
The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005 127

Partitioning State Spaces of Concurrent
 Transition Systems

Mustapha Bourahla
Computer Science Department, University of Biskra, Algeria

Abstract: As the model-checking becomes increasingly used in the industry as an analysis support, there is a big need for
efficient new methods to deal with the large real-size of concurrent transition systems. We propose a new algorithm for
partitioning the large state space modelling industrial designs as concurrent transition systems with hundreds of millions of
states and transitions. The produced partitions will be used by distributed processes for parallel system analysis. The state
space is supposed to be represented by a weighted Kripke structure (this is an extension of the Kripke structure where weights
are associated with the states and with the transitions). This algorithm partitions the weighted Kripke structure by performing
a combination of abstraction-partition-refinement on this structure. The algorithm is designed in a way that reduces the
communication overhead between the processes. The experimental results on large real designs show that this method
improves the quality of partitions, the communication overhead and then the overall performance of the system analysis.

Keywords: Concurrent transition systems, distributed and parallel analysis, abstraction, partitioning, refinement.

Received February 6, 2004; accepted July 4, 2004

1. Introduction

As formal verification becomes increasingly used in
the industry as a part of the design process, there is a
constant need for efficient tool support to deal with
real-size applications. There are many methods
proposed to overcome this problem, including
abstraction, partial order reduction, equivalence-based
reduction, modular methods, and symmetry [3, 6].
Recently, a new promising method to tackle the state
space explosion problem was introduced [2, 4, 10].
This method is based on the use of multiprocessor
systems or workstation clusters. These systems often
boast a very large (distributed) main memory.
Furthermore, the large computational power of such
systems also helps in effectively reducing model
checking time.

In this paper, we develop an efficient algorithm for
partitioning the state space in terms of computation and
communication. The following is a detailed description
of our approach. The state space on which the analysis
will be performed, is partitioned into M parts, where
each part is owned by one process in the network. In
order to increase the performance of the parallel
analysis, it is essential to achieve a good load
balancing between the M machines, meaning that the
M parts of the distributed state space should contain
nearly the same number of states. The quality of a
partitioning algorithm could also be estimated
according to the number of cross-border transitions of
the partitioned state space (i. e., transitions having the
source state in a component and the target state in
another component). This number should be as small

as possible, since it has effect on the number of
messages sent over the network during the system
analysis. The state space is represented by a simple
structure (weighted Kripke structure) which is
represented by a data structure doesn't consume large
memory. We adopted a static partition scheme, which
avoids the potential communication overhead
occurring in dynamic load balancing schemes. This
partitioning scheme has an adaptive cost which yields
nearly equal partitions with small number of cross-
border transitions. Then, the problem is to choose an
appropriate partition algorithm associating to each state
a machine index. The result of this algorithm is a
partitioning function P.

Our algorithm for partitioning is performed on three
steps. The first step is the abstraction of the state space
represented by a weighted Kripke structure using the
matching notion [5, 7, 9] of pairs of states making a
transition in the model (one is the source and the other
is the target). This abstraction will continue until
reduction of the state space to a certain number of
states small enough to do the partitioning very easily.
After partitioning this much smaller weighted Kripke
structure to M partitions, this partitioning is projected
back towards the original weighted Kripke structure
(finer structure), by periodically performing
refinements on the projected structures. When the
partitioning function P: S  {0, …, M-1} is produced,
we proceed by partitioning the weighted Kripke
structure to M components where the border states are
duplicated by a fashion satisfying the balancing
condition.

128 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

The results of our experiments on real designs show
that this new scheme produces good quality of
partitioning that can be compared to other efficient
approaches. This partitioning has small percentage of
cross-border transitions compared to other reported
results. It requires substantially small time.

