
946 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

An Experimental Based Study to Evaluate the

Efficiency among Stream Processing Tools

Akshay Mudgal

Faculty of Computer Applications,

Manav Rachna International Institute of

Research and Studies, India

toakshaymudgal@gmail.com

Shaveta Bhatia

Faculty of Computer Applications,

Manav Rachna International Institute of

Research and Studies, India

dydir.oe@mriu.edu.in

Abstract: With the advancement in internet technology, augmentation in regular data generation has been amplified at a drastic

level. Several different industries, for instance hospitality, defense, railways, health care, social media, education, etc., are

creating and crafting different and several types of raw and processed data at a significant level, whereas, each of them has their

own unique reason to shelter and call their data imperative and crucial. Such large and huge amount of data needs some space

to get saved and secured, this is what Big Data is. A Data Stream Processing Technology (DSPT) is the significant mechanism

and the mainstay for compiling and computing the large amount of data as well as the way to collect and process the raw data

to call it information. There are varieties of DSPT like Apache Spark, Flink, Kafka, Storm, Samza, Hadoop, Atlas.ti, Cassandra,

etc. This paper aims at comparing the five well- known and widely used open source big data DSPT (i.e., Apache Spark, Flink,

Kafka, Storm, and Samza). An extensive comparison will be performed based on 12 different yet interconnected standards. A

matrix has been designed through which five different experiments were executed, based on which the juxtaposition will be

prepared. This paper summarizes an extensive study of open source big data DPST with a practical experimental approach in a

well-controlled and sophisticated environment.

Keywords: Big data, data streaming, real time stream processing.

Received February 5, 2023; accepted May 23, 2023

https://doi.org/10.34028/iajit/20/6/11

1. Introduction

Since 1991, the date when the internet was publicly

available, the growth in data production has reached its

extent [1, 2]. To process and analyze such a giant amount

of data, Big Data Analytics has been introduced, which

has become a significant and key method to analyze,

scrutinize, examine, and produce such enormous raw

data into valuable information [3]. The term “Big Data”

exactly utilize to imprints the volume, variety, velocity,

and veracity of data which is grim to process using

traditional data processing mechanisms [4, 5].

Processing of data is a critical task [6]. There are

several reasons that could lead to data loss and

tampering, which leads to conferring about data security,

which is alternatively a bulging factor that needs

immense concern [7, 8]. In Big Data, data processing has

been achieved by two major processing

methods/frameworks, that is, native streaming and

micro-batching [9]. In simple terms, native streaming is

the data processing mechanism that processes the data as

soon as it arrives without waiting for others [10].

However, in the micro-batching mechanism (another

name Fast Batching), the incoming records are batched

together and then processed as a diminutive batch with a

delay of a few seconds [11]. The considered open-source

Data Stream Processing Technology (DSPT) (i.e.,

Apache Spark, Flink, Kafka, Storm, Samza) somehow

uses one of those data processing mechanisms in order

to produce the relevant outcome [12].

Real-Time Distributed Stream Processing Models

(RT-DSPM) can benefit traffic observing applications

for digital protection and danger identification [13].

Current interruption discovery and avoidance

frameworks are not compelling, on the grounds that 85%

of dangers require a long time to be identified and as long

as 123 hours for a response after identification to be

performed. Advanced RT-DSPM for security basic

applications is required and in the future with the

progression of the world wide web [14]. To meet these

necessities, processing systems have been projected to

perform distributed processing. These open-source

systems can characterize custom stream processing

applications for explicit cases [15]. These general

purpose platforms offer an Application Programming

Interface (API), adaptation to internal failure, and

versatility for stream processing [16, 17].

