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Abstract: A Vehicle Type Recognition (VTR) system faces challenges in achieving accurate classification when distinguishing
between vehicle types with intra-class patterns, such as sedan cars, taxis, vans, minivans, trucks, and buses. The main challenge
lies in effectively extracting and preserving discriminant features for each vehicle type to prevent misclassification. Therefore,
this paper proposes an efficient regularization approach within the Mask Region-based Convolutional Neural Network
(Mask_RCNN) optimizer by integrating Weighted Mean League 2 (WMean_L2) with Stochastic Gradient Distance (SGD). We
introduce this model as Mask_RCNN+SGD+WMean_L2. WMean_L2 is formulated to ensure consistency in penalty regardless
of model size, providing stability across architectures and simplifying hyperparameter tuning. This approach enhances the
preservation of discriminant features while achieving consistent and optimal classification performance. We tested our model
on the benchmark database known as Beijing Institute of Technology (BIT), evaluating its performance based on precision,
recall, F-score, and accuracy. Our results demonstrate significant efficiency improvements compared to previous studies, with
precision ranging from 92.31% to 100%, recall from 94.74% to 100%, and F-score from 93.51% to 100% across six vehicle
classes, achieving the highest average accuracy of 97.22%.
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1. Introduction leading to poor and unpredictable classification

Vehicle Type Recognition (VTR) is important for many
smart transportation use cases, such as vehicle tracking,
toll collection, and urban planning [5]. High accuracy in
classification, however, remains a challenge, especially
when dealing with intra-class variation which is a subtle
variation in a same vehicle type. For example, sedans
and taxis have similar looks, and van and minivan have
similar forms, with conventional model recognizability
having a problem in distinguishing between them. Due
to that, most researchers classify the taxi and the car as a
sedan car, or the truck and bus as heavy vehicles [3, 10].
The consequence is, it is not efficient when
implementing the system in the real implementation [1].
A key challenge in handling intra-class issues is
effectively extracting and maintaining discriminant
features between almost similar vehicles but in different
vehicle types. Conventional classification algorithms
suffer in extracting and maintaining the discriminant
features. Deep learning techniques like Convolutional
Neural Networks (CNNs) and Mask Region-based
Convolutional ~ Neural Network (Mask_RCNN)
architectures often struggle with overfitting and
underfitting when dealing with intra-class patterns,

performance. Additionally, traditional regularization
methods in deep networks may not effectively preserve
the discriminant features, which can worsen
classification errors. This is because penalty process in
the regularization applies uniform penalty to all weights,
regardless of their importance

To address this challenge, we introduce an efficient
regularization method aimed to improve vehicle type
classification when dealing with the intra-class patterns,
supporting applications in Intelligent Transportation
System (ITS) such as toll collection, traffic census, and
traffic light control [11]. We propose a new
regularization scheme called Weighted Mean League 2
(WMean_L2) and combine it with Stochastic Gradient
Distance (SGD) in the Mask_RCNN optimizer. The
WNMean_L2 is formulated in the regularization based on
mean squared value during the penalty process. The
WMean_L2 is not influenced by the total number of
weights in the model, ensuring consistent penalties,
better model training, and improved the preservation
discriminant features. Thus, the contributions of this
paper are:

o Efficient regularization is introduced by using mean



14 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

squared value named WMean L2.

e The WMean L2 was implemented in optimization
layer with SGD as the optimizer in Mask RCNN and
named as Mask RCNN+SGD+WMean_L2.

2. Related Works

2.1. Mask_RCNN and Regularization in Vehicle
Type Recognition

Deep learning has demonstrated considerable
advantages in improving accuracy when extracting
discriminative features from images. A region-based
deep neural network, exemplified by the Mask_RCNN,
has been widely employed to extract discriminative
features from intra-class patterns [9, 11, 15]. In the realm
of wvehicle type classification, studies utilizing
Mask_RCNN have achieved commendable accuracy in
identifying general vehicle classes. However, challenges
arise when aiming for precise classification into specific
vehicle types, leading to a decline in accuracy.
Mask_RCNN has drawbacks that can burden the
backbone network’s weight throughout the feature
extraction process. This is because Mask RCNN is
trained using various optimization algorithms, including
RMSprop, Adam, and Momentum. While this
segmentation algorithm can address feature extraction
challenges by generalizing and processing large datasets
more efficiently [6, 17], it introduces another limitation
which is model complexity. Increased complexity in the
training model leads to longer training times and a
decrease in accuracy due to the loss of extracted
discriminative features [7]. The complexity in the
Mask_RCNN framework arises from the sensitivity of
hyperparameters, which affect both efficiency and
practical application [18]. To mitigate this limitation and
enhance the performance of the Mask RCNN
framework, regularization techniques are employed.
These techniques introduce penalties to the loss function
to discourage overly complex models that may overfit
the training data. Such penalties take various forms but
serve the common purpose of preventing overfitting and
promoting the learning of more generalizable patterns.
L2 regularization has been widely used in the
Mask RCNN framework due to its advantages over
other regularization techniques. Shim et al. [13]
implemented L2 regularization in Mask_RCNN to
classify wvehicle types in a traffic control system.
However, their work struggled with misclassifications
within truck categories due to limitations in feature
discrimination and a narrow focus on cars, bicycles, and
trucks. Tahir et al. [14] developed an intelligent vehicle
system that applied Mask_RCNN for real-time vehicle
detection. They deployed L2 regularization to optimize
the training model, but their approach also failed to
achieve high accuracy when dealing with intra-class
vehicle variations.
Similarly,  other

studies have implemented

Mask_RCNN with regularization for vehicle counting
and classification [8]. This approach was tested on three
different video datasets and achieved precision
recognition results ranging from 97.3% to 99.1%.
However, it was not tested on intra-class data, limiting
the ability to assess the effectiveness of their
Mask_RCNN model.

