
154 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

Solving the Maximum Satisfiability Problem Using
an Evolutionary Local Search Algorithm

Mohamed El Bachir Menai1 and Mohamed Batouche2

1Artificial Intelligence Laboratory, University of Paris 8, France
2 Computer Science Department, University Mentouri of Constantine, Algeria

Abstract: The MAXimum propositional SATisfiability problem (MAXSAT) is a well known NP-hard optimization problem
with many theoretical and practical applications in artificial intelligence and mathematical logic. Heuristic local search
algorithms are widely recognized as the most effective approaches used to solve them. However, their performance depends
both on their complexity and their tuning parameters which are controlled experimentally and remain a difficult task.
Extremal Optimization (EO) is one of the simplest heuristic methods with only one free parameter, which has proved
competitive with the more elaborate general-purpose method on graph partitioning and coloring. It is inspired by the
dynamics of physical systems with emergent complexity and their ability to self-organize to reach an optimal adaptation state.
In this paper, we propose an extremal optimization procedure for MAXSAT and consider its effectiveness by computational
experiments on a benchmark of random instances. Comparative tests showed that this procedure improves significantly
previous results obtained on the same benchmark with other modern local search methods like WSAT, simulated annealing
and Tabu Search (TS).

Keywords: Constraint satisfaction, MAXSAT, heuristic local search, extremal optimization.

Received February 29, 2004; accepted June 30, 2004

1. Introduction

An expression is satisfiable if it is true under some
interpretation. The SATisfiability problem (SAT)
involves finding a truth assignment that satisfies a CNF
formula in propositional logic. There are two main
approaches to SAT. One class of solutions uses a
systematic approach, meaning that each possible
assignment of truth values is tested until a solution is
found. The other involves randomly testing
assignments, and is called stochastic method. The first
approach guarantees to find a solution if one exists, but
in the worst case can be very inefficient. The second
approach is more effective for practically solving large
SAT instances but it cannot be used to prove that a
given problem instance is unsatisfiable.

The class of all problems for which it is not known
if a polynomial time algorithm exists, is called Non-
deterministic Polynomial (NP) and the related
problems are called NP-complete. These problems
require algorithms of exponential time complexity in
the worst case to obtain optimal solutions. SAT is the
archetypical NP problem, that is all NP-complete
problems can be polynomially reduced to it (The
concept of polynomial-time reductibility) [8]. Indeed,
many problems in various areas like artificial
intelligence, computer aided design and databases,
involve the solution of SAT instances or its variants.

An extension of SAT is the MAXimum
SATisfiability problem (MAXSAT) which consists of

satisfying the maximum number of clauses of the
propositional formula. MAXSAT is of considerable
interest from both the theoretical side and the practical
side. It plays an important role in the characterization
of different approximation classes like Polynomial
Time Approximation Algorithm (PTAA) and
Polynomial Time Approximation Scheme (PTAS) [34]
and many optimization problems can be formulated in
this form of satisfiability. MAXSAT is known to be
NP-hard (an optimization problem that has a related
NP-complete decision version problem) even when
each clause contains exactly two literals MAX2SAT
[9, 17]. Since finding an exact solution to this problem
requires exponential time, approximation algorithms to
find near optimal solutions in polynomial time, appear
to be viable. Developing efficient algorithms and
heuristics for MAXSAT, can then lead to general
approaches for solving combinatorial optimization
problems.

Extremal Optimization (EO) was recently
introduced as a heuristic search method [5] for
approximating solutions to hard optimization
problems. It is inspired by the Bak-Sneppen model of
biological evolution and natural selection [1] where the
high degree of adaptation of most species emerge from
the dynamics through a selection against the extremely
bad ones [5]. The present work was encouraged by the
high quality results obtained with EO on graph
coloring [6] and graph partitioning problems [5, 7].
This method has been proved competitive and even

Solving the Maximum Satisfiability Problem Using an Evolutionary Local Search Algorithm 155

better than the more elaborate general purpose
heuristics such as simulated annealing [19] or Tabu
Search (TS) [13, 14] on these hard optimization
problems.

In this paper, we extend the EO method to solve
MAXSAT problems and compare it to the more
frequently used local search methods for this problem
such as simulated annealing [32], TS [21] and the well
known procedure WSAT [29]. This paper is organized
as follows. Section 2 presents the MAXSAT problem
and related methods to solve it. Section 3 presents the
Extremal Optimization method. Its adaptation to
handle MAXSAT problems and implementation are
discussed in section 4. Experimental results and
conclusion follow, respectively, in sections 5 and 6.