This paper works on the investigation of five open-

source DSPT by performing practically applied

experiments on the foundation of a matrix system

developed on the basis of five exclusive parameters,

which are:

1. Saturation level.

2. Scalability.

3. Processor/resources consumption.

4. Processing rate/throughput.

https://doi.org/10.34028/iajit/20/6/11

An Experimental Based Study to Evaluate the Efficiency among Stream Processing Tools 947

5. Fault tolerance.

In the end, an in-depth comparison comprises twelve

parameters; a juxtaposition has been prepared in order to

satisfy an individual in a one-shot view that which DSPT

would be compatible and capable enough to be utilized

in his data processing needs [18].

The major research question behind this study is to

practically corroborate the most efficient open source

DSPT, as now a day in alpha generation such tools are

widely and extensively utilized in the Internet of Things

(IoT), Payment gateways, servers etc.

This paper works on the investigation of five open-

source DSPT by performing practically applied

experiments on the foundation of a matrix system

developed on the basis of five exclusive parameters,

which are:

1. Saturation level.

2. Scalability.

3. Processor/resources consumption.

4. Processing rate/throughput.

5. Fault tolerance.

In the end, an in-depth comparison comprises twelve

parameters; a juxtaposition has been prepared in order to

satisfy an individual in a one-shot view that which DSPT

would be compatible and capable enough to be utilized

in his data processing needs [19].

2. Problem Statement and Purpose of Study

Due to the vast expansion in data parallel to innovation

in modern technology, it is vital to perform critical

analysis on such tools and techniques that help in

processing the vast amount of data. An enormous

number of articles have been published that explain and

provide vide, eclectic, and comparative information for

the major open-source data stream processing

frameworks. Our research imprints the state-of-the-art

experimental comparative study to identify each DSPT

with its properties.

3. Literature Study

Assuncao et al. [4] presented the study which discusses

advancements and enhancement in big data techniques

for stream data processing in terms of performance, data

structure utilized and information state. This paper

features principal target distribution channels for

continuous stream handling research progressively data

warehousing to produce fundamental and huge

information applications. Liu and Buyya [13]

Furthermore, implementation problems alongside

created apparatuses and assessment confirmations for

constant stream handling in completely referenced

application areas are also discussed. Mehmood and

Anees [16] proposes a four-layer empowering

foundation involving a data stream processing

framework for IoT applications. In addition, the authors

assessed the performance of the five generally known,

and reasonable, data stream processing systems.

Supposedly, these five pieces of middleware uphold

every one of the fundamental highlights of IoT

applications. On the side of contention, a correlation

with other existing innovations has been introduced.

Ounacer et al. [17] presented a rigorous study based on

a scientific categorization that could work with the

correlation of various presented stream handling

systems. In light of this scientific classification, the

author presented an outline of four open-source stream

handling structures. Salem [19] embraces an

understanding of the elements that must be thought while

choosing a stage, given a particular use case. For

instance, Flink is a decent decision in the event that mind

boggling stream handling is required. Nonetheless,

Spark Streaming is a fuller grown project and has a

greater local area. Storm is likewise a developed

undertaking and can give better inertness with fewer

limitations, yet can't ensure state consistency.

Zubarogglu and Atalay [27] imprints the relative

outcomes around three stream handling structures,

including: Apache Spark, Flink, and Storm. This study

changes the Yahoo streaming benchmark to make it

work in a multi-hub climate and gives results about the

immersion level of every system. The immersion level is

basically the most extreme streaming burden that the

structures could process immediately toward the

completion of the interaction. Likewise, a few

discoveries for tuning every one of the systems for the

ideal presentation are introduced. Finally, the asset

utilization and adaptability of the systems are discussed.

Soumaya et al. [20] Amine introduce a cutting edge

concerning various ideas, which prompted leading a

careful correlation of information about stream handling

systems. The principal objective behind this assessment

is to show that enormous information design depends on

batch handling, which can't handle information

progressively. Storm was chosen as an instrument for

information handling (as a result of this careful

correlation was recommended because open source

allows for constant handling with exceptionally low

inactivity). Grebovic et al. [6] one more connexion for

constant handling structures was likewise led to

recommend another production wherein Artificial

Intelligence (AI) and Machine Learning (ML) were

utilized to work with the handling in real time.

