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Abstract: A transaction is a collection of operations that performs a single logical function in a database application. Each 
transaction is a unit of both atomicity and consistency. Thus, transactions are required not to violate any database consistency 
constraints. In most cases, the update operations in a transaction are executed sequentially. The effect of a single operation in 
a transaction potentially may be changed by another operation in the same transaction. This implies that the sequential 
execution sometimes does some redundant work. A transaction with a set of update operations is order dependent if and only if 
the execution of the transaction following the serialibility order as in the transaction produce an output which will be different 
from the output produced by interchanging the operations in the transaction. Otherwise, the transaction is order independent 
[8]. In this paper, we present rules that can be applied to generate order independent transaction given an order dependent 
transaction. An order independent transaction has an important advantage of its update statements being executed in parallel 
without considering their relative execution orders. With an order independent transaction, we can consider its single updates 
in an arbitrary order. Furthermore, executing transaction in parallel can reduce the execution time.
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1. Introduction

Parallel database systems have evolved to cope with 
the demands forever increasing data storage capacity 
and data processing performance. Whilst the 
quantitative requirements of applications are being met 
by a range of commercial machines and research 
prototypes, many open issues remain regarding the 
implementation of efficient mechanisms to help to 
ensure the quality of data in such systems.

A transaction is a logical unit of work on the 
database. It may be an entire program, a part of a 
program or a single command, and it may involve any 
number of operations on the database. A transaction 
should always transform the database from one 
consistent state to another, although we accept that 
consistency may be violated while the transaction is in 
progress [3, 4].

[11] has identified three types of fault commonly 
found in transactions. These faults are:

1. Inefficient: Transactions that contain either 
redundant components which incur unnecessary 
execution costs, or construct which can be replaced 
by others which are semantically equivalent but 
cheaper.

2. Unsafe: Transactions do not preserve the 
consistency of the database.

3. Unreliable: Transactions may behave in such a way 
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that their results are either not what the designer has
in mind or do not conform to the real world events 
modeled by the transactions.

Several existing techniques can be applied to overcome 
the various types of fault as mentioned above. These 
include transaction optimisation techniques based on 
high level syntactic or semantic information which can 
be used to enhance a transaction’s efficiency, logic-
based techniques for improving integrity checking can 
be used to reduce both the cost of integrity checking 
and the complexity of transaction safety verification, 
techniques for mechanical proof of transaction safety 
can be used to verify transaction safety automatically, 
and feedback generated concerning unsafe transactions 
and changes in the cardinality of the updated relations 
can be used to help transaction designers amend unsafe 
transactions and detect unintended results [1, 11].

One particular problem in many advanced 
applications is the need to support long-lasting 
transactions. The length of duration of a long-lasting 
transaction may cause serious performance problems if 
it is allowed to lock resources until it commits. This 
may either force other transactions to wait for 
resources for an unacceptable long time, or it may 
increase the likelihood of transaction abort. Aborting a 
long-lasting transaction may have a negative effect on 
both response time and throughput. If the long 
transaction has a flat structure, a failure will cause the 
whole transaction to be undone and possibly 
reexecuted. This is a very expensive recovery strategy, 
especially if the failure occurred after executing most 
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of the transaction. Decomposing the transaction into a 
number of subtransactions is one way of dealing with 
these problems [7].

Although many researchers have investigated the 
process of decomposing transactions into several 
subtransactions to increase the performance of the 
system, but the focus of the research is typically on 
implementing a decomposition supplied by the 
database application developer, without really focusing 
on the decomposition process itself. Examples are [2, 
6, 9]. While [8, 10] concentrate on techniques to 
decompose a transaction into several subtransactions.

[6] has proposed a technique to map an object 
model to a commercial relational database system 
using replication and view materialisation and argued 
that update operations become more complex due to 
the added redundancy in the mapping of the large 
classification structures. In order to speed them up, 
they exploit intra-transaction parallelism by breaking 
the updates into shorter relational operations. These are 
executed as ordinary independent parallel transactions 
on the relational storage server.

