The International Arab Journal of Information Technology (IAJIT)

..............................
..............................
..............................


Stimulating the Efficiency of Massive MIMO Cooperative NOMA Applying RIS in 6G Networks

This study analyses Spectral Efficiency (SE) and throughput under varying user densities (50 to 200 users), mobility velocities (0 to 250 km/h), latency, packet loss, and fairness index at diverse Signal-to-Noise Ratio (SNR) levels for different scenarios. These scenarios encompass comprehensive massive Multiple-Input Multiple-Output (mMIMO) cooperative Non- Orthogonal Multiple Access (NOMA), mMIMO cooperative NOMA integrated with Cognitive Radio (CR), and CR-enabled mMIMO cooperative NOMA facilitated by Reconfigurable Intelligent Surfaces (RIS) using millimetre-Wave (mmWave) in 6G networks. The study investigates the enhancement of latency, packet loss, and fairness indexes in the proposed systems through a unique approach that dynamically optimizes power distribution via a Q-learning algorithm. The mathematical clarification of each equation offers a comprehensive understanding of signal reception by users, the dynamics and implications of CR, and the influence of intelligent RIS optimization on system performance. The findings demonstrate that the incorporation of RIS enhances resource allocation, improves user performance in high-density settings, increases average throughput, reduces latency and packet loss, and raises the fairness index by mitigating interference and optimizing channel access, particularly when employing the proposed optimization algorithm. These results support the advancement of scalable and efficient communication networks in the realm of 6G technology.

 


[1] Ahmad W., Radzi N., Samidi F., Ismail I., and et al., “5G Technology: Towards Dynamic Spectrum Sharing Using Cognitive Radio Networks,” IEEE Access, vol. 8, pp. 14460-14488, 2020. DOI: 10.1109/ACCESS.2020.2966271

[2] Al-Hussaibi W. and Ali F., “Efficient User Clustering Receive Antenna Selection and Power Allocation Algorithms for Massive MIMO- NOMA Systems,” IEEE Access, vol. 7, pp. 31865- 31882, 2019. DOI: 10.1109/ACCESS.2019.2902331

[3] Alkhamees T. and Milstein L., “Impact of Sharing Disruption in MC CR-NOMA,” IEEE Access, vol. 11, pp. 82871-82881, 2023. DOI: 10.1109/ACCESS.2023.3300659

[4] AlZoubi W. and Hatamleh H., “Multicasting Strategies for Increasing Network Efficiency in 5G Using Deep Learning,” The International Arab Journal of Information Technology, vol. 22, no. 2, pp. 327-344, 2025. https://doi.org/10.34028/iajit/22/2/10

[5] Arslan E., Kilinc F., Arzykulov S., Dogukan A., Celik A., and Basar E., “Reconfigurable Intelligent Surface Enabled Over-the-Air Uplink NOMA,” IEEE Transactions on Green Communications and Networking, vol. 7, no. 2, pp. 814-826, 2023. DOI: 10.1109/TGCN.2022.3227870

[6] Bai Z., Zheng G., Xia W., Mu Y., and Xue Y., “Multi-User Opportunistic Spectrum Access for Cognitive Radio Networks Based on Multi-Head Self-Attention and Multi-Agent Deep Reinforcement Learning,” Sensors, vol. 25, no. 7, 1174 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025 pp. 1-23, 2025. https://www.mdpi.com/1424- 8220/25/7/2025

[7] Bertenyi B., 6G Standardization is Beginning: Here’s Why You Should Care, https://www.nokia.com/about- us/newsroom/articles/6g-standardization-is- beginning-heres-why-you-should-care/, Last Visited, 2025.

[8] Budhiraja I., Kumar N., Tyagi S., Tanwar S., and et al., “A Systematic Review on NOMA Variants for 5G and Beyond,” IEEE Access, vol. 9, pp. 85573-85644, 2021. DOI: 10.1109/ACCESS.2021.3081601

[9] Chen J. and Yu X., “Ergodic Rate Analysis and Phase Design of STAR-RIS Aided NOMA with Statistical CSI,” IEEE Communications Letters, vol. 26, no. 12, pp. 2889-2893, 2022. DOI: 10.1109/LCOMM.2022.3202346

[10] Chowdhury M., Shahjalal M., Ahmed S., and Jang Y., “6G Wireless Communication Systems: Applications Requirements Technologies Challenges and Research Directions,” IEEE Open Journal of the Communications Society, vol. 1, pp. 957-975, 2020. DOI: 10.1109/OJCOMS.2020.3010270

[11] Dai L., Wang B., Ding Z., Wang Z., and et al., “A Survey of Non-Orthogonal Multiple Access for 5G,” IEEE Communications Surveys and Tutorials, vol. 20, no. 3, pp. 2294-2323, 2018. DOI: 10.1109/COMST.2018.2835558