4. Proposed Methodology

The experiment has been conducted on the following

open source big Data Stream Processing Tools (DSPT)

on the basis of 12 parameters defined in step 1. The

descriptive evaluation would be on the basis of twelve

different yet interconnected parameters discussed above.

Subsequently, in this work, the experimental method has

been utilized in order to conduct the experiments and

tests, to compare the results, and to know the

948 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

performance and accuracy of the Apache Spark, Flink,

Kafka, Storm and Samza as shown in Figure 1. The

whole scenario has five different ways of experiments.

The experiments are performed in an environment with

a total of eleven different working machines that

includes one master and ten slaves/nodes each has

minimum configuration i.e., 12 GB of RAM and intel

core i5-3230m at 2.60ghz. The latest version of Linux

Ubuntu operating system and Java has been utilized

connected with a 2Gbps Ethernet. This summarizes the

methodology of experiments and testing of the data

streaming technologies in a well-controlled and

sophisticated environment. The datasets are freely

download from GitHub and UNSW-NB 15. This dataset

has several types of attacks and classes. The conducted

research is produced on the analysis of data stream

models hence such datasets has been chosen which can

stress-out the systems more efficiently.

Figure 1. Overview of methodology framework.

5. Experiments and Results

 Experiment 1: Injection of the maximum number of

events/packets that the system could process per

second without causing any delay or deferral, which

signifies the level of saturation of a system [18, 24].

This experiment represents the high cluster results of

the declared and professed DSPT’s. The scenario of

the experiment consists of ten machines, each of

which is utilized in one portion (i.e., five nodes).

Whereas the master machine circulates the

predefined clusters/packets/events to all the DSPT’s

at the same time, which are installed on apiece

machine individually. Because the configuration of

all the nodes is set as discussed (i.e., minimum), and

the DSPT’s configuration settings are kept on

default, the produced output imprints the meticulous

results.

Figure 2. Graph representing processed events.

The presented graph (Figure 2) describes the high-

flow projection of events to analyze the data handling

and processing capabilities of a DSPT(s).

 Results: While the events were injected, the halts

imparted by the data stream processing model are

shown in the form of a graph. It can be seen that the

best results are presented by Apache Flink.

An Experimental Based Study to Evaluate the Efficiency among Stream Processing Tools 949

Continuing on, Spark and Samza has also shown their

efficiency. This is a motley outcome, as while

injecting the events with no parallel load, the halts

were more or less equal to zero, whereas with the

increment of parallel load, the halts were increased.

So, to present firm results, the executed experiment is

an amalgamation of 0 parallel load, >2!>4 parallel

load, and >5!>7 parallel load.

 Experiment 2: Injection of nodes simultaneously to

identify the scalability of a system [21]. Through this

experiment, the performance is judged, which would

vary while changing the default configuration at the

performance stage. The experimental environment

remains the same as mentioned in experiment no. 1.

This experiment represents the scalability of the

system. This experiment corroborates the competency

of a system which is analyzed by fluctuating its

clusters by adding and removing nodes.

Figure 3. Identifying scalability of systems.

The presented line chart (Figure 3) describes the

projection of events with varying cluster sizes to analyze

the range of compatibility of a DSPT.

 Result: This study identifies the increase in the

number of events processed per second against a

verified number of cluster sizes. There is a vast,

comparable variation in the systems. Significantly,

the highest scale-up ratio is obtained by Storm,

whereas the least one is scored by Samza.

 Experiment 3: Consumptions of Central Processing

Unit (CPU) and other fertile resources in a machine

is a vital aspect to be tartan in a system [20]. This

experiment signifies the consumption of resources

(like CPU, memory, and network) whilst the DSPT’s

are kept on to achieve optimal performance as shown

in Table 1. The testing environment is established

with a four test matrix approach, whereby the

beginning, i.e., 0, is the base matrix and 6 is the

highest one. After each test, an addition of two nodes

would be made to enhance the work load [21, 22].