L2 regularization has also been utilized in a
conventional CNN architecture for vehicle detection and
classification using spatio-temporal information [16].
The regularization process was implemented after
feature extraction, resulting in a less complex model.
However, based on their results, this model was unable
to improve classification precision. This is because the
CNN extracts hierarchical features at lower layers, but
the model did not learn discriminative features due to
improper regularization of the higher layers.

Based on these studies, it has been demonstrated that
L2 regularization has been widely utilized in
Mask _RCNN for recognition and classification systems.
However, despite its widespread use, the default L2
regularization technique still exhibits weaknesses that
can be improved. L2 regularization works by summing
the squares of all weights. This sum-of-squares approach
penalizes the total sum of squared weights across the
entire dataset. As a result, the regularization strength is
directly affected by the total number of samples in the
dataset. For larger datasets, this can lead to more
substantial penalties, which may influence the training
dynamics and potentially result in overly conservative
updates to the model parameters.

One key limitation of L2 regularization is that it
prevents the training model from effectively extracting
discriminative features. This occurs because L2
regularization treats all directions in the feature space
equally, shrinking all  coefficients  uniformly.
Consequently, distinguishing discriminative features in
datasets becomes more challenging. Additionally, L2
regularization does not reduce the number of features,
making it less effective in high-dimensional spaces with
many irrelevant features. This uniform treatment can
also lead to overlapping class boundaries, further
complicating the extraction of discriminative features.

Therefore, we propose an efficient regularization
technique by utilizing the mean squared value to address
the weaknesses of the sum-of-squares approach. The
advantage of using the mean squared value is that it
offers a regularization strength independent of dataset
size. This method provides more consistent
regularization across different batch sizes by averaging
the penalty over all samples. Consequently, the mean
squared approach ensures that the regularization penalty
remains stable, predictable, and efficient, regardless of
the dataset’s scale. With this consistency, the
discriminative features extracted by Mask_RCNN can
be preserved, leading to improved classification
performance.
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3. Methodology

Our proposed regularization modification, known as
WNMean_L2, was implemented in the optimization layer
after Regions Of Interest (ROI) align in the
Mask RCNN model, as shown in Figure 1. The
Mask_RCNN model was deployed for VTR. We chose
VTR to evaluate the performance of our proposed
regularization modification in  Mask_RCNN for
addressing intra-class issues in vehicle classification.

The process consists of two main stages. Stage 1
includes three primary steps: data acquisition and pre-
processing, feature extraction, and optimization. Stage 2
focuses on feature classification to obtain the final
classification results. The model was deployed through
training and testing phases, with these stages
implemented in both phases.
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Figure 1. Mask_RCNN+SGD+WMean_L2 general framework.

3.1. Data Acquisition and Pre-Processing

The vehicle images were pre-processed in this phase.
The data was acquired from benchmark database known
as Beijing Institute of Technology (BIT) that contain raw
vehicle images with variety of vehicle classes. Next, we
implemented data annotation and data augmentation to
provide information of vehicle labels and bounding box
to the Mask_RCNN model during training process, and
to balance the dataset.

The annotated data is stored and produced in a
JavaScript Object Notation (JSON) file. While for data
augmentation, we had applied three techniques that are
rotate 45°, flip and warp shift. The output of this process
is pre-possessed and annotated dataset that was used as
input for feature extraction with image size of
1024x1024 as shown in Figure 2. The annotated dataset
was used only in the training phase, whereas the testing
dataset remains unannotated and is excluded from the

training process. Next, features from the datasets were
extracted in the convolutional backbone of the
Mask _RCNN.

a) Before annotation. b) Annotated image.

Figure 2. Example of annotation image used for training phase.

3.2. Feature Extraction

In this process, we used Restnet-101 as a convolutional
backbone for Mask_RCNN. The process consists of five
stages, beginning with processing the raw VTR dataset
image through a convolutional layer, batch
normalization, ReLU activation, and max pooling to
capture low-level features. In the first stage, we used 64
filters. The feature map (C1) from stage 1 is then used in
the second stage to extract mid-level features, and we
used 256 filters in this stage. In the third stage with 512
filters, convolutions are applied to (C2) to learn vehicle
shapes and attributes, generating a new feature map
(C3). The fourth stage enhances high-level feature
recognition using a deeper residual block with 1024
filters to produce high-level feature maps (C4). In the
fifth stage with 2048 filters, three residual blocks extract
higher-level semantic information from C4, producing
the final feature map (C5). The extracted feature maps
(C5) serve as inputs for the Region Proposal Network
(RPN), where a 3x3 convolutional layer of sliding
window technique and anchor boxes are used to generate
regional proposals based on the Intersection over Union
(loU) evaluation. The loU that we used was 0.3>1o0U>0.7
to maintain positive anchors. This feature extraction
process can be referred to Algorithm (1).