[12] De Sena S., Lima F., Da Costa D., Ding Z., and et al., “Massive MIMO-NOMA Networks with Imperfect SIC: Design and Fairness Enhancement,” IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 6100-6115, 2020. DOI: 10.1109/TWC.2020.3000192

[13] Di Renzo M., Debbah M., Phan-Huy D., Zappone A., and et al., “Smart Radio Environments Empowered by Reconfigurable AI Meta-Surfaces: An Idea whose Time has Come,” EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, pp. 1-20, 2019. https://doi.org/10.1186/s13638-019-1438-9

[14] Elhattab M., Arfaoui M., Assi C., and Ghrayeba A., “Reconfigurable Intelligent Surface Enabled Full-Duplex/Half-Duplex Cooperative Non- Orthogonal Multiple Access,” IEEE Transactions on Wireless Communications, vol. 21, no. 5, pp. 3349-3364, 2022. DOI: 10.1109/TWC.2021.3120989

[15] Elmadina N., Saeed R., Saeid E., Ali E., and et al., “Downlink Power Allocation for CR-NOMA- based Femtocell D2D Using Greedy Asynchronous Distributed Interference Avoidance Algorithm,” Computers, vol. 12, no. 8, pp. 1-19, 2023. https://doi.org/10.3390/computers12080158

[16] Elnaim A., Babeker A., Barakat M., Gaid A., and et al., “Energy Consumption for Cognitive Radio Network Enabled Multi-Access Edge Computing,” in Proceedings of the 3rd International Conference on Emerging Smart Technologies and Applications, Taiz, pp. 1-5, 2023. DOI: 10.1109/eSmarTA59349.2023.10293270

[17] Gomes P., De Araujo G., Sokal B., De Almeida A., and et al., “Channel Estimation in RIS- Assisted MIMO Systems Operating under Imperfections,” IEEE Transactions on Vehicular Technology, vol. 72, no. 11, pp. 14200-14213, 2023. https://ieeexplore.ieee.org/document/10137372

[18] Gunasinghe D. and Amarasuriya G., “Performance Analysis of STAR-RIS for Wireless Communication,” IEEE International Conference on Communications, Seoul, pp. 3275-3280, 2022. DOI: 10.1109/ICC45855.2022.9838939

[19] Hassan M., Singh M., Hamid K., Saeed R., and et al., “Modeling of NOMA-MIMO-based Power Domain for 5G Network under Selective Rayleigh Fading Channels,” Energies, vol. 15, no. 15, pp. 1-19, 2022. https://doi.org/10.3390/en15155668

[20] Hu H., Zhang H, Yu H., Chen Y., and Jafarian J., “Energy-Efficient Design of Channel Sensing in Cognitive Radio Networks,” Computers and Electrical Engineering, vol. 42, pp. 207-220, 2015. https://doi.org/10.1016/j.compeleceng.2014.06.0 04

[21] Hu X., Zhong C., Chen X., Xu W., and Zhang Z., “Cluster Grouping and Power Control for Angle- Domain MmWave MIMO NOMA Systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 5, pp. 1167-1180, 2019. DOI: 10.1109/JSTSP.2019.2922821

[22] Huang C., Zappone A., Alexandropoulos G., Debbah M., and Yuen C., “Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication,” IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 4157-4170, 2019. DOI: 10.1109/TWC.2019.2922609

[23] Karim F., Singh S., Singh K., and Flanagan M., “STAR-RIS Aided Full Duplex Communication System: Performance Analysis,” in Proceedings of the IEEE Global Communications Conference, Rio de Janeiro, pp. 3114-3119, 2022. DOI: 10.1109/GLOBECOM48099.2022.10001603

[24] Katwe M., Singh K., Clerckx B., and Li C., “Improved Spectral Efficiency in STAR-RIS Aided Uplink Communication Using Rate Splitting Multiple Access,” IEEE Transactions on Wireless Communications, vol. 22, no. 8, pp. 5365-5382, 2023. https://ieeexplore.ieee.org/document/10014691 Stimulating the Efficiency of Massive MIMO Cooperative NOMA Applying RIS in 6G Networks 1175

[25] Kilinc F., Tasci R., Celik A., Abdallah A., and et al., “RIS-Assisted Grant-Free NOMA: User Pairing RIS Assignment and Phase Shift Alignment,” IEEE Transactions on Green Communications and Networking, vol. 9, no. 5, pp. 1257-1270, 2023. DOI: 10.1109/TCCN.2023.3288108

[26] Larsson D., Grovlen A., Parkvall S., and Liberg O., 6G Standardization-An Overview of Timeline and High-Level Technology Principles, https://www.ericsson.com/en/blog/2024/3/6g- standardization-timeline-and-technology- principles, Last Visited, 2025.

