

capture low-level features. In the first stage, we used 64 

filters. The feature map (C1) from stage 1 is then used in 

the second stage to extract mid-level features, and we 

used 256 filters in this stage. In the third stage with 512 

filters, convolutions are applied to (C2) to learn vehicle 

shapes and attributes, generating a new feature map 

(C3). The fourth stage enhances high-level feature 

recognition using a deeper residual block with 1024 

filters to produce high-level feature maps (C4). In the 

fifth stage with 2048 filters, three residual blocks extract 

higher-level semantic information from C4, producing 

the final feature map (C5). The extracted feature maps 

(C5) serve as inputs for the Region Proposal Network 

(RPN), where a 3x3 convolutional layer of sliding 

window technique and anchor boxes are used to generate 

regional proposals based on the Intersection over Union 

(IoU) evaluation. The IoU that we used was 0.3≥IoU≥0.7 

to maintain positive anchors. This feature extraction 

process can be referred to Algorithm (1). 

Algorithm 1: Feature extraction based on resnet-101. 

Input: VTR images 

Output: Feature maps of the extracted features 

1.  def feature_extraction (image): 

2.  //Extract features from dataset image 

3.  //Stage 1: Low-level feature extraction 

4.  C1=convolution (image) 

5.  C1=batch_normalization (C1) 

6.  C1=relu_activation (C1) 

7.  C1=max_pooling (C1) 

8.  //Stage 2: Mid-level feature extraction 

9.    C2=residual_block (C1) 

10.   //Stage 3: Vehicle shape and attribute //learning 

11.     C3=convolution (C2) 

12.   //Stage 4: High-level feature extraction 

13.     C4=deeper_residual_block (C3) 

14.   //Stage 5: Higher-level semantic //information extraction 

15.     C5=residual_block (C4) 

16.     C5=residual_block (C5) 
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17.     C5=residual_block (C5) 

18.   return C5  # Feature map for FPN 

19.  
20.   def region_proposal_network(C5): 

21.   //Generate region proposals using RPN 

22.      proposals = [] 

23.       for feature_map in C5: 

24.     //Sliding window technique 

25.      windows = sliding_window(feature_map) 

26.    //Generate anchor boxes 

27.      anchors = generate_anchors(windows) 

28.    //Evaluate IoU for anchor selection 

29.      selected_anchors = evaluate_iou(anchors) 

30.   //Store proposals 

31.      proposals.extend(selected_anchors) 

32.  return proposals  

33.  //Example usage 

34.      image = load_vtr_image(“input_image.jpg”) 

35.     feature_maps=feature_extraction(image) 

36.    regional_proposals=  

37.      region_proposal_network(feature_maps) 

Next, the regional proposals together with the feature 

maps undergo the ROI Align phase. The aim here is to 

ensure the extracted features are precisely aligned with 

the ROIs, which improves the accuracy of the object 

detection model. We used the ROI with coordinates of 

[10.5, 10.5, 21.5, 21.5]. The process involves extracting 

precise feature representations from ROIs within the 

feature map. This process is repeated for every ROI 

proposed by the RPN, allowing Mask_RCNN to make 

more accurate object detection and segmentation 

predictions. Finally, the result for each ROI is an aligned 

fixed-size feature map was produced. 

3.3. Optimization 

Optimization phase is the most important phase since our 

proposed WMean_L2 is implemented in this phase. 

Optimization phase is the most important phase since the 

main contribution of this paper is in this phase. In our 

Mask_RCNN, we deployed the optimization layer after 

ROI align to ensure precise spatial alignment of feature 

maps, capturing subtle, discriminative features 

accurately. The aligned feature maps from the previous 

phase undergo optimization process. SGD as an 

optimizer is deployed in the optimization layer. SGD 

was selected in this work due to its single-batch update 

rule that can minimize loss and converges efficiently to 

an accurate solution.  

However, since SGD updates the model’s weights 

using gradients from the entire dataset, the training 

process becomes longer due to frequent update steps, 

leading to increased model complexity and 

hyperparameter sensitivity. Thus, the WMean_L2 

regularization was integrated with the SGD. The aim of 

this integration is to reduce model complexity, improve 

hyperparameter sensitivity issue, and preserve 

discriminant features of the extracted features. 

