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Abstract: Calculating the yearly energy output, which keeps the balance between both the generation and consumption of 

electricity, is made easier with the use of wind energy production estimates for grid interfaces. Effective wind speed forecasting 

is crucial for achieving this goal. In this research, linear statistical models of prediction Generalized Autoregressive Score 

(GAS), GAS model with exogenous variable x (GASX), and Autoregressive Integrated Moving Average (ARIMA) are the models 

used to estimate wind speed accurately. Additionally, the modeling of non-linear time-series data has been done using the Non-

Linear GASX (NLGASX) statistical predictive modeling method. Additionally, the REctified Linear Unit (RELU), Softmax, 

Hyperbolic Tangent (TANH), and Sigmoid modeling approaches are used to optimize the suggested NLGASX model. In 

comparison to existing models, the suggested optimized NLGASX approach performs significantly better. In order to anticipate 

wind power, the wind power curve modeling additionally takes wind speed as an input. The estimated wind power has been used 

to determine the yearly energy. 
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1. Introduction 

Utilizing wind power is a significant aspect of the 

energy producing businesses. Transmission System 

Operators (TSO) keep the generation and usage of 

electricity in harmony. Wind power is a variable and 

non-stationary energy source. It is anticipated that a 

specialized power-saving method will account for these 

variations [10]. The cost of integrating power supply 

into the wind power, system is reduced by the use of 

wind power forecasts. For wind power forecasting, two 

techniques have been proposed. Create a wind farm 

physical model firstly to determine how climatic data 

and wind power are related. The second approach is a 

mathematical model that defines the link between 

weather forecast data and power output based on 

historic datasets using artificial intelligence and 

statistics [15]. Numerous innovative approaches have 

been proposed recently to increase prediction accuracy, 

classifying the prediction models into three groups: 

neural networks-based techniques [5, 19, 20], statistical 

models [14], and physical models [13]. The goal of the 

physical approaches, also known as analytical 

approaches, is to create a mathematical function that 

accounts for every predictor component [23]. Precise 

values of all predictions are hard to determine as the 

predictor values are complicated and computationally 

expensive. The application of statistical modeling 

approaches is driven by challenges in the model of 

analysis. A number of defined statistical approaches for  

 
forecasting, including Autoregressive Integrated 

Moving Average (ARIMA) model and their derivates 

models are suitable when the modeling data that are 

given are of type linear [14]. Artificial Neural Network 

(ANN) [5], Support Vector Regression (SVR) [20], and 

Support Vector Machine (SVM) [19], are examples of 

artificial intelligence models that may be used 

efficiently for data of the type non-linear in nature. The 

performance of models from all three groups is good 

when dealing with homogeneous data. These 

mathematical models, though, fail to function well when 

the data are heterogeneous because they do a poor job 

of managing heteroscedasticity. Hybrid models, also 

known as heterogeneous estimation tools, which include 

the benefits of many forecasting techniques have been 

created for further improving the accuracy of wind 

power and wind speed predictions [6, 24]. In the same 

dataset, heterogeneous estimators show diverse 

characteristics of the parameter. These estimators assist 

in identifying a striking discrepancy in the parameter 

estimations and generate unreachable evaluations. 

Whereas homogenous estimators display the same 

variable’s character throughout the same dataset. These 

approaches provide statistically similar short-run 

predictions that only vary in the long-run outcome. Non-

Linear GASX (NLGAS), GAS model with exogenous 

variable x (GASX), Generalized Autoregressive Score 

(GAS) models are utilized and described in this research 

to address the heteroscedasticity. The entire density 

structure, together with variance and mean, are used 
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with the GAS approach. It is employed for representing 

all types of time-series data, including bounded, integer-

valued, and real-valued data. While the scoring function 

is well explained, the values have to guarantee 

conditional density [2]. Evaluating the score and the 

highest likelihood estimator is the fundamental 

difficulty in applying the GAS model to non-linear data. 

The GAS method currently has a shortcoming in that it 

does not accurately show updates for the correlation 

parameters for multivariate GAS models with more than 

four variables. In order to get over this drawback, a 

hybrid approach is suggested in this paper. In order to 

enhance wind speed prediction accuracy and get beyond 

the constraints of a single forecasting process, the 

statistical and ANN models are combined to create a 

hybrid approach. 
In this research, statistical models and a few 

modeling approaches based on neural networks that are 

essential for modeling and wind energy forecasting are 

described. By merging the Non-Linear GASX 

(NLGASX) algorithm with modeling methods utilizing 

the neural networks activation function (REctified 

Linear Unit (RELU), Softmax, Sigmoid, and 

Hyperbolic Tangent (TANH) to attain greater accuracy, 

this research proposes a hybrid approach to forecast 

wind speed. Through modeling of the measured wind 

speed, the suggested model’s accuracy is confirmed. 

Through modeling of the observed wind speed, the 

suggested model’s accuracy is confirmed. Maximum 

Likelihood Estimation (MLE) is employed to train the 

models, as given in Equation (1):  

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙(𝜃; 𝑥) 

Here, θ represent the vector comprising the coefficients 

of model that can be determined by the MLE and 𝜃 

represents the predicted value of h. The MLE is referred 

to as a technique for calculating a value of h in order to 

achieve maximum l(θ;x).The models for statistics are 

learned using MLE. 