[27] Li X., Wang Q., Ming Z., Yuanwei L., and et al., “Physical-Layer Authentication for Ambient Backscatter-Aided NOMA Symbiotic Systems,” IEEE Transactions on Communications, vol. 71, no. 4, pp. 2288-2303, 2023. DOI: 10.1109/TCOMM.2023.3245659

[28] Liu R., Guo K., An K., Zhou F., and et al., “Resource Allocation for NOMA-Enabled Cognitive Satellite-UAV-Terrestrial Networks with Imperfect CSI,” IEEE Transactions on Cognitive Communications and Networking, vol. 9, no. 4, pp. 963-976, 2023. DOI: 10.1109/TCCN.2023.3261311

[29] Liu R., Guo K., An K., Zhu S., and Shuai H., “NOMA-based Integrated Satellite-Terrestrial Relay Networks under Spectrum Sharing Environment,” IEEE Wireless Communications Letters, vol. 10, no. 6, pp. 1266-1270, 2021. DOI: 10.1109/LWC.2021.3063759

[30] Liu Y., Mu X., Xu J., Schober R., and et al., “STAR: Simultaneous Transmission and Reflection for 360° Coverage by Intelligent Surfaces,” IEEE Wireless Communications, vol. 28, no. 6, pp. 102-109, 2021. DOI: 10.1109/MWC.001.2100191

[31] Mekuria F. and Mfupe L., “Spectrum Sharing for Unlicensed 5G Networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference, Marrakesh, pp. 1-5, 2019. DOI: 10.1109/WCNC.2019.8885763

[32] Mohamed H., Singh M., Hamid K., Saeed R., and et al., “Modeling of NOMA-MIMO-based Power Domain for 5G Network under Selective Rayleigh Fading Channels,” Energies, vol. 15, no. 15, pp. 1-19, 2022. https://doi.org/10.3390/en15155668

[33] Mokhtar R., Saeed R., Alhumyani H., Khayyat M., and Abdel-Khalek S., “Cluster Mechanism for Sensing Data Report Using Robust Collaborative Distributed Spectrum Sensing,” Cluster Computing, vol. 25, no. 4 pp. 2541-2556 2021. https://doi.org/10.1007/s10586-021-03363-8

[34] Murti B., Hidayat R., and Wibowo S., “Spectrum Sensing Using Adaptive Threshold Based Energy Detection in Cognitive Radio System,” in Proceedings of the 4th International Seminar on Research of Information Technology and Intelligent Systems, Yogyakarta, pp. 614-617, 2021. DOI: 10.1109/ISRITI54043.2021.9702818

[35] Nishioka S., Miller S., Ku W., Romero L., and et al., 3GPP Commits to Develop 6G Specifications- ETSI, https://www.etsi.org/newsroom/news/2307-3gpp- commits-to-develop-6g-specifications, Last Visited, 2025.

[36] Pan C., Ren H., Wang K., Elkashlan M., and et al., “Intelligent Reflecting Surface Aided MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1719-1734, 2020. DOI: 10.1109/JSAC.2020.3000802

[37] Papazafeiropoulos A., Elbir A., Kourtessis P., Krikidis I., and Chatzinotas S., “Cooperative RIS and STAR-RIS Assisted mMIMO Communication: Analysis and Optimization,” IEEE Transactions on Vehicular Technology, vol. 72, no. 9, pp. 11975-11989, 2023. DOI: 10.1109/TVT.2023.3264724

[38] Ren J., Lei X., Peng Z., Tang X., and Dobre O., “RIS-Assisted Cooperative NOMA with SWIPT,” IEEE Wireless Communications Letters, vol. 12, no. 3, pp. 446-450, 2023. DOI: 10.1109/LWC.2022.3229843

[39] Singh K., Wang P., Biswas S., Singh S., and et al., “Joint Active and Passive Beamforming Design for RIS-Aided IBFD IoT Communications: QoS and Power Efficiency Considerations,” IEEE Transactions on Consumer Electronics, vol. 69, no. 2, pp. 170-182, 2023. DOI: 10.1109/TCE.2022.3223441

[40] Solaiman S., Nassef L., and Fadel E., “User Clustering and Optimized Power Allocation for D2D Communications at mmWave Underlaying MIMO-NOMA Cellular Networks,” IEEE Access, vol. 9, pp. 57726-57742, 2021. DOI: 10.1109/ACCESS.2021.3071992

