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Abstract: The MAXimum propositional SATisfiability problem (MAXSAT) is a well known NP-hard optimization problem 
with many theoretical and practical applications in artificial intelligence and mathematical logic. Heuristic local search 
algorithms are widely recognized as the most effective approaches used to solve them. However, their performance depends 
both on their complexity and their tuning parameters which are controlled experimentally and remain a difficult task. 
Extremal Optimization (EO) is one of the simplest heuristic methods with only one free parameter, which has proved 
competitive with the more elaborate general-purpose method on graph partitioning and coloring. It is inspired by the 
dynamics of physical systems with emergent complexity and their ability to self-organize to reach an optimal adaptation state. 
In this paper, we propose an extremal optimization procedure for MAXSAT and consider its effectiveness by computational 
experiments on a benchmark of random instances. Comparative tests showed that this procedure improves significantly 
previous results obtained on the same benchmark with other modern local search methods like WSAT, simulated annealing
and Tabu Search (TS).
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1. Introduction

An expression is satisfiable if it is true under some 
interpretation. The SATisfiability problem (SAT) 
involves finding a truth assignment that satisfies a CNF 
formula in propositional logic. There are two main 
approaches to SAT. One class of solutions uses a 
systematic approach, meaning that each possible 
assignment of truth values is tested until a solution is 
found. The other involves randomly testing 
assignments, and is called stochastic method. The first 
approach guarantees to find a solution if one exists, but 
in the worst case can be very inefficient. The second 
approach is more effective for practically solving large 
SAT instances but it cannot be used to prove that a 
given problem instance is unsatisfiable.

The class of all problems for which it is not known 
if a polynomial time algorithm exists, is called Non-
deterministic Polynomial (NP) and the related 
problems are called NP-complete. These problems 
require algorithms of exponential time complexity in 
the worst case to obtain optimal solutions. SAT is the 
archetypical NP problem, that is all NP-complete 
problems can be polynomially reduced to it (The 
concept of polynomial-time reductibility) [8]. Indeed, 
many problems in various areas like artificial 
intelligence, computer aided design and databases, 
involve the solution of SAT instances or its variants.

An extension of SAT is the MAXimum 
SATisfiability problem (MAXSAT) which consists of 

satisfying the maximum number of clauses of the 
propositional formula. MAXSAT is of considerable 
interest from both the theoretical side and the practical 
side. It plays an important role in the characterization 
of different approximation classes like Polynomial 
Time Approximation Algorithm (PTAA) and 
Polynomial Time Approximation Scheme (PTAS) [34] 
and many optimization problems can be formulated in 
this form of satisfiability. MAXSAT is known to be 
NP-hard (an optimization problem that has a related 
NP-complete decision version problem) even when 
each clause contains exactly two literals MAX2SAT 
[9, 17]. Since finding an exact solution to this problem 
requires exponential time, approximation algorithms to
find near optimal solutions in polynomial time, appear 
to be viable. Developing efficient algorithms and 
heuristics for MAXSAT, can then lead to general 
approaches for solving combinatorial optimization 
problems.

Extremal Optimization (EO) was recently 
introduced as a heuristic search method [5] for 
approximating solutions to hard optimization 
problems. It is inspired by the Bak-Sneppen model of  
biological evolution and natural selection [1] where the 
high degree of adaptation of most species emerge from 
the dynamics through a selection against the extremely 
bad ones [5]. The present work was encouraged by the 
high quality results obtained with EO on graph 
coloring [6] and graph partitioning problems [5, 7]. 
This method has been proved competitive and even 
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better than the more elaborate general purpose 
heuristics such as simulated annealing [19] or Tabu 
Search (TS) [13, 14] on these hard optimization 
problems.

In this paper, we extend the EO method to solve 
MAXSAT problems and compare it to the more 
frequently used local search methods for this problem 
such as simulated annealing [32], TS [21] and the well 
known procedure WSAT [29]. This paper is organized 
as follows. Section 2 presents the MAXSAT problem 
and related methods to solve it. Section 3 presents the 
Extremal Optimization method. Its adaptation to 
handle MAXSAT problems and implementation are 
discussed in section 4. Experimental results and 
conclusion follow, respectively, in sections 5 and 6.

