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Abstract: As the model-checking becomes increasingly used in the industry as an analysis support, there is a big need for 
efficient new methods to deal with the large real-size of concurrent transition systems. We propose a new algorithm for 
partitioning the large state space modelling industrial designs as concurrent transition systems with hundreds of millions of 
states and transitions. The produced partitions will be used by distributed processes for parallel system analysis. The state 
space is supposed to be represented by a weighted Kripke structure (this is an extension of the Kripke structure where weights 
are associated with the states and with the transitions). This algorithm partitions the weighted Kripke structure by performing 
a combination of abstraction-partition-refinement on this structure. The algorithm is designed in a way that reduces the 
communication overhead between the processes. The experimental results on large real designs show that this method 
improves the quality of partitions, the communication overhead and then the overall performance of the system analysis.
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1. Introduction

As formal verification becomes increasingly used in 
the industry as a part of the design process, there is a 
constant need for efficient tool support to deal with 
real-size applications. There are many methods 
proposed to overcome this problem, including 
abstraction, partial order reduction, equivalence-based 
reduction, modular methods, and symmetry [3, 6]. 
Recently, a new promising method to tackle the state
space explosion problem was introduced [2, 4, 10]. 
This method is based on the use of multiprocessor 
systems or workstation clusters. These systems often 
boast a very large (distributed) main memory. 
Furthermore, the large computational power of such 
systems also helps in effectively reducing model 
checking time.

In this paper, we develop an efficient algorithm for 
partitioning the state space in terms of computation and 
communication. The following is a detailed description 
of our approach. The state space on which the analysis 
will be performed, is partitioned into M parts, where 
each part is owned by one process in the network. In 
order to increase the performance of the parallel 
analysis, it is essential to achieve a good load 
balancing between the M machines, meaning that the 
M parts of the distributed state space should contain 
nearly the same number of states. The quality of a 
partitioning algorithm could also be estimated 
according to the number of cross-border transitions of 
the partitioned state space (i. e., transitions having the 
source state in a component and the target state in 
another component). This number should be as small 

as possible, since it has effect on the number of 
messages sent over the network during the system 
analysis. The state space is represented by a simple 
structure (weighted Kripke structure) which is 
represented by a data structure doesn't consume large 
memory. We adopted a static partition scheme, which 
avoids the potential communication overhead 
occurring in dynamic load balancing schemes. This 
partitioning scheme has an adaptive cost which yields 
nearly equal partitions with small number of cross-
border transitions. Then, the problem is to choose an 
appropriate partition algorithm associating to each state 
a machine index. The result of this algorithm is a 
partitioning function P.

Our algorithm for partitioning is performed on three 
steps. The first step is the abstraction of the state space 
represented by a weighted Kripke structure using the 
matching notion [5, 7, 9] of pairs of states making a 
transition in the model (one is the source and the other 
is the target). This abstraction will continue until 
reduction of the state space to a certain number of 
states small enough to do the partitioning very easily. 
After partitioning this much smaller weighted Kripke 
structure to M partitions, this partitioning is projected 
back towards the original weighted Kripke structure 
(finer structure), by periodically performing 
refinements on the projected structures. When the 
partitioning function P: S  {0, …, M-1} is produced, 
we proceed by partitioning the weighted Kripke 
structure to M components where the border states are 
duplicated by a fashion satisfying the balancing 
condition.
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The results of our experiments on real designs show 
that this new scheme produces good quality of 
partitioning that can be compared to other efficient 
approaches. This partitioning has small percentage of 
cross-border transitions compared to other reported 
results. It requires substantially small time.

2. Partitioning State Spaces

The partitioning problem is defined as follows: Given a 
Kripke structure K = (S, I, R, L) modelling a 
concurrent transition system over a set of Atomic 
Propositions (AP), where:

 S is a non-empty finite set of states.
 I  S is the set of initial states.
 R  S x S is a total transition relation (i. e., (s  S: 

(s’ S : (s, s’)  R))).
 L : S  2AP is a function that labels each state with     

     the set of atomic propositions true in that state.
With |S| = N, partition S into M subsets, S0, S1, …, SM-1

such that Si ∩ Sj =  for i ≠ j, |Si| (N/M, and iSi = S, 
and the number of transitions crossing the border is 
minimized.