2. Partitioning State Spaces

The partitioning problem is defined as follows: Given a
Kripke structure K = (S, I, R, L) modelling a
concurrent transition system over a set of Atomic
Propositions (AP), where:

 S is a non-empty finite set of states.
 I  S is the set of initial states.
 R  S x S is a total transition relation (i. e., (s  S:

(s’ S : (s, s’)  R))).
 L : S  2AP is a function that labels each state with

 the set of atomic propositions true in that state.
With |S| = N, partition S into M subsets, S0, S1, …, SM-1

such that Si ∩ Sj =  for i ≠ j, |Si| (N/M, and iSi = S,
and the number of transitions crossing the border is
minimized.

We define a weighted Kripke structure as Kripke
structure K = (S, I, R, L) where weights are associated
with each state s  S and each transition (s, s’)  R. A
weighted state s  S is a state collapsing (abstracting)
states of the original model and its weight represents
their number. The weighted state collapsing the
original initial state is the initial weighted state. The
weight of a transition between two weighted states s, s’
 S, represents the number of transitions between the
states composing the weighted state s and the weighted
state s’. Now, a Kripke structure K can be viewed as a
weighted Kripke structure, where all the state weights
and transition weights are equal to one.

The partitioning problem can be naturally extended
to weighted Kripke structures. In this case, the goal is
to partition the states into M disjoint subsets so that the
sum of the state weights in each subset is the same, and
the sum of the transitions weights which crossing the
border is minimized. A partition of S is commonly
represented by a total partition function P: S  {0, …,
M - 1}, so that for every state s  S, P (s) is an integer
between 0 and M - 1, indicating the partition at which
state s belongs. Given a partition function P, the
number of transitions crossing the border is called the
TransitionCut of the partition.

The idea of our algorithm of partitioning is inspired
by good works done for partitioning graphs [9, 11, 12].
The basic structure which we propose for the
partitioning algorithm is very simple. The original
weighted Kripke structure K is first abstracted down to
a sufficient number of states, a partition of this much
smaller structure is computed, and then this partition is
projected back towards the original structure (finer
Kripke structure). At each step of the structure

abstracting, the partition is further refined. Since the
finer structure has more degrees of freedom, such
refinements usually decrease the TransitionCut
number. Formally, the partitioning algorithm works as
follows: Consider a weighted Kripke structure K0 =
(S0, I0, R0, L0), with weights both on states and
transition edges. A partitioning algorithm consists of
the following three phases (each one is described in
detail in a separate section):

1. Abstracting phase in which the Kripke structure K0

is transformed into a sequence of smaller structures
K1, K2, …, Kr such that |S0| > |S1| > |S2| > … > |Sr|.

2. Partitioning phase where, a partition function Pr of
the structure Kr = (Sr, Ir, Rr, Lr) is computed that
partitions Sr into M parts.

3. Refinement phase where, the partition function Pr of
Kr is projected back to K0 by going through
intermediate partition functions Pr - 1, Pr - 2, …, P1,
P0.

The data structure used to store the state space consists
of two tables. The first is called StateTable, it stores
information about states and the second is called
TransitionTable, it stores the transitions. For each state
s  S (which is an index in {0, …, N-1}, N is the
number of states), StateTable[s] contains the following
informations. sw the weight of s, ns (and np) the
number of transitions outgoing (ingoing) from s (the
number of successor (predecessor) states of s), is (and
ip) the index into TransitionTable that is the beginning
of the transitions table of successor (predecessor) states
of s, ctw the weight of the transitions that have been
contracted to create s (if s is collapsing state), and aw
the sum of the weight of the transitions adjacent
(outgoing and ingoing) to s. The table TransitionTable
is fragmented to many portions. Each portion
represents the transitions of a state s  S to/from its
adjacent (successor and predecessor) states. Thus, there
are two information: The first is the state with which
the transition is made. The second information
indicates if the transition edge is an outgoing or an
ingoing edge. We define the function Adj: S  2S

associated to the table TransitionTable. Adj (s) gives
the set of states that are connected (adjacent) to s.
These information are used during different phases of
the algorithm, and greatly improve the performance.
Also, they are computed incrementally during the
abstraction, hence they do not increase the overall run
time of the algorithm.

