
214 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

Function Inlining with Code Size Limitation
in Embedded Systems
Xinrong Zhou, Johan Lilius, and Lu Yan

Turku Centre for Computer Science, Abo Akademi University, Finland

Abstract: Function inlining is a widely known technique that has been adopted in compiler optimization research domain.
Inlining functions can eliminate the overhead which is resulted from function calls, but with inlining, the code size also grows
unpredictably; this is not suitable for embedded processors whose memory size is relatively small. In this paper, we introduce
a novel function inlining approach using a heuristic rebate_ratio; functions to be inlined are selected according to their
rebate_ratios in a descending way. This kind of code optimization operation works at the source code level. Compared with
other algorithms, ours are easier to implement. Our target is to get an optimal result of function inlining which attempts to
achieve the maximum performance improvement while keeping the code size within a defined limit.

Keywords: Function inlining, embedded processors, graph, complexity.

Received April 2, 2004; accepted July 1, 2004

1. Introduction
Nowadays, more and more people prefer to use C
compiler rather than assembly one for programming
embedded processors. In a C program, the most
frequently accessed parts are often put together into
functions. It makes the programs more dependent and
more readable, but an excessive use of functions may
degrade program performance. When calling a
function, the system should save all the values of
current registers, pass the parameters and allocate stack
for local variables. In processors which support
pipeline, the actual function call and return may result
in a significant number of instruction pipeline stalls.
Function inlining replaces a function call with the body
of function; it has the effect of removing all the
overheads mentioned above. [1, 2, 3, 4, 6] Obviously,
the performance of the system can be improved in
some ways, but inlining functions does not come for
free. One of its negative effects is the unpredictable
code size; which is intolerable for embedded
processors whose memory space is limited. During the
past years, lots of code optimization techniques have
been developed. Many of them are low level
optimizations, which are dependent on processor
architecture. For example, code selection, register
allocation [5, 10], and memory access optimization
[12]. These works focus on how to get a performance
enhancement, less attention was put on the code size.
Leupers brought out a machine-independent source-
level code optimization algorithm, named
OptinlineVector, which aims at embedded processors
and employs function inlining to achieve higher
performance [5, 7]. In OptinlineVector algorithm the
element bi in the inline vector IV is used to indicate

whether function fi is inlined or not, all the functions in
program are checked. OptinlineVector algorithm can
find the optimal solution of function inlining, but the
time and memory space it needs are huge. The worst
case complexity of OptinlineVector algorithm is
exponential to N, where N is the total number of
functions in a program. In this paper, we present a new
approach to function inlining which works at the
source code level as well. The time and memory space
needed in worst case is the cube of N.
The remainder of this paper is organized as follows.

Section 2 illustrates the system model of function
inlining. Our new algorithm is explained in detail in
section 3. Section 4 makes a brief analysis of our
algorithm. The last section concludes this paper and
points out our future work.

2. System Model for Function Inlining
In normal systems, performance enhancement is the
main target, the negative effect of code expansion
which is brought by function inlining does not attract
more attention, but in embedded processors, code
expansion becomes a serious problem. An oversized
code is intolerable. In order to control the code
bloating problem of inlining, we should inline
selectively. Leupers et al used branch-and-bound
algorithm to determine which function to inline [7].
Although their result is an optimal one, the time and
space their algorithm needs are huge. In our method,
we use heuristic to do the same job. The benefit using
heuristic depends on the execution frequency of the
inlined function. The more it is called, the better
improvement it will achieve. We introduce a concept,
named rebate_ratio; it is used as an inlining heuristic

