
192 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

Modeling and Formal Verification of IMPP
Sohel Khan and Abdul Waheed Abdul Sattar

King Fahd University of Petroleum and Minerals, Saudi Arabia

Abstract: This paper describes the modeling and formal verification of the application layer protocol, Instant Messaging and
Presence Protocol (IMPP). Spin is a model checker for the verification of asynchronous, distributed and concurrent finite state
systems. It accepts the system specification in a high level language called PROcess MEta LAnguage (PROMELA) and
verification claims in temporal logic. We have selected Instant Messaging and Presence Protocol (IMPP) for modeling,
simulation and verification as it is characterized by concurrency and distributed computing, which makes it a good candidate
to explore the potential of model checking and verification. Further, the important properties of the protocol are verified using
Linear Temporal Logic (LTL). One of our aims was also to get an insight into the scope and utility of formal methods based on
state space exploration in testing larger and complex software systems which has been achieved to some extent.

Keywords: Formal methods, verification of communication protocols, instant messaging systems, verification tools, spin, LTL,
PROMELA.

Received March 14, 2004; accepted July 7, 2004

1. Introduction
Several communication protocols are in use and many
still needed. Normally such protocols are designed by
experts and checked manually. But with increased
demand of reliability and fault tolerance of the
protocols and the services they provide, the need for
formal approaches for verification of protocols is
increasingly being felt. Thus human judgment and
consensus can be supplemented by the rigorous
analytical power of formal methods. Spin is a model
checker for the verification of asynchronous,
distributed and concurrent finite state systems. It
accepts the system specification in a high level
language called PROcess MEta LAnguage
(PROMELA) and verification claims in temporal logic.

We have selected Instant Messaging and Presence
Protocol (IMPP) for modeling, simulation and
verification as it is characterized by concurrency and
distributed computing which makes it a good candidate
to explore the potential of model checking and
verification and it can provide insight into the scope
and utility of formal methods based on state space
exploration in testing larger software systems.

We will describe the evolution of IMPP and the
formal description of its five elements: Service,
assumptions, vocabulary, format, and procedure rules.
We will then define the level of abstraction and focus
of our study. After a brief description of related
modeling efforts and the motivation for our work, we
will describe our model and its PROMELA code. The
paper will end with the simulation and verification
results and the conclusion.

1.1. What is Presence and Instant Messaging?
Presence is the instantaneous knowledge that someone
is available, online and reachable via instant
messaging. Presence Service enables this knowledge to
be embedded into any application. Instant Messaging
involves short text messages that pop-up immediately,
enabling chat sessions where people type back and
forth. The most popular Instant Messengers (IM) in use
are AOL, MSN, Yahoo, and ICQ.

1.2. Evolution of IMPP
Instant Messaging is evolving through merging with
other technologies, such as VoIP, Conferencing, SMS
and other applications, such as embedded IM in call
centers, e-CRM and generally e-Business. In Jan 2003
AOL acquired its IM patent. But MIT's Zephyr and
other instant-messaging systems existed long before
Mirabilis (now AOL) applied for the patent. Zephyr
was a notice transport and delivery system developed
at MIT in 1990 and is still in use there on Unix. In July
1996 Mirabilis (now AOL) came up with ICQ “I seek
you”, which uses the ICQ Protocol. In June 1998 AOL
bought Mirabilis (ICQ), and abandoned the ICQ
protocol in favor of OSCAR protocol, the protocol
used by AOL's instant messenger. AOL has more than
135 million registered ICQ users and some 180 million
on AOL Instant Messenger. Few official documents
exist for most of the above protocols. But some reverse
engineered versions exist on the Internet, figured out
by analyzing traffic generated by their Instant
Messenger client [12].

Instant messaging differs from email primarily in
that its primary focus is immediate end-user delivery.

Modeling and Formal Verification of IMPP 193

Presence information was readily accessible on
internet-connected systems years ago; when a user had
an open session to a well-known multi-user system, his
friends and colleagues could easily tell where he was
connected from and whether he was using his
computer. Since that time, computing infrastructure
has become increasingly distributed and a given user
may be consistently available, but has no standard way
to make this information known to her peers. Some of
the arguments for HTTP as a basis for a presence
information protocol like ease of crossing firewalls,
reuse of existing technology, use of similar protocol,
and the applicability of URLs, do not seem convincing.
[5].

