
168 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

Rules for Transforming Order Dependent
Transaction into Order Independent Transaction*

Hamidah Ibrahim
Department of Computer Science, Universiti Putra Malaysia, Malaysia

Abstract: A transaction is a collection of operations that performs a single logical function in a database application. Each
transaction is a unit of both atomicity and consistency. Thus, transactions are required not to violate any database consistency
constraints. In most cases, the update operations in a transaction are executed sequentially. The effect of a single operation in
a transaction potentially may be changed by another operation in the same transaction. This implies that the sequential
execution sometimes does some redundant work. A transaction with a set of update operations is order dependent if and only if
the execution of the transaction following the serialibility order as in the transaction produce an output which will be different
from the output produced by interchanging the operations in the transaction. Otherwise, the transaction is order independent
[8]. In this paper, we present rules that can be applied to generate order independent transaction given an order dependent
transaction. An order independent transaction has an important advantage of its update statements being executed in parallel
without considering their relative execution orders. With an order independent transaction, we can consider its single updates
in an arbitrary order. Furthermore, executing transaction in parallel can reduce the execution time.

Keywords: Transaction, parallel processing, transaction decomposition, subtransaction, update operations.

Received March 2, 2004; accepted June 29, 2004

1. Introduction

Parallel database systems have evolved to cope with
the demands forever increasing data storage capacity
and data processing performance. Whilst the
quantitative requirements of applications are being met
by a range of commercial machines and research
prototypes, many open issues remain regarding the
implementation of efficient mechanisms to help to
ensure the quality of data in such systems.

A transaction is a logical unit of work on the
database. It may be an entire program, a part of a
program or a single command, and it may involve any
number of operations on the database. A transaction
should always transform the database from one
consistent state to another, although we accept that
consistency may be violated while the transaction is in
progress [3, 4].

[11] has identified three types of fault commonly
found in transactions. These faults are:

1. Inefficient: Transactions that contain either
redundant components which incur unnecessary
execution costs, or construct which can be replaced
by others which are semantically equivalent but
cheaper.

2. Unsafe: Transactions do not preserve the
consistency of the database.

3. Unreliable: Transactions may behave in such a way

*
This work was supported by Ministry of Science, Technology and

Innovation (MOSTI) under grant number 04-02-04-0797 EA001.

that their results are either not what the designer has
in mind or do not conform to the real world events
modeled by the transactions.

Several existing techniques can be applied to overcome
the various types of fault as mentioned above. These
include transaction optimisation techniques based on
high level syntactic or semantic information which can
be used to enhance a transaction’s efficiency, logic-
based techniques for improving integrity checking can
be used to reduce both the cost of integrity checking
and the complexity of transaction safety verification,
techniques for mechanical proof of transaction safety
can be used to verify transaction safety automatically,
and feedback generated concerning unsafe transactions
and changes in the cardinality of the updated relations
can be used to help transaction designers amend unsafe
transactions and detect unintended results [1, 11].

One particular problem in many advanced
applications is the need to support long-lasting
transactions. The length of duration of a long-lasting
transaction may cause serious performance problems if
it is allowed to lock resources until it commits. This
may either force other transactions to wait for
resources for an unacceptable long time, or it may
increase the likelihood of transaction abort. Aborting a
long-lasting transaction may have a negative effect on
both response time and throughput. If the long
transaction has a flat structure, a failure will cause the
whole transaction to be undone and possibly
reexecuted. This is a very expensive recovery strategy,
especially if the failure occurred after executing most

Rules for Transforming Order Dependent Transaction into Order Independent Transaction 169

of the transaction. Decomposing the transaction into a
number of subtransactions is one way of dealing with
these problems [7].

Although many researchers have investigated the
process of decomposing transactions into several
subtransactions to increase the performance of the
system, but the focus of the research is typically on
implementing a decomposition supplied by the
database application developer, without really focusing
on the decomposition process itself. Examples are [2,
6, 9]. While [8, 10] concentrate on techniques to
decompose a transaction into several subtransactions.

[6] has proposed a technique to map an object
model to a commercial relational database system
using replication and view materialisation and argued
that update operations become more complex due to
the added redundancy in the mapping of the large
classification structures. In order to speed them up,
they exploit intra-transaction parallelism by breaking
the updates into shorter relational operations. These are
executed as ordinary independent parallel transactions
on the relational storage server.