We define a weighted Kripke structure as Kripke 
structure K = (S, I, R, L) where weights are associated 
with each state s  S and each transition (s, s’)  R. A 
weighted state s  S is a state collapsing (abstracting) 
states of the original model and its weight represents 
their number. The weighted state collapsing the 
original initial state is the initial weighted state. The 
weight of a transition between two weighted states s, s’ 
 S, represents the number of transitions between the 
states composing the weighted state s and the weighted 
state s’. Now, a Kripke structure K can be viewed as a 
weighted Kripke structure, where all the state weights 
and transition weights are equal to one.

The partitioning problem can be naturally extended 
to weighted Kripke structures. In this case, the goal is 
to partition the states into M disjoint subsets so that the 
sum of the state weights in each subset is the same, and 
the sum of the transitions weights which crossing the 
border is minimized. A partition of S is commonly 
represented by a total partition function P: S  {0, …, 
M - 1}, so that for every state s  S, P (s) is an integer 
between 0 and M - 1, indicating the partition at which 
state s belongs. Given a partition function P, the 
number of transitions crossing the border is called the 
TransitionCut of the partition.

The idea of our algorithm of partitioning is inspired 
by good works done for partitioning graphs [9, 11, 12]. 
The basic structure which we propose for the 
partitioning algorithm is very simple. The original 
weighted Kripke structure K is first abstracted down to 
a sufficient number of states, a partition of this much 
smaller structure is computed, and then this partition is 
projected back towards the original structure (finer 
Kripke structure). At each step of the structure 

abstracting, the partition is further refined. Since the 
finer structure has more degrees of freedom, such 
refinements usually decrease the TransitionCut
number. Formally, the partitioning algorithm works as 
follows: Consider a weighted Kripke structure K0 = 
(S0, I0, R0, L0), with weights both on states and 
transition edges. A partitioning algorithm consists of 
the following three phases (each one is described in 
detail in a separate section):

1. Abstracting phase in which the Kripke structure K0

is transformed into a sequence of smaller structures 
K1, K2, …, Kr such that |S0| > |S1| > |S2| > … > |Sr|.

2. Partitioning phase where, a partition function Pr of 
the structure Kr = (Sr, Ir, Rr, Lr) is computed that 
partitions Sr into M parts.

3. Refinement phase where, the partition function Pr of 
Kr is projected back to K0 by going through 
intermediate partition functions Pr - 1, Pr - 2, …, P1, 
P0.

The data structure used to store the state space consists 
of two tables. The first is called StateTable, it stores 
information about states and the second is called 
TransitionTable, it stores the transitions. For each state 
s  S (which is an index in {0, …, N-1}, N is the 
number of states), StateTable[s] contains the following 
informations. sw the weight of s, ns (and np) the 
number of transitions outgoing (ingoing) from s (the 
number of successor (predecessor) states of s), is (and 
ip) the index into TransitionTable that is the beginning 
of the transitions table of successor (predecessor) states 
of s, ctw the weight of the transitions that have been 
contracted to create s (if s is collapsing state), and aw 
the sum of the weight of the transitions adjacent 
(outgoing and ingoing) to s. The table TransitionTable
is fragmented to many portions. Each portion 
represents the transitions of a state s  S to/from its 
adjacent (successor and predecessor) states. Thus, there 
are two information: The first is the state with which 
the transition is made. The second information 
indicates if the transition edge is an outgoing or an 
ingoing edge. We define the function Adj: S  2S

associated to the table TransitionTable. Adj (s) gives 
the set of states that are connected (adjacent) to s. 
These information are used during different phases of 
the algorithm, and greatly improve the performance. 
Also, they are computed incrementally during the 
abstraction, hence they do not increase the overall run 
time of the algorithm.