Algorithm 1: Feature extraction based on resnet-101.

Input: VTR images

Output: Feature maps of the extracted features

1. def feature_extraction (image):

2. [//Extract features from dataset image

3. //Stage 1: Low-level feature extraction

4. Cl=convolution (image)

5. Cl=batch_normalization (C1)

6. Cl=relu_activation (C1)

7. Cl=max_pooling (C1)

8. //Stage 2: Mid-level feature extraction

9. C2=residual_block (C1)

10. //Stage 3: Vehicle shape and attribute //learning
11. C3=convolution (C2)

12. //Stage 4: High-level feature extraction

13. C4=deeper_residual_block (C3)

14. //Stage 5: Higher-level semantic //information extraction
15. Cbh=residual_block (C4)

16. Cb=residual_block (C5)
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17. Cb5=residual_block (C5)

18. return C5 # Feature map for FPN

19.

20. def region_proposal_network(C5):

21. //Generate region proposals using RPN

22.  proposals =[]

23.  for feature_map in C5:

24. //Sliding window technique

25.  windows = sliding_window(feature_map)
26. //Generate anchor boxes

27. anchors = generate_anchors(windows)
28. //Evaluate loU for anchor selection

29. selected_anchors = evaluate_iou(anchors)
30. //Store proposals

31. proposals.extend(selected_anchors)

32. return proposals

33. //[Example usage

34. image = load_vtr_image(“input_image.jpg”)
35. feature_maps=feature_extraction(image)
36. regional_proposals=

37. region_proposal_network(feature_maps)

Next, the regional proposals together with the feature
maps undergo the ROI Align phase. The aim here is to
ensure the extracted features are precisely aligned with
the ROIs, which improves the accuracy of the object
detection model. We used the ROI with coordinates of
[10.5, 10.5, 21.5, 21.5]. The process involves extracting
precise feature representations from ROIls within the
feature map. This process is repeated for every ROI
proposed by the RPN, allowing Mask_RCNN to make
more accurate object detection and segmentation
predictions. Finally, the result for each ROl is an aligned
fixed-size feature map was produced.

3.3. Optimization

Optimization phase is the most important phase since our
proposed WMean_L2 is implemented in this phase.
Optimization phase is the most important phase since the
main contribution of this paper is in this phase. In our
Mask_RCNN, we deployed the optimization layer after
ROI align to ensure precise spatial alignment of feature
maps, capturing subtle, discriminative features
accurately. The aligned feature maps from the previous
phase undergo optimization process. SGD as an
optimizer is deployed in the optimization layer. SGD
was selected in this work due to its single-batch update
rule that can minimize loss and converges efficiently to
an accurate solution.

However, since SGD updates the model’s weights
using gradients from the entire dataset, the training
process becomes longer due to frequent update steps,
leading to increased model complexity and
hyperparameter sensitivity. Thus, the WMean L2
regularization was integrated with the SGD. The aim of
this integration is to reduce model complexity, improve
hyperparameter  sensitivity issue, and preserve
discriminant features of the extracted features.

WMean_L2 offers balanced and interpretable
approach to weight penalization compared to standard
L2. The standard L2 regularization used sum function to

accumulates the squared weights and scales with the
number of parameters, while WMean_L2 applies mean
function to normalizing the penalty across all weights.
The scale formulation in the L2 regularization ensures
consistent regularization pressure regardless of model
size or layer depth, which is particularly important in
deep architectures. In addition, L2-based methods shrink
weight rather than eliminate them, unlike L1
regularization, which induces sparsity by forcing many
weights to zero. Thus, it makes L2 better than L1.

The weight penalization by utilizing mean squared
value in WMean_L 2 encourages smaller weights. Thus,
it regularizes the model by improving the geometry of
the loss surface and reducing the number of sharp local
minima that could hinder convergence during
optimization. Consequently, it ensures that the
regularization penalty is uniformly applied across
different model sizes and feature map dimensions,
contributing to more stable training and improved
generalization. Additionally, in deep models like
Mask_RCNN, where spatial and related features are
distributed across channels, preserving small but
informative weights is essential for maintaining
discriminative feature maps. WMean_L2 supports this
by retaining subtle activations that are important for
capturing intra-class variations, such as distinguishing
between a car and a taxi. This helps prevent the model
from over-simplifying its internal representations,
leading to more robust feature learning and stable
convergence during training.

The WMean_L2 regularization was formulated based
on Equation (1). The equation consists of the loss
function which is Sum Squared Error (SSE) plus with the
penalty which is mean squared value. The mean squared
value in Equation (1) was deployed based on Equation

(2).

N 1 HW,C 2
— —5)2 P — .
L= Zn—l(yn Yn) +1 HXW X Czi,j,k:l(Xl'J'k) (1)
Where yn, is the ground truth value for the nth sample, ¥,
is the predicted value for the nth sample, and N is the
number of samples.
Hw,C
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Where H and W is height and width of the feature map,
C is number of channels, X is value of the feature map,
and i, j, k, is row index based on height, column index-
based width, channel index, respectively. While 4 is
regularization strength parameter to control the trade-off
between fitting the data and regularization.

