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Abstract: With the advancement in internet technology, augmentation in regular data generation has been amplified at a drastic 

level. Several different industries, for instance hospitality, defense, railways, health care, social media, education, etc., are 

creating and crafting different and several types of raw and processed data at a significant level, whereas, each of them has their 

own unique reason to shelter and call their data imperative and crucial. Such large and huge amount of data needs some space 

to get saved and secured, this is what Big Data is. A Data Stream Processing Technology (DSPT) is the significant mechanism 

and the mainstay for compiling and computing the large amount of data as well as the way to collect and process the raw data 

to call it information. There are varieties of DSPT like Apache Spark, Flink, Kafka, Storm, Samza, Hadoop, Atlas.ti, Cassandra, 

etc. This paper aims at comparing the five well- known and widely used open source big data DSPT (i.e., Apache Spark, Flink, 

Kafka, Storm, and Samza). An extensive comparison will be performed based on 12 different yet interconnected standards. A 

matrix has been designed through which five different experiments were executed, based on which the juxtaposition will be 

prepared. This paper summarizes an extensive study of open source big data DPST with a practical experimental approach in a 

well-controlled and sophisticated environment. 
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1. Introduction 

Since 1991, the date when the internet was publicly 

available, the growth in data production has reached its 

extent [1, 2]. To process and analyze such a giant amount 

of data, Big Data Analytics has been introduced, which 

has become a significant and key method to analyze, 

scrutinize, examine, and produce such enormous raw 

data into valuable information [3]. The term “Big Data” 

exactly utilize to imprints the volume, variety, velocity, 

and veracity of data which is grim to process using 

traditional data processing mechanisms [4, 5]. 

Processing of data is a critical task [6]. There are 

several reasons that could lead to data loss and 

tampering, which leads to conferring about data security, 

which is alternatively a bulging factor that needs 

immense concern [7, 8]. In Big Data, data processing has 

been achieved by two major processing 

methods/frameworks, that is, native streaming and 

micro-batching [9]. In simple terms, native streaming is 

the data processing mechanism that processes the data as 

soon as it arrives without waiting for others [10]. 

However, in the micro-batching mechanism (another 

name Fast Batching), the incoming records are batched 

together and then processed as a diminutive batch with a 

delay of a few seconds [11]. The considered open-source 

Data Stream Processing Technology (DSPT) (i.e., 

Apache Spark, Flink, Kafka, Storm, Samza) somehow  

 

uses one of those data processing mechanisms in order 

to produce the relevant outcome [12]. 

Real-Time Distributed Stream Processing Models 

(RT-DSPM) can benefit traffic observing applications 

for digital protection and danger identification [13]. 

Current interruption discovery and avoidance 

frameworks are not compelling, on the grounds that 85% 

of dangers require a long time to be identified and as long 

as 123 hours for a response after identification to be 

performed. Advanced RT-DSPM for security basic 

applications is required and in the future with the 

progression of the world wide web [14]. To meet these 

necessities, processing systems have been projected to 

perform distributed processing. These open-source 

systems can characterize custom stream processing 

applications for explicit cases [15]. These general 

purpose platforms offer an Application Programming 

Interface (API), adaptation to internal failure, and 

versatility for stream processing [16, 17]. 

This paper works on the investigation of five open-

source DSPT by performing practically applied 

experiments on the foundation of a matrix system 

developed on the basis of five exclusive parameters, 

which are: 

1. Saturation level. 

2. Scalability. 

3. Processor/resources consumption. 

4. Processing rate/throughput. 
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5. Fault tolerance. 

In the end, an in-depth comparison comprises twelve 

parameters; a juxtaposition has been prepared in order to 

satisfy an individual in a one-shot view that which DSPT 

would be compatible and capable enough to be utilized 

in his data processing needs [18]. 

The major research question behind this study is to 

practically corroborate the most efficient open source 

DSPT, as now a day in alpha generation such tools are 

widely and extensively utilized in the Internet of Things 

(IoT), Payment gateways, servers etc.  