3. Abstracting Phase

During the abstracting phase, a sequence of smaller 
weighted Kripke structures, each with fewer states, is 
constructed. Structure abstracting can be achieved by 
combining a set of states of a weighted Kripke 
structure Ki to form a single state of the next level 
coarser structure Ki + 1. Let Ss

i be the set of states of Si
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combined to form state s of Ki + 1. We will refer to state 
s as a multi-node. In order for a partition of a coarser 
weighted Kripke structure to be good with respect to 
the original structure, the weight of state s is set equal 
to the sum of the weights of the states in Ss

i. Also, in 
order to preserve the connectivity information in the 
coarser structure, the transitions of s are the union of 
the transitions of the states in Ss

i. In the case where 
more than one state of Ss

i contain transitions to the 
same state s’, the weight of the transition of s is equal 
to the sum of the weights of these transitions. This is 
useful when we evaluate the quality of a partition at a 
coarser weighted Kripke structure. The TransitionCut
number of the partition in a coarser structure will be 
equal to the TransitionCut number of the same 
partition in the finer structure.

Given a weighted Kripke structure Ki = (Si, Ii, Ri, 
Li), a coarser Kripke structure can be obtained by 
collapsing adjacent states. Two states are adjacent if 
and only if there is a transition between these two 
states. Thus, the transition between two states is 
collapsed and a multi-node consisting of these two 
states is created. This transition collapsing idea can be 
formally defined in terms of matchings [5, 7, 9].

A matching of a weighted Kripke structure, is a set 
of transitions, no two of which are incident on the 
same state (a transition is incident on a state if the state 
is the source or the target of this transition). A 
matching is maximal if any transition in the structure 
that is not in the matching has at least one of its 
endpoints matched. The maximal matching that has the 
maximum number of transitions is called maximum 
matching.

Thus, the next level coarser weighted Kripke 
structure Ki + 1 is constructed from Ki by finding a 
matching of Ki and collapsing the states being matched 
into multi-nodes. The unmatched states are simply 
copied over to Ki + 1. Since the goal of collapsing states 
using matchings is to decrease the size of the structure 
Ki, the matching should contain a large number of 
transitions. For this reason, maximal matchings are 
used to obtain the successively coarse structures. Note 
that depending on how matchings are computed, the 
number of transitions belonging to the maximal 
matching may be different. However, because the 
complexity of computing a maximum matching [13] is 
in general higher than that of computing a maximal 
matching, the latter is preferred. Since maximal 
matchings are used to abstract the structure, the 
number of states in Ki + 1 cannot be less than half the 
number of states in Ki; thus, it will require at least O 
(log (N/N’)) steps to abstract K0 down to a structure 
with N’ states. However, depending on the 
connectivity of Ki, the size of the maximal matching 
may be much smaller than |Si|/ 2. In this case, the ratio 
of the number of states from Ki to Ki + 1 may be much 
smaller than 2. If the ratio becomes lower than a 
threshold, then it is better to stop the abstracting phase. 

However, this type of pathological condition usually 
arises after many abstracting levels, in which case Ki is 
already fairly small; thus, aborting the abstracting does 
not affect the overall performance of the algorithm.

The abstraction algorithm consists of two stages: 
The matching stage and the contraction stage where, a 
coarser structure is created by contracting the states as 
dictated by the matching. The output of the matching 
stage, is two vectors Match and Map, so that for each 
state s, Match [s] stores the state with which s has been 
matched (or s itself if it is unmatched), and Map [s] 
stores the given label of s in the coarser structure 
which is assigned a sequential number (if Match [s] = 
s’ then Map [s] = Map [s’]). During the contraction 
stage, the Match and Map vectors are used to abstract 
the structure.

Algorithm 1: Abstract (Ki = (Si, Ii, Ri, Li))
{

Matching:
Create a random list RS of all the states in 
StateTable representing the set Si

for each state s  RS 
   {

Match [s]  s 
Map [s]  -1

}
for each state s  RS 
{

if (Match [s] = s) 
{

H  {s’ | Match [s’] = s’  s’ Adj (s)}
Let MW be the maximum weight of the     
contracted transitions in H
H← H\ {s’  H | ctw (s’) < MW}
SW ←
for each state s’ H

   {
SW ← SW  {

                   ∑(s’, s’’) ( Ri | s’’  Adj (s) w (s’, s’’) +    
                    ∑(s’’, s’) (  Ri | s’’   Adj (s) w (s’’, s’)}

      }
Let s’  H be the state corresponding to the      
   maximum in SW
Match [s]  s’