WMean_L2 offers balanced and interpretable 

approach to weight penalization compared to standard 

L2. The standard L2 regularization used sum function to 

accumulates the squared weights and scales with the 

number of parameters, while WMean_L2 applies mean 

function to normalizing the penalty across all weights. 

The scale formulation in the L2 regularization ensures 

consistent regularization pressure regardless of model 

size or layer depth, which is particularly important in 

deep architectures. In addition, L2-based methods shrink 

weight rather than eliminate them, unlike L1 

regularization, which induces sparsity by forcing many 

weights to zero. Thus, it makes L2 better than L1. 

The weight penalization by utilizing mean squared 

value in WMean_L2 encourages smaller weights. Thus, 

it regularizes the model by improving the geometry of 

the loss surface and reducing the number of sharp local 

minima that could hinder convergence during 

optimization. Consequently, it ensures that the 

regularization penalty is uniformly applied across 

different model sizes and feature map dimensions, 

contributing to more stable training and improved 

generalization. Additionally, in deep models like 

Mask_RCNN, where spatial and related features are 

distributed across channels, preserving small but 

informative weights is essential for maintaining 

discriminative feature maps. WMean_L2 supports this 

by retaining subtle activations that are important for 

capturing intra-class variations, such as distinguishing 

between a car and a taxi. This helps prevent the model 

from over-simplifying its internal representations, 

leading to more robust feature learning and stable 

convergence during training. 

The WMean_L2 regularization was formulated based 

on Equation (1). The equation consists of the loss 

function which is Sum Squared Error (SSE) plus with the 

penalty which is mean squared value. The mean squared 

value in Equation (1) was deployed based on Equation 

(2). 

𝐿 =∑ (𝑦𝑛 − 𝑦̂𝑛)
2 + 𝜆 ⋅

1

𝐻 ×𝑊 × 𝐶
∑ (𝑋𝑖,𝑗,𝑘)

2𝐻,𝑊,𝐶

𝑖,𝑗,𝑘=1

𝑁

𝑛−1
 

Where yn is the ground truth value for the nth sample, 𝑦̂𝑛 

is the predicted value for the nth sample, and N is the 

number of samples. 

WMean =
1

H×W×C
∑ (Xi,j,k)

2

H,W,C

i,j,c

 

Where H and W is height and width of the feature map, 

C is number of channels, X is value of the feature map, 

and i, j, k, is row index based on height, column index-

based width, channel index, respectively. While λ is 

regularization strength parameter to control the trade-off 

between fitting the data and regularization. 

3.4. Feature Classification 

In the feature classification phase, the optimized feature 

maps from the previous process undergo a few processes 

through fully connected layers for bounding box 

regression and vehicle classification. Simultaneously, 

(1) 

(2) 
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these maps are passed to a fully convolutional network 

for object mask generation in the stage 2 as shown in 

Figure 1. In this phase, the flatten feature map of 1D 

vector is used as the input. The model computes the total 

loss after each prediction to measure the deviation from 

true labels. Backpropagation then calculates the 

gradients of this loss, adjusting weights and biases to 

minimize error. This iterative process enhances the 

model’s ability to recognize class features over time. 

ReLu activation is applied to produce output neurons, 

which are used to classify vehicles into predefined 

classes like car, taxi, truck, Sport Utility Vehicle (SUV), 

van, or bus. Simultaneously, a Fully Convolutional 

Network (FCN) generates an object mask for precise 

pixel-wise classification, distinguishing vehicles from 

the background. The results from this phase were 

evaluated based on the standard performance 

measurements. The measurements are precision, recall, 

F-score and accuracy. 

3.5. Mask_RCNN_SGD_WMean_L2 

Based on the designed methodology in Figure 1, we 

implemented the WMean_L2 in the Mask_RCNN 

framework as outlined in Algorithm (2). In this paper, 

we focus on the feature map with one channel, that has 

values range from -1.0 to 1.0. These values indicate the 

strength and weak of detected features. The higher 

values represent stronger activations prominent edges, 

the lower values indicate weaker or absent features.  