[9] has proposed an algorithm which is capable of
generating the finest chopping of a set of transactions
but his algorithm rely on the following assumptions:

1. A user has access only to user-level tools.
2. A user knows the set of transactions that may run

during certain interval.
[2] presents an approach to improve database
performance by combining parallelism of multiple
independent transactions and parallelism of multiple
subtransactions within a transaction without really
focusing on the decomposition process.

[10] introduced the notion of semantic histories
which do not only list the sequence of steps forming
the history, but also convey information regarding the
state of the database before and after execution of each
step in the history. They have identified several
properties which semantic histories must satisfy to
show that a particular decomposition correctly models
the original collection of transaction. [10] also argued
that the interleaving of the steps of a transaction must
be constrained so as to avoid inconsistencies and
proposed additional preconditions on the auxiliary
variables. Although auxiliary variables facilitate
analysis, it is expensive to implement them. Also
performing additional precondition checks involves
extra run time overhead. To avoid implementing
auxiliary variables and performing additional
precondition checks, they introduce the concept of
successors sets, but the successor set descriptions are
obtained by examining the preconditions with auxiliary
variables.

[8] has proposed a technique for partitioning
transaction to reduce the overhead of checking
integrity constraints. He has proved that every order
dependent transaction can be transformed into

equivalent order independent transactions. But in his
work he only shows the transformation rules for update
operations with the following sequence:

1. Insert followed by delete.
2. Delete followed by insert.
3. Insert followed by change.
Also, his technique is not capable of handling more
complex transaction with update operations such as the
if construct.

In our research we focus on what constitutes a
desirable decomposition and how the developer should
obtain such a decomposition. We propose a technique
that can be applied to generate subtransactions which
will reduce the execution time by exploiting the
possibility of executing the transaction in parallel. Our
technique differs from the other techniques proposed
by other researchers since:

1. The number of subtransactions and the set of update
operations derived by our technique are not fix; it
depends on several factors such as the number of
independent operations, the complexity of
independent operations and the location of the
relations (for case of distributed database);

2. It does not require additional precondition checks as
in [10].

3. Most of the previous works only consider
transaction with simple update operations such as
[8, 10].

4. Most of the previous works assume that the
transaction is efficient without exploring the
possibility that an optimized transaction can be
obtained by eliminating any redundant or subsumed
operation that may occur in the transaction.

In this paper, we focus on deriving efficient
transactions, i. e., transactions that are free from
containing redundant components which can include
unnecessary execution cost. This is achieved by
applying a set of rules to a given order dependent
transaction. As a result an equivalent order
independent transaction is generated. Here, equivalent
means that the state produce by executing the initial
transaction (order dependent transaction) is the same as
executing its order independent transaction. An order
independent transaction has an important advantage of
its update statements being executed in parallel without
considering their relative execution orders as stated in
[8].

This paper is organized as follows. In section 2, the
basic definitions, notations and examples which are
used in the rest of the paper are set out. In section 3,
we present the rules that can be applied to transform
order dependent transaction into order independent
transaction. Conclusions are presented in section 4.

170 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

2. Preliminaries

Our approach has been developed in the context of
relational databases which can be regarded as
consisting of two distinct parts, namely: An intensional
part and an extensional part. A database is described by
a database schema, D, which consists of a finite set of
relation schemas, <R1, R2, …, Rm>. A relation schema
is denoted by R (A1, A2, …, An) where R is the name of
the relation (predicate) with n-arity and Ai’s are the
attributes of R. A database instance is a collection of
instances for its relation schemas.

As the real world enterprise changes, the database
state, which corresponds to a state of the real world
enterprise, must also undergo transitions to reflect
those changes. The transition of the database state is
carried out by database transactions.

A database transaction is one or a sequence of
update operations that constitutes some well-defined
activity of the enterprise of which the database is
model. It is a logical unit of work in the sense that its
effect on the database is either committed (i. e., the
effects are made permanent) when it is processed
successfully in its entirety, or else undone (as if the
transaction never executed at all). In our work, only
single and conditional operations are considered.