Annual Energy Production (AEP), as illustrated in 

Equation (2), as another measure to assess the efficiency 

of the proposed method.  

𝐴𝐸𝑃 =∑�̅�

𝑁

𝑖=1

(𝑣𝑖) 

here �̅� denotes the average hourly power production, v 

denotes the wind speed, and a year, total number of 

hours are represented as N, which is determined using a 

model of the power curve of a wind turbine. 

These examples highlight the uniqueness and 

contributions of this work. 

a) The created model NLGASX uses modeling 

approaches to increase wind speed prediction 

accuracy. Using the NLGASX approach, the wind 

speed is initially predicted; afterwards, modeling 

approaches use this projected wind speed as an input 

to increase forecast accuracy.  

b) The power curve wind turbine computational 

approach, that might be employed to wind speed 

estimated using the hybrid approach, are used to 

forecast both wind power and wind speed.  

c) The yearly generation of energy is determined 

utilizing wind energy generated through the wind 

turbine power curve method. 

The research paper is structured as: Different time series 

methods for predicting speed of wind are discussed in 

section 2. The power curve method for wind turbine that 

was used to forecast wind power are shown in section 3. 

Several modeling methods for predicting wind speed are 

given in section 4 in order to maximize the forecasts. 

NLGASX technique and the method for creating hybrid 

models employing optimizations based on neural 

networks are both presented in section 5. The evaluation 

of several generated hybrid models is done, and results 

are shown in section 6. The future work and conclusion 

are discussed in last section. 

2. Wind Speed Prediction Using Time 

Series Model 

The forecast accuracy, forecast horizon, and prediction 

of the data have all been described for the time-series 

model. Utilizing variables like density, temperature, 

wind speed, etc., forecasting is done. Wind speed 

measurements are taken at regular intervals in order to 

create precise predictions about the amount of energy 

produced at a particular area. It is possible to make 

utilization of the wind speed data that is gathered at 

regular or predetermined intervals as a timeseries data 

that may be utilized for forecasting using time-series 

data. The GASX, GAS, ARIMA model are three 

statistical models that are used to estimate wind speed 

and are discussed in the following sections: 

2.1. ARIMA 

The ARIMA approach, that Maatallah et al. [14] 

implemented, may describe a variety of time series 

kinds, such as ARMA series and their derivatives such 

as Moving Average (MA), and Auto-Regressive (AR) 

series. The actual constraint is the model’s presumed 

linear shape, which assumes a straight related structure 

amongst the time-series data and prevents the ARIMA 

model from detecting nonlinear patterns. The model 

containing q representing the MA terms, d represents 

the degree of a differencing term, and p AR terms is 

denoted by the expression ARIMA (p, d, q). The MA(q) 

and AR(p) models that are described in Equation (3) are 

included in this model.  

𝑦𝑡 = 

𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 +⋯+ 𝛽𝑝𝑦𝑡−𝑝 + 𝜖𝑡 + 𝛼1𝜖𝑡 + 𝛼1𝜖𝑡−1 +⋯+ 𝛼𝑞𝜖𝑡−𝑞 

Here ϵt is assumed to be white noise, α1,α2,….,αq whereas 

q represents the MA coefficients, and β0,β1,….,βp 

represent the AR coefficients. 

(1) 

(2) 

(3) 
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The ARIMA approach only works with stationary 

time series and has superior performance for linear time-

series data. For non-stationary series, it must first 

become stationary before the ARIMA model can be 

used. 

2.2. GAS model 

The GAS method has been proposed by Harvey [8], and 

Creal et al. [3] and it can deal with the density time 

series of varying nature. The GAS approach is 

expressed by the conditioned observing density p(yt/θt), 

where θt represents a parameter of latent time-varying 

nature. The recursion is stated in Equation (4):  

𝜃𝑡 =  𝜇 + ∑ 𝜑𝑖𝜃𝑡−𝑖 + ∑ 𝛼𝑗𝑠(𝜃𝑗−1)
 𝑙𝑜𝑔 𝑝(𝑦𝑡−𝑗)/(𝜃𝑡−𝑗))

 𝜃𝑡−𝑗

𝑞

(𝑗=1)

𝑝

(𝑖=1)

 

For one measurement at time j, s is the conditioned 

density contribution’s first derivative multiplied by a 

factor of scaling that must be specifically positive. α 

specifies the scale factor. φ is an indicator of AR. In the 

AR procedure for order 1, μ represents an intercept. The 

GAS method takes into consideration all time-series 

data kinds. Whatever the data type (0, 1)-bounded, 

integer-valued, or real valued as long as it has a 

conditional density that is properly defined by the 

scoring function and the Hessian, it is of no significance. 

Determining scores and performing the MLE for the 

data of non-linear nature are the two most challenging 

aspects of employing GAS models. 

2.3. GASX  

The GASX approach is the GAS model that has been 

optimized through the addition of exogenous elements 

X. Here, the observation yt and a latent time-varying 

parameter ht are used to determine the conditioned 

observed density p(yt/θt), When the recursion is 

followed by the parameter ht, as illustrated in Equation 

(5):  

𝜃𝑡 =  𝜇 + ∑ 𝛽𝑘𝑋𝑡,𝑘

𝐾

(𝑘=1)

 

+ ∑ 𝜑𝑖𝜃𝑡−𝑖 + ∑ 𝛼𝑗𝑠(𝜃𝑗−1)
 𝑙𝑜𝑔 𝑝(𝑦𝑡−𝑗)/(𝜃𝑡−𝑗))

 𝜃𝑡−𝑗

𝑞

(𝑗=1)

𝑝

(𝑖=1)

 

where A scaling parameter represented as α. An AR 

coefficient is φ. β is an exogenous factor coefficient. A 

exogenous variable is X. l represents a first-order AR 

procedure intercept. For a single measurement at time j, 

s is the conditional density distribution’s first derivative 

multiplied by a scaling factor that is strictly positive. 