2. MAXSAT Problem

Formally, SAT is defined as follows: Given a set of n
variables X = {x1, x2,…, xn} and a set of literals over X

 XxxxL  /, . A clause C on X is a disjunction of
literals. An assignment of Boolean variables is a
substitution of these variables by a vector v  {0, 1}n.
A clause C is satisfied by an assignment v if the value
of the clause equals 1 (C (v) = 1), otherwise the clause
is unsatisfied (C (v) = 1). Given m clauses C1, C2, …,
Cm, the SAT problem asks to determine an assignment
v0  {0, 1}n that satisfies the Boolean formula in
conjunctive normal form (CNF) mCCC  ...21 or
to derive its infeasibility.

A weighted formula is a pair WF = {CF, W} where
CF = (Ci) i ≤ m is a clause form and   m

miiwW  

is an integer vector; for each i ≤ m, wi is the weight of
the clause Ci. An assignment v  {0, 1}n determines a
weight value in the weighted formula WF as:

  
 





1

,,
vc

i

i

wvWCFwc (1)

]

The MAXSAT problem asks to determine an
assignment v0  {0, 1}n that maximizes the sum of the
weights of satisfied clauses:

wc (CF, W, v0) = Max {wc (CF, w, v) | v {0, 1}n} (2)

MAXkSAT is the subset of MAXSAT instances in
which each clause has exactly k literals. If each weight
is equal to one, we call the problem unweighted
MAXSAT, otherwise we speak of weighted MAXSAT
or simply MAXSAT. Note that SAT is a special case
of the MAXSAT in which all clauses have unit weight
and one wants to decide if there is any truth assignment
of total weight m.

MAXSAT algorithms can be classified as complete
and incomplete depending on whether they can find the
optimal assignment. Complete algorithms can
determine optimal assignments but they are
computationally expensive and are not appropriate in

solving large instances. These include Davis-Putnam’s
procedure [10], and various heuristics using different
branching rules and reinforcement techniques like
equivalence reasoning [20] or backbone detecting [11].

Incomplete methods are usually faster and can solve
some large problems of thousands of variables that
complete methods cannot handle. In this outline,
stochastic local search has become an important
general purpose method for solving satisfiability
problems: It starts with a random initial solution and
tries to improve it by moving to neighbouring
solutions. It can be trapped in local poor minima or
plateaus and it requires, therefore, a strategy to both
escape from these local minima and to guide the search
toward good solutions. Its performance lies in the
choice of the initial solution and the transformation
applied to the current solution. Many stochastic local
search methods have been designed such as simulated
annealing [32], TS [21], Greedy Randomized Adaptive
Search Procedure (GRASP) [26], Discrete Lagrangian
based search Method (DLM) [31] and Reactive search
[3]. Although the list of competitive heuristics is not
exhaustive, the most accepted one is Greedy
SATisfiability (GSAT) defined initially for SAT [18,
27, 28, 30] and applied next to MAXSAT. It begins
with a randomly generated initial assignment and at
each iteration, it flips the variable that had the largest
decrease in unsatisfied clauses. It accepts also the
moves which either produce the same objective
function value or increase it. This process is repeated
until a maximum number of non-improving moves is
reached. Different noise strategies to escape from local
optima are added to GSAT like WSAT [29], Novelty
and R-Novelty [22], and UnitWalk [15]. The
WalkSAT (WSAT) procedure [29] is a particularly
powerful variant of GSAT. It mainly consists of a
random walk on the unsatisfied clauses. The
experimental results obtained by Jiang et al. [16] with
an adaptered version of WSAT on MAXSAT
encodings of the Steiner tree problem showed that this
approach is competitive with the best current
specialized Steiner tree algorithm.

In the TS method [13, 14], a memory of forbidden
moves called tabu list is used to avoid the search
process revisiting the previously found solutions. At
each iteration, a configuration once visited is made
tabu for a given number of iterations. Different history-
based heuristics have been proposed to intensify and
diversify the search into previously unexplored regions
of the search space with information collected from the
previous phase. HSAT [12] introduces a tie-breaking
rule into GSAT so that if more moves produce the
same best results, the preferred move is the one that
has been applied for the longest period. The results
obtained on some SAT benchmark tasks present a
better performance with respect to WSAT. TSAT is a
Tabu search procedure for SAT problems [21] that has

156 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

also been shown to be competitive with WSAT on hard
random 3-SAT instances.

simulated annealing is a method inspired by natural
systems [19]. It emulates the behaviour of frustrated
physical systems in thermal equilibrium: A state of
minimum energy may be attained by cooling the
system slowly according to a temperature schedule.
The simulated annealing local search method moves
through the space configurations according to the
Metropolis algorithm [24] driving the system to
equilibrium dynamics. Experimental comparison
between GSAT and simulated annealing [32] on hard
satisfiability problems indicated that simulated
annealing satisfied at least as many clauses as GSAT,
however, simulated annealing requires careful tuning
of temperature schedule parameters. Selman et al. [27]
affirm that they were unable to find a cooling schedule
that outperformed GSAT.