2. MAXSAT Problem

Formally, SAT is defined as follows: Given a set of n
variables X = {x1, x2,…, xn} and a set of literals over X

 XxxxL  /, . A clause C on X is a disjunction of 
literals. An assignment of Boolean variables is a 
substitution of these variables by a vector v  {0, 1}n. 
A clause C is satisfied by an assignment v if the value 
of the clause equals 1 (C (v) = 1), otherwise the clause 
is unsatisfied (C (v) = 1). Given m clauses C1, C2, …, 
Cm, the SAT problem asks to determine an assignment 
v0  {0, 1}n that satisfies the Boolean formula in 
conjunctive normal form (CNF) mCCC  ...21  or 
to derive its infeasibility.

A weighted formula is a pair WF = {CF, W} where 
CF = (Ci) i  ≤ m is a clause form and   m

miiwW  

is an integer vector; for each i ≤ m, wi is the weight of 
the clause Ci. An assignment v  {0, 1}n determines a 
weight value in the weighted formula WF as:

                   
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The MAXSAT problem asks to determine an 
assignment v0  {0, 1}n that maximizes the sum of the 
weights of satisfied clauses:

wc (CF, W, v0) = Max {wc (CF, w, v) | v {0, 1}n}  (2)

MAXkSAT is the subset of MAXSAT instances in 
which each clause has exactly k literals. If each weight 
is equal to one, we call the problem unweighted 
MAXSAT, otherwise we speak of weighted MAXSAT 
or simply MAXSAT. Note that SAT is a special case 
of the MAXSAT in which all clauses have unit weight 
and one wants to decide if there is any truth assignment 
of total weight m.

MAXSAT algorithms can be classified as complete 
and incomplete depending on whether they can find the 
optimal assignment. Complete algorithms can 
determine optimal assignments but they are 
computationally expensive and are not appropriate in 

solving large instances. These include Davis-Putnam’s 
procedure [10], and various heuristics using different 
branching rules and reinforcement techniques like 
equivalence reasoning [20] or backbone detecting [11].

Incomplete methods are usually faster and can solve 
some large problems of thousands of variables that 
complete methods cannot handle. In this outline, 
stochastic local search has become an important 
general purpose method for solving satisfiability 
problems: It starts with a random initial solution and 
tries to improve it by moving to neighbouring 
solutions. It can be trapped in local poor minima or 
plateaus and it requires, therefore, a strategy to both 
escape from these local minima and to guide the search 
toward good solutions. Its performance lies in the 
choice of the initial solution and the transformation 
applied to the current solution. Many stochastic local 
search methods have been designed such as simulated 
annealing [32], TS [21], Greedy Randomized Adaptive 
Search Procedure (GRASP) [26], Discrete Lagrangian 
based search Method (DLM) [31] and Reactive search 
[3]. Although the list of competitive heuristics is not 
exhaustive, the most accepted one is Greedy 
SATisfiability (GSAT) defined initially for SAT [18, 
27, 28, 30] and applied next to MAXSAT. It begins 
with a randomly generated initial assignment and at 
each iteration, it flips the variable that had the largest 
decrease in unsatisfied clauses. It accepts also the 
moves which either produce the same objective
function value or increase it. This process is repeated 
until a maximum number of non-improving moves is 
reached. Different noise strategies to escape from local 
optima are added to GSAT like WSAT [29], Novelty 
and R-Novelty [22], and UnitWalk [15]. The 
WalkSAT (WSAT) procedure [29] is a particularly 
powerful variant of GSAT. It mainly consists of a 
random walk on the unsatisfied clauses. The 
experimental results obtained by Jiang et al. [16] with 
an adaptered version of WSAT on MAXSAT 
encodings of the Steiner tree problem showed that this 
approach is competitive with the best current 
specialized Steiner tree algorithm.