[9] has proposed an algorithm which is capable of 
generating the finest chopping of a set of transactions 
but his algorithm rely on the following assumptions: 

1. A user has access only to user-level tools.
2. A user knows the set of transactions that may run 

during certain interval.
[2] presents an approach to improve database 
performance by combining parallelism of multiple 
independent transactions and parallelism of multiple 
subtransactions within a transaction without really 
focusing on the decomposition process.

[10] introduced the notion of semantic histories 
which do not only list the sequence of steps forming 
the history, but also convey information regarding the 
state of the database before and after execution of each 
step in the history. They have identified several 
properties which semantic histories must satisfy to 
show that a particular decomposition correctly models 
the original collection of transaction. [10] also argued 
that the interleaving of the steps of a transaction must 
be constrained so as to avoid inconsistencies and 
proposed additional preconditions on the auxiliary 
variables. Although auxiliary variables facilitate 
analysis, it is expensive to implement them. Also 
performing additional precondition checks involves 
extra run time overhead. To avoid implementing 
auxiliary variables and performing additional 
precondition checks, they introduce the concept of 
successors sets, but the successor set descriptions are 
obtained by examining the preconditions with auxiliary 
variables.

[8] has proposed a technique for partitioning 
transaction to reduce the overhead of checking 
integrity constraints. He has proved that every order 
dependent transaction can be transformed into 

equivalent order independent transactions. But in his 
work he only shows the transformation rules for update 
operations with the following sequence:

1. Insert followed by delete.
2. Delete followed by insert.
3. Insert followed by change.
Also, his technique is not capable of handling more 
complex transaction with update operations such as the 
if construct. 

In our research we focus on what constitutes a 
desirable decomposition and how the developer should 
obtain such a decomposition. We propose a technique 
that can be applied to generate subtransactions which 
will reduce the execution time by exploiting the 
possibility of executing the transaction in parallel. Our 
technique differs from the other techniques proposed 
by other researchers since:

1. The number of subtransactions and the set of update 
operations derived by our technique are not fix; it 
depends on several factors such as the number of 
independent operations, the complexity of 
independent operations and the location of the 
relations (for case of distributed database); 

2. It does not require additional precondition checks as 
in [10].

3. Most of the previous works only consider 
transaction with simple update operations such as 
[8, 10].

4. Most of the previous works assume that the 
transaction is efficient without exploring the 
possibility that an optimized transaction can be 
obtained by eliminating any redundant or subsumed 
operation that may occur in the transaction.

In this paper, we focus on deriving efficient 
transactions, i. e., transactions that are free from 
containing redundant components which can include
unnecessary execution cost. This is achieved by 
applying a set of rules to a given order dependent 
transaction. As a result an equivalent order 
independent transaction is generated. Here, equivalent 
means that the state produce by executing the initial 
transaction (order dependent transaction) is the same as 
executing its order independent transaction. An order 
independent transaction has an important advantage of 
its update statements being executed in parallel without 
considering their relative execution orders as stated in 
[8].

This paper is organized as follows. In section 2, the 
basic definitions, notations and examples which are 
used in the rest of the paper are set out. In section 3, 
we present the rules that can be applied to transform 
order dependent transaction into order independent 
transaction.  Conclusions are presented in section 4.
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2. Preliminaries

Our approach has been developed in the context of 
relational databases which can be regarded as 
consisting of two distinct parts, namely: An intensional 
part and an extensional part. A database is described by 
a database schema, D, which consists of a finite set of 
relation schemas, <R1, R2, …, Rm>. A relation schema 
is denoted by R (A1, A2, …, An) where R is the name of 
the relation (predicate) with n-arity and Ai’s are the 
attributes of R. A database instance is a collection of 
instances for its relation schemas. 