Algorithm 2: Mask_RCNN+SGD+WMean_L2. 

Input: Feature Map: A tensor of shape (H, W, C) and 

Hyperparameter: Regularization parameter, 𝜆 

Output: Total Loss: Incorporating classification loss and  

WMean_L2 regularization term, and Updated Weights 

1. Initialize Mask_RCNN model 

2. Define regularization parameter (𝜆reg) 

3. Initialize SGD optimizer 

4. Define number of training iterations 

5. while number of training iterations do 

6.    extract feature map: 

7.    input an image to the model to obtain the feature map 

8.     ROI Align(Image)Feature Map  

9.   initialize variables: 

10.     set feature map dimensions (H, W, C) 

11.     set weights, biases  

12.      flatten feature map vector, X: 

13.          reshape (Feature Map, (H×W×C,1))→X 

14.      compute WMean_L2 Regularization Term: 

15.           initialize L2 Reg Term = 0 

16.     for each channel, k in the feature map: 

17.       calculate the squared values and accumulate: 

18.        L2 Reg Term+←
1

H×W
∑ ∑ (X[i,j,k])

2H
j=1

H
i=1  

19.       calculate the overall WMean_L2 

20.     end for 

21. end while 

The process begins with calculating the sum of squares 

for all elements in the feature map layers, denoted as 

(Xijk)2 to produce the regularization term. It involves 

squaring each value in the feature map, which 

emphasizes larger activations and minimizes smaller 

ones. This squaring process produce positive number for 

all feature map values. These values indicate the strength 

of detected features. The squared values are then 

summed across the spatial grid points and all channels, 

resulting in a single scalar value representing the feature 

map. This scalar value is then forwarded to the mean 

square operation, where it is divided by the total number 

of elements (7×7×2048) to produce the WMean_L2 

regularization value in a scalar for one channel. Each 

feature map in other channels undergoes the same 

calculation process. 

4. Results and Discussion 

4.1. Dataset and Experimental Settings 

The first experiment is conducted using a benchmark 

database known as BIT vehicle dataset. This database is 

selected because it provides vehicle images taken using 

with top and frontal view of surveillance mounted 

camera, which is aligned with the aim of this study scope 

as mentioned in the introduction section. Other than that, 

it consists of variety of vehicle classes, for instance, bus, 

car (passenger car), minivan, SUV, taxi, and truck in 

which, other databases are not providing taxi images. 

However, the dataset does not provide a specific time 

when the images are captured. Figure 3 shows an 

example of vehicle images from BIT dataset. 

 

   

a) Car. b) SUV. c) Truck. 

   

d) Bus. e) Van. f) Taxi. 

Figure 3. Vehicle images from BIT dataset. 

The total number of vehicle images is 9850 images. 

Car and SUV have the highest number of images with 

approximately 5000 and 1300 images, respectively. Taxi 

and minivan have the lowest number of images with not 

more than 600 images each. Thus, to avoid bias during 

the training and testing phases, 250 images were 

randomly selected from each class as the training dataset, 

and 200 images as the testing dataset. Note that, during 

the feature extraction process, we used images with the 

size of 1024x1024x3, whereby 3 was the three channels; 

red, green and blue. 
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To ensure an unbiased experiment, a second 

experiment was conducted using a benchmark database 

known as Common Objects in Context (COCO) vehicle 

dataset. This database is selected because it contains 

several vehicle classes which are car, bus, motor and 

truck as shown in Figure 4. 

 

  

a) Car. b) Bus. 

  

c) Motor. d) Truck. 

Figure 4. Vehicle images from COCO dataset. 

The total number of vehicle images is 9650 images. 

Even though, the dataset contain many images to be 

process, the COCO dataset lacks intra-class diversity for 

specific vehicle types such as taxis, SUVs, and vans, as 

these are all grouped under the general car class. This 

limitation reduces its effectiveness for detailed vehicle 

classification. Bus and motor class have the highest 

number of images with approximately 3200 and 2550 

images, respectively. Car have the lowest number of 

images with not more than 1820 images each. Besides, 

this dataset has various view angle condition. Thus, to 

avoid bias during the training and testing phases, 100 

images were randomly selected from each class as the 

training dataset based on frontal view that follow the 

study’s scope, and 40 images as the testing dataset. Same 

as BIT dataset image settings, the COCO images will 

used size of 1024×1024×3 images during the feature 

extraction process. 