Function Inlining with Code Size Limitation in Embedded Systems 215

variable. Inlining a function with a high rebate_ratio
will get a better performance than inlining a low
rebate_ratio function.
The definition of rabate_ratio is:

increasedsizecode
frequencycallingfunctionratiorebate

__
___ = (1)

The function calling frequency is direct proportion
to performance improvement while code size
expansion is the other way round. Note that, in some
case, code_size_increased may equal to zero, which
means when inlining that function, the code size does
not change. We assign a maximum value to the
rebate_ratio of this function and inline them before
inlining other functions.
The system model of function inlining is described

as follows. For a given C program, we use a graph G =
(V, E) to represent the function call structure inside it.
Each node in V represents one function fi and each edge
e = (vi, vj) ∈ E means function fi calls function fj. Each
node vi has a two-tuple attributes vi: (Bi, Ri), Bi denotes
the real size of function fi, Ri is the rebate_ratio of
function fi . Attribute Ri is used as a priority indicator
of our queue operating, the smaller Ri is the higher
possibility it will be at the head of a queue, which
means the higher possibility to be inlined. Each edge ei
has a weight wi which denotes the times function fi
calls fj.
The total sum of all the nodes’ weight in V is the

estimation of total code size of the given C program. It
can be seen, the code size calculated in this way is not
precise since the detailed code size is only known after
code generation. Algorithms using similar method to
calculate code size have already shown that this
estimation appears to be sufficiently accurate in
practice [5, 6, 7]. The function inlining problem is now
translated to a graph operation problem, what we will
do is to present a method to realize the following work:

• Input: G = (V, E) and a global code size limit L.
• Output: G’ = (V’, E’) which |V'| reaches its
minimum value while:

'

1

()
V

i
i
B v L

=

≤∑

where |V'| is the number of nodes in Graph G’.

3. Minimizing Function Calls
As the number of function calls in a program
decreases, the performance increases. Once a function
is inlined, the corresponding operation in graph is that
the node representing that function is deleted. When
the code size of the inlining function increases, the
change in graph is that the weight of deleted node’s
parent node also increases. Since the code size has an
upper bound and we wish to inline as many function

calls as possible, the operation to the graph is trying to
delete as many nodes as possible while keeping the
total sum of all the remained nodes’ weight not larger
than the limit value.
We inline the function calls in a rebate_ratio

decreasing way, in another word, we inline first the
function whose rebate_ratio is the largest and then
inline the second largest and so on. When no more
function call can be inlined with the total code size
smaller than the upper bound, the work is done.
Before we start inlining functions, there is some

preparation work to be done. First, we must use a
source code tool to find out the number of calls
w (e (vi, vj)) from function fi to fj. Next, to compile the
source code without function inlining to determine the
code size B (vi) of each function.
Usually there are lots of loops in a program, if an

inlined function is in a loop, the amount of code size
increased is equal to the code size of this inlined
function, not n times of code size (suppose n is the
number of loop repetition), i. e., rebate_ratio is n/
code_size not n / (n * code_size).
The benefit of inlining a function in a loop is the

same as inlining n times of a function whose code size
is n times smaller. So in our algorithm, we assign an
equal priority to the two functions, which means their
rebate_ratios are the same.
If a function calls another one fk both in loops and

outside loops, we derive a new node vn, where B (vn) =
B (vk), R (vn) = R (vk) / n, here n is the iteration of the
loops, the new node is connect with all of node vk’s
parent and child nodes. The weights of the new derived
edges are defined as follows.

()
((,)) 1
p k

p n

v paren t v
w e v v
∀ ∈

=

()
((,)) ((,))
c k

n c k c

v child v
w e v v w e v v
∀ ∈

=

where, the function that the new node represents is a
copy of the function in loops. The weight w (e (vp, vk))
is also reduced to the number of calls outside loop.
Thus, we change the nodes for functions in loops into
normal ones. Figure 1 is an example of node deriving
for functions in loop. Function f1 calls f3 w3 times, w’3
= w3 - n times are not in loops, the algorithm derives a
new node v’3, derives also an edge e (v1, v’3), the
edge’s weight is 1.

Figure1. Node deriving for functions in loops.