This paper works on the investigation of five open-

source DSPT by performing practically applied 

experiments on the foundation of a matrix system 

developed on the basis of five exclusive parameters, 

which are: 

1. Saturation level. 

2. Scalability. 

3. Processor/resources consumption. 

4. Processing rate/throughput. 

5. Fault tolerance. 

In the end, an in-depth comparison comprises twelve 

parameters; a juxtaposition has been prepared in order to 

satisfy an individual in a one-shot view that which DSPT 

would be compatible and capable enough to be utilized 

in his data processing needs [19]. 

2. Problem Statement and Purpose of Study 

Due to the vast expansion in data parallel to innovation 

in modern technology, it is vital to perform critical 

analysis on such tools and techniques that help in 

processing the vast amount of data. An enormous 

number of articles have been published that explain and 

provide vide, eclectic, and comparative information for 

the major open-source data stream processing 

frameworks. Our research imprints the state-of-the-art 

experimental comparative study to identify each DSPT 

with its properties. 

3. Literature Study 

Assuncao et al. [4] presented the study which discusses 

advancements and enhancement in big data techniques 

for stream data processing in terms of performance, data 

structure utilized and information state. This paper 

features principal target distribution channels for 

continuous stream handling research progressively data 

warehousing to produce fundamental and huge 

information applications. Liu and Buyya [13] 

Furthermore, implementation problems alongside 

created apparatuses and assessment confirmations for 

constant stream handling in completely referenced 

application areas are also discussed. Mehmood and 

Anees [16] proposes a four-layer empowering 

foundation involving a data stream processing 

framework for IoT applications. In addition, the authors 

assessed the performance of the five generally known, 

and reasonable, data stream processing systems. 

Supposedly, these five pieces of middleware uphold 

every one of the fundamental highlights of IoT 

applications. On the side of contention, a correlation 

with other existing innovations has been introduced. 

Ounacer et al. [17] presented a rigorous study based on 

a scientific categorization that could work with the 

correlation of various presented stream handling 

systems. In light of this scientific classification, the 

author presented an outline of four open-source stream 

handling structures. Salem [19] embraces an 

understanding of the elements that must be thought while 

choosing a stage, given a particular use case. For 

instance, Flink is a decent decision in the event that mind 

boggling stream handling is required. Nonetheless, 

Spark Streaming is a fuller grown project and has a 

greater local area. Storm is likewise a developed 

undertaking and can give better inertness with fewer 

limitations, yet can't ensure state consistency. 

Zubarogglu and Atalay [27] imprints the relative 

outcomes around three stream handling structures, 

including: Apache Spark, Flink, and Storm. This study 

changes the Yahoo streaming benchmark to make it 

work in a multi-hub climate and gives results about the 

immersion level of every system. The immersion level is 

basically the most extreme streaming burden that the 

structures could process immediately toward the 

completion of the interaction. Likewise, a few 

discoveries for tuning every one of the systems for the 

ideal presentation are introduced. Finally, the asset 

utilization and adaptability of the systems are discussed. 

Soumaya et al. [20] Amine introduce a cutting edge 

concerning various ideas, which prompted leading a 

careful correlation of information about stream handling 

systems. The principal objective behind this assessment 

is to show that enormous information design depends on 

batch handling, which can't handle information 

progressively. Storm was chosen as an instrument for 

information handling (as a result of this careful 

correlation was recommended because open source 

allows for constant handling with exceptionally low 

inactivity). Grebovic et al. [6] one more connexion for 

constant handling structures was likewise led to 

recommend another production wherein Artificial 

Intelligence (AI) and Machine Learning (ML) were 

utilized to work with the handling in real time. 

4. Proposed Methodology 

The experiment has been conducted on the following 

open source big Data Stream Processing Tools (DSPT) 

on the basis of 12 parameters defined in step 1. The 

descriptive evaluation would be on the basis of twelve 

different yet interconnected parameters discussed above. 

Subsequently, in this work, the experimental method has 

been utilized in order to conduct the experiments and 

tests, to compare the results, and to know the 
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performance and accuracy of the Apache Spark, Flink, 

Kafka, Storm and Samza as shown in Figure 1. The 

whole scenario has five different ways of experiments. 

The experiments are performed in an environment with 

a total of eleven different working machines that 

includes one master and ten slaves/nodes each has 

minimum configuration i.e., 12 GB of RAM and intel 

core i5-3230m at 2.60ghz. The latest version of Linux 

Ubuntu operating system and Java has been utilized 

connected with a 2Gbps Ethernet. This summarizes the 

methodology of experiments and testing of the data 

streaming technologies in a well-controlled and 

sophisticated environment. The datasets are freely 

download from GitHub and UNSW-NB 15. This dataset 

has several types of attacks and classes. The conducted 

research is produced on the analysis of data stream 

models hence such datasets has been chosen which can 

stress-out the systems more efficiently. 