For the experimental settings, the learning rate was set 

at 0.001, and the λ WMean_L2 was configured at 0.03. 

These parameter values were selected based on insights 

from related studies, aiming to reduce the model’s loss 

function. A high value in the loss function could lead to 

an unfitted model, negatively impacting object 

prediction accuracy. The experiment was conducted 

over 300 epochs, with 1,000 steps per epoch. The model 

achieved a good fit at epoch 72, as indicated by the 

minimization of validation loss and error loss during 

training. This careful tuning also helped prevent 

overfitting throughout the training process. The 

following subsections present the results, demonstrating 

the effectiveness of the trained model when evaluated 

using the testing dataset. 

4.2. Results for Inter-Classes Vehicle 

For the first experiment, we tested the 

Mask_RCNN+SGD+WMean_L2 with 3 classes of 

vehicle types based on BIT dataset. The types were 

sedan, heavy vehicles and van. Car and taxi were 

grouped in the sedan class, bus and truck were in the 

heavy vehicles class, and SUV and van were in the van 

class. Various vehicle images were used in this 

experiment, including cars with sunroofs. The total 

testing images was 1200 images. The aim of this 

experiment is to observe the 

Mask_RCNN+SGD+WMean_L2 when dealing with 

inter-class classification. Thus, we classify the car and 

taxi as the same class, as well as the truck and bus, also 

the SUV and van. We present the results from this 

experiment in the confusion matrix and performance 

based on the measurements as shown in Table 1. 

Table 1. Mask_RCNN+SGD+WMean+L2 performance for 3 classes based on BIT dataset. 

Class 
Actual Performance measurement (%) 

Sedan Heavy vehicles Van Precision Recall F-score Accuracy 

Predicted 

Sedan 395 0 5 98.72 99.35 99.04 

98.93 Heavy vehicles 0 397 3 99.36 99.36 99.36 

Van 3 2 395 98.72 98.09 98.40 

 

The results represent the highest performance 

achieved when the regularization value is 0.03. Looking 

at Table 1, out of total 400 images for the sedan class, 

395 were correctly classified, whereas 5 were incorrectly 

classified as van class. For the heavy vehicles class, 397 

of bus and truck were correctly classified. In the van 

class, 395 of the SUV and van images were correctly 

classified, and 3 was misclassified as the sedan class and 

2 as heavy vehicles. Based on that confusion matrix, the 

average accuracy was 98.93% and the precision for each 

class was more than 98%. It shows that 

Mask_RCNN+SGD+WMean_L2 has a low false 

positive rate when dealing with the inter-class 

classification. Other than that, the recalls for sedan class 

was 99.36% which is 0.01% higher than the sedan class. 

For the F-score, the van class was the lowest among the 

three classes. The high performance demonstrates that 

inter-class features are crucial for improving 

performance metrics. These features enhance the 

distinction between different classes, allowing the model 

to make more accurate predictions when they are well-

separated. 

Next, we tested the Mask_RCNN+SGD+WMean_L2 

with 4 inter classes of vehicle types based on COCO 

dataset. Note that each image in the COCO dataset 

contains multiple objects such as vehicle, people, 
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building, etc., different from BIT dataset that specific to 

a vehicle object. The types of vehicle class in COCO 

dataset are bus, car, motor and truck. In COCO dataset, 

they include car, taxi and van as the car class. While for 

the truck class, it consist of fire truck, lorry and pickup 

truck. The total testing images was 160 images. The aim 

of this experiment is to observe our proposed model 

when dealing with inter-class classification. We present 

the results from this experiment in the confusion matrix 

and performance measurements as shown in Table 2. 

Table 2. Mask_RCNN+SGD+WMean+L2 performance for 4 classes based on COCO dataset. 