Single operations include insertion, deletion and
modification. These operations have the following
form:

 ins (R (c1, c2, …, cn)): Inserting a tuple into relation
R with values c1, c2, …, cn.

 del (R (x, …)): Deleting a tuple from relation R with
primary key value x.

 del (R (…, <delexp>, …)): Deleting a set of tuples
from relation R which satisfy delexp.

 mod (R (x, c1, …, cn): R (x, cn1, …, cnn))
1: Updating

a tuple of relation R whose primary key value is x.
 mod (R (…, <modexp>, …): R (…, cn, cn+1, …)):

Updating a set of tuples of relation R which satisfy
modexp.

where ci represents any constant, x is the key of
relation R, and both delexp and modexp are constants
or simple expressions.

Conditional operation (control structure) has the
following format: If C then O1 else O2 where C is a
database state referring to relations and O1 and O2 are
update operations. The operational interpretation of the
above construct is: If C is true then execute O1 else
execute O2.

The structure of database transactions adopted by us
is composed of two sections, namely: The parameter
section and the transaction body as shown below:

Transaction Transaction_Name (Parameter)
 Begin

1 Modify operation is considered as a sequence of delete followed by an
insert operation as in [5].

 Transaction Body;
 End

Parameter contains parameters used by the operations
in a transaction while the transaction body consists of
one or more of the update mechanisms as discussed
above.

Throughout this paper, the same example Job
Agency database schema is used, as given in Figure 1.
The example is taken from [11].

Person (pid, pname, placed);
Company (cid, cname, totsal);
Job (jid, jdescr);
Placement (pid, cid, jid, sal);
Application (pid, jid);
Offering (cid, jid, no_of_places);

Figure 1. The job agency schema.

3. Order Dependent and Order
Independent Transactions

In most cases, the update operations in a transaction
are executed sequentially. The effect of a single
operation in a transaction potentially may be changed
by another operation in the same transaction. This
implies that the sequential execution sometimes does
some redundant work [8]. For example the transaction
T1 below is equivalent to T2 since they produce the
same database states. This occurs when there are at
least two single updates which conflict with each other.
Here two update operations are said to conflict if they
operate on the same data item.

Transaction T1 (h, c, j, s, n, t1, t2)
 Begin

 ins (Placement (h, c, j, s));
 mod (Company (c, n, t1): Company (c, n, t2));
 del (Placement (h, c, j, s));
 End

Transaction T2 (c, n, t1, t2)
 Begin

 mod (Company (c, n, t1): Company (c, n, t2));
 End

As mentioned in section 1, [8] has proposed a
technique to decompose a transaction into several
subtransactions but his technique is limited due to the
reasons as described in section 1. We have improved
his technique and this is discussed below.

To exploit parallelism within transaction operations,
the operations of the transaction need to be
syntactically and semantically analysed to identify the
relationship among them. We have identified four
types of relationship between operations of a
transaction based on the information presented in the
operations, i. e., the types of update operations, the
relations involved and the values specified in the
operations. These relationships are presented below:

Rules for Transforming Order Dependent Transaction into Order Independent Transaction 171

A transaction T with n operations op1R1 (A1), op2R2
(A2), …, opnRn (An) is said to be redundant if there
exists at least an operation that occurs more than once
in the same transaction. This operation should be
eliminated if there are no other operations which
change the state of the relation that is involved in the
redundant operation.

Definition 1: An operation opiRi (Ai) is said to be
redundant if there exists at least an operation opjRj (Aj)
where opi = opj  {ins, del, mod}, Ri = Rj and Ai = Aj.
If opi = opj, Ri = Rj and Ai = Aj, then the transaction T
contains duplicate operations and therefore redundancy
occurs.

Transaction T3 (h, c, j, s)
Begin

del (Placement (h, c, j, s));
 mod (Placement (h, c, j, s):
 Placement (h, c, j, s + 100));
 End

The above transaction T3 contains redundant operation
and since there are no other operations between the
redundant operations which change the state of
Placement, therefore the second operation mod
(Placement (h, c, j, s): Placement (h, c, j, s + 100)) can
be removed from the transaction. This is because the
modify operation is no longer required as the tuple to
be modified does not exist in the relation Placement.
Table 1 represents some of the redundancy rules that
can be applied, namely: Rules 7, 8, 9, 10, 11, and 12.