As the real world enterprise changes, the database 
state, which corresponds to a state of the real world 
enterprise, must also undergo transitions to reflect 
those changes. The transition of the database state is 
carried out by database transactions.

A database transaction is one or a sequence of 
update operations that constitutes some well-defined 
activity of the enterprise of which the database is 
model. It is a logical unit of work in the sense that its 
effect on the database is either committed (i. e., the 
effects are made permanent) when it is processed 
successfully in its entirety, or else undone (as if the 
transaction never executed at all). In our work, only 
single and conditional operations are considered. 

Single operations include insertion, deletion and 
modification. These operations have the following 
form: 

 ins (R (c1, c2, …, cn)): Inserting a tuple into relation 
R with values c1, c2, …, cn.

 del (R (x, …)): Deleting a tuple from relation R with 
primary key value x.

 del (R (…, <delexp>, …)): Deleting a set of tuples 
from relation R which satisfy delexp.

 mod (R (x, c1, …, cn): R (x, cn1, …, cnn))
1: Updating 

a tuple of relation R whose primary key value is x.
 mod (R (…, <modexp>, …): R (…, cn, cn+1, …)):

Updating a set of tuples of relation R which satisfy 
modexp.

where ci represents any constant, x is the key of 
relation R, and both delexp and modexp are constants 
or simple expressions.

Conditional operation (control structure) has the 
following format: If C then O1 else O2 where C is a 
database state referring to relations and O1 and O2 are 
update operations. The operational interpretation of the
above construct is: If C is true then execute O1 else 
execute O2.

The structure of database transactions adopted by us 
is composed of two sections, namely: The parameter 
section and the transaction body as shown below:

Transaction Transaction_Name (Parameter)
   Begin

1 Modify operation is considered as a sequence of delete followed by an 
insert operation as in [5].

              Transaction Body;
        End

Parameter contains parameters used by the operations 
in a transaction while the transaction body consists of 
one or more of the update mechanisms as discussed 
above.

Throughout this paper, the same example Job 
Agency database schema is used, as given in Figure 1. 
The example is taken from [11].

Person (pid, pname, placed);
Company (cid, cname, totsal);
Job (jid, jdescr);
Placement (pid, cid, jid, sal);
Application (pid, jid);
Offering (cid, jid, no_of_places);

Figure 1. The job agency schema.

3. Order Dependent and Order 
Independent Transactions

In most cases, the update operations in a transaction 
are executed sequentially. The effect of a single 
operation in a transaction potentially may be changed 
by another operation in the same transaction. This 
implies that the sequential execution sometimes does 
some redundant work [8]. For example the transaction 
T1 below is equivalent to T2 since they produce the 
same database states. This occurs when there are at 
least two single updates which conflict with each other. 
Here two update operations are said to conflict if they 
operate on the same data item.

Transaction T1 (h, c, j, s, n, t1, t2)
  Begin

              ins (Placement (h, c, j, s));
        mod (Company (c, n, t1): Company (c, n, t2));
        del (Placement (h, c, j, s));
         End

Transaction T2 (c, n, t1, t2)
          Begin

        mod (Company (c, n, t1): Company (c, n, t2));
          End

As mentioned in section 1, [8] has proposed a 
technique to decompose a transaction into several 
subtransactions but his technique is limited due to the 
reasons as described in section 1. We have improved 
his technique and this is discussed below.

To exploit parallelism within transaction operations, 
the operations of the transaction need to be 
syntactically and semantically analysed to identify the 
relationship among them. We have identified four 
types of relationship between operations of a 
transaction based on the information presented in the 
operations, i. e., the types of update operations, the 
relations involved and the values specified in the 
operations. These relationships are presented below:
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A transaction T with n operations op1R1 (A1), op2R2
(A2), …, opnRn (An) is said to be redundant if there 
exists at least an operation that occurs more than once 
in the same transaction. This operation should be
eliminated if there are no other operations which 
change the state of the relation that is involved in the 
redundant operation.