2. IMPP Protocol with its Five Elements
The IMPP aims to develop architecture for simple
instant messaging and presence awareness/notification.
It will specify how authentication, message integrity,
encryption and access control are integrated. It may
also provide a general notification mechanism for data
other than user presence information and instant
messages. We briefly present here the five elements of
specification particularly covering those areas that we
are going to model and validate.

2.1. Service
A presence and instant messaging system allows users
to subscribe to each other and be notified of changes in
state, and for users to send each other short instant
messages. IMPP provides two main services, a
presence service and an instant message service. The
presence service serves to accept, store and distribute
information. The information stored is Presence
Information. The Instant Message Service serves to
accept and deliver Instant Messages to Instant Inboxes.

2.1.1. Presence Service
The Presence Service has two distinct sets of “clients”.
One set of clients, called Presentities, provides
presence information to be stored and distributed. The
other set of clients, called Watchers, receives presence
information from the service [14].

Figure 1. Overview of presence service.

2.1.2. Instant Message Service

The instant message service also has two distinct sets
of “clients”: Senders and instant inboxes. A Sender
provides instant messages to the instant message
service for delivery. Each instant message is addressed
to a particular instant inbox address, and the instant
message service attempts to deliver the message to a
corresponding instant inbox [6].

Figure 2. Overview of instant message service.

2.2. Assumptions
The IMPP model is intended to provide a means for
understanding, comparing, and describing systems that
support the services typically referred to as presence
and instant messaging. It consists of a number of
named entities that appear, in some form, in existing
systems. No actual implementation is likely to have
every entity of the model as a distinct part. Instead,
there will almost always be parts of the implementation
that embody two or more entities of the model.
However, different implementations may combine
entities in different ways [14].

2.3. Vocabulary
The model defines the Presence Information to consist
of an arbitrary number of elements, called Presence
Tuples. Each element consists of a Status marker
(which might convey information such as
online/offline/busy/away/do not disturb), an optional
communication address, and optional other Presence
markup. A communication Address includes a
communication means and a contact address. A
Communication means might also indicate some form
of telephony, for example, with the corresponding
Contact Address containing a telephone number, apart
from instant message service.

The Message/CPIM format encapsulates an
arbitrary MIME message content, together with
message- and content-related metadata. This can
optionally be signed or encrypted using MIME security
multiparts in conjunction with an appropriate security
scheme [2].

194 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

2.4. Encoding (Format)
An XML-encoded Presence Information Data Format
(PIDF) is defined for use with CPIM compliant
systems. A presence payload in this format is expected
to be produced by the Presentity (the source of the
Presence Information) and transported to the watchers
by the presence servers or gateways without any
interpretation or modification [13].

2.5. Procedure Rules
An entity known as Presentity that wants to make its
presence information known to others can register
itself with presence service. Those who seek the
presence information from the presence service called
watchers are of two types, Poller and subscriber. An
application can send an instant message to another
Presentity through its instant inbox. Access Rules
constraint on how a presence service makes presence
information available to Watchers. For each
Presentity's presence information, the applicable
Access Rules are manipulated by the Presence User
Agent of a Principal that controls the Presentity [6].

3. Modeling Objective
Modeling is the process of abstracting the functional
specifications of a system into a minimal working
specimen that enables us to understand and analyze a
particular aspect of the system more closely. Hence the
two important logical questions that come up are what
and how much to abstract and what aspect we want to
analyze. We answer them below. This can be
understood from the analogy of analyzing an object
under lens. The more we magnify the more we can
analyze its fine features, but the area of observation
also decreases with it.

3.1. Level of Abstraction
We have abstracted the system into the two main
services of instant messaging and presence. The
presence tuples are limited to a communication
channel (IP address), name represented as a short
integer, status represented as a short integer and
message types which can be one from among the 15
most important message types required in our model.

3.2. Focus of Study
The basic properties we want to study about IMPP are:

• The integrity of access rules related to subscribers.
In general the principal controlling Presentity must
be able to control: Which watchers can observe that
Presentity's presence information, which watchers
can have subscriptions to that Presentity's presence
information, what presence information a particular
watcher will see for that Presentity, regardless of

whether the watcher gets it by fetching or
notification, which other Principals, if any, can
update the presence information of that Presentity.
Similarly the Principal controlling an instant inbox
must be able to control: Which other Principals, if
any, can send instant messages to that Instant Inbox,
which other Principals, if any, can read instant
messages from that instant inbox.