A transaction T with n operations op1R1 (A1), op2R2
(A2), …, opnRn (An) is said to be subsumed if there
exists at least an operation whose effect is the same as
performing another operation in the same transaction.
Similar to redundant operation, this operation should
be eliminated if there are no other operations which
change the state of the relation that is involved in the
operation.

Definition 2: An operation opiRi (Ai) is said to be
subsumed when there exists at least an operation opjRj
(Aj) where opi = opj  {ins, del, mod}, Ri = Rj and Ai
 Aj. If opi = opj, Ri = Rj and Ai  Aj, this indicates
that performing opjRj (Aj) will also perform opiRi (Ai).

Transaction T4 (j)
Begin

 mod (Placement (_, _, _, 1000):
 Placement (_, _, _, 2000));
 mod (Placement (_, _, j, 1000):
 Placement (_, _, _, 2000));

End

The above mod (Placement (_, _, j, 1000):
Placement (_, _, _, 2000)) operation is subsumed by
mod (Placement (_, _, _, 1000): Placement (_, _, _,
2000)) since performing mod (Placement (_, _, _,
1000): Placement (_, _, _, 2000)) will also modify the

tuple <_, _, j, 1000>. Therefore mod (Placement (_, _,
j, 1000): Placement (_, _, _, 2000)) should be removed
from the transaction.

Given a transaction T with update operations op1R1
(A1), op2R2 (A2), …, opnRn (An), T is order dependent
if and only if the execution of the transaction following
the serialibility order as in the transaction produce an
output which will be different than the output produced
by interchanging the operations in the transaction. A
transaction T is order dependent if and only if T
contains at least two conflicting update operations.
Otherwise T is order independent.

Definition 3: An operation opiRi (Ai) is said to be
dependent on operation opjRj (Aj) if and only if opi 
opj, Ri = Rj and satisfy the conditions in Table 1.

Definition 4: An operation opiRi (Ai) is said to be
independent if and only if for all operations in
transaction T, opjRj (Aj) where j = 1, …, n and j  i,

1. opi  opj and Ri  Rj or
2. opi = opj and Ri  Rj or
3. opi = opj, Ri = Rj and Ai  Aj
As dependent operations occur only when the relations
in both operations are the same therefore 1 and 2 above
are proved. Also, dependent operations require that
both type of operations are different, therefore 3 is also
proved.

Transaction T5 (h, c, j, s)
 Begin

 ins (Placement (h, c, j, s));
 del (Placement (h, c, j, s));

 End

Transaction T6 (hiree, h, c, j, s)
 Begin
 ins (Placement (h, c, j, s));
 del (Application (hiree, _));
 End

Transaction T5 is order dependent while T6 is order
independent. An order independent transaction has an
important advantage of its update statements being
executed in parallel without considering their relative
execution orders. With an order independent
transaction we can consider its single updates in an
arbitrary order. As proved in [8], every order
dependent transaction can be transformed into
equivalent order independent transaction. But this is
not true as discussed at the end of this section.

In the following, we present the rules to convert
dependent operations (conflicting updates) into
equivalent independent operations (non-conflicting
updates). Here, we use the symbol +R to indicate the
new state of the database after inserting a tuple (set of
tuples) into relation R and the symbol –R to indicate
the new state of the database after deleting a tuple (set
of tuples) from relation R. Therefore, +R (c1, c2, …, cn)

172 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

(-R (c1, c2,…, cn), respectively) means a new database
state after inserting (deleting, respectively) the tuple
<c1, c2, …, cn> into (from) relation R. R (…, ci,…) (R
(…, cin, …), respectively) is a set of tuples satisfying a
condition(s) over domain ci (domain cin, respectively)
and <c1, c2,…, cn>  R (…, ci, …) (<cn1, …, cnn>  R
(…, cin, …), respectively). With this, the following
assumptions are true:

 Assumption 1: +R (c1, c2, …, cn) +R (c1, c2, …, cn) is
not possible since once a tuple <c1, c2, …, cn> has
been inserted into R, the same tuple <c1, c2, …, cn>
cannot be inserted into R at a later time as relational
model does not allow duplicate copies.

 Assumption 2: -R (c1, c2, …, cn) -R (c1, c2, …, cn) 
-R(c1, c2, …, cn).