The DSPT’s are set at their best-default configuration

to sustain impartiality and promote fair test

outcomes.

Figure 4. Determining network resources consumption.

The data transfer while the systems were kept at their

optimal conformation is measured in Megabytes per

second.

Table 1. CPU Usage at different packet rates.

Traffic CPU

Spark Flink Storm Kafka Samza

1000 16 12 28 26 25

1400 19 16~17 31 29 29~31

1800 23~25 20 36~39 34 36

2200 28 26 43 38 36~38

2600 31 28~30 49 42 44

3000 36 32-37 52~55 47~51 49

3400 40 39~42 63 55 52~56

3800 45~49 44 66~68 59~62 60

4200 54 49~52 71 68 64

4600 59~61 58 76 71~74 71

5000 74+ 64+ 84+ 75~80+ 80+

Analysing the CPU consumption is projected in

percentage, whilst the systems were kept at their optimal

configuration as demonstrated in Table 1.

Figure 5. Determining memory consumption.

Investigating the memory consumption in

percentage, whilst the systems were kept at their optimal

configuration.

950 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

 Result: The experiment no. 2 shepherded entails of

three graphs, concluding with the best-in- class

recital projected by Samza, Flink, and sustained by

Spark, Kafka, and Storm. The tests were carried out

using applied-practical approach, where each DSPT

was installed on a single node machine with the

default configuration. Cumulatively in Figure 4, 5,

and 6 the test results signify the Network

consumption, CPU consumption, and Memory

consumption where a single node machine was

utilized to operate with 0, 2, 4, 6 work load

respectively. The network consumption plays a vital

role to analyses a systems performance, the Figure 4

signifies a rational and lucid intake of network

bandwidth by Samza, relatively CPU and memory

consumption also dictates a system decency. The

whole experimental scenario was occupied by the

state-of-the-art data streaming model of apache.

 Experiment 4: The availability of a system is a

significant and essential factor [23]. The stream

processing system should have the capability to

recover rapidly from any hazardous and unwanted

failure without effecting the overall fiasco [24]. This

experiment indicates and handles the fault tolerance

factor, allowing us to investigate the capability of

DSPT’s as displayed in Table 2. There could be a

large number of reasons leading to failure, such as

network failure, node failure, software catastrophe,

etc. The paper consists of five different types of

systems, where one uses micro-batch processing and

the other uses stream data processing to practice the

data. This experiment uses a message broker

subscription service of Apache Kafka (latest version)

[25]. These messages will be injected to analyze the

fault tolerance capability of DSPT‘s.

Table 2. Categorized packet loss at different traffic rate.

Traffic Rate TCP UDP

Spark Flink Storm Kafka Samza Spark Flink Storm Kafka Samza

1000 4 <2 9 6 5 4 2 12 7 4

1400 5-7 3 12 11-13 9 7 4 15 14 12

1800 12 9 17 14 <9 9 6 17 11 <15

2200 11-14 12 21 <24 <19!<14 11 9 22-25 16 19

2600 18 16 35 31 29 14 15 26 18 18

3000 21 18-20 41 36 31-33 16 18 29-31 21 23

3400 33 25 52-56 39-41 39 19-22 21 39-41 25 28

3800 38 29-33 59-61 49 44 24 22-24 44 29-31 30

4200 43 37 65 52 48-50 26 28 52 37 39

4600 44-46 41 68-71 55 53 28 33 66 39-41 44

5000 49 44 74 58 52 31 36-38 72 49 48-51

The above graph (Figure 6) represents the calculated

percentage of data loss happened while transmitting the

events/message stream into the system.

Figure 6. Representation of transmitted data loss.