3. Extremal Optimization Method

The concept of Self-Organized Criticality (SOC) was
introduced by Bak et al. in 1987 [2] to describe some
open, dissipative, spatially extended systems such as
biological evolution, earthquakes and solar flares, that
spontaneously achieve a critical state characterised by
power-law distribution of event sizes [33]. The Bak-
Sneppen model [1] is a SOC model which was
proposed to describe the self-organization phenomenon
in the biological evolution of species. In this model,
species have an associated value between 0 and 1
called fitness and a selection process against the
extremely bad ones is applied. At each iteration,
species having the smallest fitness value is replaced by
a random value which impacts obviously the fitness of
interconnected species. After a sufficient number of
steps, the system reaches a highly correlated state SOC
in which all species have reached a fitness of optimal
adaptation.

This coevolutionary process has been converted into
an optimization algorithm called Extremal
Optimization (EO) and introduced by Boettcher and
Percus [5]. The basic structure of the algorithm EO
proceeds as follows. Consider a system described by a
set of N couples of variables xi each with an associated
fitness value (or individual cost)  [5]:

1. Choose at random an initial state of the system.
2. Rank each variable xi of the system according to its

fitness value 
3. Update the variable with the smallest fitness

according to some move class.
4. Repeat (2) a preset number of times.
It consists of updating extremely undesirable variables
of a sub-optimal solution, replacing them by random
values to ensure efficient exploring of many local
minima. The rank ordering allows EO to maintain
well-adapted pieces of a solution, while updating an

unfit variable gives the system enough flexibility to
explore various space configurations. In addition, EO
gives no consideration to the moves outcome. A
general modification of EO [5, 6], noted -EO, consists
of ranking all variables from rank n = 1 for the worst
fitness to rank n = N for the best fitness . For a given
value of , a power-law probability distribution over
the rank order is considered:

 P (n)  n – (1 ≤ n ≤ N) (3)

At each update, select a rank k according to P (k)
and change the variable xk state. The worst variable
(with rank 1) will be chosen most frequently, while the
higher ones will sometimes be updated. In this way, a
bias against worst variables is maintained and no rank
gets completely excluded from the selection process.
However, the search performance depends on the
parameter . For = 0, the algorithm is simply a
random walk through the search space. While for too
large values of  the process approaches a deterministic
local search where only a small number of variables
with particularly bad fitness would be chosen at each
iteration. The optimal value of  is placed at “…a point
between having  large enough to descent into local
minima while having  just small enough to not get
trapped inside the basin of any local minimum” [4].
Boettcher and Percus [4, 7] have established a relation
between , the run time tmax and the number of the
variables of the system N to estimate the optimal value
of Let t = AN, where A is a constant, then:

  
   NAN
N

NA
 1 ,

ln

lnln
1~ (4)

At this optimal value, the best fitness variables are
not completely excluded from the selection process
and hence, more space configurations can be reached
so that greatest performance can be obtained. It may
appear that the strategy of EO is similar to an
ineffective random search, but in fact, by persistent
selection against the worst fitness, the algorithm
returns frequently to near-optimal configurations.

A disadvantage of EO remains in the haziness of
variable individual fitness definition. Also, in highly
connected systems, EO is slowed down significantly
by the fitness re-evaluating process at each iteration.
However, these disadvantages could be ineffective in
the case of problems that have a natural choice of
fitness function with a low variable connectivity like
satisfiability problems.

EO complements approximation methods inspired
by equilibrium statistical physics like simulated
annealing [19]. But when EO fluctuates to take the
system far from the equilibrium state [5, 6], simulated
annealing drives the system to equilibrium dynamics.
The experiment results presented by Boettcher and
Percus [6, 7] compare EO with simulated annealing on

Solving the Maximum Satisfiability Problem Using an Evolutionary Local Search Algorithm 157

benchmarks of the Graph Partitioning problem (GP)
and the Travelling Salesman Problem (TSP). For the
GP problem, EO appears to be more successful over a
large range of graphs while simulated annealing is
useful for highly connected graphs. In the TSP
Euclidian case, EO results trail those of simulated
annealing. But, in the non-Euclidian TSP case, EO
results outperform simulated annealing ones.