3.4. Feature Classification

In the feature classification phase, the optimized feature
maps from the previous process undergo a few processes
through fully connected layers for bounding box
regression and vehicle classification. Simultaneously,
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these maps are passed to a fully convolutional network
for object mask generation in the stage 2 as shown in
Figure 1. In this phase, the flatten feature map of 1D
vector is used as the input. The model computes the total
loss after each prediction to measure the deviation from
true labels. Backpropagation then calculates the
gradients of this loss, adjusting weights and biases to
minimize error. This iterative process enhances the
model’s ability to recognize class features over time.
ReLu activation is applied to produce output neurons,
which are used to classify vehicles into predefined
classes like car, taxi, truck, Sport Utility Vehicle (SUV),
van, or bus. Simultaneously, a Fully Convolutional
Network (FCN) generates an object mask for precise
pixel-wise classification, distinguishing vehicles from
the background. The results from this phase were
evaluated based on the standard performance
measurements. The measurements are precision, recall,
F-score and accuracy.

3.5. Mask_ RCNN_SGD_WMean_L2

Based on the designed methodology in Figure 1, we
implemented the WMean_L2 in the Mask_RCNN
framework as outlined in Algorithm (2). In this paper,
we focus on the feature map with one channel, that has
values range from -1.0 to 1.0. These values indicate the
strength and weak of detected features. The higher
values represent stronger activations prominent edges,
the lower values indicate weaker or absent features.

Algorithm 2: Mask_RCNN+SGD+WMean_L2.

Input: Feature Map: A tensor of shape (H, W, C) and
Hyperparameter: Regularization parameter, ./
Output: Total Loss: Incorporating classification loss and
WMean_L2 regularization term, and Updated Weights
1. Initialize Mask_RCNN model
Define regularization parameter (Areg)
Initialize SGD optimizer
Define number of training iterations
while number of training iterations do
extract feature map:
input an image to the model to obtain the feature map
ROI Align(Image) 2>Feature Map
9. initialize variables:
10.  set feature map dimensions (H, W, C)
11.  set weights, biases
12.  flatten feature map vector, X:

O N~ WDN

13. reshape (Feature Map, (HxXWxC,1))—X
14.  compute WMean_L2 Regularization Term:
15. initialize L2 Reg Term =0

16.  for each channel, k in the feature map:

17. calculate the squared values and accumulate:
1 .. 2

18. L2 Reg Term+«——— 2L 2 (XTijk])

19. calculate the overall WMean_L2

20. end for

21. end while

The process begins with calculating the sum of squares
for all elements in the feature map layers, denoted as
(Xij)? to produce the regularization term. It involves
squaring each value in the feature map, which

emphasizes larger activations and minimizes smaller
ones. This squaring process produce positive number for
all feature map values. These values indicate the strength
of detected features. The squared values are then
summed across the spatial grid points and all channels,
resulting in a single scalar value representing the feature
map. This scalar value is then forwarded to the mean
square operation, where it is divided by the total number
of elements (7x7x2048) to produce the WMean_L2
regularization value in a scalar for one channel. Each
feature map in other channels undergoes the same
calculation process.

4. Results and Discussion
4.1. Dataset and Experimental Settings

The first experiment is conducted using a benchmark
database known as BIT vehicle dataset. This database is
selected because it provides vehicle images taken using
with top and frontal view of surveillance mounted
camera, which is aligned with the aim of this study scope
as mentioned in the introduction section. Other than that,
it consists of variety of vehicle classes, for instance, bus,
car (passenger car), minivan, SUV, taxi, and truck in
which, other databases are not providing taxi images.
However, the dataset does not provide a specific time
when the images are captured. Figure 3 shows an
example of vehicle images from BIT dataset.

d) Bus. e) Van. f) Taxi.

Figure 3. Vehicle images from BIT dataset.

The total number of vehicle images is 9850 images.
Car and SUV have the highest number of images with
approximately 5000 and 1300 images, respectively. Taxi
and minivan have the lowest number of images with not
more than 600 images each. Thus, to avoid bias during
the training and testing phases, 250 images were
randomly selected from each class as the training dataset,
and 200 images as the testing dataset. Note that, during
the feature extraction process, we used images with the
size of 1024x1024x3, whereby 3 was the three channels;
red, green and blue.



18 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

To ensure an unbiased experiment, a second
experiment was conducted using a benchmark database
known as Common Objects in Context (COCQ) vehicle
dataset. This database is selected because it contains
several vehicle classes which are car, bus, motor and
truck as shown in Figure 4.

¢) Motor.

d) Truck.

Figure 4. Vehicle images from COCO dataset.