 Assumption 3: -R (c1, c2,…, cn) [-R (c1, c2, …, cn)
+R (…)]  -R (c1, c2, …, cn). [-R (c1, c2, …, cn) +R
(…)] refers to a modify operation. This is true since
when the tuple <c1, c2, …, cn> is deleted, the modify
operation is no longer necessary since the tuple to
be modified does not exist anymore.

 Assumption 4: +R (c1, c2, …, cn) -R (c1, c2, …, cn) 
0 which means that the database is in its initial state,
i. e., no changes has occur. This is true since
inserting a tuple <c1, c2, …, cn> and later on deleting
the same tuple <c1, c2, …, cn> from the same
relation R, will bring back the new state of the
database to its initial state.

Rule 1: dependent operations:
ins (R (c1, c2, …, cn)); del (R (c1, c2, …, cn));
equivalent independent operation: nothing

Proof: +R (c1, c2, …, cn) -R (c1, c2, …, cn)  0

Rule 2: dependent operations:
ins (R (c1, c2, …, cn)); del (R (…, ci, …));
equivalent independent operation:
del (R (X  c1, …, ci, …))

Proof: +R (c1, c2, …, cn) -R (…, ci, …)
= +R (c1, c2, …, cn) -R (c1, c2, …, cn)
-R (X  c1, …, ci, …)
= -R (X  c1, …, ci, …)

Rule 3: dependent operations:
del (R (c1, c2, …, cn)); ins (R (c1, c2, …, cn));
equivalent independent operation: nothing

Proof: -R (c1, c2, …, cn) +R (c1, c2, …, cn)  0

Rule 4: dependent operations:
del (R (…, ci, …)); ins (R (c1, c2, …, cn));
equivalent independent operation:
del (R (X  c1, …, ci, …))

Proof: -R (…, ci, …) +R (c1, c2, …, cn)
= -R (c1, c2, …, cn) -R (X  c1, …, ci, …) +R

(c1, c2, …, cn)
= -R (X  c1, …, ci, …)

Rule 5: dependent operations:
ins (R (c1, c2, …, cn));

mod (R (c1, c2, …, cn): R (cn1, …, cnn));
equivalent independent operation:
ins (R (cn1,…, cnn))

Proof: +R (c1, c2, …, cn) -R (c1, c2, …, cn) +R (cn1, …,
cnn)

 = +R (cn1, …, cnn)

Rule 6: dependent operations:
 mod (R (c1, c2, …, cn): R (cn1, …, cnn));
 ins (R (c1, c2, …,cn));
 equivalent independent operation:
 ins (R (cn1, …, cnn))
Proof: -R (c1, c2, …, cn) +R (cn1, …, cnn) +R (c1, c2,

…, cn)
= +R (cn1, …, cnn)

Rule 7: dependent operations:
 del (R (c1, c2, …, cn)); mod (R (c1, c2, …, cn): R

(cn1, …, cnn));
equivalent independent operation:

 del (R (c1, c2, …, cn))
Proof: -R (c1, c2,…, cn) [-R (c1, c2,…, cn) +R (cn1,…,

cnn)]
= -R (c1, c2, …, cn) (refer to Assumption 3)

Rule 8: dependent operations:
 del (R (…, ci, …)); mod (R(…, ci, …): R (…,

cin, …));
equivalent independent operation:

 del (R (…, ci, …))
Proof: -R (…, ci,…) [-R (…, ci, …) +R (…, cin, …)]

= -R (…, ci, …) (refer to Assumption 3)

Rule 9: dependent operations:
 mod (R (c1, c2, …, cn): R (cn1, …, cnn));
 del (R (c1, c2,…, cn));

equivalent independent operation:
 mod (R (c1, c2, …, cn): R (cn1,…, cnn))
Proof: -R (c1, c2, …, cn) +R (cn1, …, cnn) -R (c1, c2, …,

cn)
= -R (c1, c2, …, cn) +R (cn1, …, cnn)

Rule 10: dependent operations:
 mod (R (…, ci, …): R (…, cin, …));
 del (R (…, ci, …));

equivalent independent operation:
mod (R (…, ci, …): R (…, cin, …))

Proof: -R(…, ci, …) +R (…, cin, …) -R (…, ci, …)
= -R (…, ci, …) +R (…, cin, …)