Class 
Actual Performance measurement (%) 

Bus Car Motor Truck Precision Recall F-score Accuracy 

Predicted 

Bus 40 0 0 0 100 85.11 91.95 

89.38 
Car 6 25 0 9 62.5 96.15 75.76 

Motor 0 0 40 0 100 100 100 

Truck 1 1 0 38 95 80.85 87.36 

 

The results in Table 2 represent the highest 

performance achieved when the regularization value is 

0.03. Looking at Table 2, out of total 40 images for the 

bus and motor class, both obtained 40 images were 

correctly classified. For the car class, 25 images were 

correctly classified, whereas 9 were incorrectly 

classified as truck class, and 6 as bus class. For the truck 

vehicles class, 38 images of truck were correctly 

classified whereas 1 were incorrectly classified as bus 

class, and 1 as car class. Based on that confusion matrix, 

the average accuracy was 89.38% and the precision for 

each class was more than 62%. For motor class, it 

achieved 100% in precision, recall, and F-score. This 

result shows that motor classes have distinctive features 

that differentiate them from other classes. However, in 

terms of overall performance the model showed a high 

false positive rate when classifying inter-classes 

especially in the car class. 

The model achieved a lower precision of 62.5% in the 

car class, because the car images were wrongly predicted 

as truck and bus. The truck class achieved recall with 

80.85% due to truck images are often misclassified as 

cars. Similarly, the bus class had a recall of 85.11%, due 

to bus images are misclassified as trucks. These results 

show that the model has difficulty distinguishing 

vehicles with overlapping similar appearance. To 

improve performance, the model needs feature learning 

to capture more discriminative features for each class. 

Although the overall accuracy was 89.38%, the 

differences in precision, recall, and F-score between 

classes show that it’s still a challenge to classify similar 

appearance vehicles accurately. 

From both performances between the BIT and COCO 

datasets using the proposed model, the BIT dataset 

shows high accuracy and consistent results. This 

suggests that the BIT dataset is suitable for vehicle type 

recognition to be implemented in applications related to 

ITS as mentioned in the introduction section. This is 

because the BIT dataset provides top and frontal views 

of vehicle images that are captured from mounted 

surveillance cameras. In addition, BIT dataset focuses on 

vehicle type domain, well-balanced class distribution, 

and clearer visual distinctions between vehicle type 

classes. These characteristics enable the proposed model 

to learn more discriminative features that are crucial in 

determining intra-class patterns compared to COCO. In 

contrast, COCO’s dataset contains various and 

overlapping objects that does not align with this scope of 

study. This caused the model to make it difficult to 

classify the vehicle types and increases the chance of 

confusion between similar classes. 

4.3. Results for Intra-Classes Vehicle 

For the second experiment, we tested the proposed 

model with 6 classes; car, taxi, van, bus, truck and SUV 

from BIT dataset. The aim in this experiment is to 

observe the performance of the 

Mask_RCNN+SGD+WMean_L2 when dealing with the 

intra-class classification. Similar to the previous 

experiment, we used various vehicle images including 

cars with sunroofs. Thus, we can see if the car with 

sunroofs are able to be classified as the car class or will 

be misclassified as the taxi class. Table 3 shows the 

results of the proposed model based on the confusion 

matrix, precision, recall, F-score and accuracy.  

Table 3. Mask_RCNN+SGD+WMean+L2 performance for 6 classes. 

Class 
Actual Performance measurement (%) 

Car Truck SUV Van Bus Taxi Precision Recall F-score Accuracy 

Predicted 

Car 197 0 0 0 0 3 98.72 97.47 98.09 

97.22 

Truck 0 197 0 3 0 0 98.72 97.47 98.09 

SUV 3 3 187 7 0 0 93.59 94.81 94.19 

Van 2 2 11 185 0 0 92.31 94.74 93.51 

Bus 0 0 0 0 200 0 100 100 100 

Taxi 0 0 0 0 0 200 100 98.73 99.36 

 

In Table 3, out of 200 total images for the car class, 

197 images were correctly classified, whereas 3 was 

incorrectly classified as the taxi class. For the truck class, 

197 of the truck images were correctly classified. In the 

SUV class, 187 of the SUV images were correctly 

classified, and 7 were misclassified as the van class, 

while 3 was misclassified as the car and the truck, 

respectively. 185 of van images were correctly 
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classified, and 11 misclassified as the SUV class. 