4. Extremal Optimization for MAXSAT
Problem

Given a MAXSAT problem instance of n Boolean
variables and m weighted clauses, the definition of the
fitness i of a variable xi depends on its relation with
the other variables [4]. In a previous study [23] we
have defined i as the sum of weights of clauses
satisfied by the variable xi over the total weights sum.
The results obtained with such a definition were not
very satisfying because a lowly connected variable will
be too fit to be updated even if it satisfies all of its
weights. For example, given an unweighted MAXSAT
problem of 100 clauses (all the weights are equal to 1)
and 20 variables, a variable that appears in 5 clauses
and satisfies all of them, will have a fitness of 5/100,
while another variable which appears in all the clauses
and satisfies only 10 clauses, will have a fitness of
10/100 and be considered as better than the previous
variable. Hence, the algorithm will continue to update
a variable that has satisfied all of its clauses. This
waste of search time, explains the low quality solutions
obtained with such definition. In this new
implementation, we consider a more effective
definition of a variable fitness as the negation of the
sum of weights of clauses unsatisfied by xi:

   


0and vCCx ji
jji

w (5)

The cost function C (S) is the individual cost
contributions i for each variable xi. C (S) has to be
minimized in order to maximize the number of
satisfying clauses. Then, the following equation holds:

   



n

i
iSC

1

 (6)

Procedure: EO-MAXSAT(WeightedClauses,
MaxSteps, Tho)
1. S := a random truth assignment over the variables

 that appear in clauses.
2. Sbest := S.
3. UnsatClauses := clauses not satisfied by S.
4. WeightUnsat := sum of UnsatClauses weights.
5. For k := 1 to MaxSteps do

a. if S satisfies WeightedClauses then
 return (S)
b. Evaluate i for each xi in WeightedClauses

 according to equation (5)

c. Rank xi according to i from the worst to the
 best

d. Select a rank j according to   ThojjP 
e. S’ := S in which xj value is flipped
f. If C (S) < C (Sbest) then Sbest := S’
g. S := S’
h. Update (UnsatClauses, WeightUnsat)

Endfor
6. Return (Sbest, C(Sbest), UnsatClauses,

WeightUnsat)
End {EO-MAXSAT}

Figure 1. General structure of the procedure EO for MAXSAT.

The pseudo code of the procedure EO-MAXSAT
(EO for MAXSAT) is described in Figure 1.

1. Lines 1-4: The search begins at a random truth
assignment S and the current best assignment, Sbest,
is set to S. Further, the initial set of unsatisfied
clauses and their total weights are calculated.

2. Line 5: A fixed number of tries MaxSteps is
executed. Each step in the search corresponds to
flipping the truth value assigned to a variable
according to EO strategy.

3. Lines b-c: The variable individual fitnesses are
evaluated and sorted using a hash table to accelerate
the EO process.

4. Lines d-e: A variable is selected according to the
power-law distribution (equation (3)) and its value
is flipped.

5. Lines f-h: Sbest is related to the current assignment
with the minimum cost (equation (6)). The current
assignment, the set of unsatisfied clauses and their
total weights are then maintained.

6. Line 6: The current best assignment is returned
when no model can be found.

5. Experimental Results

We now present experimental results obtained with a
prototype of the procedure EO-MAXSAT. We
compare it to WSAT, simulated annealing, and TS.
The code of WSAT was taken from the web site
http://www.cs.cornell.edu/home/selman/sat/sat-packag
e.tar. A version of TS has been developed, while for
simulated annealing we refer to experimental results
presented in [29]. The algorithms were coded in C
language and run on a computer (Pentium III, 512 Mb
RAM, 450 MHz clock).

The test suite is dedicated to randomly generated
MAX3SAT and MAX4SAT instances mostly
unsatisfied [25]. They are simply generated and do not
hold any hidden structure inherent to a specific
problem. The generator of such instances is available
at the URL given above. For random MAX3SAT the
instances considered are (100, 200), (100, 500), (100,
700), (300, 600), (300, 800), (300, 1500), (300, 2000)
and (500, 5000) where each couple (n, m) means n

158 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

variables and m clauses. For random MAX4SAT, the
instances considered are: (100, 700), (300, 1500), (300,
2500) and (300, 3000). For each couple (n, m) 50
instances were randomly generated. In the following,
we refer to MAX3SAT and MAX4SAT instances with
U3-n: m and U4-n: m respectively.