Rule 11: dependent operations:
 ins (R (c1, c2, …, cn));
 mod (R (cn1, …, cnn) :R (c1, c2, …, cn));

equivalent independent operation:
 not possible
Proof: +R (c1, c2, …, cn) -R (cn1, …, cnn) +R (c1, c2,

…, cn)
= +R (c1, c2, …, cn) +R (c1, c2,…, cn) -R (cn1,

…, cnn)
= not possible (refer to Assumption 1)

Rules for Transforming Order Dependent Transaction into Order Independent Transaction 173

Rule 12: dependent operations:
 mod (R (cn1, …, cnn): R(c1, c2, …, cn));
 ins (R (c1, c2, …, cn));

equivalent independent operation:
not possible

Proof: -R (cn1, …, cnn) +R (c1, c2, …, cn) +R (c1, c2,…,
cn)

 = not possible (refer to Assumption 1)

Rule 13: dependent operations:
 del (R (c1, c2, …, cn));

 mod (R (cn1, …, cnn): R (c1, c2, …, cn));
 equivalent independent operation:
 del (R (cn1, …, cnn))

Proof: -R (c1, c2, …, cn) -R (cn1, …, cnn) +R (c1, c2, …,
cn)

 = -R (c1, c2,…, cn) +R (c1, c2, …, cn) -R (cn1,
 …, cnn) = -R (cn1, …, cnn)

Rule 14: dependent operations:
 mod (R (cn1, …, cnn): R (c1, c2, …, cn));
 del (R (c1, c2, …, cn));

 equivalent independent operation:
 del (R (cn1, …, cnn))
Proof: -R (cn1, …, cnn) +R (c1, c2,…, cn) -R (c1, c2, …,

cn)
= -R (cn1, …, cnn)

Rule 15: dependent operations:
 mod (R (…, cin, …): R (…, ci, …));

 del (R (…, ci, …));
 equivalent independent operation:
 del (R (…, cin, …)); del (R (…, ci, …))
Proof: [-R (…, cin, …) +R (…, ci, …)] -R (…, ci, …)

= -R (…, cin, …) -R(…, ci, …)

Table 1 summarizes the rules that we have
presented above. In the following we will show
through examples how the rules that we have presented
can be applied to generate order independent
transaction given an order dependent transaction.

Transaction T7 (p, n)
Begin

 ins (Person (p, n, false));
 mod (Person (p, n, false): Person (p, n, true));
 End

Applying rule 5 will generate the following order
independent transaction, T7’.

Transaction T7’ (p, n)
Begin

 ins (Person (p, n, true));
 End

Transaction T8 (t)
Begin

 mod (Company (_, _, t < 0): Company (_, _, t
= 0));

 del (Company (_, _, t < 0));
 End

Applying rule 10 will generate the following order
independent transaction, T8’.

Transaction T8’(t)
 Begin

mod (Company (_, _, t < 0): Company(_, _, t
= 0));

 End

The above del (Company (_, _, t < 0)) operation is
removed from transaction T8 since there is no tuple in
the relation Company that will satisfy the condition t <
0 as these tuples have been modified by the operation
mod (Company (_, _, t < 0): Company (_, _, t = 0)).

Transaction T9 (t)
 Begin

mod (Company (_, _, t < 0): Company (_, _, t
= 0));

 del (Company(_, _, t = 0));
 End

Applying rule 15 will generate the following order
independent transaction, T9’.

Transaction T9’(t)
 Begin
 del (Company (_, _, t < 0));
 del (Company (_, _, t = 0));
 End

Transaction Company_Status (c, n, totsal)

Begin
 If Company (c, n, totsal < 0) then

 del (Company (c, _, _));

 If Placement (_, c, _, _) and not Company (c,
_, _)

then ins (Company (c, _, _));
 End

Here, a truth table as shown in Table 2 is derived
based on the truth values of the conditions specified in
the if construct. For each possibility, an equivalent
independent operation is generated.

Table 1 presents the conflicting updates (dependent
operations) in which equivalent independent operations
can be derived, it is equivalent to not performing at all
the conflicting updates (stated by nothing) or it is not
possible to perform the updates as this will violate the
assumption(s) given above. These rules are based on
the term conflicting updates which means that two
update operations operate on the same data item. Other
sequences of update operations which are syntactically
correct but are not included in the table since:

1. Semantically they do not make sense.
2. No single equivalent independent operation can be

derived as shown by rule 16 and example T10.