There are two different situations when function fi
inlines function fj, first, vj is a leaf in the graph shown
in Figure 2, we delete both the node vj and the edge

w3
w2

v3 v2

w4

v4

v1

w'3 w2

v3 v2

w4

v4

v1

v '3

1

216 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

e (vi, vj) , the weight of node vi changes to a new value
B’(vi) = B (vi) + W (e (vi, vj)) * B (vj), if more than two
functions call fj, the weight values of all these
functions should also be modified and the edges be
deleted.

Figure 2. Deleting a leaf node.

Second, function fj is not a leaf in the graph, node vj
is deleted, all its parent nodes’ weights are also
updated, the edges connected with vj are deleted, vj’s
parent nodes are connected with vj’s children nodes.
The newly appeared edges also have new weights. For
example, when root function inlines f1,, as shown in
Figure 3, node v1 is deleted, so do all the edges
connecting with v1, node v3, v4’s parents are changed to
the root, two new edges are derived, the weight values
are w1 * w3 and w1 * w4 respectively.

 Figure 3. Deleting a non-leaf node.

Our method to inline functions consists of two steps.
First, we process the functions in loops using algorithm
Loop_Node_Process, shown in Figure 4. We search
the whole program and find out the functions in loops,
and then change the corresponding nodes to new ones
which are the same as the nodes representing outside
loop functions, when the changing work finishes, we
set up a queue and sort the queue.
Second, we inline the functions according to

algorithm Mini_Func_Call, shown in Figure 5. Since
the queue has already been sorted in a rebate_ratio
descending way, the most suitable function to be
inlined is the one which is represented by the node in
the head of the queue. We inline the function and
delete the node from the queue. After inlining, the
rebate_ratio values of its parent nodes are also changed,
so we sort the queue again and ensure the first node in
the queue has the largest rebate_ratio. When all the
nodes in the queue are deleted, the algorithm is
terminated.

Loop_Node_Process (V, E)

1. V’ ←Find_Nodes_in_Loop (V)
2. for (vi in V’) do
3. create a new node vk
4. B (vk) ←B (vi)
5. R (vk) ←R (vi)/n {increase the rebate_ratio

of the new node}
6. insert_queue (Q, vi) {insert the new node

into queue Q}
7. for (vj in child (vi)) do
8. E←E + e(vk, vj) {add edge e (vk, vj) to E}
9. w (e (vk, vj)) ←w(e (vi, vj))
10. end for
11. for (vj in parent (vi)) do
12. E←E + e (vj, vk)
13. w (e (vj, vk)) ←1
14. w (e (vj, vi)) ← w (e (vj, vi)) – n
 {update the number vj, calls vi }

15. update R (vi)
16. if (w (e (vj, vi)) = 0) then
17. V←V -vi

 {delete node vi from the graph}

18. delete_queue (Q, vi)
 {get rid of the node from queue Q}

19. for (vc in child (vi)) do
20. E←E - e (vi, vc) {delete edges

connected to the child nodes}
21. end for
22. end if
23. end for
24. end for
25. sort_queue (Q)
26. return (V + V’, E)

Figure 4. Algorithm loop_node_process.

4. Algorithm Analysis
Although heuristics are also used to find the optimal
result of function inlining, unlike other ones, the value
of the heuristic – rebate_ratio in our algorithms is not
fixed, it keeps on changing whenever a function’s code
size varies.
If we inline a function, the benefit we get is that we

eliminate the overhead which is brought by setting up
the call stack, passing parameters etc, the side-effect is
the expansion of code size. Heuristic – rebate_ratio is
an indicator of the combination of the benefit and the
side-effect. As shown in the algorithm
Mini_Func_Call, we select the one whose rebate_ratio
value is the largest when we inline a function, in this
way, we can get more performance improvement than
inlining other functions. If a function has inlined other
functions, its code size may increases, the side-effect
of being inlined enlarges, its rebate_ratio decreases to a

root

(main()

)

w1* w 3 w2

v 3
v 2

w1

* w4

v 4

B' (

root)

= B (r oo t)+ w1* B (f1)

root

(main()