  }
}
j  0
for each state s  RS

  {
      if (Map [s] = -1) 
       {

T [j]  Map [s]  Map [Match [s]]  qj

j++
}

    }
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Contraction:
Si + 1 ; Ri + 1 ; index  0
for each k  {0, …, j - 1}

     {
 Si + 1  Si + 1   {T[k]}

    SuccSet {Map [s] | s  Si  Map [s]  T[k] 
 s’  Si: T[k] = Map [s’]  (s’, s)  Ri}

    is (T[k])  index 
    ns (T[k])  Length(SuccSet)

    index  index + ns (T[k])
 PredSet  {Map [s] | s  Si  Map [s]  T[k] 
s’  Si: T[k] = Map[s’]   (s, s’)  Ri}

ip(T[k])  index
     np(T[k])  Length (PredSet)

index  index + np(T[k])
    Ri + 1  Ri + 1  SuccSet  PredSet

sw(T[k])  sw (s1) + sw (s2) s. t. 
     T[k] = Map [s1] = Map [s2]
ctw (T[k])  ctw (s1) + ctw (s2) + 
     w ((s1, s2)) + w ((s2, s1)) s. t. 

  T[k] = Map [s1] = Map [s2]
aw (T[k]) ( aw (s1) + aw (s2) –

  w ((s1, s2)) – w ((s2, s1)) s. t. 
  T[k] = Map [s1] = Map [s2]

   }
for each transition (q1, q2)  Ri + 1 s. t. 
    q1 = Map [s1]  q1 = Map [s2] 

     {
w ((q1, q2)) s | Map [s] = q2 w((s1, s)) + 

s | Map [s] = q2 w ((s2, s))
  }
Ii + 1 = {q | q = Map[s]  s  Ii}
Li + 1: Q  2AP s. t. 
Li + 1 (q) = Li (s1)  Li (s2), where 
Map[s1] = Map[s2] = q
return (Si + 1, Ii + 1, Ri + 1, Li + 1)

}

The idea of matching stage is to minimize the 
TransitionCut number by selecting a maximal 
matching whose transition edges have a large weight, 
thus we can decrease the transition weight of the 
coarser structure. Finding a maximal matching that 
contains transitions with large weight, is computed 
using the randomized algorithm described above. The 
states are visited in random order to find their set of 
unmatched adjacent states with maximum weight of 
connection. We select the state that has the maximum 
sum of weights of the transitions connecting this state 
to the adjacent states of the state considered for 
matching. The example below clarifies this idea. 

To efficiently implement the above operation for all 
matched states, we have used a table to keep track of 
the states seen so far. These data structures allow us to 
implement structure contraction by visiting each 
transition only once; thus, structure contraction takes 

time proportional to the number of transitions. Then, 
the complexity of this algorithm is O (|R|).
Example 1: The weighted Kripke structure shown in 
Figure 1-a (the weights are all equal to one) is 
abstracted using the described algorithm with the 
following visit order: 14, 8, 5, 11, 1, 0, 2, 10, 6, 13, 15, 
16, 3, 9, 18, 17, 4, 7, 12. The result of matching is 
illustrated by colouring the matched states. 

The weighted Kripke structure shown on bottom of 
Figure 1 is the result of the contraction stage described 
in the algorithm of abstraction. The state weights are 
shown beside the circles representing the states and the 
transition weights are shown beside the arcs.

(a) Matching

(b) Contraction  

Figure 1. Example of the abstraction: (a) Matching and (b) 
Contraction.

4. Partitioning Phase

The second phase of the partitioning algorithm 
computes a high-quality partition (i. e., small 
TransitionCut number) Pr of the coarse weighted 
Kripke structure Kr = (Sr, Ir, Rr, Lr) such that each part 
contains roughly N/M of the state weight of the 
original structure. Since during abstracting, the weights 
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of the states and transitions of the coarser structure 
were set to reflect the weights of the states and 
transitions of the finer structure, Kr contains sufficient 
information to intelligently enforce the balanced 
partition and the small TransitionCut number 
requirements.