• When Presentity changes its Presence information,
any subscriber to that information must be notified
of the changed information rapidly except when
such notification is entirely prevented by access
rules.

• The notification system of subscribers and fetchers.
• Liveness property of instant message service

(impossibility of message loss) especially in a chat
session.

• The multiple login control feature, this basically
states that no multiple Presentity can login from two
different places at same time.

4. Related Work
IETF IMPP working group is working to develop the
architecture and protocol for IMPP. Its work is still
under development with two RFC’s published [4, 13].
Microsoft has announced that it will soon make the
MSN messenger service protocol available to the
industry by submitting it to the IETF as a working
reference implementation of an interoperable instant
messaging protocol. ICGnu is another initiative to
create an open protocol for presence notification and
instant messaging [6, 8]. But the project seems to have
disappeared now. Jabber is another ambitious large-
scale open source project to create a unified instant
messaging protocol, with connections (known as
transports) to other IM services, such as ICQ and AIM.
The Simple General Awareness Protocol (SGAP)
provides notifications of changes to small data items.
SGAP was originally developed as Lotus's contribution
to the ongoing process of developing an interoperable
protocol for “presence” information. Although SGAP
is a small and simple protocol, it supports sophisticated
colleague-awareness. The only effort to formally verify
a part of IMPP was undertaken by Patrice Godefroidy
et al. [10]. Although quite interesting, this work was
limited to verifying the privacy rules of instant
messaging system. Our first model 5.2], the Presence
service model can be used to achieve the same
purpose. In summary our model is more
comprehensive to test the critical properties of IMPP
related to concurrency and message loss. Hence our
effort to formally model and verify IMPP can be
helpful in developing an internet-scale end-user
presence awareness, notification and instant messaging
system.

Modeling and Formal Verification of IMPP 195

5. The Model
Although we started with a comprehensive model of
IMPP, the limitations of our tool led us to split this
model into three different models. With code size
going beyond 500 lines the state explosion problem
prevents the reachability analysis from completing.
Owing to the limitations of tools (computing power as
well as memory) abstraction plays a very important
role in Model Checking. We could have used another
tool such as Verifsoft, but lack of any implementation
of IMPP, precluded that possibility [9].

5.1. Implementation Strategy in PROMELA
In all three models Presence service is common. The
instant message service model is only used in the
second model where we check the reliable delivery of
instant messages. We start with the communication
system used in the models.

5.1.1. Communication Channels

All the channels are declared as global objects. The
following channels are central to the model.

The channel PSin represents the communication
between any Presentity and presence server. Similarly
there is an input channel for instant message service.

/* for presence service */
chan PSin = [3] of { mtype, short, short, short };

/* for instant message service */
chan INSin = [2] of { mtype, short, short, short}

The channels PTSin [3] and SUBin [3] are the input
channels for every entity (Presentity and subscriber
respectively) through which server communicates with
it.

/* 10 input (output for the server) channels for ten
presentities */
chan PTSin [3] = [3] of {mtype, short, short, short}

/* 10 input (output for the server) channels for ten
subscribers */
chan SUBin [3] = [3] of {mtype, short, short, short}

The inbox of each Presentity is represented by a
channel of size 3.

chan inbox [3] = [3] of {short}

Thus the above system can be imagined as we have
four permanent IP addresses through which six
different entities (3 Presentity and 3 subscribers) can
communicate with the server.

5.1.2. Data Structures
The Presence service stores the names (and status for
presentities) of Presentities and subscribers with

respect to communication channel (or IP address)

/* global data for presence service */
short pts [3]; /* presentities ip and name as value */
short sts [3]; /* prsentities status */
short pt_count; /* Number of presentities logged in */
short sbs [3]; /* subscribers ip and name as value */
short sub_count; /* Number of subscriber logged in */

The information about the subscriptions of
subscribers to the presentities is stored in following 2d
array.

/* 2-dimensional array in spin

 presentity1 presentity2.

subcriber1 X X

subcriber2 X X */

typedef subs {

short presentities[3];

};

subs subscribers[3];

The message format followed in all models is as
follows: (msgType, id, ids, num). In this tuple the first
is the message type which can be one from following:
Psreg, psfetch, psstatus, psunreg, inssend, insrecv,
subreg, subreq, subacp, subref, stschg, regrej, and
regacp, the id denotes the communication channel (or
IP address) of the entity, ids denotes the
communication channel (or IP address) of other entity
(but this may be also be don’t care for some message
types), Num denotes name in some cases and status in
other.