Looking at the bus class, all of 200 images were correctly 

classified. The most interesting part is 200 of the taxi 

images were correctly classified as the taxi although in 

the taxi images are almost similar like sedan car with the 

sunroof. Based on that confusion matrix, the average 

accuracy of the proposed technique was 97.22% and the 

precision for each class is more than 92.31%. The results 

shows a promising performance since we classify the 

class into 6 classes although the results were slightly 

decrease compared to the 3 classes. 

Thus, we can see that the performance of 

Mask_RCNN+SGD+WMean_L2 was comparable in 

both inter-class and intra-class features. It shows that the 

proposed model able to preserve the discriminant intra-

class features. The discriminant intra-class features 

reduce the overlap between different classes by clearly 

defining boundaries within each class. This reduction in 

overlap decreases misclassification, thereby increasing 

the model’s overall accuracy. By minimizing intra-class 

variability, these features ensure the model makes fewer 

false positive predictions, leading to higher precision. 

Additionally, they help capture more true positives by 

reducing false negatives, which improves recall. Since 

the F-score is the harmonic mean of precision and recall, 

enhancements in both metrics due to discriminant intra-

class features naturally result in a higher F-score, 

providing a balanced measure of performance. 

Although the proposed model reduces the number of 

false positive predictions, misclassification in intra-class 

still occurred, specifically for SUVs with 13, and vans 

with 15 were incorrectly classified. This occurs due to a 

combination of visual indistinctness in images and the 

effect of regularization on feature learning as shown in 

Figure 5-a) and (b). These figures illustrate the example 

of cases where SUVs are misclassified as either cars or 

vans. From both horizontal and top-down perspectives, 

SUV image was misclassified due to identical regions 

with cars and vans, which are similar rooflines, window 

shapes, and body proportions. These similarities can be 

misclassified, especially when distinctive SUV traits like 

higher ground clearance, larger wheel arches, and a 

bulkier rear bumper are either not visible or not 

emphasized in the input image. 

To enhance model stability and generalization, the 

WMean_L2 regularization method applies a uniform 

penalty to all weights by averaging their squared values. 

This helps reduce overfitting, but it can also limit the 

model’s ability to learn subtle features that are specific 

to each class. Therefore, the model tends to focus more 

on common, shared features, which increases the chance 

of misclassifying certain inputs. This issue is further 

worsened when the training data lacks variety in viewing 

angles images of certain vehicle types, for example SUV 

in this case. Due to that, the model tends to misclassify 

SUVs for dominant classes, such as cars or vans. The 

annotated diagram supports this finding by showing how 

overlapping and suppressed features from different 

angles make it harder for the model to tell vehicle types 

apart under these conditions. 

 
a) SUV misclassified as car.  

 

b) SUV misclassified as van class. 

Figure 5. Comparison of misclassification SUV, as car and van class. 

We also observed the Mask_RCNN+SGD 

performance by using different regularization techniques 

which are dropout, L1 regularization, and the default L2 

regularization. The aim of this observation is to see how 

the proposed WMean_L2 able to enhance the 

classification performance compared to other 

regularizations when dealing with intra-class. Table 4 

shows the results comparison based on the precision, 

recall, F-score and accuracy. Figure 6 depicts a bar chart 

to visualize the performance of the techniques for each 

vehicle class. 

Based on the results in Table 4, the proposed 

technique (Mask_RCNN+SGD+WMean_L2) 

consistently outperformed other techniques across most 

vehicle classes, achieving the highest precision, recall, 

and F-score. It showed significant improvements for the 

car and truck classes, with precision and recall both 

around 98.72% and 97.47%. For the SUV and van 

classes, the improvements were more modest. All 

techniques performed well in classifying buses, but the 

proposed technique still outperformed others. For the 

taxi class, it showed significant gains in precision and F-

score, though recall was not as high. 
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Figure 6. Performance comparison based on vehicle classes and different regularization techniques. 

Table 4. Mask_RCNN+SGD performance based on different 
regularization methods. 