The Karnighan-Lin partitioning algorithm [12] is a 
known iterative procedure which starts with an initial 
partition and attempts to improve the solution at each
step by swapping a pair of states from the two parts. 
Here, we present a different constructive partitioning 
algorithm which attempts to group strongly 
interconnected states (i. e., states among which there 
are many interconnections) into parts. We can define 
Cij the number of connections (transitions) between 
states si and sj. Cij = ctw (si) + ctw (sj) + w ((si, sj)) + w
((sj, si)). A set S of states has the weight si, sjS Cij. A 
partitioning algorithm usually attempts to find an 
admissible part of large weight. The effect of finding 
parts with large weights is to decrease the number of 
interconnections between parts.

Algorithm 2: Partitioning (Kr = (Sr, Ir, Rr, Lr))
{

m  0
while Sr 

   {
Select a state si from Sr such that 
sj  Sr  si  sj: Cij is the maximum
Pr (si)  m
Sr  Sr\ {si}
repeat

Select sk  Sr such that 
sj|P(sj)  =  m Ckj is maximized
In case of ties, select the state with the minimum   
    total number of connections. This will tend to   
    decrease inter-part connections.
Pr (sk)  m
Sr  Sr\{sk}

until ∑s| P (s)  =  m w (s)   N / M   Sr = 
m++

}
return Pr

}

Example 2: Figure 2 shows the result of partitioning 
the abstracted weighted Kripke structure of Figure 1-b
to three partitions. This corresponds to the partitioning 
function Pr returned by the partition algorithm and 
which is defined as follows. Pr (s) = a | s  {0, 1, 3}, 
Pr (s) = b | s  {4, 7, 9}, Pr (s) = c | s  {2, 5, 6, 8, 10}.

Figure 2. Partitioning to three partitions.

5. Refinement Phase

During the refinement phase, the partition Pr of the 
coarser weighted Kripke structure Kr is projected back 
to the original weighted Kripke structure, by going 
through the structures Kr - 1, Kr - 2, …, K0. Since each 
state of Ki + 1 contains a distinct subset of states of Ki, 
obtaining Pi from Pi + 1 is done by simply assigning the 
set of states Ss

i collapsed to s  Ki+1 to the partition    
Pi + 1 (s) (i. e., Pi (s’) = Pi + 1 (s), s’ Ss

i). Even though 
Pi + 1 is a local minimum partition of Ki + 1, the projected 
partition Pi may not be at a local minimum with respect 
to Ki. Since Ki is finer, it has more degrees of freedom 
(more detailed information was abstracted) that can be 
used to improve Pi, and decrease the TransitionCut 
number. Hence, it may still be possible to improve the 
projected partition of Ki+1 by local refinement 
heuristics. For this reason, after projecting a partition, a 
partition refinement algorithm is used. The basic 
purpose of a partition refinement algorithm is to select 
two subsets of states, one from each part so that when 
swapped the resulting partition has a smaller 
TransitionCut number. Specifically, if A and B are the 
two parts of a partition, a refinement algorithm selects 
A’  A and B’  B such that A\ A’  B’ and B\ B’ 
A’ yields a partition with a smaller TransitionCut 
number.

Consider a weighted Kripke structure Ki = (Si, Ii, Ri, 
Li), and its partitioning function Pi. For each 
state s ( Si we define the neighbourhood 
N(s) of s to be the union of the 
partitions that the states adjacent to s 
(i. e., Adj (s)) belong to. That is, N 
(s) = (s’( Adj (s) Pi (s’). Note that if 
s is an interior state of a partition, 
then N (s) = (. On the other hand, the 
cardinality of N (s) can be as high as 
Adj (s), for the case in which each 
state adjacent to s belongs to a 
different partition. During refinement, 
s can move to any of the partitions in N 
(s). For each state s we compute the 
gains of moving s to one of its 
neighbour partitions. In particular, for 
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every b ( N(s) we compute EDbi (s) as 
the sum of the weights of the 
transitions (s, s’) ( Ri and the weights 
of the transitions (s’, s) ( Ri such 
that Pi (s’) = b (if the partition b is 
not specified, EDi(s) is computed for 
all neighbourhood partitions). Also we 
compute IDi(s) as the  sum  of  the 
weights  of  the  transitions (s, s’) ( 
Ri and the weights of the transitions 
(s’, s) ( Ri, such that Pi(s’) = Pi(s). 
The quantity EDbi(s) is called the 
external degree of s to partition b 
(EDi(s) is the external degree of s), 
while the quantity ID(s) is called the 
internal degree of s. Given these 
definitions, the gain of moving state s 
to partition b ( N(s) is gb (s) = 
EDbi(s) - IDi(s). 