5.1.3. Presence Service and Instant Messaging
Service

We model both of these services by two PROMELA
processes. Channel capacity has been kept fixed to
three messages. Both the services continuously wait for
a service request. When a request is received the
corresponding service procedure code is executed. The
instant message service just forwards the instant
messages to the relevant Presentity if the Presentity is
online. If Presentity is offline then its messages are
stored in the instant mailbox. The instant mailbox is
modeled by three message channels for three
Presentities with capacity of ten messages.

5.1.4. Presentities
We model the set of Presentities using spin processes.
These Presentities are used in different ways in three
models for testing different use cases of the services.
Each Presentity has its own I/O channel for
communicating with services. Our Presentity combines
the roles of principal and user agent. Lastly we also

196 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

model a set of subscribers, which is mostly similar to
the Presentity. We show a flow chart-state transition
diagram for one of the Presentity, other diagrams are
not shown, as they will become clear with this one.

5.2. Presence Service Model
In this model we have two Presentities that log in to
the server. As the block diagram of presence service
shows the main components of the system, we abstract
out them into a single spin process that uses the above-
explained input channels for interacting with clients. In
this model one of the Presentity continuously changes
its status, the other Presentity continuously checks its
status, (in IMPP model this entity is called fetcher).
Lastly there is a subscriber that subscribes to our
constantly changing Presentity (after Presentity grants
access to it to be added to its buddy list) and then starts
receiving the notifications continuously.

This model will be used to verify the following
property from the stated objective.

The validation criterion of interest in this case,
particularly integrity of access rules and notification
system of subscribers and fetchers, were specified
using a watchdog process with assertions included for
checking the data.

5.3. Instant Message Model
Here we have a Presentity continuously sending a
stream of red, blue and green messages to another
Presentity through instant messenger service. Here we
use the result found by Wolper [15] that only three
types of messages are needed to check the validity of
any flow control protocol. Here the main purpose is to
test the possibility of message loss in chat session,
because as the presentities involved in a chat directly
communicate through their IP there are many
possibilities to simulate and test for this case.

The Validation criterion of interest in this case,
particularly liveness property of instant message
service (impossibility of message loss) especially in a
chat session, were specified using LTL claims, like the
one below which is translated into a never claim by
Spin (spin –a ltl). The literals in claim represent
Boolean conditions of sending and receiving the
messages.

/* (! [] (sr -> <> rr))|| (! rr U rb) */

5.4. Multiple Login Model
This model is similar to the first model in terms of
components, but varies in functionality and validation
criterion. Here every Presentity tries to log in with a
name and tries another one if fails for the first time, it
then logs out and goes on doing the same continuously.
The other Presentity does the same. The most
important and powerful feature of this model is that

both presentities use the same login name. Hence this
seems to be the best model to validate any requirement
related to multiple login etc.

Figure 3. Flow chart-state transition of multiple login model.

The validation criterion of interest in this case,
particularly the multiple login control feature, were
specified using assertion in a watchdog process to
check it in every state:

proctype CheckMultipleLogin()

{

do

 :: atomic {

assert(!((pts[0] != 0) && (pts [1] != 0) &&
(pts [0] == pts[1]))); }

 od;

}

6. Simulation and Verification Results
We now discuss the most interesting part of the work i.
e., the verification results. We will consider them in the
same sequence as we modeled them and with respect
to the properties that we wanted to verify. We state the
verification property for each model, then its
simulation results and lastly its verification with PAN
(PROMELA analyzer).

As mentioned model 1 dealt with the validation
properties related to the integrity of access rules related
to subscribers and the notification system of
subscribers and fetchers.

The simulation of this model didn’t show any
violation or deadlocks, but helped to implement the
model. Initially we were unable to perform exhaustive
search on the first model. Hence we tried to increase
the search depth (pan1 –m1000000) that resulted in
memory shortage.