Definition 1: An operation opiRi (Ai) is said to be 
redundant if there exists at least an operation opjRj (Aj) 
where opi = opj  {ins, del, mod}, Ri = Rj and Ai = Aj.
If  opi = opj, Ri = Rj and Ai = Aj, then the transaction T
contains duplicate operations and therefore redundancy 
occurs.

Transaction T3 (h, c, j, s)
Begin

del (Placement (h, c, j, s));
    mod (Placement (h, c, j, s):
                Placement (h, c, j, s + 100));
         End

The above transaction T3 contains redundant operation 
and since there are no other operations between the 
redundant operations which change the state of 
Placement, therefore the second operation mod
(Placement (h, c, j, s): Placement (h, c, j, s + 100)) can 
be removed from the transaction. This is because the 
modify operation is no longer required as the tuple to 
be modified does not exist in the relation Placement. 
Table 1 represents some of the redundancy rules that 
can be applied, namely: Rules 7, 8, 9, 10, 11, and 12.

A transaction T with n operations op1R1 (A1), op2R2
(A2), …, opnRn (An) is said to be subsumed if there 
exists at least an operation whose effect is the same as 
performing another operation in the same transaction. 
Similar to redundant operation, this operation should 
be eliminated if there are no other operations which 
change the state of the relation that is involved in the 
operation.

Definition 2: An operation opiRi (Ai) is said to be 
subsumed when there exists at least an operation opjRj
(Aj) where opi = opj  {ins, del, mod}, Ri = Rj and Ai
 Aj. If opi = opj, Ri = Rj and Ai  Aj, this indicates 
that performing opjRj (Aj) will also perform opiRi (Ai).

Transaction T4 (j)
Begin

  mod (Placement (_, _, _, 1000):
               Placement (_, _, _, 2000));
         mod (Placement (_, _, j, 1000):
               Placement (_, _, _, 2000));

End

The above mod (Placement (_, _, j, 1000): 
Placement (_, _, _, 2000)) operation is subsumed by 
mod (Placement (_, _, _, 1000): Placement (_, _, _,
2000)) since performing mod (Placement (_, _, _,
1000): Placement (_, _, _, 2000)) will also modify the 

tuple <_, _, j, 1000>. Therefore mod (Placement (_, _,
j, 1000): Placement (_, _, _, 2000)) should be removed 
from the transaction.

Given a transaction T with update operations op1R1
(A1), op2R2 (A2), …, opnRn (An), T is order dependent
if and only if the execution of the transaction following 
the serialibility order as in the transaction produce an 
output which will be different than the output produced 
by interchanging the operations in the transaction. A 
transaction T is order dependent if and only if T
contains at least two conflicting update operations. 
Otherwise T is order independent. 

Definition 3: An operation opiRi (Ai) is said to be 
dependent on operation opjRj (Aj) if and only if opi 
opj, Ri = Rj and satisfy the conditions in Table 1.

Definition 4: An operation opiRi (Ai) is said to be 
independent if and only if for all operations in 
transaction T, opjRj (Aj) where j = 1, …, n and j  i,

1. opi  opj and Ri  Rj or
2. opi = opj and Ri  Rj or
3. opi = opj, Ri = Rj and Ai  Aj
As dependent operations occur only when the relations 
in both operations are the same therefore 1 and 2 above 
are proved. Also, dependent operations require that 
both type of operations are different, therefore 3 is also 
proved.

Transaction T5 (h, c, j, s)
   Begin

     ins (Placement (h, c, j, s));
              del (Placement (h, c, j, s));

   End

Transaction T6 (hiree, h, c, j, s)
         Begin
              ins (Placement (h, c, j, s));
              del (Application (hiree, _));
         End

Transaction T5 is order dependent while T6 is order 
independent. An order independent transaction has an 
important advantage of its update statements being 
executed in parallel without considering their relative 
execution orders. With an order independent 
transaction we can consider its single updates in an 
arbitrary order. As proved in [8], every order 
dependent transaction can be transformed into 
equivalent order independent transaction. But this is 
not true as discussed at the end of this section.