However, in addition to decreasing the 
TransitionCut number, moving a state from one 
partition to another must not create partitions whose 
size is unbalanced. In particular, our partitioning 
refinement algorithm moves a state only if it satisfies 
the following balancing condition. Let Wi: {0, , M-
1}  N (N is the set of natural numbers) be a total 
function, so that Wi (a) is the weight of partition a of 
Kripke structure Ki, and let BF be the balancing factor 
(0  BF  1). A state s, whose weight is w (s) can be 
moved from partition a to partition b only if

Wi (b) + w (s)  (1 + BF)  |S0| / M
And

Wi (a) – w (s)  (1 - BF)  |S0| / M

We note this condition by BC [a/b] (s). This condition 
ensures that movement of a node into a partition does 
not make its weight higher than (1 + BF)  |S0| / M or 
less than (1 - BF)  |S0| / M. Note that by adjusting the 
value of BF, we can vary the degree of imbalance 
among partitions. If BF = 0, then the refinement 
algorithm tries to make each partition of equal weight. 
In our experiments we found that letting BF to be 
about 5%, tends to improve the quality of the 
partitioning and it minimizes the load imbalance.

Algorithm 3:Refinement( Ki + 1 =(Si + 1, Ii + 1, Ri + 1, Li +1),
                                         Pi + 1, EDi   + 1, IDi + 1)
{

Projection:
for each s Si

    {Pi (s)  Pi + 1 (Mapi [s])}
for each s  Si + 1

     {
if (s1, s2  Si  Mapi [s1] = s  Mapi [s2] = s)

     {
if (EDi + 1 (s) = 0) 

            {
EDi (s1)  0 
EDi (s2)  0

IDi (s1)  aw (s1)
IDi (s2)  aw (s2)

     }
if (IDi + 1 (s) = 0)
 {

IDi (s1)  ctw (s) – ctw (s1) – ctw (s2)
IDi (s2)  ctw (s) – ctw (s1) – ctw (s2)
EDi (s1) ← aw (s1) – Idi (s1)
EDi (s2) ← aw (s2) – Idi (s2)

}
if (EDi + 1(s) > 0 ( IDi + 1(s) > 0) 

          {
IDi (s1) ( 

((s1, s’) Ri  Pi (s1) = Pi (s’) w((s1, 
s’)) + 

 (s’,  s1) Ri    Pi (s1) = Pi (s’) w ((s’, s1))
EDi (s1) 
(s1,  s’)  Ri   Pi (s1)  Pi (s’) w ((s1, s’)) + 
(s’,  s1)  Ri  Pi (s1)  Pi (s’) w ((s’, s1))

EDi (s2)  EDi + 1 (s) - EDi (s1)
IDi (s2)  IDi + 1 (s) - IDi (s1) –
                 w ((s1, s2)) – w ((s2, s1))

}
}

}
Refinement:
The states in Si are checked in random order
for each state s  Si

{
if (N (s)  ) 

       {
N’(s)  {p N (s) | BC[Pi (s) / p] (s) = true}

EDa
i(s)  max {EDb

i (s) | b  N’(s)}
if ((EDa

i (s) > IDi (s))  (EDa
i (s) = IDi (s) 

Wi (Pi (s)) - Wi (a) > w (s))) 
        {

Pi (s)  a
Update (EDi, IDi)

  }
  }
}
return P

}

The refinement consists of two separate stages: The 
partition Pi+1 of the weighted Kripke structure Ki + 1 is 
projected back to Ki, then Pi is refined. Refinement is 
swapping states between partitions which is based on 
the reduction in the transitions crossing the border. The 
selections of states to be swapped are driven by the 
gain value of the states. The gain values are computed 
using two arrays ID and ED where for each state s,

ID [s] =  (s, s’)  R  ( P (s) = P (s’) w ((s, 
s’)) +

       ( (s’, s)  R  P (s) = P (s’) w ((s’, s)).
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ED [s] =  (s, s’)  R   P (s) ≠ P (s’) w ((s, s’)) +
       (s’, s)  R   P (s) ≠ P (s’) w ((s’, s)).