The first experiments involve the investigation of
the optimal value of . The algorithm was run 10 times
for each instance and the parameter MaxSteps was
fixed to 100n. Figure 2 presents the average number of
unsatisfied clauses for each instance while varying
between 1.1 and 2. Results show that optimal
performance had been observed for ranging from 1.4
to 1.6 for all instances. For U3 instances,  is equal to
1.6 for n = 100 (Figure 2-a) and equal to 1.5 for n =
300 or n = 500 (Figures 2-b and 2-c). While for U4
instances,  is equal to 1.5 for n = 100 and between 1.4
and 1.5 for n = 300 (Figures 2-d and 2-e). These
numerical values are relatively close to those predicted
by equation (4). ( = 1.6683 for n = 100, = 1.5021 for
n = 300 and  = 1.4470 for n = 500). We note that
equation (4) cannot be applied for long run times (A >
n).

Subsequently, we examined the effectiveness of the
procedure EO-MAXSAT on the benchmark instances
where  was set to the default value of 1.6 for n = 100
and to 1.5 for n = 300 or n = 500. Table 1 shows the
average, minimum and maximum number of
unsatisfied clauses for each instance obtained over 10
runs and the maximum CPU time allowed for each run.
Satisfying assignments were found for 5 out of 6
known satisfiable problems (U3-100:200, U3-300:600,
U3-300:800, U4-300:1500 and U4-300:2500). The
good robustness of the algorithm could be suggested
by the empirical values obtained for the standard
deviation.

Table 1. Average results over 10 runs achieved by EO-MAXSAT
on MAX3SAT (U3-n:m) and MAX4SAT (U4-n:m) instances.

Problem
Identifier

Avg Min Max
Std.
Dev.

CPU
secs

U3-100:200 0 0 0 0 20.0

U3-100:500 3.10 3.00 4.60 0.89 20.0

U3-100:700 12.80 12.60 13.72 0.59 20.0

U3-300:600 0 0 0 0 60.0

U3-300:800 0 0 0 0 60.0

U3-300:1500 8.00 7.90 9.40 0.83 60.0

U3-300:2000 30.40 30.20 32.60 1.33 60.0

U3-500:5000 163.20 162.50 173,00 5,87 100.0

U4-100:700 0.022 0.020 0.0235 0.0015 20.0

U4-300:1500 0 0 0 0 60.0

U4-300:2500 0 0 0 0 60.0

U4-300:3000 4.20 4.09 4.58 0.25 60.0

Table 2 represents the average number of
unsatisfied clauses for U3 and U4 instances. The
column in the table denoted with simulated annealing
is derived from [29]. It represents reported results

obtained with simulated annealing on the same
instances. The Additional columns refer to our
experiments on EO-MAXSAT, TS and WSAT where
the maximum allowed run-times are the same as
reported in Table 1. The tests show that EO-MAXSAT
improves significantly upon the results obtained with
simulated annealing and TS on all the benchmark
instances. EO-MAXSAT has been able to satisfy 5 out
of 6 satisfiable problems, while WSAT has found
models for all these problems. However, EO-
MAXSAT has outperformed WSAT on 5 out of 6
remaining unsatisfiable problems.

Table 2. Average number of unsatisfied clauses for the benchmark
instances. The data for simulated annealing are derived from [29].

Problem
Identifier

EO-MAXSAT
Simulated
Annealing

TS
WSAT

(p = 0.5)

U3-100:200 0 0.2 0.24 0

U3-100:500 3.1 8.2 4.7 2.76

U3-100:700 12.8 18.1 14.4 13.4

U3-300:600 0 2.7 2.3 0

U3-300:800 0 6.1 4.3 0

U3-300:1500 8.0 30.0 13.2 8.12

U3-300:2000 30.4 58.0 38.4 32.28

U3-500:5000 163.2 226.4 174.2 167.0

U4-100:700 0.022 0.3 0 0

U4-300:1500 0 1.0 0 0

U4-300:2500 0 11.9 3.4 0

U4-300:3000 4.2 14.3 5.9 4.71

Next, we compare the variation of the average
number of unsatisfied clauses as a function of the
number of iterations for EO-MAXSAT and WSAT.
Figure 3 shows results obtained on two hard instances
U3-300:2000 and U3-500:5000. It is easy to observe
that EO-MAXSAT converges faster to a local optimum
than WSAT. For example, on U3-300: 2000,
assignments containing in average 44 violated clauses,
were obtained at the 400th iteration for EO-MAXSAT
but only after the 1000th iteration for WSAT.