 Result: The experiment shows the system behavior

when the transmission of events is projected and a

predefined fault occurs, that is, fluctuation in network

bandwidth and node failure occur. The presented

Figure 7 signifies the minimum loss of data handled

by the system. We obtained the result with a 98%

confidence interval.

Figure 7. Throughput result when messages injected per minute.

 Experiment 5: The performance of the system in

terms of recital throughput is another determining

An Experimental Based Study to Evaluate the Efficiency among Stream Processing Tools 951

factor [27]. This experiment was conducted with the

same data set applied in experiment number 4. The

scenario of the experiment is as follows: the data sets

are injected into the system in totality and will

replicate the same as and when necessary [26]. The

replication of data sets plays a vivacious role as the

throughput can be judged more accurately when the

processing rate and delivery rate are calculated with

the utmost stress and load [7, 9].

This experiment will be performed on five different yet

LAN connected machines with the discussed basic

configurations.

 Result: The executed experiment declares the

significant outcomes, which helps to understand the

data stream processing systems' behavior and

processing clout under various circumstances. Figure

8 demonstrates the processing power of a system

with and under normal circumstances, whereas when

the working environment significantly vicissitudes, a

vast change in data processing occurs. In both

situations, the performance of Apache Flink has its

own denotations and dominance. As discussed

above, the genuine performance of any system

resides in its patience level. The same methodology

has been applied here by adding two stress factors,

i.e., replicating the events and fluctuating the systems

by turning off or restarting or by affecting the

bandwidth of the network.

Figure 8. Throughput result with replication messages and added

stress load.

Table 3. Demonstrating parameterized comparison among DSPT’s after analysis.

 Open-source DSPT

Sr. No. Parameters Spark Flink Storm Kafka Samza

01 Architecture Master-Slave Kappa [Four layered

architecture]

Kappa [Four layered

architecture]

Cluster Compatible [Re plicate

every change]

02 Processing Micro-Batch Hybrid Hybrid Streaming High

03 Fault
Tolerance

Compatible Compatible [Re ceives
programs]

Compatible [Re ceives
programs]

Compatible [R eplica] Fourth

04 Latency <1 second High High Good Compatible

05 Throughput Fifth Second Second Third 1024 MB

06 Storage Compatible Compatible Compatible Compatible Java and Scala

07 Inbuilt

memory

300 MB 1000 MB 1000 MB Depends upon system

configuration

Compatible

08 API
programming

Java, Python
and Scala

Java and Scala Java and Scala Java and Scala Highly

09 Data mobility Compatible Compatible Compatible Compatible True

10 Flexibility Good Fair Fair Less Open

11 Platform
compatibility

True True True True Compatible [Re plicate
every change]

12 Source model Open Open Open Open High

6. Research Findings and Closure Discussion

The conducted experiments explicitly imprints

comparison of several different data stream processing

systems out of which each has its own capability and

limitation. The conducted experiments prove and display

the working and performing scenarios of the open source

data stream processing systems that has been

demonstrated in Table 3 as a whole. The projected

results and outcomes are produced at a 98% confidence

interval. When the data events were projected with

replication, the performance objects modelled by

different frameworks explicitly display a variation of

processing in comparison to when the replication was

not performed. Being Storm, the most mature data

streaming tool, produces the best in class outcome, as

shown in Figures 7 and 8. The resource consumption is

another critical aspect, which needs crucial undertaking.

The executed test no. 3 imprints this facet by

demonstrating three separate graphs, to display the

network, memory, and CPU core consumption in

percentage. The result displays Flink, most suitable for

resource utility. The inclusive experimentation

methodology dictates an overall appropriate

performance by Samza. However, when maturity and

market is defined and debated, the most suitable open

source data streaming framework anticipated would be

Apache Spark and Apache Flink.