3. Abstracting Phase

During the abstracting phase, a sequence of smaller
weighted Kripke structures, each with fewer states, is
constructed. Structure abstracting can be achieved by
combining a set of states of a weighted Kripke
structure Ki to form a single state of the next level
coarser structure Ki + 1. Let Ss

i be the set of states of Si

Partitioning State Spaces of Concurrent Transition Systems 129

combined to form state s of Ki + 1. We will refer to state
s as a multi-node. In order for a partition of a coarser
weighted Kripke structure to be good with respect to
the original structure, the weight of state s is set equal
to the sum of the weights of the states in Ss

i. Also, in
order to preserve the connectivity information in the
coarser structure, the transitions of s are the union of
the transitions of the states in Ss

i. In the case where
more than one state of Ss

i contain transitions to the
same state s’, the weight of the transition of s is equal
to the sum of the weights of these transitions. This is
useful when we evaluate the quality of a partition at a
coarser weighted Kripke structure. The TransitionCut
number of the partition in a coarser structure will be
equal to the TransitionCut number of the same
partition in the finer structure.

Given a weighted Kripke structure Ki = (Si, Ii, Ri,
Li), a coarser Kripke structure can be obtained by
collapsing adjacent states. Two states are adjacent if
and only if there is a transition between these two
states. Thus, the transition between two states is
collapsed and a multi-node consisting of these two
states is created. This transition collapsing idea can be
formally defined in terms of matchings [5, 7, 9].

A matching of a weighted Kripke structure, is a set
of transitions, no two of which are incident on the
same state (a transition is incident on a state if the state
is the source or the target of this transition). A
matching is maximal if any transition in the structure
that is not in the matching has at least one of its
endpoints matched. The maximal matching that has the
maximum number of transitions is called maximum
matching.

Thus, the next level coarser weighted Kripke
structure Ki + 1 is constructed from Ki by finding a
matching of Ki and collapsing the states being matched
into multi-nodes. The unmatched states are simply
copied over to Ki + 1. Since the goal of collapsing states
using matchings is to decrease the size of the structure
Ki, the matching should contain a large number of
transitions. For this reason, maximal matchings are
used to obtain the successively coarse structures. Note
that depending on how matchings are computed, the
number of transitions belonging to the maximal
matching may be different. However, because the
complexity of computing a maximum matching [13] is
in general higher than that of computing a maximal
matching, the latter is preferred. Since maximal
matchings are used to abstract the structure, the
number of states in Ki + 1 cannot be less than half the
number of states in Ki; thus, it will require at least O
(log (N/N’)) steps to abstract K0 down to a structure
with N’ states. However, depending on the
connectivity of Ki, the size of the maximal matching
may be much smaller than |Si|/ 2. In this case, the ratio
of the number of states from Ki to Ki + 1 may be much
smaller than 2. If the ratio becomes lower than a
threshold, then it is better to stop the abstracting phase.

However, this type of pathological condition usually
arises after many abstracting levels, in which case Ki is
already fairly small; thus, aborting the abstracting does
not affect the overall performance of the algorithm.

The abstraction algorithm consists of two stages:
The matching stage and the contraction stage where, a
coarser structure is created by contracting the states as
dictated by the matching. The output of the matching
stage, is two vectors Match and Map, so that for each
state s, Match [s] stores the state with which s has been
matched (or s itself if it is unmatched), and Map [s]
stores the given label of s in the coarser structure
which is assigned a sequential number (if Match [s] =
s’ then Map [s] = Map [s’]). During the contraction
stage, the Match and Map vectors are used to abstract
the structure.

Algorithm 1: Abstract (Ki = (Si, Ii, Ri, Li))
{

Matching:
Create a random list RS of all the states in
StateTable representing the set Si

for each state s  RS
 {

Match [s]  s
Map [s]  -1

}
for each state s  RS
{

if (Match [s] = s)
{

H  {s’ | Match [s’] = s’  s’ Adj (s)}
Let MW be the maximum weight of the
contracted transitions in H
H← H\ {s’  H | ctw (s’) < MW}
SW ←
for each state s’ H