The GASX model’s benefit is that it incorporates an 

additional component to increase the model’s accuracy. 

The inclusion of more than four components restricts the 

GASX model, which does not provide an accurate 

updating for the correlation. The Pseudocode of the 

proposed techniques is described below: 

Pseudocode: NLGASX Technique. 

# Import necessary libraries 

import statsmodels.api as sm 

# Function to simulate NGAS model 

def simulate_ngas_model(y, x, order, exog_order): 

# Create lagged variables for the autoregressive component 

     y_lagged = lag_variables(y, order) 

# Create lagged variables for the exogenous component 

     x_lagged = lag_variables(x, exog_order) 

# Combine lagged variables for autoregressive and exogenous 

components 

     X = np.column_stack((y_lagged, x_lagged)) 

     # Add a constant term to the model 

    X = sm.add_constant(X) 

    # Fit NGAS model 

    model = sm.OLS(y, X) 

    results = model.fit() 

    # Display model summary 

    print(results.summary()) 

# Function to create lagged variables 

def lag_variables(series, order): 

lags = [series.shift(i) for i in range(1, order + 1)] 

return pd.concat([series] + lags, axis=1).dropna() 

# Example usage 

# Assuming y and x are your time series data 

order = 2# Autoregressive order 

exog_order = 1# Exogenous order 

simulate_ngas_model(y, x, order, exog_order) 

3. Power Curve Techniques for Wind 

Turbine 

Power curve techniques are essential in the context of 

wind turbines as they play a crucial role in assessing and 

optimizing the performance of these renewable energy 

systems. The relationship between the electrical power 

output produced by a wind turbine and wind speed is 

represented by the power curve. Power curve techniques 

for wind turbines are indispensable for assessing, 

optimizing, and ensuring the reliable operation of wind 

energy systems. They provide valuable insights into the 

turbine’s performance under various wind conditions, 

facilitating efficient energy production and contributing 

to the ongoing advancement of wind energy technology. 

A wind turbine maker will offer a tool to assess the 

performance of the turbine in ideal circumstances. 

Typically, the wind power measurement or the turbine’s 

power rating are used for releasing the power curve of a 

commercially accessible wind turbine. The cut-out 

speed, rated speed, and cut-in speed are all included in 

this turbine power curve. Similar to this, under typical 

testing circumstances, a nominal wind power value is 

collected [21]. An experimental power curve that can 

forecast the wind turbine’s output power for all likely 

wind speeds during cut-out and cut-in is required to 

determine the AEP of a specific wind turbine. Using the 

cubic and quadratic laws, respectively, Jangamshetti 

and Rau [9] and Pallabazzer [18] implemented 

experimental power curve approximations. Equation (6) 

provides the Quadratic Power Curve (QPC) method. 

(4) 

(5) 
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𝑃(𝑣) =
𝑝𝑟(𝑣

2 − 𝑣𝑐𝑖𝑛
2 )

𝑣𝑟𝑎𝑡𝑒
2 − 𝑣𝑐𝑖𝑛

2  

Equation (7) describes the Cubic Power Curve (CPC) 

method: 

𝑃(𝑣) =
𝑝𝑟(𝑣

3 − 𝑣𝑐𝑖𝑛
3 )

𝑣𝑟𝑎𝑡𝑒
3 − 𝑣𝑐𝑖𝑛

3  

Wind speed is demonstrated by v, rated power is 

presented by pr, cut-out and cut-in wind speed is 

demonstrated by vcout and vcin respectively, Rated speed 

is represented by vrate. 

Despite the simplicity of these techniques, these do 

not accurately reflect how wind turbines actually 

behave. Kazemi and Goudarzi [11] implemented the 

CPC and QPC generalized techniques, which may be 

created utilizing the nominal wind power data made 

available by the maker, in order to improve forecast 

accuracy. Equation (8) defines the generalized QPC 

concept.  

𝑃(𝑣) = 𝑎1𝑣𝑖
2 + 𝑎2𝑣𝑖 + 𝑎3 

Equation (9) provides the generalized CPC concept in 

the same way. 

𝑃(𝑣) = 𝑏1𝑣𝑖
3 + 𝑏2𝑣𝑖

2 + 𝑏3𝑣𝑖 + 𝑏4 

In which the coefficients are b1,b2,b3,b4, a1,a2,a3. The 

wind power P(v) determined between the rated wind 

speed and the cut-in is shown below. 

Wind power tends to be consistent between cut-out 

and rated wind speeds, in addition to that it is inclined 

to become zero after cut out and prior cut-in wind speed. 

The Piecewise Polynomial Power Curve (PPPC) 

approach, that is utilized to compute the wind power by 

splitting the domain of wind speed into contiguous 

intervals that may be expressed as a different 

polynomial in each interval, has also been proposed by 

Ai et al. [1] and Thapar et al. [22]. The least squares 

approach was used in each region to apply a third-

degree polynomial to three locations, sometimes 

achieving 100% accuracy. Equation (10) represents an 

expression for the generalized PPPC approach.  