Technique Class 
Performance measurement (%) 

Precision Recall F-score Accuracy 

Mask_RCNN+S

GD+Dropout 

Car 91.03 84.52 87.65 

89.96 

Truck 96.15 93.75 94.94 

SUV 78.21 84.72 81.33 

Van 91.03 82.56 86.59 

Bus 100.00 100.00 100.00 

Taxi 83.33 95.59 89.04 

Mask_RCNN+S

GD+L1 

Car 94.87 87.06 90.80 

93.16 

Truck 93.59 96.05 94.81 

SUV 89.74 86.42 88.05 

Van 92.31 91.14 91.72 

Bus 100.00 100.00 100.00 

Taxi 88.46 100.00 93.88 

Mask_RCNN+S

GD+L2 

Car 93.59 91.25 92.41 

93.38 

Truck 94.87 96.10 95.48 

SUV 89.74 85.37 87.50 

Van 89.74 90.91 90.32 

Bus 100.00 98.73 99.36 

Taxi 92.31 98.63 95.36 

Mask_RCNN+S

GD+WMean_L

2 

(Proposed 

technique) 

Car 98.72 97.47 98.09 

97.22 

Truck 98.72 97.47 98.09 

SUV 93.59 94.81 94.19 

Van 92.31 94.74 93.51 

Bus 100.00 100.00 100.00 

Taxi 100.00 98.73 99.36 

Figure 7 justifies how the proposed model 

performance is obtained. The evaluation of vehicle using 

baseline standard L2 regularization and the proposed 

WMean_L2 regularization reveals significant 

differences in classification performance and the way 

each technique influences weight penalization and 

feature discrimination. In Figure 7-b), the model with 

standard L2 regularization misclassified the vehicle as a 

car with a confidence score of 0.6661 compared to the 

taxi class with 0.5579. In contrast, Figure 7-c) shows that 

the proposed model correctly classified the vehicle as a 

taxi with a confidence score of 0.9094. This score shows 

improved discriminative capability in the proposed 

model. 

Figures 8-a) and (b) extend the analysis presented in 

Figure 7 by comparing the baseline and the proposed 

model to observe their influence on the decision 

boundaries formed by the classification model. This 

analysis is based on feature weight behavior. Data 

distribution in that figure represent features for a car 

(pink) and a taxi (blue). In Figure 8-a), the effect of 

standard L2 regularization to the decision boundaries are 

aligned with the zero axis. This is due to the equal 

penalization across all weights, which lead to more 

generalized boundaries and not based on the actual data 

pattern. Although this approach can help reduce 

overfitting, it may also limit the model’s ability to 

distinguish subtle differences within intra-class features. 

In contrast, Figure 8-b) illustrates the impact of 

WMean_L2 regularization on the model’s decision 

boundaries. The decision boundaries are aligned with the 

data distribution which is different from the standard L2 

regularization. It indicates that the WMean_L2 allows 

the model to adapt more flexible to the actual data 

pattern. This flexibility of decision boundaries helps the 

model to focus on relevant discriminative features while 

ignoring less relevant ones. As a result, the WMean_L2 

can improve the model’s ability to separate intra-class 

categories. For example is to distinguishing between car 

and taxi classes, which share almost similar features. 
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a) Original image. 

 
b) Standard L2 regularization. 

 

c) WMean_L2 regularization. 

Figure 7. Vehicle type classification based on baseline and proposed 

techniques. 

 
a) Penalty of standard L2 regularization. 

 

b) Penalty of WMean_L2 regularization. 

Figure 8. The effect of regularization techniques to the decision 

boundary. 

4.4. Comparison Results with other State-of-Art 

Techniques 

We compared the results obtained using the proposed 

approach (Mask_RCNN+SGD+WMean_L2) across six 

vehicle categories and compared them to existing VTR 

methods that emphasized intra-class classification 

through deep learning techniques. The techniques are 

Three-Channels of CNN known as TC-SF-CNNLS [12], 

and semi-supervised CNN [2]. Table 5 shows the 

comparison of the results among those techniques based 

on accuracy, precision, recall, and F-score. Based on the 

table, the proposed technique achieves the highest 

accuracy, performing better across all vehicle classes 

compared to other techniques. 

Table 5. Comparison results. 