 {
SW ← SW {

 ∑(s’, s’’) (Ri | s’’  Adj (s) w (s’, s’’) +
 ∑(s’’, s’) (Ri | s’’  Adj (s) w (s’’, s’)}

 }
Let s’  H be the state corresponding to the
 maximum in SW
Match [s]  s’

 }
}
j  0
for each state s  RS

 {
 if (Map [s] = -1)
 {

T [j]  Map [s]  Map [Match [s]]  qj

j++
}

 }

130 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

Contraction:
Si + 1 ; Ri + 1 ; index  0
for each k  {0, …, j - 1}

 {
 Si + 1  Si + 1  {T[k]}

 SuccSet {Map [s] | s  Si  Map [s]  T[k] 
 s’  Si: T[k] = Map [s’]  (s’, s)  Ri}

 is (T[k])  index
 ns (T[k])  Length(SuccSet)

 index  index + ns (T[k])
 PredSet  {Map [s] | s  Si  Map [s]  T[k] 
s’  Si: T[k] = Map[s’]  (s, s’)  Ri}

ip(T[k])  index
 np(T[k])  Length (PredSet)

index  index + np(T[k])
 Ri + 1  Ri + 1  SuccSet  PredSet

sw(T[k])  sw (s1) + sw (s2) s. t.
 T[k] = Map [s1] = Map [s2]
ctw (T[k])  ctw (s1) + ctw (s2) +
 w ((s1, s2)) + w ((s2, s1)) s. t.

 T[k] = Map [s1] = Map [s2]
aw (T[k]) (aw (s1) + aw (s2) –

 w ((s1, s2)) – w ((s2, s1)) s. t.
 T[k] = Map [s1] = Map [s2]

 }
for each transition (q1, q2)  Ri + 1 s. t.
 q1 = Map [s1]  q1 = Map [s2]

 {
w ((q1, q2)) s | Map [s] = q2 w((s1, s)) +

s | Map [s] = q2 w ((s2, s))
 }
Ii + 1 = {q | q = Map[s]  s  Ii}
Li + 1: Q  2AP s. t.
Li + 1 (q) = Li (s1)  Li (s2), where
Map[s1] = Map[s2] = q
return (Si + 1, Ii + 1, Ri + 1, Li + 1)

}

The idea of matching stage is to minimize the
TransitionCut number by selecting a maximal
matching whose transition edges have a large weight,
thus we can decrease the transition weight of the
coarser structure. Finding a maximal matching that
contains transitions with large weight, is computed
using the randomized algorithm described above. The
states are visited in random order to find their set of
unmatched adjacent states with maximum weight of
connection. We select the state that has the maximum
sum of weights of the transitions connecting this state
to the adjacent states of the state considered for
matching. The example below clarifies this idea.

To efficiently implement the above operation for all
matched states, we have used a table to keep track of
the states seen so far. These data structures allow us to
implement structure contraction by visiting each
transition only once; thus, structure contraction takes

time proportional to the number of transitions. Then,
the complexity of this algorithm is O (|R|).
Example 1: The weighted Kripke structure shown in
Figure 1-a (the weights are all equal to one) is
abstracted using the described algorithm with the
following visit order: 14, 8, 5, 11, 1, 0, 2, 10, 6, 13, 15,
16, 3, 9, 18, 17, 4, 7, 12. The result of matching is
illustrated by colouring the matched states.

The weighted Kripke structure shown on bottom of
Figure 1 is the result of the contraction stage described
in the algorithm of abstraction. The state weights are
shown beside the circles representing the states and the
transition weights are shown beside the arcs.

(a) Matching

(b) Contraction

Figure 1. Example of the abstraction: (a) Matching and (b)
Contraction.

4. Partitioning Phase

The second phase of the partitioning algorithm
computes a high-quality partition (i. e., small
TransitionCut number) Pr of the coarse weighted
Kripke structure Kr = (Sr, Ir, Rr, Lr) such that each part
contains roughly N/M of the state weight of the
original structure. Since during abstracting, the weights

0

3 1
2

6 5
4

7
89

12

13
14

11 10

15

17 16
18

2

1

1

1

1

11

1

1

1

11

1 1

12

2

2

2

2
1

1
2

1

22

2

0

3

1

2

6

5

4

7

8

9
10

Partitioning State Spaces of Concurrent Transition Systems 131

of the states and transitions of the coarser structure
were set to reflect the weights of the states and
transitions of the finer structure, Kr contains sufficient
information to intelligently enforce the balanced
partition and the small TransitionCut number
requirements.