𝑝(𝑣) =

{
 
 

 
 
0,                                             (𝑣 < 𝑣𝑐 , 𝑣 > 𝑣𝑓)

𝑎1 + 𝑏1𝑣 + 𝑐1𝑣
2 + 𝑑1𝑣

3,     (𝑣𝑐 ≤ 𝑣 < 𝑣1) 

𝑎2 + 𝑏2𝑣 + 𝑐2𝑣
2 + 𝑑2𝑣

3,      (𝑣1 ≤ 𝑣 < 𝑣2)

𝑎3 + 𝑏3𝑣 + 𝑐3𝑣
2 + 𝑑3𝑣

3,      (𝑣2 ≤ 𝑣 < 𝑣𝑓)

 

In this case, the cubic equation’s coefficients are 

d1,c1,b1,a1. The breakpoints, or knots, in this case are 

represented by vf,vc,v2, and v1. Although on an ideal 

number of data points, by finding the optimum fitting 

lower degree polynomial, the generalized model may be 

created. The technique is employed for estimating wind 

power utilizing the provided wind speed. 

 

 

4. Methodologies for Forecasting of Wind 

Speed 

For estimating the wind speed, a variety of modeling 

methods are utilized, including optimization 

approaches, data mining techniques, and activation 

functions for neural networks. In this research, a hybrid 

approach to forecast wind speed is designed using a 

variety of neural network activation functions. Many of 

the modeling methods utilized to develop the hybrid 

approach are discussed here, including RELU, Softmax,  

TANH, and Sigmoid. 

4.1. Sigmoid 

A Sigmoid function has a distinctive Sigmoid curve or 

S-form curve [7]. Sigmoid function often pertains to the 

particular case of the logistic function. Applying 

Equation (11) we derive the function:  

𝑆(𝑥) =
1

1 + 𝑒−𝑥
 

The NLGASX approach’s non-linear feature is stored 

using the Sigmoid function. This function possesses a 

domain of all real values and a return variable that 

gradually increases often from -1 to 1 or, in other 

situation, from 0 to 1 [12]. 

4.2. TANH 

A Sigmoid function substitute is the TANH [4]. The 

drawback of Sigmoid function states that it may become 

stuck while training. The result is close to zero provided 

the dataset contains values that are highly negative. 

Though less prevalent while in the TANH training 

phase, this feature nevertheless produces negative 

outputs when given negative inputs and zero outputs 

when given zero inputs. Hyperbolic sine to hyperbolic 

cosine ratio, which is provided in Equation (12), is the 

definition of the TANH function.  

𝑇(𝑥) =
𝑆𝑖𝑛ℎ(𝑥)

cosh(𝑥)
=
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

4.3. Softmax 

The logistic function has been generalized to create the 

Softmax function [16]. The outcome of the Softmax 

function may be used for clear-cut dissemination in 

likelihood theory, which is a probability dispersion 

across K different possible outcomes. In reality, it is the 

clear-cut likelihood dissemination’s angle log-

normalizer. Equation (13) describes the function.  

𝑆(𝑥𝑗) =
𝑒𝑥𝑗

∑ 𝑒𝑥𝑘𝐾
𝑘=1

 

Various multi-class grouping methods, such as 

multiclass direct discriminant analysis, naive Bayes 

classifiers, ANN, and multinomial logistic regression 

(also known as Softmax regression), all make use of the 

Softmax function. 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(6) 
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4.4. RELU 

The rectifier, an activation function that has a wide 

range of definitions, is responsible for the positive 

portion of an ANN argument [11]. Equation (14)’s 

definition of it is as follows:  

𝑅(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 

while the input value is x. The widely used logistic 

Sigmoid function was replaced with a convolutional 

network that made use of that actuation function. Its 

widespread use as an actuation function with deep 

neural networks is a result of its successful training. The 

RELU is the name of the component used in the 

rectifier. The analytical function specified in Equation 

(15) is a straightforward rectifier approximation.  

𝐹(𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥) 

Another name for it is a function of soft plus. Sigmoid 

function is the same as the soft plus function’s first 

derivative. For complex and large datasets, the RELU 

function performs more quickly compared to Sigmoid 

or corresponding functions. 

5. Proposed Methodology 

The following subsection discusses proposed NLGASX 

and hybrid approaches that are used to estimate wind 

speed. Hybrid approaches work well for both non-linear 

and linear datasets, whereas the NLGASX approach 

works best for non-linear datasets. The NLGASX 

approach is used with modeling approaches to create the 

hybrid approaches. 

5.1. NLGASX 

By combining linear and nonlinear blocks in parallel, 

the nonlinear structures when NLGASX model builds. 

Using Equation (16), the NLGASX function is specified 

as follows:  

𝑦𝑡 = 𝐺(𝑦𝑡−1, 𝑦𝑡−1, … . . , 𝑥𝑡−1, 𝑥𝑡−2, …… ) + 𝜖𝑡 

where ϵt is an error term, x representing exogenous 

variable, and y is the variable of interest. The nonlinear 

function that uses the Poisson distribution to represent it 

is called the function G. The Poisson distribution is a 

discrete probability distribution that provides the 

likelihood of such occurrences whenever a count of 

events are supplied that take place in a specified time 

period or location at a constant rate that’s irrelevant of 

the time of the previous event. There are several 

categories other than the Poisson variety that may be 

used to calculate the nonlinear block, including the 

exponential, skewed, normal Student-t, Student-t, etc. It 

performs poorly with data of linear time-series nature. 