In the following, we present the rules to convert 
dependent operations (conflicting updates) into 
equivalent independent operations (non-conflicting 
updates). Here, we use the symbol +R to indicate the 
new state of the database after inserting a tuple (set of 
tuples) into relation R and the symbol –R to indicate 
the new state of the database after deleting a tuple (set
of tuples) from relation R. Therefore, +R (c1, c2, …, cn) 
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(-R (c1, c2,…, cn), respectively) means a new database 
state after inserting (deleting, respectively) the tuple 
<c1, c2, …, cn> into (from) relation R. R (…, ci,…) (R
(…, cin, …), respectively) is a set of tuples satisfying a 
condition(s) over domain ci (domain cin, respectively) 
and <c1, c2,…, cn>  R (…, ci, …) (<cn1, …, cnn>  R
(…, cin, …), respectively). With this, the following 
assumptions are true:

 Assumption 1: +R (c1, c2, …, cn) +R (c1, c2, …, cn) is 
not possible since once a tuple <c1, c2, …, cn> has 
been inserted into R, the same tuple <c1, c2, …, cn> 
cannot be inserted into R at a later time as relational 
model does not allow duplicate copies.

 Assumption 2: -R (c1, c2, …, cn) -R (c1, c2, …, cn)       
-R(c1, c2, …, cn).

 Assumption 3: -R (c1, c2,…, cn) [-R (c1, c2, …, cn) 
+R (…)]  -R (c1, c2, …, cn). [-R (c1, c2, …, cn) +R
(…)] refers to a modify operation. This is true since 
when the tuple <c1, c2, …, cn> is deleted, the modify 
operation is no longer necessary since the tuple to 
be modified does not exist anymore. 

 Assumption 4:  +R (c1, c2, …, cn) -R (c1, c2, …, cn) 
0 which means that the database is in its initial state, 
i. e., no changes has occur. This is true since 
inserting a tuple <c1, c2, …, cn> and later on deleting 
the same tuple <c1, c2, …, cn> from the same 
relation R, will bring back the new state of the 
database to its initial state.

Rule 1: dependent operations: 
ins (R (c1, c2, …, cn)); del (R (c1, c2, …, cn)); 
equivalent independent operation: nothing

Proof: +R (c1, c2, …, cn) -R (c1, c2, …, cn)  0

Rule 2: dependent operations: 
ins (R (c1, c2, …, cn)); del (R (…, ci, …)); 
equivalent independent operation: 
del (R (X  c1, …, ci, …)) 

Proof: +R (c1, c2, …, cn) -R (…, ci, …) 
= +R (c1, c2, …, cn) -R (c1, c2, …, cn) 
-R (X  c1, …, ci, …) 
= -R (X  c1, …, ci, …) 

Rule 3: dependent operations: 
del (R (c1, c2, …, cn)); ins (R (c1, c2, …, cn));
equivalent independent operation: nothing

Proof: -R (c1, c2, …, cn) +R (c1, c2, …, cn)  0

Rule 4: dependent operations: 
del (R (…, ci, …)); ins (R (c1, c2, …, cn)); 
equivalent independent operation: 
del (R (X  c1, …, ci, …)) 

Proof: -R (…, ci, …) +R (c1, c2, …, cn)
= -R (c1, c2, …, cn) -R (X  c1, …, ci, …) +R

(c1, c2, …, cn) 
= -R (X  c1, …, ci, …)

Rule 5: dependent operations: 
ins (R (c1, c2, …, cn));

mod (R (c1, c2, …, cn): R (cn1, …, cnn));
equivalent independent operation: 
ins (R (cn1,…, cnn))

Proof: +R (c1, c2, …, cn) -R (c1, c2, …, cn) +R (cn1, …,
cnn)

            = +R (cn1, …, cnn)