The Karnighan-Lin partitioning algorithm [12] is a
known iterative procedure which starts with an initial
partition and attempts to improve the solution at each
step by swapping a pair of states from the two parts.
Here, we present a different constructive partitioning
algorithm which attempts to group strongly
interconnected states (i. e., states among which there
are many interconnections) into parts. We can define
Cij the number of connections (transitions) between
states si and sj. Cij = ctw (si) + ctw (sj) + w ((si, sj)) + w
((sj, si)). A set S of states has the weight si, sjS Cij. A
partitioning algorithm usually attempts to find an
admissible part of large weight. The effect of finding
parts with large weights is to decrease the number of
interconnections between parts.

Algorithm 2: Partitioning (Kr = (Sr, Ir, Rr, Lr))
{

m  0
while Sr 

 {
Select a state si from Sr such that
sj  Sr  si  sj: Cij is the maximum
Pr (si)  m
Sr  Sr\ {si}
repeat

Select sk  Sr such that
sj|P(sj) = m Ckj is maximized
In case of ties, select the state with the minimum
 total number of connections. This will tend to
 decrease inter-part connections.
Pr (sk)  m
Sr  Sr\{sk}

until ∑s| P (s) = m w (s)  N / M  Sr = 
m++

}
return Pr

}

Example 2: Figure 2 shows the result of partitioning
the abstracted weighted Kripke structure of Figure 1-b
to three partitions. This corresponds to the partitioning
function Pr returned by the partition algorithm and
which is defined as follows. Pr (s) = a | s  {0, 1, 3},
Pr (s) = b | s  {4, 7, 9}, Pr (s) = c | s  {2, 5, 6, 8, 10}.

Figure 2. Partitioning to three partitions.

5. Refinement Phase

During the refinement phase, the partition Pr of the
coarser weighted Kripke structure Kr is projected back
to the original weighted Kripke structure, by going
through the structures Kr - 1, Kr - 2, …, K0. Since each
state of Ki + 1 contains a distinct subset of states of Ki,
obtaining Pi from Pi + 1 is done by simply assigning the
set of states Ss

i collapsed to s  Ki+1 to the partition
Pi + 1 (s) (i. e., Pi (s’) = Pi + 1 (s), s’ Ss

i). Even though
Pi + 1 is a local minimum partition of Ki + 1, the projected
partition Pi may not be at a local minimum with respect
to Ki. Since Ki is finer, it has more degrees of freedom
(more detailed information was abstracted) that can be
used to improve Pi, and decrease the TransitionCut
number. Hence, it may still be possible to improve the
projected partition of Ki+1 by local refinement
heuristics. For this reason, after projecting a partition, a
partition refinement algorithm is used. The basic
purpose of a partition refinement algorithm is to select
two subsets of states, one from each part so that when
swapped the resulting partition has a smaller
TransitionCut number. Specifically, if A and B are the
two parts of a partition, a refinement algorithm selects
A’  A and B’  B such that A\ A’  B’ and B\ B’ 
A’ yields a partition with a smaller TransitionCut
number.