Modeling and Formal Verification of IMPP 197

Table 1. Results of verification and simulation for all models.
M

O

D

E

L

States Statistics Analysis Type Memory Used (In Megabytes)

M

O

D

E

L

-

1

State-vector 344

byte

depth reached

64002

83328 states

stored 93917

sates matched

177245

transitions(=stored

+matched)

2 atomic steps

hash conflicts:

8390 (resolved)

Unable to

search

completely

using any of the

strategies

(Supertrace

Approximation,

Bit State

Compression)

2.68391e+08 bytes used

102404 bytes more needed

2.68435e+08 bytes limit

29.331 equivalent memory usage for

states (stored*(State-vector + overhead))

27.480 actual memory usage for states

(compression: 93.69%)

State- vector as stored = 322 byte + 8

byte overhead

1.049 memory used for hash-table (-

w18)

240.000 memory used for DFS stack (-

m10000000)

268.391 total actual memory usage

M

O

D

E

L

-

2

State-vector 404

byte

depth reached

 2814

606879 states,

stored

886066 states,

matched

1.49294e+06

transitions (=

stored+matched)

Supertrace

Approximation

and Exhaustive

search after

increasing the

memory size

250.034 equivalent memory usage for

states (stored*(State-vector + overhead))

229.051 actual memory usage for states

(compression: 91.61%)

State- vector as stored = 369 byte+8 byte

overhead

1.049 memory used for hash-table (-

w18)

24.000 memory used for DFS stack (-

m1000000)

253.717 total actual memory usage

M

O

D

E

L

-

3

State-vector 392

byte

depth reached

842482, errors: 0

1.8788e+06 states,

stored

2.48418e+06

states, matched

4.36299e+06

transitions (=

stored+matched)

1 atomic steps

hash factor:

2.23243 (best

coverage if >100)

(max size 2^22

states)

Supertrace

Approximation

and Exhaustive

search after

increasing the

memory size

Stats on memory usage (in Megabytes):

744.007 equivalent memory usage for

states (stored*(State-vector + overhead))

1.049 memory used for hash-array (-

w22)

28.000 memory used for DFS stack (-

m1000000)

35.295 total actual memory usage

Next we went to the supertrace approximation, still
we were not able to complete the search. But
increasing the memory size did the job with the results
shown in Table 1. It also showed some unreachable
code, but it was because we didn’t wanted to stop the
process to allow for maximum possible interleaving
during simulation. It also showed that timeouts would
not occur in normal circumstances, hence unreachable.

Since the hash factor was very low, which shows we
were not able to cover a good portion of search space.
If we calculate from the output the amount of memory
that will be required for exhaustive analysis it is
425.913280 MB. Hence we tried again with an
exhaustive search with increased memory size by using
the DMEMCNT label with a value of 29 (229 =
536870912).

Similar analysis was performed on all models with
results summarized in Table 1.

Although the exhaustive search of the models didn’t
show any deadlock, live lock or assertion error but we
were able to show by simulation that message loss can
occur in case of a Presentity involved in chat session
going down. Although it is trivial to simulate this case,
and IMPP still does not specify this aspect but still the
same model can also be used to incorporate the new
strategies in future and verify them.

6. Conclusion
We have achieved the primary goal of modeling and
verifying IMPP. The set of models we have developed
is powerful in that it can be easily extended or used to
test all the basic properties of IMPP. The model can
also be used as a test bench against which the upgrades
of IMPP can be tested as it evolves with time. We
demonstrated only a few basic properties, to mention
other interesting ones, they may be, Access control
rules of offline Presentity, Access control rules of
Notifications or Instant Message, Conference of more
than two presentities, server or client crash. The Model
may also be tried on several other model checkers. As
stated in the abstract, we were also able to exploit the
formal verification tool, Spin, to its maximum
modeling potential.

Acknowledgement
Authors would like to acknowledge the support of
King Fahd University of Petroleum and Minerals
for this research.

References
[1] Crocker D. and Peterson J., “Common Profile:

Instant Messaging,” Internet-Draft, Available:
http://www.ietf.org/internet-drafts/draft-ietf-
impp-im-01.txt, December 2002.

[2] Crocker D. and Peterson J., “Common Profile:
Presence,” Internet-Draft, Available: http://ww
w.ietf.org/internet-drafts/draft-ietf-impp-pres-01.t
xt, December 2002.

[3] Crocker D., Diacakis A., Mazzoldi F., Huitema
C., Klyne G., Rosenberg J., Sparks R., Sugano
H., and Peterson J., “Address Resolution for
Instant Messaging and Presence,” Internet-Draft,

198 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

Available: http://www.ietf.org/internet-drafts/dra
ft-ietf-impp-srv-01.txt, August 2002.