7. Contribution towards Society

This research presents an open source data streaming

system with an experimental approach to signifies the

best operable and suitable data processing tool for

952 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

several platforms (like ML, Intrusion Detection System

(IDS), Honeypot, etc.,) to impart and improve the

processing speed. The conducted experiments signify

Apache Flink and Spark the most advanced and suitable

tools to satisfy today’s generation need of data

processing.

8. Conclusions

There are many existing and arising applications that

demand ongoing handling of high-volume

heterogeneous information streams. There are also many

open-source and exclusive frameworks for information

stream handling. Removing significant and opportune

bits of knowledge from unbounded information is

extremely difficult. The enormous number of accessible

frameworks is great but represents a significant test as

far as choosing the right parts or handling systems for

various use cases. Understanding the necessary

capacities of stream structures is fundamental in settling

on the right plan or utilized on decision. Information that

is accumulated progressively can turn out to be

excessively important at the time it shows up and

upholds significant navigation. The discussed

frameworks arose to empower dispersed handling of

surges of huge information. Components utilized by

unmistakable systems to confront the difficulties

presented by stream handling with regard to huge

amounts of information were discussed in this work. We

likewise depicted a scientific categorization that could

work with the examination of various highlights

presented by stream handling systems. In light of this

scientific classification, we conducted descriptive

justified experiments of five open-source stream

handling systems. Our review gives an understanding of

the elements that must be thought about while choosing

a platform. This paper reports our commitments towards

moderating these difficulties. We present an experiment

based writing review and an investigation of the DSPT.

9. Future Direction

The future direction considers the results of this study

(data streaming technology) to be utilized in order to

improve the efficiency of data processing efficiency of

online video conferencing portals.

References

[1] Bahri M., Bifet A., Gama J., Gomes H., and Maniu

S., “Data Stream Analysis: Foundations, Major

Tasks and Tools,” Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery,

vol. 11, no. 3, pp. 1-17, 2021.

DOI:10.1002/widm.1405

[2] Carbone P., Gévay G., Hermann G., Katsifodimos

A., Soto J., Markl V., and Haridi S., Handbook of

Big Data Technologies, Springer, 2017.

https://doi.org/10.1007/978-3-319-49340-4_7

[3] Cardellini V., Lo Presti F., Nardelli M., and Russ

G., “Run-Time Adaptation of Data Stream

Processing Systems: The State of the Art,” ACM

Computing Surveys, vol. 54, no. 11s, pp. 1-36,

2022. https://doi.org/10.1145/3514496

[4] De Assuncao M., Da Silva Veith A., and Buyya R.,

“Distributed Data Stream Processing and Edge

Computing: A Survey on Resource Elasticity and

Future Directions,” Journal of Network and

Computer Applications, vol. 103, pp.1-17, 2018.

https://doi.org/10.1016/j.jnca.2017.12.001

[5] Fragkoulis M., Carbone P., Kalavri V., and

Katsifodimos A., “A Survey on the Evolution of

Stream Processing Systems,” arXiv Preprint,

arXiv:2008.00842v2, 2023.

https://arxiv.org/pdf/2008.00842.pdf

[6] Grebovic M., Filipovic L., Katnic I., Vukotic M.,

Popovic T., “Machine Learning Models for

Statistical Analysis,” The International Arab

Journal of Information Technology, vol. 20, no.

3A, pp. 505-514, 2023. DOI:

10.34028/iajit/20/3A/8.

[7] Hesse G. and Lorenz M., “Conceptual Survey on

Data Stream Processing Systems,” in Proceedings

of the IEEE 21st International Conference on

Parallel and Distributed Systems, Melbourne, pp.

797-802, 2015. DOI:10.1109/ICPADS.2015.106

[8] Hirzel M., Soulé R., Schneider S., Gedik B., and

Grimm R., “A Catalog of Stream Processing

Optimizations,” ACM Computing Surveys, vol.