The total number of vehicle images is 9650 images.
Even though, the dataset contain many images to be
process, the COCO dataset lacks intra-class diversity for
specific vehicle types such as taxis, SUVs, and vans, as
these are all grouped under the general car class. This
limitation reduces its effectiveness for detailed vehicle
classification. Bus and motor class have the highest
number of images with approximately 3200 and 2550
images, respectively. Car have the lowest number of
images with not more than 1820 images each. Besides,
this dataset has various view angle condition. Thus, to
avoid bias during the training and testing phases, 100
images were randomly selected from each class as the
training dataset based on frontal view that follow the

study’s scope, and 40 images as the testing dataset. Same
as BIT dataset image settings, the COCO images will
used size of 1024x1024x3 images during the feature
extraction process.

For the experimental settings, the learning rate was set
at 0.001, and the A WMean_L2 was configured at 0.03.
These parameter values were selected based on insights
from related studies, aiming to reduce the model’s loss
function. A high value in the loss function could lead to
an unfitted model, negatively impacting object
prediction accuracy. The experiment was conducted
over 300 epochs, with 1,000 steps per epoch. The model
achieved a good fit at epoch 72, as indicated by the
minimization of validation loss and error loss during
training. This careful tuning also helped prevent
overfitting throughout the training process. The
following subsections present the results, demonstrating
the effectiveness of the trained model when evaluated
using the testing dataset.

4.2. Results for Inter-Classes Vehicle

For the first experiment, we tested the
Mask_RCNN+SGD+WMean_L2 with 3 classes of
vehicle types based on BIT dataset. The types were
sedan, heavy vehicles and van. Car and taxi were
grouped in the sedan class, bus and truck were in the
heavy vehicles class, and SUV and van were in the van
class. Various vehicle images were used in this
experiment, including cars with sunroofs. The total
testing images was 1200 images. The aim of this
experiment is to observe the
Mask_RCNN+SGD+WMean_L2 when dealing with
inter-class classification. Thus, we classify the car and
taxi as the same class, as well as the truck and bus, also
the SUV and van. We present the results from this
experiment in the confusion matrix and performance
based on the measurements as shown in Table 1.

Table 1. Mask_RCNN+SGD+WMean+L2 performance for 3 classes based on BIT dataset.

Class Actual i P_erformance measurement (%6)
Sedan | Heavy vehicles | Van |Precision| Recall | F-score |Accuracy
Sedan 395 0 5 98.72 99.35 99.04
Predicted | Heavy vehicles 0 397 3 99.36 99.36 99.36 98.93
Van 3 2 395 | 98.72 98.09 98.40

The results represent the highest performance
achieved when the regularization value is 0.03. Looking
at Table 1, out of total 400 images for the sedan class,
395 were correctly classified, whereas 5 were incorrectly
classified as van class. For the heavy vehicles class, 397
of bus and truck were correctly classified. In the van
class, 395 of the SUV and van images were correctly
classified, and 3 was misclassified as the sedan class and
2 as heavy vehicles. Based on that confusion matrix, the
average accuracy was 98.93% and the precision for each

class was more than 98%. It shows that
Mask_RCNN+SGD+WMean_L2 has a low false
positive rate when dealing with the inter-class

classification. Other than that, the recalls for sedan class
was 99.36% which is 0.01% higher than the sedan class.
For the F-score, the van class was the lowest among the
three classes. The high performance demonstrates that
inter-class features are crucial for improving
performance metrics. These features enhance the
distinction between different classes, allowing the model
to make more accurate predictions when they are well-
separated.

Next, we tested the Mask_RCNN+SGD+WMean_L2
with 4 inter classes of vehicle types based on COCO
dataset. Note that each image in the COCO dataset
contains multiple objects such as vehicle, people,
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building, etc., different from BIT dataset that specific to
a vehicle object. The types of vehicle class in COCO
dataset are bus, car, motor and truck. In COCO dataset,
they include car, taxi and van as the car class. While for
the truck class, it consist of fire truck, lorry and pickup

19

truck. The total testing images was 160 images. The aim
of this experiment is to observe our proposed model
when dealing with inter-class classification. We present
the results from this experiment in the confusion matrix
and performance measurements as shown in Table 2.

Table 2. Mask_RCNN+SGD+WMean+L2 performance for 4 classes based on COCO dataset.

Class Actual Performance measurement (%)
Bus | Car | Motor | Truck |Precision| Recall | F-score |Accuracy
Bus 40 0 0 0 100 85.11 | 91.95
. Car 6 25 0 9 62.5 96.15 | 75.76
Predicted “Giotor | 0 | 0 | 40 0 100 | 100 | 100 | 9%
Truck 1 1 0 38 95 80.85 | 87.36

The results in Table 2 represent the highest
performance achieved when the regularization value is
0.03. Looking at Table 2, out of total 40 images for the
bus and motor class, both obtained 40 images were
correctly classified. For the car class, 25 images were
correctly classified, whereas 9 were incorrectly
classified as truck class, and 6 as bus class. For the truck
vehicles class, 38 images of truck were correctly
classified whereas 1 were incorrectly classified as bus
class, and 1 as car class. Based on that confusion matrix,
the average accuracy was 89.38% and the precision for
each class was more than 62%. For motor class, it
achieved 100% in precision, recall, and F-score. This
result shows that motor classes have distinctive features
that differentiate them from other classes. However, in
terms of overall performance the model showed a high
false positive rate when classifying inter-classes
especially in the car class.