In the TS method [13, 14], a memory of forbidden 
moves called tabu list is used to avoid the search 
process revisiting the previously found solutions. At 
each iteration, a configuration once visited is made 
tabu for a given number of iterations. Different history-
based heuristics have been proposed to intensify and 
diversify the search into previously unexplored regions 
of the search space with information collected from the 
previous phase. HSAT [12] introduces a tie-breaking 
rule into GSAT so that if more moves produce the 
same best results, the preferred move is the one that 
has been applied for the longest period. The results 
obtained on some SAT benchmark tasks present a 
better performance with respect to WSAT. TSAT is a 
Tabu search procedure for SAT problems [21] that has 
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also been shown to be competitive with WSAT on hard 
random 3-SAT instances. 

simulated annealing is a method inspired by natural 
systems [19]. It emulates the behaviour of frustrated 
physical systems in thermal equilibrium: A state of 
minimum energy may be attained by cooling the 
system slowly according to a temperature schedule. 
The simulated annealing local search method moves 
through the space configurations according to the 
Metropolis algorithm [24] driving the system to 
equilibrium dynamics. Experimental comparison 
between GSAT and simulated annealing [32] on hard 
satisfiability problems indicated that simulated 
annealing satisfied at least as many clauses as GSAT, 
however, simulated annealing requires careful tuning 
of temperature schedule parameters. Selman et al. [27] 
affirm that they were unable to find a cooling schedule 
that outperformed GSAT.

3. Extremal Optimization Method

The concept of Self-Organized Criticality (SOC) was 
introduced by Bak et al. in 1987 [2] to describe some 
open, dissipative, spatially extended systems such as 
biological evolution, earthquakes and solar flares, that 
spontaneously achieve a critical state characterised by 
power-law distribution of event sizes [33]. The Bak-
Sneppen model [1] is a SOC model which was 
proposed to describe the self-organization phenomenon 
in the biological evolution of species. In this model, 
species have an associated value between 0 and 1 
called fitness and a selection process against the 
extremely bad ones is applied. At each iteration, 
species having the smallest fitness value is replaced by 
a random value which impacts obviously the fitness of 
interconnected species. After a sufficient number of 
steps, the system reaches a highly correlated state SOC 
in which all species have reached a fitness of optimal 
adaptation.

This coevolutionary process has been converted into 
an optimization algorithm called Extremal 
Optimization (EO) and introduced by Boettcher and 
Percus [5]. The basic structure of the algorithm EO 
proceeds as follows. Consider a system described by a 
set of N couples of variables xi each with an associated 
fitness value (or individual cost)  [5]:

1. Choose at random an initial state of the system.
2. Rank each variable xi of the system according to its 

fitness value 
3. Update the variable with the smallest fitness 

according to some move class.
4. Repeat (2) a preset number of times.
It consists of updating extremely undesirable variables 
of a sub-optimal solution, replacing them by random 
values to ensure efficient exploring of many local 
minima. The rank ordering allows EO to maintain 
well-adapted pieces of a solution, while updating an 

unfit variable gives the system enough flexibility to 
explore various space configurations. In addition, EO 
gives no consideration to the moves outcome. A 
general modification of EO [5, 6], noted -EO, consists 
of ranking all variables from rank n = 1 for the worst 
fitness to rank n = N for the best fitness . For a given 
value of , a power-law probability distribution over 
the rank order is considered:

                       P (n)  n – (1 ≤ n ≤ N)                  (3)

At each update, select a rank k according to P (k)
and change the variable xk state. The worst variable 
(with rank 1) will be chosen most frequently, while the 
higher ones will sometimes be updated. In this way, a 
bias against worst variables is maintained and no rank 
gets completely excluded from the selection process. 
However, the search performance depends on the 
parameter . For = 0, the algorithm is simply a 
random walk through the search space. While for too 
large values of  the process approaches a deterministic 
local search where only a small number of variables 
with particularly bad fitness would be chosen at each 
iteration. The optimal value of  is placed at “…a point 
between having  large enough to descent into local 
minima while having  just small enough to not get 
trapped inside the basin of any local minimum” [4]. 
Boettcher and Percus [4, 7] have established a relation 
between , the run time tmax and the number of the 
variables of the system N to estimate the optimal value 
of Let t = AN, where A is a constant, then:

  
   NAN
N

NA
 1  ,   

ln

lnln
1~      (4)

At this optimal value, the best fitness variables are 
not completely excluded from the selection process 
and hence, more space configurations can be reached
so that greatest performance can be obtained. It may 
appear that the strategy of EO is similar to an 
ineffective random search, but in fact, by persistent 
selection against the worst fitness, the algorithm 
returns frequently to near-optimal configurations.