5.2. Hybrid Technique 

A hybrid approach for predicting speed of wind that 

combines the NLGASX approach with modeling 

approaches that utilize the activation function of neural 

networks (RELU, Softmax, Sigmoid, and TANH). The 

definition of a hybrid approach is given in Equation 

(17):  

𝑦𝑡 = 𝐹(𝐺(𝑦𝑡)) 

where F represents a neural network function and G 

represents the previously described NLGASX function. 

The hybrid approaches that are created fall into four 

categories: RELU+NLGASX, Softmax+NLGASX, 

Sigmoid+NLGASX+, and TANH+NLGASX. The 

detailed organization of proposed work can be 

examined in Figure 1. 

 

Figure 1. Proposed technique for assessing the performance of wind turbines. 

(14) 

(15) 

(16) 

(17) 



Usage of Statistical Techniques to Monitor the Performance of Wind Turbines                                                                                                    343 

6. Results and Discussions 

6.1. Statistical Test for the Comparison of the 

Examined Methods 

Comparing the performance of different models, 

including nonlinear GAS models with exogenous 

variables, often involves statistical tests or metrics to 

assess their goodness of fit, predictive accuracy, or 

overall performance. Here are some common statistical 

tests and metrics used for comparing models: 

 Likelihood Ratio Test (LRT): this test is often used 

for comparing nested models. For a nonlinear GAS 

model with exogenous variables, you might compare 

a simpler model (e.g., without exogenous variables) 

to a more complex model (e.g., with exogenous 

variables) using the LRT. 

 Mean Absolute Error (MAE) or Root Mean 

Squared Error (RMSE): these are common metrics 

for assessing the accuracy of model predictions. 

Lower values indicate better predictive performance. 

You can compare the RMSE or MAE of different 

models to evaluate their prediction quality. After 

designing a model that accurately captures the 

behavior of the real data, it is important to choose 

appropriate criteria for evaluating a model's 

generalizability. The efficiency of the wind speed 

and power curve of wind turbine is often obtained 

utilizing the R-square, RMSE, and MAE. Equations 

(18), (19), and (20), respectively, describe the R-

square, RMSE, and MAE:  

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒 = 1 −
∑ (𝑦(𝑖) − 𝑥(𝑖))

2𝑁
𝑖=1

∑ (𝑥(𝑖) − �̅�(𝑖))
2𝑁

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦(𝑖) − 𝑥(𝑖))

2
  

𝑁

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑁
∑𝑦(𝑖) − �̅�(𝑖)

𝑁

𝑖=1

 

�̅�, represents the input variables average, x denotes the 

input variable, y denotes the variable that is estimated, 

and counts of input data is represented by N. 

Variable density of air, temperature of the air, and 

speed of the wind are used for evaluating the wind 

power. The approach that works better has lesser RMSE 

and MAE values in addition to the highest R-squared 

value. Python (3.6) is used for the implementation of 

models of statistics (NLGASX, GASX, GAS, and 

ARIMA) and optimization methods (Sigmoid, RELU, 

Softmax, and TANH). Other metrics, including as the 

Bayesian Information Criterion (BIC), and the Akaike 

Information Criterion (AIC) are additionally employed 

to determine which approach fits a given dataset the 

best. It may be determined that a certain model 

performed superior to the others based on the BIC and 

AIC values. 

 BIC and AIC 

The BIC and AIC are statistical selection parameters for 

models from a limited number of models [1, 9]. They 

have a likelihood estimate basis. Parameter addition 

would raise the probability while model fitting but 

might potentially lead to overfitting. By using the term 

of penalty relevant to number of parameters, the BIC 

and AIC are able to resolve the overfitting issue. In 

comparison to BIC, the penal term in AIC is lower. BIC 

and AIC are shown, respectively, in Equations (21) and 

(22):  

𝐵𝐼𝐶 = 𝑙𝑛 (
∑ 𝑒𝑡

2𝑇
𝑡=1

𝑇
) + (

𝑝𝑙𝑛(𝑇)

𝑇
) 

𝐴𝐼𝐶 = 𝑙𝑛 (
∑ 𝑒𝑡

2𝑇
𝑡=1

𝑇
) + (

2𝑝

𝑇
) 

Here, the residual generated by the model-fitting 

procedure in period T is called et. Data from T time 

periods were utilized to fit a model having p parameters. 

Whenever the BIC and the AIC penalized the sum of 

squared residuals, more parameters may be added to the 

model. Models are seen to be effective if their BIC or 

AIC scores are low. 