On the instance U3-500:5000, EO-MAXSAT was
able to reduce the number of violated clauses to 175
after 1000 iterations, while WSAT reached this local
optimum after 10000 iterations.

As a result, the average performance of EO-
MAXSAT exceeds that of simulated annealing, TS and
WSAT on the tested benchmarks. Its high quality
solution can be explained as follows. On the one hand,
the large fluctuations of EO allow the search to escape
quickly from local minima and to explore other
assignments in the search space, and on the other hand,
the extremal selection process obliges the search to
frequently visit near-optimal assignments. Comparable
to WSAT, simulated annealing and TS, the procedure
EO-MAXSAT is incomplete, which means that there is
no guarantee that it can find a model to the problem if
one exists. However, when a solution is found, we are
sure that it is correct, which means that the procedure
is sound. EO-MAXSAT is constructed around a local

Solving the Maximum Satisfiability Problem Using an Evolutionary Local Search Algorithm 159

search scheme like WSAT family algorithms. The
main difference between EO and WSAT, simulated
annealing and TS, resides in the fact that EO makes
moves using a fitness that is based not on anticipated
outcome but purely on the current state of each
variable. Also, EO needs only one tuning parameter,
while simulated annealing requires careful tuning
temperature schedule [19] parameters.

Free parameter of EO-MAXSAT

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

L
og

(A
ve

ra
ge

U
ns

at
is

fi
ed

C
la

us
es

)

0,1

1,0

10,0

100,0
U3-100:200
U3-100:500
U3-100:700

 (a)

 : Free parameter of EO-MAXSAT

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

L
og

(A
ve

ra
ge

U
ns

at
is

fi
ed

C
la

us
es

)

0,0

0,1

1,0

10,0

100,0

U3-300:600
U3-300:800
U3-300:1500
U3-300:2000

 (b)

 : Free parameter of EO

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

A
ve

ra
ge

U
ns

at
is

fi
ed

C
la

us
es

160,0

180,0

200,0

U3-500:5000

 (c)

 : Free parameter of EO-MAXSAT

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

L
og

(A
ve

ra
ge

U
ns

at
is

fi
ed

C
la

us
es

)

0,0

0,1

1,0

10,0

U4-100:700
U4-300:1500

 (d)

 : Free parameter of EO

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

A
ve

ra
ge

U
ns

at
is

fi
ed

C
la

us
es

2,0

4,0

6,0

8,0

10,0

U4-300:2500
U4-300:3000

 (e)

Figure 2. The effect of the parameter  on the average number of
unsatisfied clauses.

Log(iterations)

1,e+2 1,e+3 1,e+4 1,e+5 1,e+6

A
ve

ra
ge

U
ns

at
is

fi
ed

C
la

us
es

0

50

100

150

200

250

300
WSAT : U3-300:2000
EO: U3-300:2000

WSAT: U3-500:5000
EO: U3-500:5000

Figure 3. Average number of unsatisfied clauses as a function of
the number of iterations for EO-MAXSAT and WSAT.

6. Conclusion

Extremal optimization is a surprisingly simple and
powerful method to find high quality solutions to hard
optimization problems. It belongs to the family of
stochastic local search algorithms such as WSAT,
simulated annealing and TS. Its straightforward
implementation and test provide motivation to adapt it
for solving various classes of these problems. In this
paper, we have shown how to deal with this method to
solve the MAXSAT problem, one of the most
important problems in the encoding-resolution
paradigm. The derived procedure EO-MAXSAT is
sound but incomplete. It has been tested on random
MAX3SAT and MAX4SAT problems. The
experimental results demonstrate its superiority with
respect to simulated annealing, TS and even to WSAT
on the considered instances. The high performance
achieved is due to the flexibility maintained by the EO
process to explore more space configurations and to
retain well adapted pieces of a solution. Its fast
convergence to a near optimal solution may be useful
in practice for especially large instances. Actually we
are performing additional tests on other SAT and
MAXSAT instances from the DIMACS archive at the

L
og

 (
A

ve
ra

ge
 U

ns
at

is
fi

ed
 C

la
us

es
)

: Free parameter of EO-MAXSAT

L
og

 (
A

ve
ra

ge
 U

ns
at

is
fi

ed
 C

la
us

es
)