[4] Crocker D., Diacakis A., Mazzoldi F., Huitema
C., Klyne G., Rosenberg J., Sparks R., Sugano
H., and Peterson J., “Common Presence and
Instant Messaging (CPIM),” Internet-Draft,
Available: http://www.ietf.org/internet-drafts/dr
aft-ietf-impp-cpim-03.txt, August 2002.

[5] Day M., “HTTP Envy and Presence Information
Protocols,” Technical Report, Available:
http://domino.watson.ibm.com/cambridge/researc
h.nsf/2b4f81291401771785256976004a8d13/56b
47d188440d2dd8525661e0051dac1/$FILE/http-e
nvy.pdf, July 1998.

[6] Day M., “Instant Messaging/Presence Protocol
Requirements,” Internet-Draft (RFC 2779),
Available: http:// www.ietf.org/rfc/rfc2779.txt,
February 2002.

[7] Day M., “Presence and Instant Messaging via
HTTP/1.1: A Coordination Perspective,”
Technical Report, Available: http://domino.wats
on.ibm.com/cambridge/research.nsf/2b4f812914
01771785256976004a8d13/e512013fe84008bf85
2568d20050d2a8?OpenDocument, March 1993.

[8] Day M., Rosenberg J., and H. Sagano., “A Model
for Presence and Instant Messaging,” Internet-
Draft (RFC 2778), Available:http://www.ietf.org/
rfc/rfc2778.txt, February 2002.

[9] Godefroid P., “VeriSoft: A Tool for the
Automatic Analysis of Concurrent Reactive
Software,” in Proceedings of the 9th Conference
on Computer Aided Verification, Haifa. Lecture
Notes in Computer Science, Springer-Verlag,
vol. 1254, pp. 476-479, June 1997.

[10] Godefroid P., Herbsleby j. D., Jagadeesany L. J.,
and Liz D., “Ensuring Privacy in Presence
Awareness Systems: An Automated Verification
Approach,” Technical Report, 2002.

[11] Hudson G., “The Zephyr Protocol,” Technical
Report, Available: http://web.mit.edu/zephyr
/doc/protocol, February 2000.

[12] Isaksson H., “Version 5 of the ICQ Protocol,”
Technical Report, Available: http://www.
algonet.se/~henisak/icq/icqv5.html, April 2001.

[13] Klyne Atkins G., “Common Presence and Instant
Messaging: Message Format,” Internet-Draft,
Available: http://www.ietf.org/internet-drafts/dra
ft-ietf-impp-cpim-msgfmt-07.txt, October 2002.

[14] Sugano H., Fujimoto S., Klyne G., Bateman A.,
Carr W., and Peterson J., “Presence Information
Data Format,” Internet-Draft, Available:
http://www.ietf.org/internet-drafts/draft-ietf-impp
-cpim-pidf-07.txt, December 2002.

[15] Wolper P., “Expressing Interesting Properties of
Programs in Propositional Temporal Logic,” in
Proceedings of the 13th ACM Symposium
Principles of Programming Languages, St.
Petersburg, pp. 148-193, January 1986.

Sohel Khan received his Bachelor
of engineering in electronics and
design technology from Shri
Ramdeobaba Kamla Nehru
Engineering College, Nagpar,
Maharashtra, 1999. He has been
studying at King Fahad University of

Petroleum and Minerals, SA, since 2002, and about to
receive his MSc in information and computer science.
He is a member of Project Management Institute, Joint
Endeavor of Delphi, Global Grid Forum, and IEEE
working groups. His research interest includes
software engineering and database system.

Abdul Waheed Abdul Sattar is an
assistant professor in Computer
Engineering Depatrment at KFUPM.
Before joining COE, he was working
at Inktomi Corporation in Foster
City, California, USA as a
performance software engineer in

network products division. He was a research staff
member at NASA Ames Research Center, Moffett
Field, California, USA from May 1997 until July 2000.
He held a summer position in Concurrent Computing
Division at Hewlett-Packard Research Laboratories in
Palo Alto, California, USA in 1994. He received the
BSc degree with honors in electrical engineering from
University of Engineering and Technology, Lahore,
Pakistan in 1991. He received the MS degree in 1993
and the PhD degree in 1997, both in electrical
engineering from Michigan State Univeristy, East
Lansing, Michigan, USA. His current research interests
include performance evaluation, high-performance
computing and networking systems, and multimedia
systems. He has written over thirty refereed conference
and journal papers on related topics. He is a member of
the IEEE Computer Society.