6.2. Dataset Description 

The use of statistical techniques in real-world situations 

is covered in this subsection. This paper utilizes the 

National Renewable Energy Laboratory (NREL) 

resource file datasets here, having site_ID as 72509. The 

site of the event is located at and latitude 41.775928 and 

longitude-106.259064; for Datasets-2007 9.24 m/s is 

the average speed of wind whereas for the dataset-2008, 

9.83 m/s is the average speed of wind [17]. A wind 

turbine dataset involves providing information about the 

data’s origin, structure, variables. This dataset captures 

the operational parameters and performance metrics of 

wind turbines over a specific period. The data is 

collected to analyze the relationship between wind 

speed and turbine performance. The measurements were 

taken at regular intervals of 10 minutes. The timestamp 

indicating when the measurements were taken. Wind 

Speed (m/s): The data type is Continuous. The speed of 

the wind at the turbine location at the time of 

measurement. Turbine Power Output (kW): The data 

type is Continuous. The electrical power output 

generated by the wind turbine at the time of 

measurement. Rotor Speed (rpm): The data type is 

Continuous. The rotational speed of the turbine’s rotor 

at the time of measurement. Generator Speed (rpm): The 

data type is Continuous. The rotational speed of the 

turbine's generator at the time of measurement. Ambient 

Temperature (°C): The data type is Continuous. The 

temperature of the surrounding air at the turbine location 

at the time of measurement. Wind Direction (degrees): 

The data type is Continuous. The direction from which 

the wind is blowing at the turbine location at the time of 

measurement. 

(19) 

(20) 

(18) 

(22) 

(21) 
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6.3. Models for Predicting Wind Speed 

The Capacity Factor (CF) for the NREL wind farm is 

0.359, and the 5-min average power production and 5-

min average wind speed statistics were collected from 

the Supervisory Control and Data Acquisition 

(SCADA) architecture. The wind farm statistics were 

obtained at the height of 100 m. The CF measures the 

difference between actual and maximum energy output 

during that time. It is employed for comparing various 

methods of producing power. Between Jan 2007 and 

Dec 2007, as well as in the following year of 2008, over 

lakh observations of data were collected. In this 

research, the MLE technique in its two variants, MLE-

202 and MLE-404, has been employed to apply the 

NLGASX, GASX, GAS, and ARIMA techniques. The 

real and expected wind speed for the NLGASX 

framework is shown in Figure 2 and for the GASX 

approach, it is shown in Figure 3. The GAS approach, 

which outperforms the model developed by ARIMA in 

terms of prediction, is shown in Figure 4. For Dataset-

2007, Figure 5 depict the actual and estimated wind 

speeds for the ARIMA framework employing MLE-202 

and MLE-404, respectively. The model was trained 

from the training set, for testing set, the comparison of 

predicted to the available values is represented in 

Figures 2, 3, 4, and 5. Performance-wise, the MLE-404 

variant outperforms the MLE-202 variant. Comparing 

the GAS approach to the GASX approach, the GASX 

approach exhibits superior prediction. Additionally, the 

predicted wind speed for the NLGASX, GASX, GAS, 

and ARIMA approaches utilizing MLE-404 and MLE-

202, respectively, is presented in Figures 6 , 7, 8, and 9.  

Cross-validation techniques are generally utilized for 

assessing the model performance by splitting the dataset 

into testing and training sets. For data of time series 

nature, traditional cross-validation techniques like k-

fold cross-validation may not be directly applicable due 

to the temporal nature of the data. 

However, for nonlinear models with exogenous 

variables, cross-validation techniques can still be 

tailored for time series data. Some common approaches 

include: Time series split cross-validation, walk-

forward validation, expanding window cross-validation, 

rolling origin validation, and block cross-validation. 

Time series split cross-validation involves splitting the 

time series data into training and testing sets 

sequentially. The training set maintains data from the 

beginning up to a certain point in time, and the testing 

set has data from that point forward.  

  

a) NLGASX (404). b) NLGASX (202). 

Figure 2. For Dataset 2007 usage of NLGASX for predicting wind speed. 

  

a) GASX (404). b) GASX (202). 

Figure 3. For Dataset 2007 usage of GASX for predicting wind speed. 
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a) GAS (404). b) GAS (202). 

Figure 4. For Dataset 2007 usage of GAS for predicting wind speed. 

  

a)ARIMA (404). b) ARIMA (202). 

Figure 5. For Dataset 2007 usage of ARIMA for predicting wind speed. 

  

a) NLGASX (404). b) NLGASX (202). 

Figure 6. For Dataset 2007 usage of NLGASX for predicting wind speed’s next 10 values. 

  

a) GASX (404). b) GASX (202). 

Figure 7. For Dataset 2007 usage of GASX for predicting wind speed’s next 10 values. 

 

0 
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a) GAS (404). b) GAS (202). 

Figure 8. For Dataset 2007 usage of GAS for predicting wind speed’s next 10 values. 

  

a) ARIMA (404). b) ARIMA (202). 

Figure 9. For Dataset 2007 usage of ARIMA for predicting wind speed’s next 10 values. 

Hub density, air temperature, and Wind speed are 

taken into account while creating the non-linear and 

linear models for forecasting. Density and temperature 

are regarded as exogeneous factors. Particularly 

temperature is employed as an exogenous factor in the 

experiments for the suggested model. The Sigmoid+ 

NLGASX hybrid approach for Dataset-2007 provides 

the smallest highest R-square, RMSE, and MAE values. 

Its highest lowest R-square, MAE, and RMSE results 

were obtained by the ARIMA model employing MLE 

(202) in comparison. As a result, a hybrid framework 

that employs the Sigmoid modeling approach 

outperforms other models. Table 1 shows that the 

RMSE/MAE values for the GAS approach are lower 

than those for the ARIMA approach, indicating that the 

GAS approach outperforms the ARIMA approach. 

