..............................
            ..............................
            ..............................
            
Speed up of Reindexing in Adaptive Particle Swarm Optimization
        
         Palette re ordering is a class of pre processing  me thod with the objective to  manipulate the palette index such that 
the  adjacent  symbols  are  assigned  close  indices  in  the  symbol  space,  thus  enhancing  the  compressibilit y  of  the  image  with 
many lossless compressors. Finding an exact reorder ed palette would certainly be exhaustive and computationally complex. A 
solution  to  this  NP  hard  problem  is  presented  by  us ing  an  Adaptive  Particle  Swarm  Optimization  (APSO)  to  achieve  fast 
global  convergence  by  maximizing  the  co occurrences .  A  new  algorithm  with  improved  inertia  factor  is  presented  here  to 
accelerate  the  convergence  speed  of  the  reindexing  scheme.  In  this  algorithm,  the  key  parameter  inertia  weight  is  formulated 
as a factor of gradient based rate of particle conv ergence. Experimental results assert that the propo sed modification helps in 
improving APSO performance in terms of solution qua lity and convergence to global optima. 
  
Key  words : Reindexing,  palette indexed  image,  cross  entropy,  r ate  of  particle  convergence  (k),  improved  inertia  weight 
adaptive particle swarm optimization.   
Received April 3, 2013; accepted November10, 2014;  published online March 19, 2015 
 
  
1. Introduction 
A  colour-mapped  (pseudo-colour)  image  is  composed  
of  colour  information  contained  in  a  look-up  table  and 
pixel  values  that  are  indices,  which  point  to  colou r 
values  in  the  look-up  table.  In  most  computer  
applications,  images  are  used  to  help  stimulate  hum an 
visual  perception.  A  true  color  image  is  a  matrix  o f 
pixels,  each  consisting  of  red,  green  and  blue  colo r 
triplets.  Each  component  (
Ri,  Gi, Bi)  triplet  has  a  range 
between  0  and  255  and  is  represented  with  a  byte. 
Since,  a  color-mapped  image  utilises  approximately  
one  third  of  memory  space  of  its  corresponding  true-
colour  representation,  colour-mapped  images  are  use d 
as  user  interface  elements  of  most  windowing 
operating systems
. 
A  color-quantized  image  is  generally  represented 
with  a  color  index  map  each  element  of  which  serves  
as  an  index  to  select  a  color  from  a  predefined  set   of 
colors  to  represent  the  color  of  a  pixel  in  the  ima ge. 
The  predefined  set  of  colors  is  called  a  palette.  T o 
reduce  the  size  of  a  color-indexed  image  further, 
lossless  compression  techniques  are  generally  used 
because the index used to pick a particular palette  color 
must be exact in decoding. A minor difference betwe en 
two index values may result in a serious color shif t. 
In  a  standard  image  coding  scenario,  pixel-to-pixel  
correlation  nearly  always  exists  in  the  data,  espec ially 
if the image is a natural scene. This correlation i s what 
allows  predictive  coding  schemes  (e.g.,  DPCM)  to 
perform  efficient  compression.  In  a  color  mapped 
image,  the  values  stored  in  the  pixel  array  are  no 
longer  directly  related  to  the  pixel  intensity.  For   each 
pixel in the image, only the index of the correspon ding color  needs  to  be  stored.  Two  color  indices  which  a
re 
numerically  adjacent  (close)  may  point  to  two  very 
different  colors.  The  correlation  still  exists,  but   only 
via  the  color  map.  The  efficiency  of  a  lossless 
compression algorithm for indexed images may greatl y 
depend  on  the  assignment  of  indexes  in  the  relative  
lookup table [2].   Palette  reordering  is  a  well-known  and  very 
effective  approach  for  improving  the  compression  of  
color-indexed  images.  Highly  compressed  palettized 
images  are  needed  in  many  applications  such  as  game  
cartridges,  computer  graphics  and  World  Wide  Web 
(WWW) on-line services.  The  bottleneck  of  this  solution  is  the  intrinsic 
inefficiency  to  numerically  optimize  the  palette  re-
indexing. If the optimal palette configuration is s ought, 
the computational  complexity  involved  would  be  high . 