Rule 6: dependent operations: 
             mod (R (c1, c2, …, cn): R (cn1, …, cnn));
             ins (R (c1, c2, …,cn));
             equivalent independent operation:
             ins (R (cn1, …, cnn))
Proof: -R (c1, c2, …, cn) +R (cn1, …, cnn) +R (c1, c2,

…, cn) 
= +R (cn1, …, cnn)

Rule 7: dependent operations: 
             del (R (c1, c2, …, cn)); mod (R (c1, c2, …, cn): R

(cn1, …, cnn));
equivalent independent operation: 

             del (R (c1, c2, …, cn))
Proof: -R (c1, c2,…, cn) [-R (c1, c2,…, cn) +R (cn1,…,

cnn)] 
= -R (c1, c2, …, cn) (refer to Assumption 3)

Rule 8: dependent operations:
             del (R (…, ci, …)); mod (R(…, ci, …): R (…,

cin, …));
equivalent independent operation:

             del (R (…, ci, …))
Proof: -R (…, ci,…) [-R (…, ci, …) +R (…, cin, …)] 

= -R (…, ci, …) (refer to Assumption 3)

Rule 9: dependent operations: 
             mod (R (c1, c2, …, cn): R (cn1, …, cnn));
             del (R (c1, c2,…, cn));

equivalent independent operation: 
             mod (R (c1, c2, …, cn): R (cn1,…, cnn))
Proof: -R (c1, c2, …, cn) +R (cn1, …, cnn) -R (c1, c2, …,

cn) 
= -R (c1, c2, …, cn) +R (cn1, …, cnn)

Rule 10: dependent operations: 
                mod (R (…, ci, …): R (…, cin, …)); 
                del (R (…, ci, …));

equivalent independent operation: 
mod (R (…, ci, …): R (…, cin, …))

Proof: -R(…, ci, …) +R (…, cin, …) -R (…, ci, …) 
= -R (…, ci, …) +R (…, cin, …)

Rule 11: dependent operations: 
                ins (R (c1, c2, …, cn)); 
                mod (R (cn1, …, cnn) :R (c1, c2, …, cn));

equivalent independent operation:
                not possible
Proof: +R (c1, c2, …, cn) -R (cn1, …, cnn) +R (c1, c2,

…, cn) 
= +R (c1, c2, …, cn) +R (c1, c2,…, cn) -R (cn1,

…, cnn)
= not possible (refer to Assumption 1)
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Rule 12: dependent operations: 
               mod (R (cn1, …, cnn): R(c1, c2, …, cn)); 
                ins (R (c1, c2, …, cn));

equivalent independent operation: 
not possible

Proof: -R (cn1, …, cnn) +R (c1, c2, …, cn) +R (c1, c2,…,
cn) 

  = not possible (refer to Assumption 1)

Rule 13: dependent operations:
               del (R (c1, c2, …, cn));     

  mod (R (cn1, …, cnn): R (c1, c2, …, cn));
  equivalent independent operation: 
  del (R (cn1, …, cnn))

Proof: -R (c1, c2, …, cn) -R (cn1, …, cnn) +R (c1, c2, …,
cn) 

          = -R (c1, c2,…, cn) +R (c1, c2, …, cn) -R (cn1,
     …, cnn) = -R (cn1, …, cnn)

Rule 14: dependent operations:   
  mod (R (cn1, …, cnn): R (c1, c2, …, cn));    
  del (R (c1, c2, …, cn));

               equivalent independent operation:   
               del (R (cn1, …, cnn))
Proof: -R (cn1, …, cnn) +R (c1, c2,…, cn) -R (c1, c2, …,    

cn) 
= -R (cn1, …, cnn)

Rule 15: dependent operations:    
  mod (R (…, cin, …): R (…, ci, …)); 

              del (R (…, ci, …));
               equivalent independent operation:     
               del (R (…, cin, …)); del (R (…, ci, …))
Proof: [-R (…, cin, …) +R (…, ci, …)] -R (…, ci, …) 

= -R (…, cin, …) -R(…, ci, …)

Table 1 summarizes the rules that we have
presented above. In the following we will show 
through examples how the rules that we have presented 
can be applied to generate order independent 
transaction given an order dependent transaction.