174 The International Arab Journal of Information Technology, Vol. 2, No. 2, April 2005

3. No equivalent independent operation can be derived
as shown by rule 17 and example T11.

Table 1. Converting conflicting updates to non-conflicting updates.

Rule Conflicting Updates
Equivalent Non-Conflicting

Updates

1
ins (R (c1, c2, …, cn));
del (R (c1, c2, …, cn));

* nothing

2
ins (R (c1, c2, …, cn));
del (R (…, ci, …));

del (R (x, …, ci, …))
 where x  c1

3
del (R (c1, c2, …, cn));*

ins (R (c1, c2, …, cn));
nothing

4
del (R (…, ci, …));
ins (R (c1, c2, …, cn));

del (R (x, …, ci, …))
where x  c1

5
ins (R (c1, c2, …, cn));
mod (R (c1, c2, …, cn): R (cn1, …,

cnn));
*

ins (R (cn1, …, cnn))

6
mod (R (c1, c2, …, cn): R (cn1, …,

cnn));
*

ins (R (c1, c2, …, cn));
ins (R (cn1, …, cnn))

7
del (R (c1, c2, …, cn));

*

mod (R (c1, c2,…, cn): R (cn1, …,
cnn));

*
del (R (c1, c2, …, cn))

8
del (R (…,ci,…));
mod (R (…, ci, …): R (…, cin, …));

del (R (…, ci, …))

9
mod (R (c1, c2, …, cn): R (cn1, …,

cnn));*

del (R (c1, c2, …, cn));

mod (R (c1, c2, …, cn): R (cn1,
…, cnn))

10
mod (R (…, ci, …): R (…, cin, …));
del (R (…, ci, …));

mod (R (…, ci, …): R (…, cin,
…))

11
ins (R (c1, c2, …, cn));
mod (R (cn1, …, cnn): R (c1, c2, …,

cn));
*

not possible

12
mod (R (cn1, …, cnn): R (c1, c2,…,

cn));
*

ins (R (c1, c2, …, cn));
not possible

13
del (R (c1, c2, …, cn));

*

mod (R (cn1, …, cnn): R (c1, c2, …,
cn));

*
del (R (cn1, …, cnn))

14
mod (R (cn1, …, cnn): R (c1, c2, …,

 cn));
*

del (R (c1, c2, …, cn));*
del (R (cn1, …, cnn))

15
mod (R (…, cin, …): R (…, ci, …));
del (R (…, ci, …));

del (R (…, cin, …))
del (R (…, ci, …))

Table 2. Truth table.

Condition 1:
Company

(c, n, totsal < 0)

Condition 2:
Placement (_, c, _, _)

and
not Company (c, _, _)

Operations
Rule Applied:
Independent
Operations

True True
del (Company
 (c, _ , _))

ins (Company
 (c, _, _))

Rule 3: nothing

True False
del (Company

 (c, _, _))
del (Company

 (c, _, _))

False True
ins (Company

 (c, _, _))
Ins (Company

 (c, _, _))

False False nothing nothing

Note that if condition 1 is true then definitely
condition 2 is false. Identifying contradiction between
conditions in the if constructs is not the focus of this
paper.

* Equivalent non-conflicting updates will be derived if the operations
specify only the value of the primary key. ci  {c2, …, cn}, cin  {cn2, …,
cnn}, c1 and cn1 are the primary key values.

Rule 16: dependent operations:
 ins (R (c1, c2, …, cn));

mod (R (…, ci, …): R (…, cin, …));
equivalent independent operation:
ins (R (c1, …, cin,…));
mod (R (…, ci, …): R (…, cin, …));

Proof: +R (c1, c2, …, cn) -R (…, ci, …) +R (…, cin,
…)
= +R (c1, c2, …, cn) -R (c1, c2, …, cn)
-R (X  c1, c2, …, cn) +R (c1, …, cin, …)
+R (X  c1, …, cin,…)
= -R (X  c1, c2, …, cn) +R (c1, …, cin, …)
+R (X  c1, …, cin, …)

Consider the following example,

Transaction T10 (p, c, j)
Begin

 ins (Placement (p, c, j, 1000));
 mod (Placement (_, _, _,1000):

 Placement (_, _, _, 2000));
 End

The above transaction T10 is equivalent to the
following transaction T10’ which consists of
independent operations.