A disadvantage of EO remains in the haziness of 
variable individual fitness definition. Also, in highly 
connected systems, EO is slowed down significantly 
by the fitness re-evaluating process at each iteration. 
However, these disadvantages could be ineffective in 
the case of problems that have a natural choice of 
fitness function with a low variable connectivity like 
satisfiability problems.

EO complements approximation methods inspired 
by equilibrium statistical physics like simulated 
annealing [19]. But when EO fluctuates to take the 
system far from the equilibrium state [5, 6], simulated 
annealing drives the system to equilibrium dynamics. 
The experiment results presented by Boettcher and 
Percus [6, 7] compare EO with simulated annealing on 
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benchmarks of the Graph Partitioning problem (GP) 
and the Travelling Salesman Problem (TSP). For the 
GP problem, EO appears to be more successful over a 
large range of graphs while simulated annealing is 
useful for highly connected graphs. In the TSP
Euclidian case, EO results trail those of simulated 
annealing. But, in the non-Euclidian TSP case, EO 
results outperform simulated annealing ones.

4. Extremal Optimization for MAXSAT 
Problem

Given a MAXSAT problem instance of n Boolean 
variables and m weighted clauses, the definition of the 
fitness i of a variable xi depends on its relation with 
the other variables [4]. In a previous study [23] we 
have defined i as the sum of weights of clauses 
satisfied by the variable xi over the total weights sum. 
The results obtained with such a definition were not 
very satisfying because a lowly connected variable will 
be too fit to be updated even if it satisfies all of its 
weights. For example, given an unweighted MAXSAT 
problem of 100 clauses (all the weights are equal to 1) 
and 20 variables, a variable that appears in 5 clauses 
and satisfies all of them, will have a fitness of 5/100, 
while another variable which appears in all the clauses 
and satisfies only 10 clauses, will have a fitness of 
10/100 and be considered as better than the previous 
variable. Hence, the algorithm will continue to update 
a variable that has satisfied all of its clauses. This 
waste of search time, explains the low quality solutions 
obtained with such definition. In this new 
implementation, we consider a more effective 
definition of a variable fitness as the negation of the 
sum of weights of clauses unsatisfied by xi:

                    


0and vCCx ji
jji

w              (5)

The cost function C (S) is the individual cost 
contributions i for each variable xi. C (S) has to be 
minimized in order to maximize the number of 
satisfying clauses. Then, the following equation holds:

                                
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Procedure: EO-MAXSAT(WeightedClauses,
MaxSteps, Tho)
1. S := a random truth assignment over the variables 

        that appear in clauses.
2. Sbest := S.
3. UnsatClauses := clauses not satisfied by S.
4. WeightUnsat := sum of UnsatClauses weights.
5. For k := 1 to MaxSteps do

a. if S satisfies WeightedClauses then
       return (S)
b. Evaluate i for each xi  in WeightedClauses     

            according to equation (5)

c. Rank xi according to i from the worst to the    
             best

d. Select a rank j according to   ThojjP 
e. S’ := S in which xj value is flipped
f. If C (S) < C (Sbest) then   Sbest := S’
g. S := S’
h. Update (UnsatClauses, WeightUnsat)

Endfor
6. Return (Sbest, C(Sbest), UnsatClauses, 

WeightUnsat)
End {EO-MAXSAT}

Figure 1. General structure of the procedure EO for MAXSAT.

The pseudo code of the procedure EO-MAXSAT 
(EO for MAXSAT) is described in Figure 1.   

1. Lines 1-4: The search begins at a random truth 
assignment S and the current best assignment, Sbest, 
is set to S. Further, the initial set of unsatisfied 
clauses and their total weights are calculated. 

2. Line 5: A fixed number of tries MaxSteps is 
executed. Each step in the search corresponds to 
flipping the truth value assigned to a variable 
according to EO strategy.

3. Lines b-c: The variable individual fitnesses are 
evaluated and sorted using a hash table to accelerate 
the EO process.

4. Lines d-e: A variable is selected according to the 
power-law distribution (equation (3)) and its value 
is flipped.

5. Lines f-h: Sbest is related to the current assignment 
with the minimum cost (equation (6)). The current 
assignment, the set of unsatisfied clauses and their 
total weights are then maintained.