: Free parameter of EO-MAXSAT

A
ve

ra
ge

 U
ns

at
is

fi
ed

 C
la

us
es

: Free parameter of EO

L
og

 (
A

ve
ra

ge
 U

ns
at

is
fi

ed
 C

la
us

es
)

: Free parameter of EO-MAXSAT

A
ve

ra
ge

 U
ns

at
is

fi
ed

 C
la

us
es

: Free parameter of EO

A
ve

ra
ge

 U
ns

at
is

fi
ed

 C
la

us
es

Log (iterations)

160 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

URL http://dimacs.rutgers.edu /challenges/ and
comparisons with other local search methods like
DLM.

Acknowledgments

We are particularly indebted to Stefan Boettcher at
Emory University for his valuable comments on our
study. We thank Prof. Selman B. at Cornell University
who made available his MAXSAT random generator
software. The comments of the anonymous referees are
gratefully acknowledged.

References

[1] Bak P. and Sneppen K., “Punctuated Equilibrium
and Criticality in a Simple Model of Evolution,”
Physical Review Letters, vol. 71, pp. 4083-4086,
1993.

[2] Bak P., Tang C., and Wiesenfeld K., “Self-
Organized Criticality: An Explanation of 1/f-
Noise,” Physical Review Letters, vol. 86 no. 23,
pp. 5211-5214, 1987.

[3] Battiti R. and Protasi M., “Reactive Search: A
History-Sensitive Heuristic for MAX-SAT,”
ACM Journal of Experimental Algorithmics, vol.
2, 1997.

[4] Boettcher S. and Grigni M., “Jamming Model for
the Extremal Optimization Heuristic,” Journal of
Physics A: Mathematical and General, vol. 35,
pp. 1109-1123, 2002.

[5] Boettcher S. and Percus A. G., “Nature’s Way of
Optimizing,” Elsevier Science, Artificial
Intelligence, vol. 119, pp. 275-286, 2000.

[6] Boettcher S. and Percus A. G., “Optimization
with Extremal Dynamics,” Physical Review
Letters, vol. 86, no. 23, pp. 5211-5214, 2001.

[7] Boettcher S. and Percus A. G., “Extremal
Optimization for Graph Partitioning,” Physical
Review E, vol. 64, pp. 1-13, 2001.

[8] Cook S. A., “The Complexity of Theorem
Proving Procedures,” in Proceedings of the 3rd

Annual ACM Symposium of the Theory of
Computation, pp. 151-158, 1971.

[9] Crescenzi P. and Kann V., “How to Find the Best
Approximation Results: A Follow-up to Garey
and Johnson,” ACM SIGACT News, vol. 29 no. 4,
pp. 90-97, 1998.

[10] Davis M. and Putnam M., “A Computing
Procedure for Quantification Theory,” Journal of
the ACM, vol. 7. pp. 201-215, 1960.

[11] Dubois O. and Dequen G., “A Backbone-Search
Heuristic for Efficient Solving of Hard 3-SAT
Formulae,” in Proceedings of the IJCAI’01, pp.
248-253, San Francisco, CA, 2001.

[12] Gent I. and Walsh T., “Unsatisfied Variables in
Local Search,” in Hybrid Problems, Hybrid

Solutions, Hallam J. (Eds), IOS Press,
Amsterdam, pp. 73-85, 1995.

[13] Glover F., “Tabu Search: Part I,” ORSA Journal
on Computing, vol. 1, no. 3, pp. 190-206, 1989.

[14] Glover F., “Tabu Search: Part II,” ORSA Journal
on Computing, vol. 2, no. 1, pp. +32, 1989.

[15] Hirsch E. A. and Kojevnikov A., “UnitWalk: A
New SAT Solver That Uses Local Search Guided
by Unit Clause Elimination,” in Proceedings of
the 5th International Symposium on the Theory
and Applications of Satisfiability Testing (SAT
2002), Cincinnatti, Ohio, USA, pp. 35-42, 2002.

[16] Jiang Y., Kautz H. A., and Selman B., “Solving
Problems With Hard and Soft Constraints Using
a Stochastic Algorithm for MAX-SAT,” in
Proceedings of the 1st International Joint
Workshop on Artificial Intelligence and
Operations Research, 1995.

[17] Johnson D., “Approximation Algorithms for
Combinatorial Problems,” Journal of Computer
and System Sciences, vol. 9, pp. 256-278, 1974.