Transaction T10’(p, c, j)
 Begin

 ins (Placement (p, c, j, 2000));
 mod (Placement (_, _, _, 1000):
 Placement (_, _, _, 2000));

End

Rule 17: dependent operations:
 del (R (…, ci, …));
 mod (R (…, cin, …): R (…, ci, …));

Consider the following example,

Transaction T11 (t)
 Begin
 del (Company (_, _, t < 0));

mod (Company(_, _, t = 0): Company(_, _, t
< 0));

End

No equivalent order independent transaction can be
derived for the above transaction T11.

4. Conclusion

Designing efficient, safe and reliable transactions is a
difficult task. This paper presents rules that can be
applied to transform a given order dependent
transaction into order independent transaction. The
rules can improve the transaction by indirectly
detecting redundant and subsumed operations which
are then removed from the transaction. Since

Rules for Transforming Order Dependent Transaction into Order Independent Transaction 175

independent operations in a transaction can be
executed in arbitrary order, this implies that the
transaction’s update statements can be executed in
parallel without considering their relative execution
orders. This can reduce the execution time.

References

[1] Chakravarthy U. S., Grant J., and Minker J.,
“Logic-Based Approach to Semantic Query
Optimization,” ACM TODS, vol. 15, no. 2, pp.
162-207, 1990.

[2] Christof H. and Gerhard W., “Inter- and Intra-
Transaction Parallelism in Database Systems,” in
Proceedings of the 14th Speedup Workshop on
Parallel and Vector Computing, Zurich,
Switzerland, 1993.

[3] Connolly T. M. and Begg C. E., Database
Systems: A Practical Approach to Design,
Implementation and Management, Addison-
Wesley, 2002.

[4] Ibrahim, H., “Extending Transactions with
Integrity Rules for Maintaining Database
Integrity,” in Proceedings of the International
Conference on Information and Knowledge
Engineering (IKE’02), in Arabnia H. R., Mun Y.,
and Prasad B. (Eds), Computer Science
Research, Education and Application Technical
(CSREA) Press, Las Vegas, USA, pp. 341-347,
2002.

[5] McCaroll N. F., “Semantic Integrity Enforcement
in Parallel Database Machines,” PhD Thesis,
University of Sheffield, Sheffield, UK, 1995

[6] Michael R., Moira C. N., and Hans-Jorg S.,
“Intra-Transaction Parallelism in the Mapping of
an Object Model to a Relational Multi-Processor
System,” in Proceedings of the 22nd Very Large
Databases (VLDB) Conference, Bombay, India,
pp. 1-12, 1996.

[7] ODS Group, “A Reader in Transaction
Processing,” http://www.cs.uit.no/forskning/
ODS/ODSProjects/adtrans/ReaderTrans.html.

[8] Sang H. L., Lawrence J. H., Myoung H. K., and
Yoon-Joon L., “Enforcement of Integrity
Constraints against Transactions with Transition
Axioms,” in Proceedings of the 16th. Annual
International Computer Software and
Applications, pp. 162-167, 1992.

[9] Shasha D., Llirbat F., Simon E., and Valduriez
P., “Transaction Chopping: Algorithms and
Performances Studies,” Journal of ACM
Transaction Database Systems, vol. 20, no. 3, pp.
325-363, 1995.

[10] Sushil J., Indrakshi R., and Paul A.,
“Implementing Semantic-Based Decomposition
of Transactions,” in Proceedings of CAiSE'1997,
pp. 75-88, 1997.

[11] Wang X. Y., “The Development of a Knowledge-
Based Transaction Design Assistant,” PhD
Thesis, University of Wales College of Cardiff,
Cardiff, UK, 1992.

Hamidah Ibrahim is currently an
associate professor at the Faculty of
Computer Science and Information
Technology, Universiti Putra
Malaysia. She obtained her PhD in
computer science from the
University of Wales Cardiff, UK in

1998. Her current research interests include distributed
databases, transaction processing, and knowledge-
based systems.