Consider a weighted Kripke structure Ki = (Si, Ii, Ri,
Li), and its partitioning function Pi. For each
state s (Si we define the neighbourhood
N(s) of s to be the union of the
partitions that the states adjacent to s
(i. e., Adj (s)) belong to. That is, N
(s) = (s’(Adj (s) Pi (s’). Note that if
s is an interior state of a partition,
then N (s) = (. On the other hand, the
cardinality of N (s) can be as high as
Adj (s), for the case in which each
state adjacent to s belongs to a
different partition. During refinement,
s can move to any of the partitions in N
(s). For each state s we compute the
gains of moving s to one of its
neighbour partitions. In particular, for

b

a
0

3

1

2

6

5

4

7

8

9
10

c

132 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

every b (N(s) we compute EDbi (s) as
the sum of the weights of the
transitions (s, s’) (Ri and the weights
of the transitions (s’, s) (Ri such
that Pi (s’) = b (if the partition b is
not specified, EDi(s) is computed for
all neighbourhood partitions). Also we
compute IDi(s) as the sum of the
weights of the transitions (s, s’) (
Ri and the weights of the transitions
(s’, s) (Ri, such that Pi(s’) = Pi(s).
The quantity EDbi(s) is called the
external degree of s to partition b
(EDi(s) is the external degree of s),
while the quantity ID(s) is called the
internal degree of s. Given these
definitions, the gain of moving state s
to partition b (N(s) is gb (s) =
EDbi(s) - IDi(s).

However, in addition to decreasing the
TransitionCut number, moving a state from one
partition to another must not create partitions whose
size is unbalanced. In particular, our partitioning
refinement algorithm moves a state only if it satisfies
the following balancing condition. Let Wi: {0, , M-
1}  N (N is the set of natural numbers) be a total
function, so that Wi (a) is the weight of partition a of
Kripke structure Ki, and let BF be the balancing factor
(0  BF  1). A state s, whose weight is w (s) can be
moved from partition a to partition b only if

Wi (b) + w (s)  (1 + BF)  |S0| / M
And

Wi (a) – w (s)  (1 - BF)  |S0| / M

We note this condition by BC [a/b] (s). This condition
ensures that movement of a node into a partition does
not make its weight higher than (1 + BF)  |S0| / M or
less than (1 - BF)  |S0| / M. Note that by adjusting the
value of BF, we can vary the degree of imbalance
among partitions. If BF = 0, then the refinement
algorithm tries to make each partition of equal weight.
In our experiments we found that letting BF to be
about 5%, tends to improve the quality of the
partitioning and it minimizes the load imbalance.

Algorithm 3:Refinement(Ki + 1 =(Si + 1, Ii + 1, Ri + 1, Li +1),
 Pi + 1, EDi + 1, IDi + 1)
{

Projection:
for each s Si

 {Pi (s)  Pi + 1 (Mapi [s])}
for each s  Si + 1

 {
if (s1, s2  Si  Mapi [s1] = s  Mapi [s2] = s)

 {
if (EDi + 1 (s) = 0)

 {
EDi (s1)  0
EDi (s2)  0

IDi (s1)  aw (s1)
IDi (s2)  aw (s2)

 }
if (IDi + 1 (s) = 0)
 {

IDi (s1)  ctw (s) – ctw (s1) – ctw (s2)
IDi (s2)  ctw (s) – ctw (s1) – ctw (s2)
EDi (s1) ← aw (s1) – Idi (s1)
EDi (s2) ← aw (s2) – Idi (s2)

}
if (EDi + 1(s) > 0 (IDi + 1(s) > 0)

 {
IDi (s1) (

((s1, s’) Ri  Pi (s1) = Pi (s’) w((s1,
s’)) +

 (s’, s1) Ri  Pi (s1) = Pi (s’) w ((s’, s1))
EDi (s1) 
(s1, s’)  Ri  Pi (s1)  Pi (s’) w ((s1, s’)) +
(s’, s1)  Ri  Pi (s1)  Pi (s’) w ((s’, s1))

EDi (s2)  EDi + 1 (s) - EDi (s1)
IDi (s2)  IDi + 1 (s) - IDi (s1) –
 w ((s1, s2)) – w ((s2, s1))

}
}

}
Refinement:
The states in Si are checked in random order
for each state s  Si

{
if (N (s)  )

 {
N’(s)  {p N (s) | BC[Pi (s) / p] (s) = true}

EDa
i(s)  max {EDb

i (s) | b  N’(s)}
if ((EDa

i (s) > IDi (s))  (EDa
i (s) = IDi (s) 