As  a  matter  of  fact,  a  table  of 
M  colors  corresponds  to 
M! Configurations [26]. Clearly, this exhaustive sea rch 
is  impractical  and  thus  transforms  to  an  NP  hard 
problem.  
In  typical  applications  where  the  search  space  is 
large  and  multidimensional,  prior  information  about  
the  function  is  not  available  and  traditional 
mathematical  techniques  are  not  applicable.
 Global 
optimization  is  a  NP  complete  problem  and  heuristic      
            [1] Al-Hassan W., Fayek M., and Shaheen S., PSOSA: An Optimized Particle Swarm Technique for Solving the Urban Planning Problem, in Proceedings of the International Conference on Computer Engineering and System , Cairo, Egypt, pp. 401-405, 2006.
[2] Arnavut Z. and Sahin F., Lossless Compression of Color Palette Images with One Dimensional Technique, the Journal of Electronic Imaging , vol. 15, no. 2, pp. 1-11, 2006.
[3] Battiato S., Gallo G., Impoco G., and Stanco F., An Efficient Re-Indexing Algorithm for Color- Mapped Images the IEEE Transactions Image Processing , vol. 13, no. 11, pp. 1419-1423, 2004.
[4] Battiato S., Rundo F., and Stanco F., Self Organizing Motor Maps for Color-Mapped Image Re-Indexing, the IEEE Transactions Image Processing , vol. 16, no. 12, pp. 2905- 2915, 2007.
[5] Clerc M., Think Locally, Act Locally: The Way of Life of Cheap-PSO, Technical report, available at: http://clerc.maurice.free.fr/pso/, la st visited 2001.
[6] De P., Kroese D., Mannor S., and Rubinstein R., A Tutorial on the Cross-Entropy Method, in Proceedings of Annuals of Operation Research , Germany, pp. 19-67, 2005.
[7] Eberhart R. and Shi Y., Particle Swarm Optimization: Developments, Applications and Resources, in Proceedings of IEEE Congress on Evolution Computation , Seoul, Korea, pp. 81-86, 2001.
[8] Gao Y., An X., and Liu J., A Particle Swarm Optimization Algorithm with Logarithm Decreasing Inertia Weight and Chaos Mutation, in Proceedings of International Conference on Computational Intelligence and Security , Suzhou, China, pp. 61-65, 2008.
[9] Ghali N., El-Dessouki N., Mervat N., and Bakrawi L., Exponential Particle Swarm Optimization Approach for Improving Data Clustring, the International Journal of Electrical and Electronics Engineering , vol. 3, no. 6, pp. 208-212, 2009.
[10] Hook J., Sahin F., and Arnavut Z., Application of Particle Swarm Optimization for Traveling Salesman Problem to Lossless Compression of Color Palette Images, in Proceedings of IEEE SMC System of System Engineering , Singapore pp. 1-5, 2008.
[11] Hook J., Sahin F., and Arnavut Z., Improved Lossless Compression of Color Palette Images by Re-indexing with Particle Swarm Optimization, in Proceedings of Soft Computing , Computing with words and Perception in System Analysis, Decision and Control , Famagusta, Cyprus, pp. 1- 4, 2009.
[12] Hu J., Xu J., Wang J., and Xu T., Research on Particle Swarm Optimization with Dynamic Inertia Weight, in Proceedings of the International Conference on Management and Service Science , Wuhan, China, pp. 1-4, 2009.
[13] Hu X., Eberhart R., and Shi Y., Recent Advances in Particle Swarm, in Proceedings of the Congress on Evolution Computation , Oregon, USA, pp. 90-97, 2004.
[14] Kennedy J. and Eberhart R., Particle Swarm Optimization, in Proceedings of IEEE International Conference on Neural Networks , Perth, Western Australia, pp. 1942-1948, 1995.
[15] Liu C., Ouyang C., Zhu P., and Tang W., An Adaptive Fuzzy Weight PSO Algorithm, in Speed up of Reindexing in Adaptive Particle Swarm Optimization 409 Proceedings of the 4th International Conference on Genetic and Evolution Computing , Shenzhen, China, pp. 8-10, 2010.
[16] Li H. and Gao Y., Particle Swarm Optimization Algorithm with Exponent Decreasing Inertia Weight and Stochastic Mutation, in Proceedings of the 2 nd International Conference on Information and Computing Science , Manchester, UK, vol. 1, pp. 66-69, 2009.