6. Line 6: The current best assignment is returned
when no model can be found. 

5. Experimental Results

We now present experimental results obtained with a 
prototype of the procedure EO-MAXSAT. We 
compare it to WSAT, simulated annealing, and TS. 
The code of WSAT was taken from the web site 
http://www.cs.cornell.edu/home/selman/sat/sat-packag
e.tar. A version of TS has been developed, while for 
simulated annealing we refer to experimental results 
presented in [29]. The algorithms were coded in C 
language and run on a computer (Pentium III, 512 Mb 
RAM, 450 MHz clock).

The test suite is dedicated to randomly generated 
MAX3SAT and MAX4SAT instances mostly 
unsatisfied [25]. They are simply generated and do not 
hold any hidden structure inherent to a specific 
problem. The generator of such instances is available 
at the URL given above. For random MAX3SAT the 
instances considered are (100, 200), (100, 500), (100, 
700), (300, 600), (300, 800), (300, 1500), (300, 2000) 
and (500, 5000) where each couple (n, m) means n
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variables and m clauses. For random MAX4SAT, the 
instances considered are: (100, 700), (300, 1500), (300, 
2500) and (300, 3000). For each couple (n, m) 50 
instances were randomly generated. In the following, 
we refer to MAX3SAT and MAX4SAT instances with 
U3-n: m and U4-n: m respectively.

The first experiments involve the investigation of 
the optimal value of . The algorithm was run 10 times 
for each instance and the parameter MaxSteps was 
fixed to 100n. Figure 2 presents the average number of 
unsatisfied clauses for each instance while varying 
between 1.1 and 2. Results show that optimal 
performance had been observed for ranging from 1.4 
to 1.6 for all instances. For U3 instances,  is equal to 
1.6 for n = 100 (Figure 2-a) and equal to 1.5 for n =
300 or n = 500 (Figures 2-b and 2-c). While for U4 
instances,  is equal to 1.5 for n = 100 and between 1.4 
and 1.5 for n = 300 (Figures 2-d and 2-e). These 
numerical values are relatively close to those predicted 
by equation (4). ( = 1.6683 for n = 100, = 1.5021 for 
n = 300 and  = 1.4470 for n = 500). We note that 
equation (4) cannot be applied for long run times (A >
n).

Subsequently, we examined the effectiveness of the 
procedure EO-MAXSAT on the benchmark instances 
where  was set to the default value of 1.6 for n = 100 
and to 1.5 for n = 300 or n = 500. Table 1 shows the 
average, minimum and maximum number of 
unsatisfied clauses for each instance obtained over 10 
runs and the maximum CPU time allowed for each run. 
Satisfying assignments were found for 5 out of 6 
known satisfiable problems (U3-100:200, U3-300:600, 
U3-300:800, U4-300:1500 and U4-300:2500). The 
good robustness of the algorithm could be suggested 
by the empirical values obtained for the standard 
deviation. 

Table 1. Average results over 10 runs achieved by EO-MAXSAT 
on MAX3SAT (U3-n:m) and MAX4SAT (U4-n:m) instances.

Problem
Identifier

Avg Min Max
Std. 
Dev.

CPU 
secs

U3-100:200 0 0 0 0 20.0

U3-100:500 3.10 3.00 4.60 0.89 20.0

U3-100:700 12.80 12.60 13.72 0.59 20.0

U3-300:600 0 0 0 0 60.0

U3-300:800 0 0 0 0 60.0

U3-300:1500 8.00 7.90 9.40 0.83 60.0

U3-300:2000 30.40 30.20 32.60 1.33 60.0

U3-500:5000 163.20 162.50 173,00 5,87 100.0

U4-100:700 0.022 0.020 0.0235 0.0015 20.0

U4-300:1500 0 0 0 0 60.0

U4-300:2500 0 0 0 0 60.0

U4-300:3000 4.20 4.09 4.58 0.25 60.0

Table 2 represents the average number of 
unsatisfied clauses for U3 and U4 instances. The 
column in the table denoted with simulated annealing 
is derived from [29]. It represents reported results 

obtained with simulated annealing on the same 
instances. The Additional columns refer to our 
experiments on EO-MAXSAT, TS and WSAT where 
the maximum allowed run-times are the same as 
reported in Table 1. The tests show that EO-MAXSAT 
improves significantly upon the results obtained with 
simulated annealing and TS on all the benchmark 
instances. EO-MAXSAT has been able to satisfy 5 out 
of 6 satisfiable problems, while WSAT has found 
models for all these problems. However, EO-
MAXSAT has outperformed WSAT on 5 out of 6 
remaining unsatisfiable problems.