 

Figure 1. Overview of methodology framework. 

 

5. Experiments and Results 

 Experiment 1: Injection of the maximum number of 

events/packets that the system could process per 

second without causing any delay or deferral, which 

signifies the level of saturation of a system [18, 24]. 

This experiment represents the high cluster results of 

the declared and professed DSPT’s. The scenario of 

the experiment consists of ten machines, each of 

which is utilized in one portion (i.e., five nodes). 

Whereas the master machine circulates the 

predefined clusters/packets/events to all the DSPT’s 

at the same time, which are installed on apiece 

machine individually. Because the configuration of 

all the nodes is set as discussed (i.e., minimum), and 

the DSPT’s configuration settings are kept on 

default, the produced output imprints the meticulous 

results. 

 

Figure 2. Graph representing processed events. 

The presented graph (Figure 2) describes the high-

flow projection of events to analyze the data handling 

and processing capabilities of a DSPT(s).  

 Results: While the events were injected, the halts 

imparted by the data stream processing model are 

shown in the form of a graph. It can be seen that the 

best results are presented by Apache Flink. 
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Continuing on, Spark and Samza has also shown their 

efficiency. This is a motley outcome, as while 

injecting the events with no parallel load, the halts 

were more or less equal to zero, whereas with the 

increment of parallel load, the halts were increased. 

So, to present firm results, the executed experiment is 

an amalgamation of 0 parallel load, >2!>4 parallel 

load, and >5!>7 parallel load. 

 Experiment 2: Injection of nodes simultaneously to 

identify the scalability of a system [21]. Through this 

experiment, the performance is judged, which would 

vary while changing the default configuration at the 

performance stage. The experimental environment 

remains the same as mentioned in experiment no. 1. 

This experiment represents the scalability of the 

system. This experiment corroborates the competency 

of a system which is analyzed by fluctuating its 

clusters by adding and removing nodes. 

 

Figure 3. Identifying scalability of systems. 

The presented line chart (Figure 3) describes the 

projection of events with varying cluster sizes to analyze 

the range of compatibility of a DSPT. 

 Result: This study identifies the increase in the 

number of events processed per second against a 

verified number of cluster sizes. There is a vast, 

comparable variation in the systems. Significantly, 

the highest scale-up ratio is obtained by Storm, 

whereas the least one is scored by Samza. 

 Experiment 3: Consumptions of Central Processing 

Unit (CPU) and other fertile resources in a machine 

is a vital aspect to be tartan in a system [20]. This 

experiment signifies the consumption of resources 

(like CPU, memory, and network) whilst the DSPT’s 

are kept on to achieve optimal performance as shown 

in Table 1. The testing environment is established 

with a four test matrix approach, whereby the 

beginning, i.e., 0, is the base matrix and 6 is the 

highest one. After each test, an addition of two nodes 

would be made to enhance the work load [21, 22]. 

The DSPT’s are set at their best-default configuration 

to sustain impartiality and promote fair test 

outcomes. 

 

Figure 4. Determining network resources consumption. 

The data transfer while the systems were kept at their 

optimal conformation is measured in Megabytes per 

second. 

Table 1. CPU Usage at different packet rates. 

Traffic CPU 

Spark Flink Storm Kafka Samza 

1000 16 12 28 26 25 

1400 19 16~17 31 29 29~31 

1800 23~25 20 36~39 34 36 

2200 28 26 43 38 36~38 

2600 31 28~30 49 42 44 

3000 36 32-37 52~55 47~51 49 

3400 40 39~42 63 55 52~56 

3800 45~49 44 66~68 59~62 60 

4200 54 49~52 71 68 64 

4600 59~61 58 76 71~74 71 

5000 74+ 64+ 84+ 75~80+ 80+ 

Analysing the CPU consumption is projected in 

percentage, whilst the systems were kept at their optimal 

configuration as demonstrated in Table 1. 

 

Figure 5. Determining memory consumption. 