Wi (Pi (s)) - Wi (a) > w (s)))
 {

Pi (s)  a
Update (EDi, IDi)

 }
 }
}
return P

}

The refinement consists of two separate stages: The
partition Pi+1 of the weighted Kripke structure Ki + 1 is
projected back to Ki, then Pi is refined. Refinement is
swapping states between partitions which is based on
the reduction in the transitions crossing the border. The
selections of states to be swapped are driven by the
gain value of the states. The gain values are computed
using two arrays ID and ED where for each state s,

ID [s] =  (s, s’)  R (P (s) = P (s’) w ((s,
s’)) +

 ((s’, s)  R  P (s) = P (s’) w ((s’, s)).

Partitioning State Spaces of Concurrent Transition Systems 133

ED [s] =  (s, s’)  R  P (s) ≠ P (s’) w ((s, s’)) +
  (s’, s)  R  P (s) ≠ P (s’) w ((s’, s)).

Given these arrays, the gain of a state s is given by
gs = ED [s] – ID [s]. The TransitionCut number is
given by (sED [s]) / 2. In our implementation, after
partitioning the coarse weighted Kripke structure Kr,
the internal (ID) and external (ED) degrees of the
states of Kr are computed. The internal and external
degrees of all other structures Ki with i < r, are
computed incrementally during the projection stage.
That is, the algorithm moves s to a partition that leads
to the largest reduction in the cross border transition
without violating the balance condition. If no reduction
in the transition crossing the border is possible, by
moving s, then s is moved to the partition (if any) that
leads to no increase in the transitions crossing the
border but improves the balance. After moving state s,
the algorithm updates the internal and external degrees
of the states adjacent to s to reflect the change in the
partition.

Example 3: Figure 3 shows the projection of the
partition illustrated in Figure 2. For refinement, we
assume the balancing factor BF = 5%. N (3) = {a}, N’
(3) = {a}, ID (3) = 0, and EDa (3) = 2 then the state 3
can be moved from the partition b to the partition a.
The other states that can be moved in this refinement is
the states 7 and 14. Figure 3-b shows the result of this
refinement. The gain is a very balanced partition with
reduction of the TransitionCut number by 6.

(a) Projection.

(b) Refinement.

Figure 3. Projection and refinement.

6. Experimental Results

We experimented the implementation of the
partitioning algorithm on three state spaces of three
industrial-sized protocols:

1. The HAVI protocol [14], standardized by several
companies, among which Philips, in order to solve
interoperability problems for home audio-video
networks. HAVI provides a distributed platform for
developing applications on top of home networks
containing heterogeneous electronic devices and
allowing dynamic plug-and-play changes in the
network configuration. We considered a
configuration of the HAVI protocol with 2 device
control managers which has 1,039,017 states and
3,371,039 transitions.

2. The TOKENRING leader election protocol [8] for
unidirectional ring networks. We considered a
configuration of the TOKENRING protocol with 3
stations. This configuration has 12,362,489 states
and 45,291,166 transitions.

3. The arbitration protocol for the SCSI-2 bus [1],
which is designed to provide an efficient peer-to-
peer I/O bus for interconnecting computers and
peripheral devices (magnetic and optical disks,
tapes, printers, etc.). We have used a specification
with 6 disks (1,202,208 states and 13,817,802
transitions).

Figure 4 shows the time taken by each phase
(abstraction, partition and refinement) for partitioning
the state space of the HAVI protocol. We have
abstracted the whole space to 5000 states. We have
partitioned the state space to 2, 4, 6 and then 8
partitions. The abstraction phase takes approximately 8
minutes. The partition and refinement phases are
faster.

c

b

a 0

3 1
2

6 5
4

7
89

12

13
14

11 10

15

17 16
18

c

b

a0

3 1
2

6 5
4

7
89

12

13
14

11 10

15

17 16
18

134 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

0

2

4

6

8

10

2 4 6 8

Abstraction

Partition

Refinement

Figure 4. Partitioning time of the HAVI protocol to 2, 4, 6, and 8
partitions.