Technique/Class 
Performance measurement (%) 

Precision Recall F-score Accuracy 

Zhang et al. [18] 

Car 91.92 87.50 89.66 

89.20 

Truck 89.11 88.24 88.67 

SUV 84.00 87.50 85.71 

Van 83.00 83.84 83.42 

Bus 98.00 97.03 97.51 

Taxi - - - 

Zhang et al. [17] 

Car 88.37 95.0 91.56 

90.41 

Truck 92.78 90.00 91.37 

SUV 87.62 85.00 86.29 

Van 84.24 85.50 84.86 

Bus 91.18 93.00 92.08 

Taxi 98.95 93.99 96.41 

Proposed technique 

Car 98.72 97.47 98.09 

97.22 

Truck 98.72 97.47 98.09 

SUV 93.59 94.81 94.19 

Van 92.31 94.74 93.51 

Bus 100.00 100.00 100.00 

Taxi 100.00 98.73 99.36 

In terms of average accuracy, the proposed technique 

achieves an accuracy of 97.22%, surpassing the 

accuracies obtained by [2, 12], which are 89.20% and 

90.41%, respectively. For the taxi class, only our 

proposed technique and the method presented by 

Satyanarayana et al. [12] performed classification. The 

proposed technique was outperformed in all 

performance metrics, achieving a precision of 100%, a 

recall of 98.73%, and an F-score of 99.36%. For other 

classes, the proposed technique also outperformed 

existing methods across all performance metrics. This 

demonstrates that the proposed technique enhances 

precision in intra-class challenges, as the classes often 

share highly similar appearances. 

While the results show that our model performs well 

overall, a closer look reveals some limitations. 

Specifically, the model showed smaller improvements 

for the SUV and van classes, with F-scores of 94.19% 

and 93.51%. These two vehicle types often have very 

similar region, which makes it difficult for the model to 

clearly separate them. As a result, some 

misclassifications still occur. This suggests that although 

WMean_L2 improves classification between similar 

vehicle types, it still faces challenges when the visual 

differences are subtle. 
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These challenges are not only theoretical but have 

practical consequences. In real-world applications such 

as automated toll collection, traffic monitoring, or 

autonomous driving, the inability to correctly 

differentiate between classes, for example, a van and an 

SUV, could impact decision-making systems that rely on 

accurate vehicle classification for pricing, enforcement, 

or path planning.  

5. Conclusions 

VTR is one of the systems facing challenges related to 

intra-class patterns. Mask_RCNN is one of the deep 

learning techniques widely used in VTR due to its ability 

to extract region-based features. An optimization layer 

in Mask_RCNN is implemented to minimize the loss 

function by adjusting weights and biases, thereby 

reducing classification errors and ensuring efficient 

model convergence. L2 regularization is particularly 

popular in optimization due to its stability and ability to 

keep weights small and evenly distributed, which helps 

capture detailed patterns and balance model complexity 

for better generalization to new data. 

The standard L2 regularization, which relies on 

summing squared values, has limitations. It is affected 

by weight scale, making it less effective at discouraging 

correlated weights within features of the same class. This 

shortcoming can reduce the accuracy of VTR, where 

differentiating between visually similar categories, like 

taxis and cars, is essential. To overcome these 

challenges, we introduce a modified L2 regularization 

approach called WMean_L2. Instead of sum-squared 

values, it utilizes the mean-squared value, ensuring scale 

independence, better model comparability, and greater 

stability during architectural changes. These advantages 

contribute to more consistent optimization outcomes. 

We integrated WMean_L2 into Mask_RCNN, using 

SGD as the optimizer, creating 

Mask_RCNN+SGD+WMean_L2. This model was 

tested in VTR to enhance intra-class classification 

accuracy. To assess its performance, we used the vehicle 

dataset from the BIT. Results demonstrated notable 

improvements across multiple evaluation metrics, 

confirming that this modification in L2 regularization 

strengthens classification efficiency, particularly in 

distinguishing closely related categories. 

Looking ahead, optimizing the model’s 

hyperparameters will be a key focus. In this study, we 

manually adjusted these settings. Moving forward, 

developing a configurable deep learning model will be 

essential to achieving the best possible performance. 
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