Investigating the memory consumption in 

percentage, whilst the systems were kept at their optimal 

configuration. 
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 Result: The experiment no. 2 shepherded entails of 

three graphs, concluding with the best-in- class 

recital projected by Samza, Flink, and sustained by 

Spark, Kafka, and Storm. The tests were carried out 

using applied-practical approach, where each DSPT 

was installed on a single node machine with the 

default configuration. Cumulatively in Figure 4, 5, 

and 6 the test results signify the Network 

consumption, CPU consumption, and Memory 

consumption where a single node machine was 

utilized to operate with 0, 2, 4, 6 work load 

respectively. The network consumption plays a vital 

role to analyses a systems performance, the Figure 4 

signifies a rational and lucid intake of network 

bandwidth by Samza, relatively CPU and memory 

consumption also dictates a system decency. The 

whole experimental scenario was occupied by the 

state-of-the-art data streaming model of apache. 

 Experiment 4: The availability of a system is a 

significant and essential factor [23]. The stream 

processing system should have the capability to 

recover rapidly from any hazardous and unwanted 

failure without effecting the overall fiasco [24]. This 

experiment indicates and handles the fault tolerance 

factor, allowing us to investigate the capability of 

DSPT’s as displayed in Table 2. There could be a 

large number of reasons leading to failure, such as 

network failure, node failure, software catastrophe, 

etc. The paper consists of five different types of 

systems, where one uses micro-batch processing and 

the other uses stream data processing to practice the 

data. This experiment uses a message broker 

subscription service of Apache Kafka (latest version) 

[25]. These messages will be injected to analyze the 

fault tolerance capability of DSPT‘s. 

Table 2. Categorized packet loss at different traffic rate. 

Traffic Rate TCP UDP 

Spark Flink Storm Kafka Samza Spark Flink Storm Kafka Samza 

1000 4 <2 9 6 5 4 2 12 7 4 

1400 5-7 3 12 11-13 9 7 4 15 14 12 

1800 12 9 17 14 <9 9 6 17 11 <15 

2200 11-14 12 21 <24 <19!<14 11 9 22-25 16 19 

2600 18 16 35 31 29 14 15 26 18 18 

3000 21 18-20 41 36 31-33 16 18 29-31 21 23 

3400 33 25 52-56 39-41 39 19-22 21 39-41 25 28 

3800 38 29-33 59-61 49 44 24 22-24 44 29-31 30 

4200 43 37 65 52 48-50 26 28 52 37 39 

4600 44-46 41 68-71 55 53 28 33 66 39-41 44 

5000 49 44 74 58 52 31 36-38 72 49 48-51 

The above graph (Figure 6) represents the calculated 

percentage of data loss happened while transmitting the 

events/message stream into the system. 

 

Figure 6. Representation of transmitted data loss. 

 Result: The experiment shows the system behavior 

when the transmission of events is projected and a 

predefined fault occurs, that is, fluctuation in network 

bandwidth and node failure occur. The presented 

Figure 7 signifies the minimum loss of data handled 

by the system. We obtained the result with a 98% 

confidence interval. 

 

Figure 7. Throughput result when messages injected per minute. 

 Experiment 5: The performance of the system in 

terms of recital throughput is another determining 
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factor [27]. This experiment was conducted with the 

same data set applied in experiment number 4. The 

scenario of the experiment is as follows: the data sets 

are injected into the system in totality and will 

replicate the same as and when necessary [26]. The 

replication of data sets plays a vivacious role as the 

throughput can be judged more accurately when the 

processing rate and delivery rate are calculated with 

the utmost stress and load [7, 9].  

This experiment will be performed on five different yet 

LAN connected machines with the discussed basic 

configurations. 

 Result: The executed experiment declares the 

significant outcomes, which helps to understand the 

data stream processing systems' behavior and 

processing clout under various circumstances. Figure 

8 demonstrates the processing power of a system 

with and under normal circumstances, whereas when 

the working environment significantly vicissitudes, a 

vast change in data processing occurs. In both 

situations, the performance of Apache Flink has its 

own denotations and dominance. As discussed 

above, the genuine performance of any system 

resides in its patience level. The same methodology 

has been applied here by adding two stress factors, 

i.e., replicating the events and fluctuating the systems 

by turning off or restarting or by affecting the 

bandwidth of the network. 
 