)

w1 w2

v 1 v

2

w3 w 4

v 3 v

4

root

(main()

)

w 1 w 2

v 1 v

2

w 3 w 4

v 3 v

4

root

(main()

)

w 1 w 2

v '1 v

2

w 4

v 4

B (v'1) = B (v1) + w 3*B (v3)

Function Inlining with Code Size Limitation in Embedded Systems 217

smaller value, which means it gives the priority of
selection to other functions.
Inside our algorithm, n represents the number of

functions. There are 3 level iteration, line 2, 11, 19 in
algorithm Loop_Node_Process and line 3, 12, 14 in
algorithm Mini_Func_Call, the worst case of the time
and space complexity of our algorithm is 3()nΟ , if there
are no circles in the graph, i. e., the graph is a family
tree, the numbers of parent and child nodes
are (log)nΟ , the time we need reduces to 2(log)n nΟ . In
the most ideal situation, when the graph degenerates to
a line, the complexity is equal to ()nΘ .
The exception of our algorithm is described as

following:
If there exists two adjacent nodes vi and vj in queue

Q, function fi has a larger rebate_ratio, when inlining
function fi, the code size is over the limit, i. e.,

1 ()

() (((,)) ())
p i

V vi

k p i i
k v parent v

B v w e v v B v L
−

= ∈

+ × >∑ ∑ (2)

So, we give up function fi and select function fj , and
we go on running until it reaches the final, but the total
performance enhancement gained from inlining
function fj to end is not as good as inlining function fi
in part of its parent nodes’ calls, this phenomena may
occur in nest. One solution to this problem is that we
derive as many sibling nodes as possible when the
above situation is detected, the newly born nodes have
the same rebate_ratio, and they join the queue Q
waiting for selection.

5. Conclusion and Future work
The small memory space of embedded processors
requires applications keep a sophisticated tradeoff
between the program code size and system
performance. Nowadays’ heuristics inlining techniques
do not meet such a demand. In this paper we present a
code optimization technique which works at the source
code level. It can minimize the number of function
calls by inlining proper subset of functions under a
code size constraint.
Like other algorithms, we need profiling to get the

exact number of functions to inline. The repetition
times in recursive loops, repeat/until and while
statements are uncertain, when processing these loops,
we give a rough estimation. Sometimes inlining
functions in these loops can give significant savings;
one of our future works is to handle this situation
precisely. Some functions which are small in size but
have many local variables may have a negative effect
on the execution time when inlined, more work will
also need to focus on solving these problems in the
near future.

Mini_Func_Call (V, E, L)

1. G (V, E)← Loop_Node_Process(V, E)
2. Q← create a queue, {queue Q (v1, v2,…vn),
 vi∈V, V = n}
 sort_queue (Q), { ,vi vj∀ ∈Q, (I < j), R (vi)
 > R (vj)}

3. while (Q is not empty)) do
4. vi← first element in Q
5. delete vi from Q
6. if

(
1 ()

() (((,)) ())
p i

V vi

k p i i
k v parent v

B v w e v v B v L
−

= ∈

+ × ≤∑ ∑)

 then

 {if code size is within constraint after
inlining function fi}

7. V←V -vi {delete node vi from the graph}
8. for (vc in child (vi)) do
9. E←E - e (vi, vc) {delete edges connected

to the child nodes}
10. end for
11. for (vp in parent (vi)) do
12. B (vp) ← B (vp)+ w (e (vp, vi)) * B (vi);
 { modify parent node’s code size}

13. update R (vp)
14. for (vc in child (vc)) do
15. E←E + e (vp, vc) { derive new edges}
16. w (e (vp, vc)) ←w (e (vp, vi)) * w (e (vi,

vc))
17. update R (vc)
18. end for
19. end for
20. sort_queue (Q)
21. end if
22. end while
23. return (V, E)

Figure 5. Algorithm mini_func_call.