The model achieved a lower precision of 62.5% in the
car class, because the car images were wrongly predicted
as truck and bus. The truck class achieved recall with
80.85% due to truck images are often misclassified as
cars. Similarly, the bus class had a recall of 85.11%, due
to bus images are misclassified as trucks. These results
show that the model has difficulty distinguishing
vehicles with overlapping similar appearance. To
improve performance, the model needs feature learning
to capture more discriminative features for each class.
Although the overall accuracy was 89.38%, the
differences in precision, recall, and F-score between
classes show that it’s still a challenge to classify similar
appearance vehicles accurately.

From both performances between the BIT and COCO

datasets using the proposed model, the BIT dataset
shows high accuracy and consistent results. This
suggests that the BIT dataset is suitable for vehicle type
recognition to be implemented in applications related to
ITS as mentioned in the introduction section. This is
because the BIT dataset provides top and frontal views
of vehicle images that are captured from mounted
surveillance cameras. In addition, BIT dataset focuses on
vehicle type domain, well-balanced class distribution,
and clearer visual distinctions between vehicle type
classes. These characteristics enable the proposed model
to learn more discriminative features that are crucial in
determining intra-class patterns compared to COCO. In
contrast, COCQO’s dataset contains various and
overlapping objects that does not align with this scope of
study. This caused the model to make it difficult to
classify the vehicle types and increases the chance of
confusion between similar classes.

4.3. Results for Intra-Classes Vehicle

For the second experiment, we tested the proposed
model with 6 classes; car, taxi, van, bus, truck and SUV
from BIT dataset. The aim in this experiment is to
observe the performance of the
Mask_RCNN+SGD+WMean_L2 when dealing with the
intra-class classification. Similar to the previous
experiment, we used various vehicle images including
cars with sunroofs. Thus, we can see if the car with
sunroofs are able to be classified as the car class or will
be misclassified as the taxi class. Table 3 shows the
results of the proposed model based on the confusion
matrix, precision, recall, F-score and accuracy.

Table 3. Mask_RCNN+SGD+WMean+L2 performance for 6 classes.

Class Actual . Pe.nformance measurement (%)
Car |Truck|SUV | Van |Bus| Taxi | Precision| Recall |F-score|Accuracy
Car | 197 0 0 0 0| 3 98.72 97.47 | 98.09
Truck | 0 | 197 | © 3 Jo| 0 98.72 97.47 | 98.09
. SUV 3 3 187 7 0 0 93.59 94.81 94.19
Predicted Van 2 2 11 | 185 |0 | O 92.31 94.74 | 9351 97.22
Bus 0 0 0 0 |200| O 100 100 100
Taxi 0 0 0 0 0 | 200 100 98.73 99.36

In Table 3, out of 200 total images for the car class,
197 images were correctly classified, whereas 3 was
incorrectly classified as the taxi class. For the truck class,
197 of the truck images were correctly classified. In the

SUV class, 187 of the SUV images were correctly
classified, and 7 were misclassified as the van class,
while 3 was misclassified as the car and the truck,
respectively. 185 of van images were correctly
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classified, and 11 misclassified as the SUV class.
Looking at the bus class, all of 200 images were correctly
classified. The most interesting part is 200 of the taxi
images were correctly classified as the taxi although in
the taxi images are almost similar like sedan car with the
sunroof. Based on that confusion matrix, the average
accuracy of the proposed technique was 97.22% and the
precision for each class is more than 92.31%. The results
shows a promising performance since we classify the
class into 6 classes although the results were slightly
decrease compared to the 3 classes.

Thus, we can see that the performance of
Mask_RCNN+SGD+WMean_L2 was comparable in
both inter-class and intra-class features. It shows that the
proposed model able to preserve the discriminant intra-
class features. The discriminant intra-class features
reduce the overlap between different classes by clearly
defining boundaries within each class. This reduction in
overlap decreases misclassification, thereby increasing
the model’s overall accuracy. By minimizing intra-class
variability, these features ensure the model makes fewer
false positive predictions, leading to higher precision.
Additionally, they help capture more true positives by
reducing false negatives, which improves recall. Since
the F-score is the harmonic mean of precision and recall,
enhancements in both metrics due to discriminant intra-
class features naturally result in a higher F-score,
providing a balanced measure of performance.

Although the proposed model reduces the number of
false positive predictions, misclassification in intra-class
still occurred, specifically for SUVs with 13, and vans
with 15 were incorrectly classified. This occurs due to a
combination of visual indistinctness in images and the
effect of regularization on feature learning as shown in
Figure 5-a) and (b). These figures illustrate the example
of cases where SUVs are misclassified as either cars or
vans. From both horizontal and top-down perspectives,
SUV image was misclassified due to identical regions
with cars and vans, which are similar rooflines, window
shapes, and body proportions. These similarities can be
misclassified, especially when distinctive SUV traits like
higher ground clearance, larger wheel arches, and a
bulkier rear bumper are either not visible or not
emphasized in the input image.