Table 2. Average number of unsatisfied clauses for the benchmark 
instances. The data for simulated annealing are derived from [29].

Problem
Identifier

EO-MAXSAT
Simulated 
Annealing

TS
WSAT 

( p = 0.5)

U3-100:200 0 0.2 0.24 0

U3-100:500 3.1 8.2 4.7 2.76

U3-100:700 12.8 18.1 14.4 13.4

U3-300:600 0 2.7 2.3 0

U3-300:800 0 6.1 4.3 0

U3-300:1500 8.0 30.0 13.2 8.12

U3-300:2000 30.4 58.0 38.4 32.28

U3-500:5000 163.2 226.4 174.2 167.0

U4-100:700 0.022 0.3 0 0

U4-300:1500 0 1.0 0 0

U4-300:2500 0 11.9 3.4 0

U4-300:3000 4.2 14.3 5.9 4.71

Next, we compare the variation of the average 
number of unsatisfied clauses as a function of the 
number of iterations for EO-MAXSAT and WSAT.
Figure 3 shows results obtained on two hard instances 
U3-300:2000 and U3-500:5000. It is easy to observe 
that EO-MAXSAT converges faster to a local optimum 
than WSAT. For example, on U3-300: 2000, 
assignments containing in average 44 violated clauses,  
were obtained at the 400th iteration for EO-MAXSAT 
but only after the 1000th iteration for WSAT.

On the instance U3-500:5000, EO-MAXSAT was 
able to reduce the number of  violated clauses to 175 
after 1000 iterations, while WSAT reached this local 
optimum after 10000 iterations.

As a result, the average performance of EO-
MAXSAT exceeds that of simulated annealing, TS and 
WSAT on the tested benchmarks. Its high quality 
solution can be explained as follows. On the one hand, 
the large fluctuations of EO allow the search to escape 
quickly from local minima and to explore other 
assignments in the search space, and on the other hand, 
the extremal selection process obliges the search to 
frequently visit near-optimal assignments. Comparable 
to WSAT, simulated annealing and TS, the procedure 
EO-MAXSAT is incomplete, which means that there is 
no guarantee that it can find a model to the problem if 
one exists. However, when a solution is found, we are 
sure that it is correct, which means that the procedure 
is sound. EO-MAXSAT is constructed around a local 
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search scheme like WSAT family algorithms. The 
main difference between EO and WSAT, simulated 
annealing and TS, resides in the fact that EO makes 
moves using a fitness that is based not on anticipated 
outcome but purely on the current state of each 
variable. Also, EO needs only one tuning parameter, 
while simulated annealing requires careful tuning 
temperature schedule [19] parameters.

Free parameter of EO-MAXSAT
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Figure 2. The effect of the parameter  on the average number of 
unsatisfied clauses.
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Figure 3. Average number of unsatisfied clauses as a function of 
the number of iterations for EO-MAXSAT and WSAT.

6. Conclusion

Extremal optimization is a surprisingly simple and 
powerful method to find high quality solutions to hard 
optimization problems. It belongs to the family of 
stochastic local search algorithms such as WSAT, 
simulated annealing and TS. Its straightforward 
implementation and test provide motivation to adapt it 
for solving various classes of these problems. In this 
paper, we have shown how to deal with this method to 
solve the MAXSAT problem, one of the most 
important problems in the encoding-resolution 
paradigm. The derived procedure EO-MAXSAT is 
sound but incomplete. It has been tested on random 
MAX3SAT and MAX4SAT problems. The 
experimental results demonstrate its superiority with 
respect to simulated annealing, TS and even to WSAT 
on the considered instances. The high performance 
achieved is due to the flexibility maintained by the EO 
process to explore more space configurations and to 
retain well adapted pieces of a solution. Its fast 
convergence to a near optimal solution may be useful 
in practice for especially large instances. Actually we 
are performing additional tests on other SAT and 
MAXSAT instances from the DIMACS archive at the 
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URL http://dimacs.rutgers.edu /challenges/ and 
comparisons with other local search methods like 
DLM.
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