GASX outperforms the GAS method when compared to 

the GAS method. The (Sigmoid+NLGASX) hybrid 

approach is the best-performing approach for Dataset-

2008 and reports the lowest MAE, while the ARIMA 

approach yields the greatest MAE. The GASX approach 

has the smallest RMSE and greatest R-square values, 

making it the most efficient approach overall. Because 

of this, the GASX approach and hybrid approaches that 

employ the Sigmoid modeling approach outperform the 

rest of the models.  

Table 2 pertaining to the Dataset-2007 Dataset-2008 

both show the results of the metrics for the chosen 

model. Gas models are often associated with time series 

analysis, and they typically involve nonlinear modeling 

of time series data. Exogenous variables, denoted as x, 

are often included in these models to capture external 

influences on the time series. 

Table 1. Analysis of the efficiency of forecasting methods of wind 
speed for Dataset 2007. 

Technique MLE 

Criterion 

R-square RMSE MAE BIC AIC 

NLGASX  Sigmoid  0.810 2.271  1.568  14391.982  17456.559  

NLGASX  RELU  0.810 2.276  1.573  14359.779  17456.566  

NLGASX  Softmax  0.809 2.279  1.611  14422.086  17456.552  

NLGASX  TANH  0.808 2.290  1.577  14500.079  17456.534  

NLGASX  404  0.198 6.637  5.345  52620.305  52528.297  

NLGASX  202  0.152 6.864  5.912  57876.962  57813.262  

GASX  404  0.807 2.302  1.654 2299.511  2284.441  

GASX 202  0.806 2.319 2.212  2373.905  2317.283  

GAS 404 0.795 2.584  2.584 1.941 39241.742  

GAS 202 0.786 2.979 2.538 39220.130 39177.664  

ARIMA 404 0.430 2.895 2.472 40823.511  40752.736 

ARIMA 202 0.109 3.528 3.145 42813.914 42771.448  

Table 2. Analysis of the efficiency of forecasting methods of wind 
speed for Dataset 2008. 

Technique MLE 

Criterion 

R-square RMSE MAE BIC AIC 

NLGASX  Sigmoid  0.833 2.162  1.485  13497.118  17456.764  

NLGASX  RELU  0.832 2.170  1.499  13563.068  17456.749  

NLGASX  Softmax  0.833 2.161  1.497  13486.932  17456.766  

NLGASX  TANH  0.832 2.170  1.529  13561.498  17456.749  

NLGASX  404  0.145 6.335  4.741  51793.811  51701.804  

NLGASX  202  0.175 5.503  4.457  62699.138  62635.439  

GASX  404  0.902 1.834  1.749  3821.824 3736.894  

GASX 202  0.795 1.946  1.778  3893.248  3949.869  

GAS 404  0.651 3.098  2.086  38487.066  38416.291  

GAS  202  0.650 3.116  2.089  38469.951  38427.485  

ARIMA 404  0.376 3.522  2.721  40249.917  40179.142  

ARIMA  202  0.121 4.093  3.338  42380.262  42337.796  
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6.4. Power Curve Modelling for Wind Turbines 

The PPPC, CPC, and QPC techniques are used for 

calculating wind power. Equations (8), (9), and (10) are 

used to determine wind power for the QPC, CPC, and 

PPPC models, respectively. Tables 3 and 4 for the 

corresponding Datasets 2007 and 2008 give the 

efficiency metrics for each model. Here, the standards 

of R-square, RMSE, and MAE value are used to 

evaluate efficiency across various datasets. The 

approach that performs best is the one with a high R-

square value and a small MAE and RMSE values. The 

PPPC method has the smallest RMSE and MAE, as well 

as the higher value of R-square in both datasets, based 

to the results. Although the QPC approach has the 

smallest Rsquare value, the greatest RMSE and MAE. 

On considering this, the PPPC approach outperforms the 

CPC and QPC approaches. Wind speed from Dataset-

2007 and -2008 is used to compute wind power. Wind 

power is computed in MW and wind speed expressed as 

in m/s. 

Table 3. Wing power prediction techniques performance for the 

NREL Dataset 2007. 

Technique Square RMSE  MAE  BIC  AIC  

PPPC 0.9738 0.9929  0.6277  1481.5823  210216.9029  

CPC  0.9679 1.0989  0.6891  19864.0456  210216.4968  

QPC  0.8617 2.2822  1.7850  173499.8325  210213.5737  

Table 4. Wing power prediction techniques performance for the 
NREL Dataset 2008. 

Technique R-square RMSE  MAE  BIC  AIC  

PPPC  0.9718 1.0411  0.6487  8494.2321  210216.7131  

CPC 0.9667 1.1311  0.7224  25924.7641  210216.3815  

QPC  0.8647 2.2800  1.7785  173301.2935  210213.5775  

6.5. AEP 

Table 5 with the unit of MWh shows the calculated AEP 

for two distinct datasets utilizing Equation (3). As stated 

in earlier sections, three distinct wind power curve 

approaches the PPPC approach, CPC approach, and 

QPC model are utilised for determination of the wind 

power. The yearly energy determined using Dataset-

2007 is highest when the PPPC approach is used and 

lowest when the QPC approach is used. The yearly 

energy determined using Dataset-2007 is highest when 

the PPPC approach is used and lowest when the QPC 

approach is used. As a result, when examined alongside 

QPC and CPC approaches, the efficiency of the PPPC 

approach is improved. All datasets had improved power 

calculations when employing the PPPC approach, 

making AEP utilizing the PPPC approach superior to 

CPC and QPC approaches. In compared to the other 

approaches, the AEP employing QPC approach yields 

the lowest value. 