References
[1] Araujo G. and Malik S., “Optimal Code

Generation for Embedded Memory Non-
Homogeneous Register Architecture,” in
Proceedings of the 8th International Symposium
on Synthesis, pp. 36-41, 1995

[2] Ayers A., Gottlieb R., and Schooler, “Aggressive
Inlining,” in Proceeding of ACM SIGPLAN
Conference on Programming Language Design
and Implementation, May 1997.

[3] Davidson J. W. and Holler A. M., “A Study of a
C Function Inliner,” Software Practice
Experience, vol. 18, no. 8, pp. 775-790, 1988.

[4] Davidson J. W. and Holler A. M., “Subprogram
Inlining: A Study of its Effects on Program

218 The International Arab Journal of Information Technology, Vol. 2, No. 3, July 2005

Execution Time,” IEEE Transactions on
Software Engineering, vol. 18, no.2, pp. 89-102,
1992.

[5] Leupers R., Code Optimization Techniques for
Embedded Processors, Kluwer Academic
Publishers, 2000.

[6] Leupers R. and Marwedel P., “Algorithms for
Address Assignment in DSP Code Generation,”
in Proceedings of IEEE/ACM International
Conference on Computer- Aided Design, 1996.

[7] Leupers R. and Marwedel P., “Function Inlining
under Code Size Constraints for Embedded
Processors,” in Proceedings of IEEE/ACM
International Conference on Computer-Aided
Design, 1999.

[8] Liao S., Devadas S., Keutzer K., and TJiang S.,
“Instruction Selection Using Binate Covering for
Code Size Optimization,” in Proceedings of the
International Conference on Computer-Aided
Design, pp. 393-399, 1995.

[9] Liao S., Devadas S., Keutzer K., Tjiang S., and
Wang A., “Storage Assignment to Decrease Code
Size,” in Proceedings of Programming Language
Design and Implementation, 1995.

[10] Liem C., May T., and Paulin P., “Instruction-Set
Matching and Selection for DSP and ASIP Code
Generation” in Proceedings of the European
Design and Test Conference, pp. 31-37, 1994.

[11] Muchnik S. S., Advanced Compiler Design and
Implementation, Morgan Kaufmann Publishers,
1997.

[12] Sudarsanam A. and Malik S., “Memory Bank and
Register Allocation in Software Synthesis for
ASIPs,” in Proceedings of the International
Conference on Computer-Aided Design, pp. 388-
392, 1995.

Xinrong Zhou is an assistant
professor at the Department of
Computer Science, Abo Akademi
University, Finland and an associate
professor at the Computer
Engineering Department, Huazhong
University of Science and

Technology, China. He received his PhD degree in
computer engineering from Huazhong University of
Science and Technology, 1997. He was also a visiting
professor at the University of Nebraska-Lincoln in
2003. Dr. Zhou is a member of IEEE, TFCC and CFTS.
He has more than 8 years of experience in computer
architecture research area, especially on storage system.
He is an associate director of National Storage Lab,
China. His current research interests are embedded
systems and grid computing.

Johan Lilius is the director of
Computer Science Department, Abo
Akademi University, Finland. He
leads the Embedded Systems Lab in
Turku Centre for Computer Science
(TUCS). His research interests cover
a variety of topics. In general, he

leads the research in state-based modeling techniques
and their use in the design of embedded systems in the
department. Currently, his research directions focus on
UML and its use in the design of correct embedded
systems.

Lu Yan is a research fellow at the
Distributed Systems Design Lab,
Turku Centre for Computer Science
(TUCS) and a PhD fellow at the
Department of Computer Science,
Abo Akademi University, Finland.
He received his BSc in computer

science from Beijing University, China in 2000 and his
MSc in computer science from Abo Akademi
University, Finland in 2002. He was a visiting
professor of ESIGELEC (École Supérieure
d'Ingénieurs généralistes) and ESC Rouen (École
Supérieure de Commerce de Rouen), France in 2004.
He is a member of IEEE, BCS and FME. His current
research interests include pervasive and global
computing.