Figure 5 shows the percentage of cross-border
transitions for the three systems. The average
percentage is about 12%. This partitioning has small
percentage of cross-border transitions compared to
other reported results [2].

0
2
4
6

8
10
12
14
16

2 4 6 8

Havi

TokenRing

Scsi-2

Figure 5. Transition cut of the three state spaces.

7. Conclusion

This paper presented a solution to the state explosion
problem during the analysis of real-size concurrent
transition systems. This solution is based on new
scheme for partitioning the state space to parts. These
parts will be used by a network of processes running in
parallel. This algorithm is designed by a way reducing
the communication overhead between the different
processes.

Our concentration for the partitioning algorithm was
the production of high quality partition. Its adaptability
makes it suitable for exploiting the resources of very
large environments. Other objective of our partitioning
algorithm was the reduction of the cross-border
transitions during the refinement.

References

[1] ANSI, “Small Computer System Interface-2,”
Standard X3.131-1994, January 1994.

[2] Bell A. and Haverkort B. R., “Sequential and
Distributed Model Checking of Petri Net
Specifications,” Electronic Notes in Theoretical
Computer Science, vol. 68, no. 4, 2002.

[3] Bourahla M. and Benmohamed M., “Predicate
Abstraction and Refinement for Model Checking
VHDL State Machines,” Electronic Notes in
Theoretical Computer Science, vol. 66, no. 2,
2002.

[4] Brim L., Crhova J., and Yorav K., “Using
Assumptions to Distribute CTL Model
Checking,” Electronic Notes in Theoretical
Computer Science, vol. 68, no. 4, 2002.

[5] Bui T. and Jones C., “A Heuristic for Reducing
Fill in Sparse Matrix Factorization,” in
Proceedings of the 6th SIAM Conference on
Parallel Processing for Scientific Computing, pp.
445-452, 1993.

[6] Clarke E. M., Grumberg O., and Long D. E.,
“Model Checking and Abstraction,” ACM
Transactions on Programming Languages and
Systems, vol. 16, no. 5, pp. 1512-1542, 1994.

[7] Deo N., Graph Theory with Applications to
Engineering and Computer Science, Automatic
Computation, Prentice Hall, 1974.

[8] Garavel H. and Mounier L., “Specification and
Verification of Various Distributed Leader
Election Algorithms for Unidirectional Ring
Networks,” Science of Computer Programming,
vol. 29, no. 1, pp. 171-197, 1997.

[9] Hendrickson B. and Leland R., “A Multilevel
Algorithm for Partitioning Graphs,” Technical
Report SAND93-1301, Sandia National
Laboratories, 1993.

[10] Heyman T., Geist D., Grumberg O., and
Schuster A., “Achieving Scalability in Parallel
Reachability Analysis of Very Large Circuits,”
Formal Methods in System Design, vol. 21, no. 2,
pp. 317-338, 2002.

[11] Karypis G. and Kumar V., “A Fast and High
Quality Multilevel Scheme for Partitioning
Irregular Graphs,” SIAM Journal on Scientific
Computing, 1998.

[12] Kernighan B. W. and Lin S., “An Efficient
Heuristic Procedure for Partitioning Graphs,” The
Bell System Technical Journal, vol. 49, no. 2, pp.
291-307, 1970.

[13] Papadimitriou C. H. and Steiglitz K.,
Combinatorial Optimization, Prentice Hall, 1982.

[14] Romijn J., “Model Checking the HAVi Leader
Election Protocol,” Technical Report SEN-
R9915, CWI, Amesterdam, The Netherlands,
June 1999.

Mustapha Bourahla has been a
teacher-researcher since 1994 at the
Computer Science Department,
University of Biskra, Algeria. He
was the Computer Science
Department head, University of

Biskra. He has been a member of the scientific
committee since 1999. He holds MSc degree in
computer science from the University of Montreal,
Canada, 1989. He was a member of VHDL research
group at Bell-Northern Research, Ottawa, Canada from

Partitioning State Spaces of Concurrent Transition Systems 135

1989 until 1993. He is expected to finish his PhD in
2005.