[18] Kautz H. A. and Selman B., “Pushing the
Envelope: Planning, Propositional Logic, and
Stochastic Search,” in Proceedings of the
AAAI’96, vol. 2, pp. 1194-1201, MIT Press,
1996.

[19] Kirkpatrick S., Gelatt C. D., and Vecchi P. M.,
“Optimization by Simulated Annealing,” Science,
vol. 220, no. 4598, pp. 671-680, 1983.

[20] Li C.M., “Integrating Equivalence Reasoning
into Davis-Putnam Procedure,” in Proceedings of
the AAAI’00, pp. 291-296, 2000.

[21] Mazure B., Sais L., and Gregoire E., “Tabu
Search for SAT,” in Proceedings of the 14th

National Conference on Artificial Intelligence
and 9th Innovative Applications of Artificial
Intelligence Conference, pp. 281-285, 1997.

[22] Mc Allester D., Selman B., and Kautz H.,
“Evidence for Invariants in Local Search,” in
Proceedings of the IJCAI-97, 1997.

[23] Menaï M. B. and Batouche M., “EO for
MAXSAT,” in Proceedings of the International
Conference on Artificial Intelligence (IC-AI’02),
Las Vegas, USA, vol. 3, pp. 954-958, 2002.

[24] Metropolis N., Rosenbluth A. W., Rosenbluth M.
N., Teller A. H., and Teller E., “Equation of State
Calculations by Fast Computing Machines,”
Journal of Chemical Physics, vol. 21, pp 1087-
1092, 1953.

[25] Mitchell D., Selman B., and Levesque H. J.,
“Hard and Easy Distributions of SAT Problems,”
in Proceedings of the Tenth National Conference
on Artificial Intelligence, AAAI, San Jose, CA,
pp. 459-465, 1992.

[26] Resende M. G. C., Pitsoulis L. S., and Pardalos
P. M., “Approximate Solution of Weighted
MAX-SAT Problems Using GRASP,” DIMACS
Series on Discrete Mathematics and Theoretical

Solving the Maximum Satisfiability Problem Using an Evolutionary Local Search Algorithm 161

Computer Science, American Mathematical
Society, vol. 35, pp. 393-405, 1997.

[27] Selman B. and Kautz H. A., “An Empirical Study
of Greedy Local Search for Satisfiability
Testing,” in Proceedings of the 11th National
Conference on Artificial Intelligence, pp. 46-51,
1993.

[28] Selman B. and Kautz H. A., “Domain
Independent Extensions to GSAT: Solving Large
Structured Satisfiability Problems,” in
Proceedings of the IJCAI-93, pp. 290-295, 1993.

[29] Selman B., Kautz H. A., and Cohen B., “Noise
Strategies for Improving Local Search,” in
Proceedings of the 12th National Conference on
Artificial Intelligence, pp. 337-343, 1994.

[30] Selman B., Levesque H., and Mitchell D., “A
New Method for Solving Hard Satisfiability
Problems,” in Proceedings of the 10th National
Conference on Artificial Intelligence, pp. 440-
446, 1992.

[31] Shang Y. and Wah B. W., “A Discrete
Lagrangian-Based Global-Search Method for
Solving Satisfiability Problems,” Journal of
Global Optimization, vol. 12, pp. 61-99, 1998.

[32] Spears W. M., “Simulated Annealing for Hard
Satisfiability Problems,” in Johnson D. S. and
Trick M. A. (Eds), DIMACS Series in Discrete
Mathematics and Theoretical Computer Science,
American Mathematical Society, vol. 26, pp.
553-558, 1996.

[33] Vieira M. S., “Are Avalanches in Sandpiles a
Chaotic Phenomenon?,” Research Report, 2004.

[34] Yannakakis M., “On the Approximation of
Maximum Satisfiability,” Journal of Algorithms,
vol. 17, pp. 475-502, 1994.

Mohamed El Bachir Menai is
currently a researcher at the AI
Laboratory of the University of
Paris 8, France. From 1988 to 2003,
he was a researcher and an assistant
professor at the Computer Science
Department of the University of

Tebessa. He received his BSc in computing systems
from the University of Annaba in 1994. His main
interests are in the areas of problem complexity,
heuristic search, evolutionary computation, and
quantum computing.

Mohamed Batouche received his
MSc and PhD degrees in computer
science from the Institut National
Polytechnique de Lorraine (INPL),
France, in 1989 and 1993,
respectively. Currently, he is a full-
time professor at the University

Mentouri of Constantine, Algeria. His research areas
include artificial intelligence and pattern recognition.