[41] Song H., Wang H., and Su S., “STAR-RIS-Aided NOMA Communication for Mobile Edge Computing Using Hybrid Deep Reinforcement Learning,” Computer Networks, vol. 257, pp. 110960, 2025. https://doi.org/10.1016/j.comnet.2024.110960

[42] Sun Q., Han S., Chin-Lin I., and Pan Z., “On the Ergodic Capacity of MIMO NOMA Systems,” IEEE Wireless Communications Letters, vol. 4, no. 4, pp. 405-408, 2015. DOI: 10.1109/LWC.2015.2426709

[43] Tang W., Chen X., Chen M., Daiet J., and et al., “Path Loss Modeling and Measurements for Reconfigurable Intelligent Surfaces in the Millimeter-Wave Frequency Band,” IEEE Transactions on Communications, vol. 70, no. 9, 1176 The International Arab Journal of Information Technology, Vol. 22, No. 6, November 2025 pp. 6259-6276, 2022. DOI: 10.1109/TCOMM.2022.3193400

[44] Tin P., Nguyen M., Tran D., Nguyen C., and et al., “Performance Analysis of User Pairing for Active RIS-Enabled Cooperative NOMA in 6G Cognitive Radio Networks,” IEEE Internet of Things Journal, vol. 11, no. 23, pp. 37675- 37692, 2024. DOI: 10.1109/JIOT.2024.3439377

[45] Tran D., Van Huynh N., Kaada S., Vo V., and et al., “Network Energy Saving for 6G and Beyond: A Deep Reinforcement Learning Approach,” in Proceedings of the IEEE Wireless Communications and Networking Conference, Milan, pp. 1-6, 2025. DOI: 10.1109/WCNC61545.2025.10978758

[46] Umer M., Mohsin M., Ghafoor H., and Hassan S., “Resource Allocation for RIS Assisted CoMP- NOMA Networks Using Reinforcement Learning,” arXiv Preprint, vol. arXiv:2504.08721v3, pp. 1-74, 2025. https://doi.org/10.48550/arXiv.2504.00975

[47] Vu T., Nguyen T., Da Costa D., and Kim S., “Reconfigurable Intelligent Surface-Aided Cognitive NOMA Networks: Performance Analysis and Deep Learning Evaluation,” IEEE Transactions on Wireless Communications, vol. 21, no. 12, pp. 10662-10677, 2022. DOI: 10.1109/TWC.2022.3185749

[48] Wu Q. and Zhang R., “Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394-5409, 2019. DOI: 10.1109/TWC.2019.2936025

[49] Xu J., Liu Y., and Mu X., “Performance Analysis for the Coupled Phase-Shift STAR-RISs,” in Proceedings of the IEEE Wireless Communications and Networking Conference, Austin, pp. 489-493, 2022. DOI: 10.1109/WCNC51071.2022.9771900

[50] Yue X. and Liu Y., “Performance Analysis of Intelligent Reflecting Surface Assisted NOMA Networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2623-2636, 2022. DOI: 10.1109/TWC.2021.3114221

[51] Yue X., Xie J., Liu Y., Han Z., and et al., “Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface Assisted NOMA Networks,” IEEE Transactions on Wireless Communications, vol. 22, no. 1, pp. 189- 204, 2023. DOI: 10.1109/TWC.2022.3192211

[52] Zeng M., Yadav A., Dobre O., Tsiropoulos G., and Poor H., “On the Sum Rate of MIMO-NOMA and MIMO-OMA Systems,” IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 534- 537, 2017. DOI: 10.1109/LWC.2017.2712149

[53] Zhakipov Z., Rabie K., Li X., and Nauryzbayev G., “Accurate Approximation to Channel Distributions of Cascaded RIS-Aided Systems with Phase Errors over Nakagami-m Channels,” IEEE Wireless Communications Letters, vol. 12, no. 5, pp. 922-926, 2023. DOI: 10.1109/LWC.2023.3251647

[54] Zhang S., Liu J., Guo H., Qi M., and Kato N., “Envisioning Device-to-Device Communications in 6G,” IEEE Network, vol. 34, no. 3, pp. 86-91, 2020. DOI: 10.1109/MNET.001.1900652

[55] Zhang Y., Xia W., Zhao H., Zheng G., and et al., “Performance Analysis of RIS-Assisted Cell-Free Massive MIMO Systems with Transceiver Hardware Impairments,” IEEE Transactions on Communications, vol. 71, no. 12, pp. 7258-7272, 2023. DOI: 10.1109/TCOMM.2023.3306890

[56] Zhao B., Zhang C., Yi W., and Liu Y., “Ergodic Rate Analysis of STAR-RIS Aided NOMA Systems,” IEEE Communications Letters, vol. 26, no. 10, pp. 2297-2301, 2022. https://ieeexplore.ieee.org/document/9843866