46, no. 4, pp. 1-34, 2014.

https://doi.org/10.1145/2528412

[9] Isah H., Abughofa T., Mahfuz S., Ajerla D.,

Zulkernine F., and Khan S., “A Survey of

Distributed Data Stream Processing

Frameworks,” IEEE Access, vol. 7, pp. 154300-

154316, 2019. DOI:

10.1109/ACCESS.2019.2946884.

[10] Javed M., Lu X., and Panda D., “Characterization

of Big Data Stream Processing Pipeline: A Case

Study Using Flink and Kafka,” in Proceedings of

the 4th IEEE/ACM International Conference on

Big Data Computing, Applications and

Technologies, Texas, pp. 1-10, 2017.

https://doi.org/10.1145/3148055.3148068

[11] Kamburugamuve S. and Fox G., “Survey of

Distributed Stream Processing,” Technical Report,

Bloomington: Indiana University, 2016.

DOI:10.13140/RG.2.1.3856.2968

[12] Karakaya Z., Yazici A., and Alayyoub M., “A

Comparison of Stream Processing Frameworks,”

in Proceedings of the International Conference on

Computer and Applications, Doha, pp. 1-12,

2017. DOI:10.1109/COMAPP.2017.8079733

[13] Liu X. and Buyya R., “Resource Management and

Scheduling in Distributed Stream Processing

Systems: A Taxonomy, Review, and Future

Directions,” ACM Computing Surveys, vol. 53, no.

http://dx.doi.org/10.1002/widm.1405
https://doi.org/10.1145/3514496
https://doi.org/10.1016/j.jnca.2017.12.001
https://arxiv.org/pdf/2008.00842.pdf
https://doi.org/10.1109/ICPADS.2015.106
https://doi.org/10.1145/2528412
https://doi.org/10.1145/3148055.3148068
http://dx.doi.org/10.13140/RG.2.1.3856.2968
https://doi.org/10.1109/COMAPP.2017.8079733

An Experimental Based Study to Evaluate the Efficiency among Stream Processing Tools 953

3, pp. 1-41, 2020.

https://doi.org/10.1145/3355399

[14] Lobato A., Lopez M., Cardenas A., Duarte O., and

Pujolle G., “A Fast and Accurate Threat Detection

and Prevention Architecture Using Stream

Processing,” Concurrency and Computation:

Practice and Experience, vol. 34, no. 3, pp. 1-17,

2022. DOI: 10.1002/cpe.6561

[15] Lopez M., Lobato A., and Duarte O., “A

Performance Comparison of Open-Source Stream

Processing Platforms,” in Proceedings of the IEEE

Global Communications Conference

(GLOBECOM), Washington (DC), pp. 1-6, 2016.
DOI:10.1109/GLOCOM.2016.7841533

[16] Mehmood E. and Anees T., “Challenges and

Solutions for Processing Real-Time Big Data

Stream: A Systematic Literature Review,” IEEE

Access, vol. 8, pp. 119123-119143, 2020.
DOI: 10.1109/ACCESS.2020.3005268

[17] Vikash., Mishra L., and Varma S., “Performance

Evaluation of Real-Time Stream Processing

Systems for Internet of Things Applications,”

Future Generation Computer Systems, vol. 113,

pp. 207-217, 2020.

https://doi.org/10.1016/j.future.2020.07.012

[18] Ounacer S., Talhaoui M., Ardchir S., Daif A., and

Azouazi M., “A New Architecture for Real Time

Data Stream Processing,” International Journal of

Advanced Computer Science and Applications,

vol. 8, no. 11, 2017.