Table 5. Annual energy generation performance. 

Technique Dataset 2008 Dataset 2007 

PPPC 65317.6775 59465.0909 

CPC 65317.3461 59464.8145 

QPC 65713.1751 59464.2598 

The proposed technique might be considered time-

efficient in certain cases: 

 Adaptability to Nonlinear Patterns: nonlinear 

GAS models are designed to capture and model 

nonlinear patterns in time series data. In situations 

where the underlying relationships are genuinely 

nonlinear, a model that explicitly accounts for this 

nonlinearity may require fewer parameters to achieve 

a good fit compared to linear models. 

 Score-Driven Approach: GAS models are often 

score-driven, meaning that the model parameters are 

updated in response to the score (gradient) of the log-

likelihood function. This approach can lead to 

efficient parameter estimation, particularly when 

dealing with time-varying volatility or complex 

dynamic patterns. 

 Effective Handling of Exogenous Variables: 

including exogenous variables (x) in a model allows 

for the incorporation of external influences on the 

time series. In cases where exogenous variables have 

a significant impact, the inclusion of x can enhance 

the model's explanatory power without necessitating 

overly complex parameterization. 

 Flexibility in Model Specification: nonlinear GAS 

models provide flexibility in model specification, 

allowing for the inclusion of various nonlinear 

functions to capture complex relationships. This 

flexibility can lead to more accurate representations 

of the underlying data dynamics. 

7. Conclusions 

In conclusion, proposed technique stands as a versatile 

and powerful technique in the realm of time series 

analysis. Its ability to capture complex nonlinear 

relationships within a time series, coupled with the 

inclusion of exogenous variables, adds a layer of 

sophistication to modeling dynamic systems. The 

statistical approach for predicting speed of wind is 

crucial for the design of the appropriate approach for 

wind energy. For predicting wind speed, the suggested 

hybrid and statistical approach is built, and for 

predicting wind power, the power curve approach has 

been designed. This paper presents a first-ever 

NLGASX method. The intended work concentrated on 

choosing the best approach to forecasting wind power 

and wind speed. These suggested hybrid approaches 

were examined for the selection using two datasets from 

2008 and 2007. The model with the greatest accuracy 

was chosen to reliably predict the following 100 values 

of wind speed. It was demonstrated that a hybrid 

approach, which was dependent on our NLGASX 

concept and used the Sigmoid approach, did an 

excellent task of predicting wind speed. A commercial 

wind farm is advised to apply the proposed hybrid 

approaches to evaluate the effectiveness of its 

operations. The proposed technique represents a 
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valuable addition to the toolkit of time series analysts. 

Its flexibility, adaptability, and capacity to incorporate 

external factors make it a promising approach for a wide 

range of applications. As research progresses and the 

methodology evolves, it is likely to continue 

contributing to advancements in our understanding of 

dynamic systems and improving the accuracy of time 

series modeling. 

Future work for the proposed technique could focus 

on addressing various aspects to enhance its 

applicability, accuracy, and usability. Here are several 

potential avenues for future research: Explore the 

extension of nonlinear GAS models with exogenous 

variables to handle multivariate time series data. 

Investigate how the model can be adapted to capture 

dependencies and interactions across multiple variables. 

Secondly, extend the model to handle exogenous 

variables that exhibit time-varying patterns. This could 

involve introducing dynamic structures for the 

exogenous variables, allowing the model to adapt to 

changes in external influences over time. Thirdly, 

Develop Bayesian versions of the nonlinear GAS model 

with exogenous variables. Bayesian approaches can 

provide uncertainty estimates for model parameters and 

improve the handling of parameter priors, especially in 

situations with limited data. Fourthly, investigate the 

robustness of the nonlinear GAS model to outliers and 

structural breaks in the data. Develop methods to 

enhance the model's ability to handle anomalies and 

sudden changes in the time series. Another future work 

is exploring ways to integrate nonlinear GAS models 

with machine learning techniques, such as neural 

networks or ensemble methods. This could improve the 

model's ability to capture complex patterns and 

dependencies in the presence of high-dimensional 

exogenous variables. Sixthly, develop methodologies 

for real-time forecasting and monitoring using the 

nonlinear GAS model with exogenous variables. 

Explore how the model can be efficiently updated as 

new data becomes available and assess its performance 

in dynamic forecasting environments. Seventhly, 

working on improving the interpretability of the model 

results, especially when dealing with complex 

nonlinearities. Develop methods to extract meaningful 

insights from the estimated parameters and understand 

the contribution of exogenous variables to the overall 

model dynamics. Another future work is conducting 

comprehensive comparative studies with other state-of-

the-art nonlinear time series models, both with and 

without exogenous variables. Assess the strengths and 

weaknesses of the nonlinear GAS model in different 

data scenarios. Another future work is investigating 

strategies for handling missing or irregularly sampled 

data within the context of the nonlinear GAS model with 

exogenous variables. Develop techniques to impute 

missing values or adapt the model to unevenly spaced 

time series observations. Lastly, the future work is to 

develop user-friendly software packages or libraries for 

implementing the nonlinear GAS model with 

exogenous variables, making it accessible to a broader 

audience of researchers and practitioners. 
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