Transaction T7 (p, n)
Begin

       ins (Person (p, n, false));
         mod (Person (p, n, false): Person (p, n, true));
   End

Applying rule 5 will generate the following order 
independent transaction, T7’.  

Transaction T7’ (p, n)
Begin

        ins (Person (p, n, true));
    End

Transaction T8 (t)
Begin

              mod (Company (_, _, t < 0): Company (_, _, t
= 0));

        del (Company (_, _, t < 0));
        End

Applying rule 10 will generate the following order 
independent transaction, T8’.

Transaction T8’(t)
   Begin

mod (Company (_, _, t < 0): Company(_, _, t
= 0));

   End

The above del (Company (_, _, t < 0)) operation is 
removed from transaction T8 since there is no tuple in 
the relation Company that will satisfy the condition t <
0 as these tuples have been modified by the operation 
mod (Company (_, _, t < 0): Company (_, _, t = 0)).

Transaction T9 (t)
        Begin

mod (Company (_, _, t < 0): Company (_, _, t
= 0));

             del (Company(_, _, t = 0));
        End

Applying rule 15 will generate the following order 
independent transaction, T9’.

Transaction T9’(t)
   Begin
        del (Company (_, _, t < 0));
        del (Company (_, _, t = 0));
   End

Transaction Company_Status (c, n, totsal)

Begin
  If Company (c, n, totsal < 0) then      

             del (Company (c, _, _));

  If Placement (_, c, _, _) and not Company (c,
_, _) 

then ins (Company (c, _, _));
   End

Here, a truth table as shown in Table 2 is derived 
based on the truth values of the conditions specified in 
the if construct. For each possibility, an equivalent 
independent operation is generated.

Table 1 presents the conflicting updates (dependent 
operations) in which equivalent independent operations 
can be derived, it is equivalent to not performing at all 
the conflicting updates (stated by nothing) or it is not 
possible to perform the updates as this will violate the 
assumption(s) given above. These rules are based on 
the term conflicting updates which means that two 
update operations operate on the same data item. Other 
sequences of update operations which are syntactically 
correct but are not included in the table since:

1. Semantically they do not make sense.
2. No single equivalent independent operation can be 

derived as shown by rule 16 and example T10.
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3. No equivalent independent operation can be derived 
as shown by rule 17 and example T11.

Table 1. Converting conflicting updates to non-conflicting updates.

Rule Conflicting Updates
Equivalent Non-Conflicting 

Updates

1
ins (R (c1, c2, …, cn));
del (R (c1, c2, …, cn));

* nothing

2
ins (R (c1, c2, …, cn));
del (R (…, ci, …));

del (R (x, …, ci, …))
 where x  c1

3
del (R (c1, c2, …, cn));*

ins (R (c1, c2, …, cn));
nothing

4
del (R (…, ci, …));
ins (R (c1, c2, …, cn));

del (R (x, …, ci, …)) 
where x  c1

5
ins (R (c1, c2, …, cn));
mod (R (c1, c2, …, cn): R (cn1, …,

cnn));
*

ins (R (cn1, …, cnn))

6
mod (R (c1, c2, …, cn): R (cn1, …,

cnn));
*

ins (R (c1, c2, …, cn));
ins (R (cn1, …, cnn))

7
del (R (c1, c2, …, cn));

*

mod (R (c1, c2,…, cn): R (cn1, …,
cnn));

*
del (R (c1, c2, …, cn))

8
del (R (…,ci,…));
mod (R (…, ci, …): R (…, cin, …));

del (R (…, ci, …))

9
mod (R (c1, c2, …, cn): R (cn1, …,

cnn));*

del (R (c1, c2, …, cn));

mod (R (c1, c2, …, cn): R (cn1,
…, cnn))