To enhance model stability and generalization, the
WMean_L2 regularization method applies a uniform
penalty to all weights by averaging their squared values.
This helps reduce overfitting, but it can also limit the
model’s ability to learn subtle features that are specific
to each class. Therefore, the model tends to focus more
on common, shared features, which increases the chance
of misclassifying certain inputs. This issue is further
worsened when the training data lacks variety in viewing
angles images of certain vehicle types, for example SUV
in this case. Due to that, the model tends to misclassify
SUVs for dominant classes, such as cars or vans. The
annotated diagram supports this finding by showing how

overlapping and suppressed features from different
angles make it harder for the model to tell vehicle types
apart under these conditions.

(b) car (horizontal
comparison)

(c) car (vertical
comparison)

a) SUV misclassified as car.

fffffffff /

(a)suv | (b) van (horizontal
comparison)

(c) van (vertical
comparison)

b) SUV misclassified as van class.

Figure 5. Comparison of misclassification SUV, as car and van class.

We also observed the Mask RCNN+SGD
performance by using different regularization techniques
which are dropout, L1 regularization, and the default L2
regularization. The aim of this observation is to see how
the proposed WMean_L2 able to enhance the
classification  performance compared to other
regularizations when dealing with intra-class. Table 4
shows the results comparison based on the precision,
recall, F-score and accuracy. Figure 6 depicts a bar chart
to visualize the performance of the techniques for each
vehicle class.

Based on the results in Table 4, the proposed
technique (Mask_RCNN+SGD+WMean_L2)
consistently outperformed other techniques across most
vehicle classes, achieving the highest precision, recall,
and F-score. It showed significant improvements for the
car and truck classes, with precision and recall both
around 98.72% and 97.47%. For the SUV and van
classes, the improvements were more modest. All
techniques performed well in classifying buses, but the
proposed technique still outperformed others. For the
taxi class, it showed significant gains in precision and F-
score, though recall was not as high.



Vehicle Type Recognition using an Efficient Regularization in Mask-RCNN 21

Accuracy

f-score

mTaxi »Bus mVan ®SUV mTruck wCar

Recall

Mask R-
CNN+SGD+WMean L2

Precision

Accuracy

f-score

Recall

Precision

Accuracy

f-score

g

Precision

Mask R-CNN+SGD+L1 Mask R-CNN+ SGDHL2  (Proposed Technique)

Accuracy

f-score

Recall

Mask R-
CNN+SGD A+ Dropout

Precision

50.00% 60.00% 70.00%

80.00% 90.00% 100.00

Figure 6. Performance comparison based on vehicle classes and different regularization techniques.

Table 4. Mask_RCNN+SGD performance based on different
regularization methods.

Technique Class Performance measurement (%)
Precision| Recall | F-score | Accuracy
Car 91.03 84.52 87.65
Truck 96.15 93.75 94.94
Mask_RCNN+S|  SUV 78.21 84.72 81.33 89.96
GD+Dropout Van 91.03 82.56 86.59 '
Bus 100.00 100.00 | 100.00
Taxi 83.33 95.59 89.04
Car 94.87 87.06 90.80
Truck 93.59 96.05 94.81
Mask_RCNN+S|  SUV 89.74 86.42 88.05 03.16
GD+L1 Van 92.31 91.14 91.72 ’
Bus 100.00 100.00 | 100.00
Taxi 88.46 100.00 93.88
Car 93.59 91.25 92.41
Truck 94.87 96.10 95.48
Mask_RCNN+S|  SUV 89.74 85.37 87.50 03.38
GD+L2 Van 89.74 90.91 90.32 ’
Bus 100.00 98.73 99.36
Taxi 92.31 98.63 95.36
Car 98.72 97.47 98.09
Mask RCNN+S™ry ok 9872 | 97.47 | 98.09
CorWMean LI "suv | 9350 | o4l | e4ls | .,
(Proposed Van 92.31 94.74 93.51
technique) Bus. 100.00 100.00 | 100.00
Taxi 100.00 98.73 99.36

Figure 7 justifies how the proposed model
performance is obtained. The evaluation of vehicle using
baseline standard L2 regularization and the proposed
WMean_L2  regularization  reveals  significant
differences in classification performance and the way
each technique influences weight penalization and
feature discrimination. In Figure 7-b), the model with
standard L2 regularization misclassified the vehicle as a
car with a confidence score of 0.6661 compared to the
taxi class with 0.5579. In contrast, Figure 7-c) shows that

the proposed model correctly classified the vehicle as a
taxi with a confidence score of 0.9094. This score shows
improved discriminative capability in the proposed
model.

Figures 8-a) and (b) extend the analysis presented in
Figure 7 by comparing the baseline and the proposed
model to observe their influence on the decision
boundaries formed by the classification model. This
analysis is based on feature weight behavior. Data
distribution in that figure represent features for a car
(pink) and a taxi (blue). In Figure 8-a), the effect of
standard L2 regularization to the decision boundaries are
aligned with the zero axis. This is due to the equal
penalization across all weights, which lead to more
generalized boundaries and not based on the actual data
pattern. Although this approach can help reduce
overfitting, it may also limit the model’s ability to
distinguish subtle differences within intra-class features.