 

Figure 8. Throughput result with replication messages and added 

stress load. 

Table 3. Demonstrating parameterized comparison among DSPT’s after analysis. 

   Open-source DSPT 

Sr. No. Parameters Spark Flink Storm Kafka Samza 

01 Architecture Master-Slave Kappa [Four layered 

architecture] 

Kappa [Four layered 

architecture] 

Cluster Compatible [Re plicate 

every change] 

02 Processing Micro-Batch Hybrid Hybrid Streaming High 

03 Fault 
Tolerance 

Compatible Compatible [Re ceives 
programs] 

Compatible [Re ceives 
programs] 

Compatible [R eplica] Fourth 

04 Latency <1 second High High Good Compatible 

05 Throughput Fifth Second Second Third 1024 MB 

06 Storage Compatible Compatible Compatible Compatible Java and Scala 

07 Inbuilt 

memory 

300 MB 1000 MB 1000 MB Depends upon system 

configuration 

Compatible 

08 API 
programming 

Java, Python 
and Scala 

Java and Scala Java and Scala Java and Scala Highly 

09 Data mobility Compatible Compatible Compatible Compatible True 

10 Flexibility Good Fair Fair Less Open 

11 Platform 
compatibility 

True True True True Compatible [Re plicate 
every change] 

12 Source model Open Open Open Open High 

 

6. Research Findings and Closure Discussion 

The conducted experiments explicitly imprints 

comparison of several different data stream processing 

systems out of which each has its own capability and 

limitation. The conducted experiments prove and display 

the working and performing scenarios of the open source 

data stream processing systems that has been 

demonstrated in Table 3 as a whole. The projected 

results and outcomes are produced at a 98% confidence 

interval. When the data events were projected with 

replication, the performance objects modelled by 

different frameworks explicitly display a variation of 

processing in comparison to when the replication was 

not performed. Being Storm, the most mature data 

streaming tool, produces the best in class outcome, as 

shown in Figures 7 and 8. The resource consumption is 

another critical aspect, which needs crucial undertaking. 

The executed test no. 3 imprints this facet by 

demonstrating three separate graphs, to display the 

network, memory, and CPU core consumption in 

percentage. The result displays Flink, most suitable for 

resource utility. The inclusive experimentation 

methodology dictates an overall appropriate 

performance by Samza. However, when maturity and 

market is defined and debated, the most suitable open 

source data streaming framework anticipated would be 

Apache Spark and Apache Flink. 

7. Contribution towards Society  

This research presents an open source data streaming 

system with an experimental approach to signifies the 

best operable and suitable data processing tool for 
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several platforms (like ML, Intrusion Detection System 

(IDS), Honeypot, etc.,) to impart and improve the 

processing speed. The conducted experiments signify 

Apache Flink and Spark the most advanced and suitable 

tools to satisfy today’s generation need of data 

processing. 

8. Conclusions  

There are many existing and arising applications that 

demand ongoing handling of high-volume 

heterogeneous information streams. There are also many 

open-source and exclusive frameworks for information 

stream handling. Removing significant and opportune 

bits of knowledge from unbounded information is 

extremely difficult. The enormous number of accessible 

frameworks is great but represents a significant test as 

far as choosing the right parts or handling systems for 

various use cases. Understanding the necessary 

capacities of stream structures is fundamental in settling 

on the right plan or utilized on decision. Information that 

is accumulated progressively can turn out to be 

excessively important at the time it shows up and 

upholds significant navigation. The discussed 

frameworks arose to empower dispersed handling of 

surges of huge information. Components utilized by 

unmistakable systems to confront the difficulties 

presented by stream handling with regard to huge 

amounts of information were discussed in this work. We 

likewise depicted a scientific categorization that could 

work with the examination of various highlights 

presented by stream handling systems. In light of this 

scientific classification, we conducted descriptive 

justified experiments of five open-source stream 

handling systems. Our review gives an understanding of 

the elements that must be thought about while choosing 

a platform. This paper reports our commitments towards 

moderating these difficulties. We present an experiment 

based writing review and an investigation of the DSPT. 

9. Future Direction  

The future direction considers the results of this study 

(data streaming technology) to be utilized in order to 

improve the efficiency of data processing efficiency of 

online video conferencing portals. 
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