Given these arrays, the gain of a state s is given by 
gs = ED [s] – ID [s]. The TransitionCut number is 
given by (sED [s]) / 2. In our implementation, after 
partitioning the coarse weighted Kripke structure Kr, 
the internal (ID) and external (ED) degrees of the 
states of Kr are computed. The internal and external 
degrees of all other structures Ki with i < r, are 
computed incrementally during the projection stage. 
That is, the algorithm moves s to a partition that leads 
to the largest reduction in the cross border transition 
without violating the balance condition. If no reduction 
in the transition crossing the border is possible, by 
moving s, then s is moved to the partition (if any) that 
leads to no increase in the transitions crossing the 
border but improves the balance. After moving state s, 
the algorithm updates the internal and external degrees 
of the states adjacent to s to reflect the change in the 
partition.

Example 3: Figure 3 shows the projection of the 
partition illustrated in Figure 2. For refinement, we 
assume the balancing factor BF = 5%. N (3) = {a}, N’
(3) = {a}, ID (3) = 0, and EDa (3) = 2 then the state 3 
can be moved from the partition b to the partition a. 
The other states that can be moved in this refinement is 
the states 7 and 14. Figure 3-b shows the result of this 
refinement. The gain is a very balanced partition with 
reduction of the TransitionCut number by 6.

(a) Projection.

(b) Refinement.

Figure 3. Projection and refinement.

6. Experimental Results

We experimented the implementation of the 
partitioning algorithm on three state spaces of three 
industrial-sized protocols:

1. The HAVI protocol [14], standardized by several 
companies, among which Philips, in order to solve 
interoperability problems for home audio-video 
networks. HAVI provides a distributed platform for 
developing applications on top of home networks 
containing heterogeneous electronic devices and 
allowing dynamic plug-and-play changes in the 
network configuration. We considered a 
configuration of the HAVI protocol with 2 device 
control managers which has 1,039,017 states and 
3,371,039 transitions.

2. The TOKENRING leader election protocol [8] for 
unidirectional ring networks. We considered a 
configuration of the TOKENRING protocol with 3 
stations. This configuration has 12,362,489 states 
and 45,291,166 transitions.

3. The arbitration protocol for the SCSI-2 bus [1], 
which is designed to provide an efficient peer-to-
peer I/O bus for interconnecting computers and 
peripheral devices (magnetic and optical disks, 
tapes, printers, etc.). We have used a specification 
with 6 disks (1,202,208 states and 13,817,802 
transitions).

Figure 4 shows the time taken by each phase 
(abstraction, partition and refinement) for partitioning 
the state space of the HAVI protocol. We have 
abstracted the whole space to 5000 states. We have 
partitioned the state space to 2, 4, 6 and then 8 
partitions. The abstraction phase takes approximately 8 
minutes. The partition and refinement phases are 
faster.  
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Figure 4. Partitioning time of the HAVI protocol to 2, 4, 6, and 8 
partitions.

Figure 5 shows the percentage of cross-border 
transitions for the three systems. The average 
percentage is about 12%. This partitioning has small 
percentage of cross-border transitions compared to 
other reported results [2].

0
2
4
6

8
10
12
14
16

2 4 6 8

Havi

TokenRing

Scsi-2

Figure 5. Transition cut of the three state spaces.

7. Conclusion

This paper presented a solution to the state explosion 
problem during the analysis of real-size concurrent 
transition systems. This solution is based on new 
scheme for partitioning the state space to parts. These 
parts will be used by a network of processes running in 
parallel. This algorithm is designed by a way reducing 
the communication overhead between the different 
processes. 

Our concentration for the partitioning algorithm was 
the production of high quality partition. Its adaptability 
makes it suitable for exploiting the resources of very
large environments. Other objective of our partitioning 
algorithm was the reduction of the cross-border 
transitions during the refinement.
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