[17] Menon N. and Venkateswaran A., On Ordering Color Maps for Lossless Predictive Coding, the IEEE Transactions Image Processing, vol. 5, no. 11, pp. 1522-1527, 1996.
[18] Niraimathi P., Sudhakar M., and Bhoopathy K., Efficient Reordering Algorithm for Color Palette Image using Adaptive Particle Swarm Technique, the Applied Soft Computing , vol. 12, no. 8, pp. 2199-2207, 2012.
[19] Semary N., Hadhoud M., Abdul-Kader H., and Abbas A., Novel Compression System for Hue- Saturation and Intensity Color Space, the International Arab Journal of Information Technology , vol. 10, no. 6, pp. 546-552, 2013.
[20] Pei S., Chuang Y., and Chuang W., Effective Palette Indexing for Image Compression using Self-organization of Kohonen Feature Map, the IEEE Transactions Image Processing , vol. 15, no. 9, pp. 2493-2498, 2006.
[21] Peram T., Veeramachaneni K., and Mohan C., Fitness-Distance-Ratio Based Particle Swarm Optimization, in Proceedings of IEEE Swarm Intelligence Symposium , Indiana, USA, pp. 174- 181, 2003.
[22] Pinho A. and Neves A., A Note on Zeng s Technique for Color Reindexing of Palette-Based Images, the IEEE Signal Processing letters , vol. 11, no. 2, pp. 232-234, 2004.
[23] Pinho A. and Neves A., Survey on Palette Reordering Methods, the IEEE Transactions Image Processing , vol. 13, no. 11, pp. 1411- 1418, 2004.
[24] Pinho A. and Neves A., On the Relation between Memon s and the Modified Zeng s Palette Reordering Methods, the Image Vision Computing , vol. 24, no. 5, pp. 534-540, 2006.
[25] Sahin F. and Devasia A., Distributed Particle Swarm Optimization for Structural Bayesian Network Learning, Swarm Intelligence: Focus on Ant and Particle Swarm Optimization: I Tech Education and Publishing , Vienna, pp. 505-532, 2007.
[26] Sayood K., Lossless Compression Handbook , Academic New York, USA, 2002.
[27] Shi X., Liang Y., Lee H., Lu C., and Wang Q., Particle Swarm Optimization-based Algorithms for TSP and Generalized TSP, the Information Processing Letters , vol. 103, no. 5, pp. 169-176, 2007.
[28] Shi Y. and Eberhart R., A Modified Swarm Optimizer in Proceedings of IEEE International Conference of Evolution Computation , Anchorage, Alaska, 1998.
[29] Shi Y. and Eberhart R., Fuzzy Adaptive Particle Swarm Optimization in Proceedings of IEEE Congress on Evolutionary Computation , Seoul, Korea, pp. 101-106, 2001.
[30] Suganthan P., Particle Swarm Optimiser with Neighborhood Operator, in Proceedings of IEEE Congress on Evolutionary Computation , Washington, USA, pp. 1958-1962, 1999.
[31] Trelea I., The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection, the Information Processing Letters , vol. 85, no. 6, pp. 317-325, 2003.
[32] Yang C., Cheng Y., and Chuang L., A Novel Chaotic Inertia Weight Particle Swarm Optimization for PCR Primer Design, in Proceedings of the International Conference on Technology and Applications of Artificial Intelligence , Hsinchu, Taiwan, pp. 373-378, 2010.
[33] Zhou Z. and Shi Y., Inertia Weight Adaption in Particle Swarm Optimization Algorithm Advances in Swarm Intelligence, in Proceedings of the 2 nd International Conference , ICSI , Chongqing, China, pp. 71-79, 2011. Niraimathi Ponnusamy graduated from Bharath University, India and received her MTech in VLSI design. She is a faculty member in the Department of electronics and eommunication engineering, MIT Campus Anna University. Her research areas include image processing, soft computing, VLSI and signal processing algorithms. Bhoopathy Krishnaswamy completed his doctoral degree from IIT Madras. He is presently working as Professor, ECE Department, in MIT campus, Anna University, India. His areas of interest include signal processing, image processing and network security.