10
mod (R (…, ci, …): R (…, cin, …));
del (R (…, ci, …));

mod (R (…, ci, …): R (…, cin,
…))

11
ins (R (c1, c2, …, cn));
mod (R (cn1, …, cnn): R (c1, c2, …,

cn));
*

not possible

12
mod (R (cn1, …, cnn): R (c1, c2,…,

cn));
*

ins (R (c1, c2, …, cn));
not possible

13
del (R (c1, c2, …, cn));

*

mod (R (cn1, …, cnn): R (c1, c2, …,
cn));

*
del (R (cn1, …, cnn))

14
mod (R (cn1, …, cnn): R (c1, c2, …,  

 cn));
*

del (R (c1, c2, …, cn));*
del (R (cn1, …, cnn))

15
mod (R (…, cin, …): R (…, ci, …));
del (R (…, ci, …));

del (R (…, cin, …))
del (R (…, ci, …))

Table 2. Truth table.

Condition 1:
Company

(c, n, totsal < 0)

Condition 2:
Placement (_, c, _, _) 

and 
not Company (c, _, _)

Operations
Rule Applied: 
Independent 
Operations

True True
del (Company
    (c, _ , _))

ins (Company
  (c, _,  _))

Rule 3: nothing

True False
del (Company   

  (c, _, _))
del (Company       

    (c, _, _))

False True
ins (Company   

   (c, _, _))
Ins (Company    

   (c, _, _))

False False nothing nothing

Note that if condition 1 is true then definitely 
condition 2 is false. Identifying contradiction between
conditions in the if constructs is not the focus of this 
paper.

* Equivalent non-conflicting updates will be derived if the operations 
specify only the value of the primary key. ci  {c2, …, cn}, cin  {cn2, …,
cnn}, c1 and cn1 are the primary key values.

Rule 16: dependent operations: 
                ins (R (c1, c2, …, cn));

mod (R (…, ci, …): R (…, cin, …));
equivalent independent operation: 
ins (R (c1, …, cin,…));
mod (R (…, ci, …): R (…, cin, …));

Proof: +R (c1, c2, …, cn) -R (…, ci, …) +R (…, cin,
…)
= +R (c1, c2, …, cn) -R (c1, c2, …, cn) 
-R (X  c1, c2, …, cn) +R (c1, …, cin, …)
+R (X  c1, …, cin,…)
= -R (X  c1, c2, …, cn) +R (c1, …, cin, …)
+R (X  c1, …, cin, …)

Consider the following example,

Transaction T10 (p, c, j)
Begin

  ins (Placement (p, c, j, 1000));
        mod (Placement (_, _, _,1000):

  Placement (_, _, _, 2000));
   End

The above transaction T10 is equivalent to the 
following transaction T10’ which consists of 
independent operations.

Transaction T10’(p, c, j)
         Begin

 ins (Placement (p, c, j, 2000));
        mod (Placement (_, _, _, 1000):
              Placement (_, _, _, 2000));

End

Rule 17: dependent operations:
               del (R (…, ci, …));      
               mod (R (…, cin, …): R (…, ci, …));

Consider the following example,

Transaction T11 (t)
         Begin
              del (Company (_, _, t < 0));

mod (Company(_, _, t = 0): Company(_, _, t
< 0));

End

No equivalent order independent transaction can be 
derived for the above transaction T11.

4. Conclusion

Designing efficient, safe and reliable transactions is a 
difficult task. This paper presents rules that can be 
applied to transform a given order dependent 
transaction into order independent transaction. The 
rules can improve the transaction by indirectly 
detecting redundant and subsumed operations which 
are then removed from the transaction. Since
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independent operations in a transaction can be 
executed   in   arbitrary   order,   this implies that  the
transaction’s update statements can be executed in 
parallel without considering their relative execution 
orders. This can reduce the execution time.
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