In contrast, Figure 8-b) illustrates the impact of
WMean_L2 regularization on the model’s decision
boundaries. The decision boundaries are aligned with the
data distribution which is different from the standard L2
regularization. It indicates that the WMean_L2 allows
the model to adapt more flexible to the actual data
pattern. This flexibility of decision boundaries helps the
model to focus on relevant discriminative features while
ignoring less relevant ones. As a result, the WMean_L2
can improve the model’s ability to separate intra-class
categories. For example is to distinguishing between car
and taxi classes, which share almost similar features.
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4.4. Comparison Results with other State-of-Art
Techniques

We compared the results obtained using the proposed
approach (Mask_RCNN+SGD+WMean_L2) across six
vehicle categories and compared them to existing VTR
methods that emphasized intra-class classification
through deep learning techniques. The techniques are
Three-Channels of CNN known as TC-SF-CNNLS [12],
and semi-supervised CNN [2]. Table 5 shows the
comparison of the results among those techniques based
on accuracy, precision, recall, and F-score. Based on the
table, the proposed technique achieves the highest
accuracy, performing better across all vehicle classes
compared to other techniques.

Table 5. Comparison results.

b) Standard L2 regularization.
£axi-0.9034 :

e —

¢) WMean_L2 regularization.
Figure 7. Vehicle type classification based on baseline and proposed

techniques.
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Figure 8. The effect of regularization techniques to the decision
boundary.

Technique/Class Pe_rf_ormance measurement (%)
Precision| Recall |F-score|Accuracy
Car 91.92 | 87.50 | 89.66
Truck | 89.11 | 88.24 | 88.67
SUV 84.00 87.50 | 85.71
Zzhang etal- 18] 1 =o 8300 | 8384 | 8342 | 0020
Bus 98.00 | 97.03 | 97.51
Taxi - - -
Car 88.37 95.0 | 91.56
Truck | 92.78 | 90.00 | 91.37
SUV | 87.62 | 85.00 | 86.29
Zhang et al. [17] Van 8424 | 8550 | 84.86 90.41
Bus 91.18 | 93.00 | 92.08
Taxi 98.95 | 93.99 | 96.41
Car 98.72 | 97.47 | 98.09
Truck | 98.72 | 97.47 | 98.09
. SUV 93.59 94.81 | 94.19
Proposed technique van 9231 | 9474 | 9351 97.22
Bus | 100.00 |100.00 | 100.00
Taxi | 100.00 | 98.73 | 99.36

In terms of average accuracy, the proposed technique
achieves an accuracy of 97.22%, surpassing the
accuracies obtained by [2, 12], which are 89.20% and
90.41%, respectively. For the taxi class, only our
proposed technique and the method presented by
Satyanarayana et al. [12] performed classification. The
proposed technique was outperformed in all
performance metrics, achieving a precision of 100%, a
recall of 98.73%, and an F-score of 99.36%. For other
classes, the proposed technique also outperformed
existing methods across all performance metrics. This
demonstrates that the proposed technique enhances
precision in intra-class challenges, as the classes often
share highly similar appearances.

While the results show that our model performs well
overall, a closer look reveals some limitations.
Specifically, the model showed smaller improvements
for the SUV and van classes, with F-scores of 94.19%
and 93.51%. These two vehicle types often have very
similar region, which makes it difficult for the model to
clearly separate them. As a result, some
misclassifications still occur. This suggests that although
WMean_L2 improves classification between similar
vehicle types, it still faces challenges when the visual
differences are subtle.
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These challenges are not only theoretical but have
practical consequences. In real-world applications such
as automated toll collection, traffic monitoring, or
autonomous driving, the inability to correctly
differentiate between classes, for example, a van and an
SUV, could impact decision-making systems that rely on
accurate vehicle classification for pricing, enforcement,
or path planning.

5. Conclusions

VTR is one of the systems facing challenges related to
intra-class patterns. Mask_RCNN is one of the deep
learning techniques widely used in VTR due to its ability
to extract region-based features. An optimization layer
in Mask_RCNN is implemented to minimize the loss
function by adjusting weights and biases, thereby
reducing classification errors and ensuring efficient
model convergence. L2 regularization is particularly
popular in optimization due to its stability and ability to
keep weights small and evenly distributed, which helps
capture detailed patterns and balance model complexity
for better generalization to new data.

The standard L2 regularization, which relies on
summing squared values, has limitations. It is affected
by weight scale, making it less effective at discouraging
correlated weights within features of the same class. This
shortcoming can reduce the accuracy of VTR, where
differentiating between visually similar categories, like
taxis and cars, is essential. To overcome these
challenges, we introduce a modified L2 regularization
approach called WMean_L2. Instead of sum-squared
values, it utilizes the mean-squared value, ensuring scale
independence, better model comparability, and greater
stability during architectural changes. These advantages
contribute to more consistent optimization outcomes.

We integrated WMean_L2 into Mask_RCNN, using
SGD as the optimizer, creating
Mask_RCNN+SGD+WMean_L2. This model was
tested in VTR to enhance intra-class classification
accuracy. To assess its performance, we used the vehicle
dataset from the BIT. Results demonstrated notable
improvements across multiple evaluation metrics,
confirming that this modification in L2 regularization
strengthens classification efficiency, particularly in
distinguishing closely related categories.

Looking  ahead, optimizing the model’s
hyperparameters will be a key focus. In this study, we
manually adjusted these settings. Moving forward,
developing a configurable deep learning model will be
essential to achieving the best possible performance.
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