DOI:10.14569/IJACSA.2017.081106

[19] Ramírez-Gallego S., Krawczyk B., García S.,

Woźniak M., and Herrera F., “A Survey on Data

Preprocessing for Data Stream Mining: Current

Status and Future Directions,” Neurocomputing,

vol. 239, pp. 39-57, 2017.

https://doi.org/10.1016/j.neucom.2017.01.078

[20] Salem F., Comparative Analysis of Big Data

Stream Processing Systems, Master's Thesis,

Aalto University, 2016.

https://aaltodoc.aalto.fi/handle/123456789/21577

[21] Soumaya O., Amine T., Soufiane A.,

Abderrahmane D., and Mohamed A., “Real-Time

Data Stream Processing Challenges and

Perspectives,” International Journal of Computer

Science Issues, vol. 14, no. 5, pp. 6-12, 2017.

https://doi.org/10.20943/01201705.612

[22] Tantalaki N., Souravlas S., and Roumeliotis M.,

“A Review on Big Data Real-Time Stream

Processing and its Scheduling Techniques,”

International Journal of Parallel, Emergent and

Distributed Systems, vol. 35, no. 5, pp. 571-601,

2020. DOI:10.1080/17445760.2019.1585848

[23] Vakilinia S., Zhang X., and Qiu D., “December.

Analysis and Optimization of Big-Data Stream

Processing,” in Proceedings of the IEEE Global

Communications Conference (GLOBECOM),

Washington (DC), pp. 1-6, 2016.

DOI:10.1109/GLOCOM.2016.7841598

[24] Zhang S., He B., Dahlmeier D., Zhou A., and

Heinze T., “Revisiting the Design of Data Stream

Processing Systems on Multi-Core Processors,” in

Proceedings of the IEEE 33rd International

Conference on Data Engineering, San Diego, pp.

659-670, 2017. DOI:10.1109/ICDE.2017.119

[25] Zhang S., Zhang F., Wu Y., He B., and Johns P.,

“Hardware-Conscious Stream Processing: A

Survey,” ACM SIGMOD Record, vol. 48, no. 4,

pp. 18-29, 2020.

https://doi.org/10.1145/3385658.3385662

[26] Zhao X., Garg S., Queiroz C., and Buyya R., “A

Taxonomy and Survey of Stream Processing

Systems,” Software Architecture for Big Data and

the Cloud, pp. 183-206. 2017.

https://doi.org/10.1016/B978-0-12-805467-

3.00011-9

[27] Zubaroğlu A. and Atalay V., “Data Stream

Clustering: A Review,” Artificial Intelligence

Review, vol. 54, no. 2, pp. 1201-1236, 2021.

https://doi.org/10.1007/s10462-020-09874-x

Akshay Mudgal is a Research

Scholar at Faculty of Computer

Applications, Manav Rachna

International Institute of Research

and Studies, Faridabad, India. He has

done Master's in Computer

Applications, Master’s in Business

Administration (Information System Management),

CCNA (Network Security), and DOEACC O'. His

prioritized area of research includes Network Security,

Information Security, Big Data, and Blockchain.

Shaveta Bhatia has been awarded

her Ph.D. degree in Computer

Applications and she has completed

her Master in Computer Applications

(MCA) from Kurukshetra University.

She has 17 years of academic and

research experience and is a member

of various professional bodies like ACM, IAENG and

CSI. Her specialized domains include Mobile

Computing, Web Applications, Data Mining and

Software Engineering and guiding research scholars in

these areas.

https://doi.org/10.1145/3355399
https://doi.org/10.1109/GLOCOM.2016.7841533
https://doi.org/10.1109/ACCESS.2020.3005268
https://doi.org/10.1016/j.future.2020.07.012
https://dx.doi.org/10.14569/IJACSA.2017.081106
https://doi.org/10.1016/j.neucom.2017.01.078
http://dx.doi.org/10.1080/17445760.2019.1585848
https://doi.org/10.1109/GLOCOM.2016.7841598
https://doi.org/10.1109/ICDE.2017.119
https://doi.org/10.1145/3385658.3385662
https://doi.org/10.1016/B978-0-12-805467-3.00011-9
https://doi.org/10.1016/B978-0-12-805467-3.00011-9
javascript:;

